Datasets:
Delete durhamtrees.py
Browse files- durhamtrees.py +0 -179
durhamtrees.py
DELETED
@@ -1,179 +0,0 @@
|
|
1 |
-
# -*- coding: utf-8 -*-
|
2 |
-
"""DurhamTrees
|
3 |
-
|
4 |
-
Automatically generated by Colaboratory.
|
5 |
-
|
6 |
-
Original file is located at
|
7 |
-
https://colab.research.google.com/drive/1W5gDhKokcuqoA8AK4a6JR7PIeCUdmrTU
|
8 |
-
"""
|
9 |
-
|
10 |
-
!pip install datasets
|
11 |
-
import datasets
|
12 |
-
import pandas as pd
|
13 |
-
import geopandas as gpd
|
14 |
-
from datasets import DatasetBuilder, DownloadManager, DatasetInfo, SplitGenerator, Split
|
15 |
-
from datasets.features import Features, Value, ClassLabel
|
16 |
-
import matplotlib.pyplot as plt
|
17 |
-
import csv
|
18 |
-
import json
|
19 |
-
import os
|
20 |
-
from typing import List
|
21 |
-
|
22 |
-
|
23 |
-
_URLS = {
|
24 |
-
"first_domain": {
|
25 |
-
"csv_file": "https://drive.google.com/uc?export=download&id=18HmgMbtbntWsvAySoZr4nV1KNu-i7GCy",
|
26 |
-
"geojson_file": "https://drive.google.com/uc?export=download&id=1jpFVanNGy7L5tVO-Z_nltbBXKvrcAoDo",
|
27 |
-
},
|
28 |
-
# Add other domains if necessary
|
29 |
-
}
|
30 |
-
|
31 |
-
columns_to_extract = [ "geometry", # Geometry feature, usually spatial data (GeoJSON format)
|
32 |
-
"OBJECTID", # Unique identifier for each record
|
33 |
-
"streetaddress", # Street address of the tree planting site
|
34 |
-
"city", # City where the tree planting site is located
|
35 |
-
"zipcode", # Zip code of the tree planting site (changed to string)
|
36 |
-
"facilityid", # Identifier for the facility
|
37 |
-
"present", # Presence status, assumed to be string
|
38 |
-
"genus", # Genus of the tree
|
39 |
-
"species", # Species of the tree
|
40 |
-
"commonname", # Common name of the tree
|
41 |
-
"diameterin", # Diameter in inches
|
42 |
-
"heightft", # Height in feet (changed to "float64")
|
43 |
-
"condition", # Condition of the tree
|
44 |
-
"contractwork", # Contract work information
|
45 |
-
"neighborhood", # Neighborhood where the tree is located
|
46 |
-
"program", # Program under which the tree was planted
|
47 |
-
"plantingw", # Width available for planting
|
48 |
-
"plantingcond", # Planting condition
|
49 |
-
"underpwerlins", # Whether the tree is under power lines
|
50 |
-
"GlobalID", # Global identifier
|
51 |
-
"created_user", # User who created the record
|
52 |
-
"last_edited_user", # User who last edited the record
|
53 |
-
"isoprene", # Isoprene emission rate
|
54 |
-
"monoterpene",
|
55 |
-
"coremoved_ozperyr", # Carbon monoxide removed, in ounces per year
|
56 |
-
"coremoved_dolperyr", # Monetary value of carbon monoxide removal per year
|
57 |
-
"o3removed_ozperyr", # Ozone removed, in ounces per year
|
58 |
-
"o3removed_dolperyr", # Monetary value of ozone removal per year
|
59 |
-
"no2removed_ozperyr", # Nitrogen dioxide removed, in ounces per year
|
60 |
-
"no2removed_dolperyr", # Monetary value of nitrogen dioxide removal per year
|
61 |
-
"so2removed_ozperyr", # Sulfur dioxide removed, in ounces per year
|
62 |
-
"so2removed_dolperyr", # Monetary value of sulfur dioxide removal per year
|
63 |
-
"pm10removed_ozperyr", # Particulate matter (10 micrometers or less) removed, in ounces per year
|
64 |
-
"pm10removed_dolperyr", # Monetary value of particulate matter removal per year
|
65 |
-
"pm25removed_ozperyr", # Particulate matter (2.5 micrometers or less) removed, in ounces per year
|
66 |
-
"o2production_lbperyr", # Oxygen production, in pounds per year
|
67 |
-
"replacevalue_dol", # Replacement value in dollars
|
68 |
-
"carbonstorage_lb", # Carbon storage, in pounds
|
69 |
-
"carbonstorage_dol", # Monetary value of carbon storage
|
70 |
-
"grosscarseq_lbperyr", # Gross carbon sequestration, in pounds per year
|
71 |
-
"X", # X coordinate (longitude if geographic)
|
72 |
-
"Y"]
|
73 |
-
|
74 |
-
|
75 |
-
class DurhamTrees(datasets.GeneratorBasedBuilder):
|
76 |
-
# ... [other parts of the script] ...
|
77 |
-
VERSION = datasets.Version("1.0.0")
|
78 |
-
def _info(self):
|
79 |
-
# Specifies the dataset's features
|
80 |
-
return DatasetInfo(
|
81 |
-
description="This dataset contains information about tree planting sites from CSV and GeoJSON files.",
|
82 |
-
features=Features({
|
83 |
-
"geometry": Value("string"), # Geometry feature, usually spatial data (GeoJSON format)
|
84 |
-
"OBJECTID": Value("int64"), # Unique identifier for each record
|
85 |
-
"streetaddress": Value("string"), # Street address of the tree planting site
|
86 |
-
"city": Value("string"), # City where the tree planting site is located
|
87 |
-
"zipcode": Value("int64"), # Zip code of the tree planting site
|
88 |
-
"facilityid": Value("int64"), # Identifier for the facility
|
89 |
-
"present": Value("string"), # Presence status, assumed to be string
|
90 |
-
"genus": Value("string"), # Genus of the tree
|
91 |
-
"species": Value("string"), # Species of the tree
|
92 |
-
"commonname": Value("string"), # Common name of the tree
|
93 |
-
"diameterin": Value("float64"), # Diameter in inches
|
94 |
-
"heightft": Value("float64"), # Height in feet (changed to "float64")
|
95 |
-
"condition": Value("string"), # Condition of the tree
|
96 |
-
"contractwork": Value("string"), # Contract work information
|
97 |
-
"neighborhood": Value("string"), # Neighborhood where the tree is located
|
98 |
-
"program": Value("string"), # Program under which the tree was planted
|
99 |
-
"plantingw": Value("string"), # Width available for planting
|
100 |
-
"plantingcond": Value("string"), # Planting condition
|
101 |
-
"underpwerlins": Value("string"), # Whether the tree is under power lines
|
102 |
-
"GlobalID": Value("string"), # Global identifier
|
103 |
-
"created_user": Value("string"), # User who created the record
|
104 |
-
"last_edited_user": Value("string"), # User who last edited the record
|
105 |
-
"isoprene": Value("float64"), # Isoprene emission rate
|
106 |
-
"monoterpene": Value("float64"),
|
107 |
-
"coremoved_ozperyr": Value("float64"), # Carbon monoxide removed, in ounces per year
|
108 |
-
"coremoved_dolperyr": Value("float64"), # Monetary value of carbon monoxide removal per year
|
109 |
-
"o3removed_ozperyr": Value("float64"), # Ozone removed, in ounces per year
|
110 |
-
"o3removed_dolperyr": Value("float64"), # Monetary value of ozone removal per year
|
111 |
-
"no2removed_ozperyr": Value("float64"), # Nitrogen dioxide removed, in ounces per year
|
112 |
-
"no2removed_dolperyr": Value("float64"), # Monetary value of nitrogen dioxide removal per year
|
113 |
-
"so2removed_ozperyr": Value("float64"), # Sulfur dioxide removed, in ounces per year
|
114 |
-
"so2removed_dolperyr": Value("float64"), # Monetary value of sulfur dioxide removal per year
|
115 |
-
"pm10removed_ozperyr": Value("float64"), # Particulate matter (10 micrometers or less) removed, in ounces per year
|
116 |
-
"pm10removed_dolperyr": Value("float64"), # Monetary value of particulate matter removal per year
|
117 |
-
"pm25removed_ozperyr": Value("float64"), # Particulate matter (2.5 micrometers or less) removed, in ounces per year
|
118 |
-
"o2production_lbperyr": Value("float64"), # Oxygen production, in pounds per year
|
119 |
-
"replacevalue_dol": Value("float64"), # Replacement value in dollars
|
120 |
-
"carbonstorage_lb": Value("float64"), # Carbon storage, in pounds
|
121 |
-
"carbonstorage_dol": Value("float64"), # Monetary value of carbon storage
|
122 |
-
"grosscarseq_lbperyr": Value("float64"), # Gross carbon sequestration, in pounds per year
|
123 |
-
"X": Value("float64"), # X coordinate (longitude if geographic)
|
124 |
-
"Y": Value("float64"), # Y coordinate (latitude if geographic)
|
125 |
-
}),
|
126 |
-
supervised_keys=None,
|
127 |
-
homepage="https://github.com/AuraMa111?tab=repositories",
|
128 |
-
citation="Citation for the dataset",
|
129 |
-
)
|
130 |
-
|
131 |
-
def _split_generators(self, dl_manager):
|
132 |
-
downloaded_files = dl_manager.download_and_extract(_URLS[self.config.name])
|
133 |
-
|
134 |
-
return [
|
135 |
-
datasets.SplitGenerator(
|
136 |
-
name=datasets.Split.TRAIN,
|
137 |
-
gen_kwargs={
|
138 |
-
"csv_filepath": downloaded_files["first_domain"]["csv_file"],
|
139 |
-
"geojson_filepath": downloaded_files["first_domain"]["geojson_file"],
|
140 |
-
"split": "train",
|
141 |
-
},
|
142 |
-
),
|
143 |
-
# Add additional split generators if available
|
144 |
-
]
|
145 |
-
|
146 |
-
def _generate_examples(self, csv_filepath, geojson_filepath, split):
|
147 |
-
# Load the CSV data into a pandas DataFrame
|
148 |
-
csv_data = pd.read_csv(csv_filepath)
|
149 |
-
|
150 |
-
# Load the GeoJSON data into a GeoDataFrame
|
151 |
-
geojson_data = gpd.read_file(geojson_filepath)
|
152 |
-
|
153 |
-
# Merge the CSV data with the GeoJSON data on the 'OBJECTID' field
|
154 |
-
merged_data = geojson_data.merge(csv_data, on='OBJECTID')
|
155 |
-
|
156 |
-
# Convert the merged GeoDataFrame back into a dictionary to yield examples
|
157 |
-
merged_dict = json.loads(merged_data.to_json())
|
158 |
-
final_data = merged_data[columns_to_extract]
|
159 |
-
|
160 |
-
# Iterate over the rows of the final DataFrame and yield each row as an example
|
161 |
-
for id_, row in final_data.iterrows():
|
162 |
-
# Convert the row to a dictionary
|
163 |
-
example = row.to_dict()
|
164 |
-
|
165 |
-
# Correct data types for 'zipcode' and 'heightft' if necessary
|
166 |
-
example['zipcode'] = str(example['zipcode'])
|
167 |
-
example['heightft'] = float(example['heightft'])
|
168 |
-
|
169 |
-
# Yield the example
|
170 |
-
yield id_, example
|
171 |
-
# Iterate over the features and yield each one as an example
|
172 |
-
for id_, feature in enumerate(merged_dict['features']):
|
173 |
-
properties = feature['properties']
|
174 |
-
|
175 |
-
# You might need additional processing here if you want to include the geometry
|
176 |
-
# or if the properties need further manipulation to fit the datasets.Features structure
|
177 |
-
|
178 |
-
yield id_, properties
|
179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|