text
stringlengths 56
1.16k
|
---|
[2023-10-25 20:29:54,220::train::INFO] [train] Iter 599963 | loss 0.1740 | loss(rot) 0.0859 | loss(pos) 0.0160 | loss(seq) 0.0721 | grad 1.9782 | lr 0.0000 | time_forward 3.5240 | time_backward 4.8370 |
[2023-10-25 20:30:03,822::train::INFO] [train] Iter 599964 | loss 1.3481 | loss(rot) 0.3485 | loss(pos) 0.6951 | loss(seq) 0.3045 | grad 4.8424 | lr 0.0000 | time_forward 3.9670 | time_backward 5.6310 |
[2023-10-25 20:30:13,653::train::INFO] [train] Iter 599965 | loss 0.7435 | loss(rot) 0.2334 | loss(pos) 0.0430 | loss(seq) 0.4671 | grad 3.9811 | lr 0.0000 | time_forward 4.0890 | time_backward 5.7380 |
[2023-10-25 20:30:16,617::train::INFO] [train] Iter 599966 | loss 0.2658 | loss(rot) 0.0533 | loss(pos) 0.1904 | loss(seq) 0.0222 | grad 3.9692 | lr 0.0000 | time_forward 1.3900 | time_backward 1.5710 |
[2023-10-25 20:30:25,054::train::INFO] [train] Iter 599967 | loss 0.8833 | loss(rot) 0.2493 | loss(pos) 0.5696 | loss(seq) 0.0644 | grad 5.0016 | lr 0.0000 | time_forward 3.5180 | time_backward 4.9150 |
[2023-10-25 20:30:33,639::train::INFO] [train] Iter 599968 | loss 0.3385 | loss(rot) 0.0511 | loss(pos) 0.2505 | loss(seq) 0.0369 | grad 4.9376 | lr 0.0000 | time_forward 3.5800 | time_backward 5.0010 |
[2023-10-25 20:30:43,242::train::INFO] [train] Iter 599969 | loss 0.6933 | loss(rot) 0.6448 | loss(pos) 0.0226 | loss(seq) 0.0259 | grad 4.2183 | lr 0.0000 | time_forward 3.9740 | time_backward 5.6250 |
[2023-10-25 20:30:51,953::train::INFO] [train] Iter 599970 | loss 0.3559 | loss(rot) 0.0938 | loss(pos) 0.0273 | loss(seq) 0.2347 | grad 2.8434 | lr 0.0000 | time_forward 3.7000 | time_backward 5.0080 |
[2023-10-25 20:30:56,764::train::INFO] [train] Iter 599971 | loss 0.4414 | loss(rot) 0.1310 | loss(pos) 0.2976 | loss(seq) 0.0129 | grad 3.5172 | lr 0.0000 | time_forward 2.1180 | time_backward 2.6900 |
[2023-10-25 20:31:08,113::train::INFO] [train] Iter 599972 | loss 0.2447 | loss(rot) 0.1346 | loss(pos) 0.0724 | loss(seq) 0.0377 | grad 2.2916 | lr 0.0000 | time_forward 4.9050 | time_backward 6.4410 |
[2023-10-25 20:31:18,535::train::INFO] [train] Iter 599973 | loss 1.1285 | loss(rot) 1.0448 | loss(pos) 0.0239 | loss(seq) 0.0599 | grad 4.9140 | lr 0.0000 | time_forward 4.1730 | time_backward 6.1820 |
[2023-10-25 20:31:29,052::train::INFO] [train] Iter 599974 | loss 0.4545 | loss(rot) 0.0526 | loss(pos) 0.3992 | loss(seq) 0.0028 | grad 5.1644 | lr 0.0000 | time_forward 4.3120 | time_backward 6.2010 |
[2023-10-25 20:31:37,432::train::INFO] [train] Iter 599975 | loss 0.6505 | loss(rot) 0.1197 | loss(pos) 0.0991 | loss(seq) 0.4317 | grad 3.7766 | lr 0.0000 | time_forward 3.5030 | time_backward 4.8730 |
[2023-10-25 20:31:41,035::train::INFO] [train] Iter 599976 | loss 0.7951 | loss(rot) 0.7228 | loss(pos) 0.0717 | loss(seq) 0.0006 | grad 14.3928 | lr 0.0000 | time_forward 1.5620 | time_backward 2.0380 |
[2023-10-25 20:31:51,221::train::INFO] [train] Iter 599977 | loss 0.6995 | loss(rot) 0.2665 | loss(pos) 0.0259 | loss(seq) 0.4071 | grad 2.9833 | lr 0.0000 | time_forward 4.1620 | time_backward 6.0210 |
[2023-10-25 20:32:00,437::train::INFO] [train] Iter 599978 | loss 0.4775 | loss(rot) 0.1275 | loss(pos) 0.0748 | loss(seq) 0.2752 | grad 3.9080 | lr 0.0000 | time_forward 3.7840 | time_backward 5.4300 |
[2023-10-25 20:32:09,619::train::INFO] [train] Iter 599979 | loss 0.5384 | loss(rot) 0.4857 | loss(pos) 0.0471 | loss(seq) 0.0056 | grad 20.9297 | lr 0.0000 | time_forward 3.8690 | time_backward 5.3090 |
[2023-10-25 20:32:18,646::train::INFO] [train] Iter 599980 | loss 1.5693 | loss(rot) 1.3464 | loss(pos) 0.0680 | loss(seq) 0.1549 | grad 15.1801 | lr 0.0000 | time_forward 3.7720 | time_backward 5.2520 |
[2023-10-25 20:32:28,130::train::INFO] [train] Iter 599981 | loss 0.3999 | loss(rot) 0.0850 | loss(pos) 0.1029 | loss(seq) 0.2120 | grad 3.6599 | lr 0.0000 | time_forward 3.9450 | time_backward 5.5360 |
[2023-10-25 20:32:39,048::train::INFO] [train] Iter 599982 | loss 1.7525 | loss(rot) 1.0046 | loss(pos) 0.1954 | loss(seq) 0.5525 | grad 3.4527 | lr 0.0000 | time_forward 4.5700 | time_backward 6.3460 |
[2023-10-25 20:32:41,882::train::INFO] [train] Iter 599983 | loss 0.6299 | loss(rot) 0.2392 | loss(pos) 0.2150 | loss(seq) 0.1757 | grad 3.6350 | lr 0.0000 | time_forward 1.3280 | time_backward 1.5020 |
[2023-10-25 20:32:50,337::train::INFO] [train] Iter 599984 | loss 0.4394 | loss(rot) 0.1201 | loss(pos) 0.3146 | loss(seq) 0.0047 | grad 4.5382 | lr 0.0000 | time_forward 3.5050 | time_backward 4.9470 |
[2023-10-25 20:32:53,205::train::INFO] [train] Iter 599985 | loss 0.3852 | loss(rot) 0.2718 | loss(pos) 0.0163 | loss(seq) 0.0971 | grad 3.2844 | lr 0.0000 | time_forward 1.3630 | time_backward 1.5020 |
[2023-10-25 20:33:03,634::train::INFO] [train] Iter 599986 | loss 0.9464 | loss(rot) 0.3349 | loss(pos) 0.4462 | loss(seq) 0.1652 | grad 4.0955 | lr 0.0000 | time_forward 4.2640 | time_backward 6.1630 |
[2023-10-25 20:33:14,274::train::INFO] [train] Iter 599987 | loss 0.5172 | loss(rot) 0.1377 | loss(pos) 0.0413 | loss(seq) 0.3382 | grad 5.3796 | lr 0.0000 | time_forward 4.3660 | time_backward 6.2700 |
[2023-10-25 20:33:16,714::train::INFO] [train] Iter 599988 | loss 0.6025 | loss(rot) 0.0386 | loss(pos) 0.5606 | loss(seq) 0.0033 | grad 5.9858 | lr 0.0000 | time_forward 1.1020 | time_backward 1.3360 |
[2023-10-25 20:33:25,097::train::INFO] [train] Iter 599989 | loss 0.5777 | loss(rot) 0.5314 | loss(pos) 0.0216 | loss(seq) 0.0246 | grad 2.1071 | lr 0.0000 | time_forward 3.5030 | time_backward 4.8760 |
[2023-10-25 20:33:28,033::train::INFO] [train] Iter 599990 | loss 0.3791 | loss(rot) 0.0651 | loss(pos) 0.3054 | loss(seq) 0.0087 | grad 6.1965 | lr 0.0000 | time_forward 1.3800 | time_backward 1.5530 |
[2023-10-25 20:33:34,854::train::INFO] [train] Iter 599991 | loss 0.5787 | loss(rot) 0.1259 | loss(pos) 0.0157 | loss(seq) 0.4370 | grad 3.1146 | lr 0.0000 | time_forward 2.8870 | time_backward 3.9300 |
[2023-10-25 20:33:43,366::train::INFO] [train] Iter 599992 | loss 0.3819 | loss(rot) 0.1757 | loss(pos) 0.0435 | loss(seq) 0.1627 | grad 2.5818 | lr 0.0000 | time_forward 3.5650 | time_backward 4.9340 |
[2023-10-25 20:33:53,689::train::INFO] [train] Iter 599993 | loss 1.6168 | loss(rot) 1.5658 | loss(pos) 0.0415 | loss(seq) 0.0095 | grad 3.5704 | lr 0.0000 | time_forward 4.1680 | time_backward 6.1510 |
[2023-10-25 20:33:56,526::train::INFO] [train] Iter 599994 | loss 0.8620 | loss(rot) 0.5917 | loss(pos) 0.0896 | loss(seq) 0.1807 | grad 19.2998 | lr 0.0000 | time_forward 1.3530 | time_backward 1.4810 |
[2023-10-25 20:34:05,518::train::INFO] [train] Iter 599995 | loss 0.7049 | loss(rot) 0.6421 | loss(pos) 0.0144 | loss(seq) 0.0483 | grad 5.5201 | lr 0.0000 | time_forward 3.7910 | time_backward 5.1970 |
[2023-10-25 20:34:14,481::train::INFO] [train] Iter 599996 | loss 0.7836 | loss(rot) 0.6294 | loss(pos) 0.0370 | loss(seq) 0.1172 | grad 3.1529 | lr 0.0000 | time_forward 3.7810 | time_backward 5.1790 |
[2023-10-25 20:34:23,102::train::INFO] [train] Iter 599997 | loss 0.3369 | loss(rot) 0.2737 | loss(pos) 0.0217 | loss(seq) 0.0415 | grad 4.2525 | lr 0.0000 | time_forward 3.6210 | time_backward 4.9970 |
[2023-10-25 20:34:31,709::train::INFO] [train] Iter 599998 | loss 0.3717 | loss(rot) 0.1335 | loss(pos) 0.0211 | loss(seq) 0.2171 | grad 2.8076 | lr 0.0000 | time_forward 3.6240 | time_backward 4.9800 |
[2023-10-25 20:34:41,930::train::INFO] [train] Iter 599999 | loss 0.7801 | loss(rot) 0.3920 | loss(pos) 0.0789 | loss(seq) 0.3091 | grad 3.9572 | lr 0.0000 | time_forward 4.1650 | time_backward 6.0530 |
[2023-10-25 20:34:44,779::train::INFO] [train] Iter 600000 | loss 1.2337 | loss(rot) 1.0281 | loss(pos) 0.0368 | loss(seq) 0.1688 | grad 8.9339 | lr 0.0000 | time_forward 1.3170 | time_backward 1.5280 |
[2023-10-25 20:35:35,690::train::INFO] [val] Iter 600000 | loss 1.3438 | loss(rot) 0.8359 | loss(pos) 0.3200 | loss(seq) 0.1879 |