File size: 42,274 Bytes
c8f3414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1
00:00:00,000 --> 00:00:01,260
ู…ูˆุณูŠู‚ู‰

2
00:00:19,490 --> 00:00:23,670
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุนูˆุฏ ุงู„ุขู† ู„ุฅูƒู…ุงู„ ู…ุง ุงุจุชุฏุฃู†ุง

3
00:00:23,670 --> 00:00:28,950
ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู…ุงุถูŠุฉ ูˆู‡ูˆ section 5-7 ุงู„ุฐูŠ ูŠุชุญุฏุซ ุนู†

4
00:00:28,950 --> 00:00:32,350
ุงู„ู€undetermined coefficients ุงู„ู„ูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ

5
00:00:32,350 --> 00:00:38,110
ุงู„ู…ุนุงู…ู„ุงุช ุงู„ู…ุฌู‡ูˆู„ุฉ ู„ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุจู†ุญู„ ุจู‡ุฐู‡ 

6
00:00:38,110 --> 00:00:42,370
ุงู„ุทุฑูŠู‚ุฉ ุฅุฐุง ุชุญู‚ู‚ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุฃู…ุฑุงู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„

7
00:00:42,370 --> 00:00:48,210
ูƒุงู†ุช ุงู„ู…ุนุงู…ู„ุงุช ูƒู„ู‡ุง ุซูˆุงุจุช ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ุฃู…ุฑ 

8
00:00:48,210 --> 00:00:53,450
ุงู„ุซุงู†ูŠ ุดูƒู„ ุงู„ู€ F of X ูŠุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ู…ุง ู‡ูˆ ู‡ุฐุง

9
00:00:53,450 --> 00:00:57,810
ุงู„ุดูƒู„ุŸ ุฃุญุฏ ุซู„ุงุซุฉ ุฃู…ูˆุฑ ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ุฃู† ูŠูƒูˆู† polynomial

10
00:00:57,810 --> 00:01:01,930
ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ polynomial ููŠ exponential ุงู„ุฃู…ุฑ 

11
00:01:01,930 --> 00:01:07,170
ุงู„ุซุงู„ุซ polynomial ููŠ exponential ููŠ sin x ุฃูˆ cos x

12
00:01:07,170 --> 00:01:12,390
ุฃูˆ ู…ุฌู…ูˆุนู‡ู…ุง ุฃูˆ ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูˆุนุทูŠู†ุง ุนู„ู‰ ุฐู„ูƒ ููŠ 

13
00:01:12,390 --> 00:01:17,270
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ู…ุซุงู„ูŠู† ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุซู„ุงุซุฉ ูŠุจู‚ู‰ 

14
00:01:17,270 --> 00:01:21,270
ุจุฏู†ุง ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฐูƒุฑู†ุง 

15
00:01:21,270 --> 00:01:24,830
ููŠ ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุจู†ุฌุฒุฆู‡ุง ุฅู„ู‰ ุฌุฒุฆูŠู† ุจู†ุงุฎุฏ ุงู„ู€ 

16
00:01:24,830 --> 00:01:28,730
homogeneous ูˆู…ู† ุซู… ุงู„ู€ non homogeneous differential 

17
00:01:28,730 --> 00:01:34,790
equation ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ุงูุชุฑุถ ุฃู† Y ุชุณุงูˆูŠ E ุฃุณ RX

18
00:01:34,790 --> 00:01:45,450
ุจูŠู‡ solution of the homogeneous differential

19
00:01:45,450 --> 00:01:51,890
equation ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชุงู„ูŠุฉ Y W Prime ุฒุงุฆุฏ Y 

20
00:01:51,890 --> 00:01:57,450
ูŠุณุงูˆูŠ Zero then the characteristic equation 

21
00:02:12,070 --> 00:02:18,010
ุงู„ุญู„ ุงู„ู…ุชุฌุงู†ุณ ูŠุจู‚ู‰ 

22
00:02:22,280 --> 00:02:32,080
The Homogeneous Differential Equation is ูŠุณุงูˆูŠ 

23
00:02:32,080 --> 00:02:40,580
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ

24
00:02:40,580 --> 00:02:44,700
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ

25
00:02:44,700 --> 00:02:45,880
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ

26
00:02:45,880 --> 00:02:47,560
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ

27
00:02:47,560 --> 00:02:47,620
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ

28
00:02:47,620 --> 00:02:51,060
ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ

29
00:02:51,060 --> 00:02:56,550
ูŠุจู‚ู‰ ุฃุฑูˆุญ ุฃุฏูˆุฑ ุนู„ู‰ particular solution ู„ุญู„ 

30
00:02:56,550 --> 00:03:01,730
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูŠ non homogeneous ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ the 

31
00:03:01,730 --> 00:03:07,970
particular solution

32
00:03:07,970 --> 00:03:17,010
of the Differential equation start ูˆุจุฑูˆุญ ุงู„ู„ูŠ ููˆู‚

33
00:03:17,010 --> 00:03:24,150
ุงู„ุฃุณุงุณูŠุฉ ู‡ุฐู‡ ุจุณู…ูŠู‡ุง star (S) ู…ุฏูŠู„ู‡ ุงู„ุฑู…ุฒ YP ูˆุจุฏูŠ

34
00:03:24,150 --> 00:03:31,510
ุจู‚ูˆู„ ูƒุชุงู„ูŠ X to the power S V ุจุฃุฌูŠ ุนู„ู‰ ุดูƒู„ ุงู„ู„ูŠ ู‡ูˆ

35
00:03:31,510 --> 00:03:35,650
ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุฑู‚ู… ููŠ sign ูŠุนู†ูŠ polynomial

36
00:03:35,650 --> 00:03:39,790
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ู…ุถุฑูˆุจุฉ ููŠ sign ุฅุฐุง ุจุฏูŠ ุฃูƒุชุจ

37
00:03:39,790 --> 00:03:43,630
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุตูุฑูŠุฉ ููŠ sign ุฒุงุฆุฏ

38
00:03:43,630 --> 00:03:49,090
polynomial ููŠ cosine ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† a 

39
00:03:49,090 --> 00:03:55,610
ููŠ cosine ุงู„ู€ x ุฒุงุฆุฏ b ููŠ sine ุงู„ู€ x ุจุงู„ุดูƒู„ ุงู„ู„ูŠ

40
00:03:55,610 --> 00:04:04,280
ุนู†ุฏู†ุง ู‡ุฐุง ุนู†ุฏู…ุง ุฃุจุญุซ ุนู† ู‚ูŠู…ุฉ S ู‡ู„ ู‡ูŠ 0 ุฃูˆ 1 ุฃูˆ 2 ุฃูˆ 

41
00:04:04,280 --> 00:04:06,980
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 

42
00:04:06,980 --> 00:04:10,500
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 

43
00:04:10,500 --> 00:04:10,560
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ

44
00:04:10,560 --> 00:04:10,600
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ

45
00:04:10,600 --> 00:04:11,400
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ

46
00:04:11,400 --> 00:04:11,720
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ

47
00:04:11,720 --> 00:04:21,600
3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ 3 ุฃูˆ

48
00:04:24,720 --> 00:04:28,780
ุจูˆุงุญุฏ ูˆุดูˆู ู„ูˆ ุญุทูŠุชู‡ุง ุจูˆุงุญุฏ ุจูŠุธู„ ููŠู‡ ุชุดุงุจู‡ ูˆู„ุง ุจูŠูƒูˆู†

49
00:04:28,780 --> 00:04:34,980
ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ุชุดุงุจู‡ ุฅุฐุง ู„ูˆ ุญุทูŠุช S ุจูˆุงุญุฏ ุจูŠุตูŠุฑ AX Cos

50
00:04:34,980 --> 00:04:41,400
ูˆู‡ู†ุง BX Sin ู‡ู„ ููŠ ุฃูŠ term ู‡ู†ุง ูŠุดุจู‡ ุฃูŠ term ู‡ู†ุง

51
00:04:41,400 --> 00:04:48,920
ุทุจุนุง ู„ุฃ ูŠุจู‚ู‰ ู‡ู†ุง here ู‡ู†ุง ุงู„ู€ S ุชุณุงูˆูŠ ูˆุงุญุฏ ู„ู…ุง ุญุท ุงู„ู€

52
00:04:48,920 --> 00:04:53,740
S ุชุณุงูˆูŠ ูˆุงุญุฏ ุจูŠูƒูˆู† ุฃุฒู„ู†ุง ุงู„ุดุจู‡ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุชู…ุงู…ุง ู…ุง

53
00:04:53,740 --> 00:04:56,880
ุจูŠู† ุงู„ู€ complementary solution ูˆ ุงู„ู€ particular

54
00:04:56,880 --> 00:05:02,600
solution ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ูŠุตุจุญ YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ

55
00:05:02,600 --> 00:05:12,510
AX ููŠ cosine X ุฒุงุฆุฏ BX ููŠ sine X ุงู„ุขู† ุจุฏู†ุง ู†ุญุฏุฏ

56
00:05:12,510 --> 00:05:19,010
ู‚ูŠู…ุชูŠู† ุซูˆุงุจุช ุงู„ู€ A ูˆ ุงู„ู€ B ู„ุฐู„ูƒ ุจุฏูŠ ุงุดุชู‚ ู…ุฑุฉ ูˆ ุงุซู†ูŠู†

57
00:05:19,010 --> 00:05:26,590
ูˆ ุฃุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏ Y P Prime

58
00:05:26,930 --> 00:05:34,310
ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ a ููŠ cos x ู†ุงู‚ุต ax 

59
00:05:34,310 --> 00:05:41,070
ููŠ sin x ุฒุงุฆุฏ ูƒู…ุงู† ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ b ููŠ 

60
00:05:41,070 --> 00:05:50,100
sin x ุฒุงุฆุฏ bx ููŠ cos x ูŠุจู‚ู‰ ุงุดุชู‚ู†ุง ูƒู„ู‡ ู…ู† X ูˆ Cos X

61
00:05:50,100 --> 00:05:56,040
ูˆ X ูˆ Sin X ูƒุญุงุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ู‡ุฐุง ุญุตู„ู†ุง ุนู„ู‰ Y' ุทุจุนุง 

62
00:05:56,040 --> 00:06:00,020
ู…ุง ููŠุด ูˆู„ุง term ุฒูŠ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ ุจูŠุฎู„ูŠ ูƒู„ ุดูŠุก ุฒูŠ ู…ุง 

63
00:06:00,020 --> 00:06:06,500
ู‡ูˆ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ YPW' ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุดุชู‚ ู‡ุฐู‡ ุจุงู„ุณุงู„ุจ

64
00:06:06,500 --> 00:06:16,830
A Sin X ูˆู‡ุฐู‡ ุงู„ุณุงู„ุจ A Sin X ุจุนุฏ ุฐู„ูƒ ุงู„ุณุงู„ุจ ax ููŠ

65
00:06:16,830 --> 00:06:23,190
cos x ุงุดุชู‚ุช ู‡ุฐู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ุจู†ุงู†ูŠุฌ ุงู„ู„ูŠ ุจุนุฏู‡ุง

66
00:06:23,190 --> 00:06:29,610
ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ุฎู„ุตู†ุง ู…ู†ู‡ุง ุจุฏุฃุช ุฃุดุชู‚ ู‡ุฐู‡ ุญุตู„

67
00:06:29,610 --> 00:06:38,190
ุถุฑุจ ุฏุงู„ุชูŠู† ูŠุจู‚ู‰ ุฒุงุฆุฏ b ููŠ cos x ู†ุงู‚ุต bx ููŠ sin x

68
00:06:38,620 --> 00:06:42,780
ูŠุจู‚ู‰ ุงุดุชู‚ู†ุงู‡ ุญุตู„ ุถุฑุจ ุฏุงู„ุชูŠู† ู‡ู†ุง ููŠ ุจุนุถ ุงู„ุนู†ุงุตุฑ 

69
00:06:42,780 --> 00:06:50,640
ู…ุชุดุงุจู‡ุฉ ู‡ูŠ ุนู†ุฏ ู‡ู†ุง ุณุงู„ุจ ุงุซู†ูŠู† a ููŠ sine ุงู„ู€ X ูˆุนู†ุฏูŠ 

70
00:06:50,640 --> 00:06:56,880
ูƒู…ุงู† ุฒุงุฆุฏ ุงุซู†ูŠู† b ููŠ cosine ุงู„ู€ X ู‡ุฏูˆู„ ุงุซู†ูŠู† ู…ุน ุจุนุถ

71
00:06:56,880 --> 00:07:03,720
ูˆู‡ุฏูˆู„ ุงุซู†ูŠู† ู…ุน ุจุนุถ ุจุงู‚ูŠ ุนู†ุฏูŠ ู†ุงู‚ุต ax ููŠ cosine ุงู„ู€ 

72
00:07:03,720 --> 00:07:10,180
X ูˆู†ุงู‚ุต bx ููŠ sine ุงู„ู€ X ุจุนุฏ ุฐู„ูƒ ุงุฎุฐ ุงู„ู…ุนู„ูˆู…ุงุช ุงู„ู„ูŠ 

73
00:07:10,180 --> 00:07:15,040
ุญุตู„ุช ุนู„ูŠู‡ุง ูˆ ุฃุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ star ูŠุจู‚ู‰ ู‡ู†ุง 

74
00:07:15,040 --> 00:07:23,320
substitute in 

75
00:07:23,320 --> 00:07:33,740
the differential equation star we get ุจู†ุญุตู„ ุนู„ู‰ ู…ุง 

76
00:07:33,740 --> 00:07:34,200
ูŠุฃุชูŠ

77
00:07:40,110 --> 00:07:43,630
ูŠุฌุจ ุฃู† ุงุฒุงู„ุฉ ูˆูŠ ุฏุงุจู„ูŠ ุจุฑุงูŠู… ูˆุงุญุท ู‚ูŠู…ุชู‡ุง ูˆูŠ ุฏุงุจู„ูŠ 

78
00:07:43,630 --> 00:07:48,950
ุจุฑุงูŠู… ู‡ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง ูŠุจู‚ู‰ ู†ุงู‚ุต ุงุซู†ูŠู† ุงู ุตูŠู†

79
00:07:48,950 --> 00:07:55,980
ุงู„ุฒุงูˆูŠุฉ ุซุชุง ุตูŠู† ุงู„ุฒุงูˆูŠุฉ X ุชู…ุงู…ุŸ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฒุงุฆุฏ

80
00:07:55,980 --> 00:08:04,340
ุงุซู†ูŠู† B ููŠ cosine ุงู„ู€ X ุงู„ู„ูŠ ุจุนุฏู‡ุง ู†ุงู‚ุต ุงู„ู€ AX ููŠ

81
00:08:04,340 --> 00:08:11,080
cosine ุงู„ู€ X ู†ุงู‚ุต ุงู„ู€ BX ููŠ sine ุงู„ู€ X ู‡ุฐุง ูƒู„ู‡ ุงู„ู„ูŠ

82
00:08:11,080 --> 00:08:17,400
ุฃุฎุฏุชู‡ ู…ูŠู†ุŸ YW prime ุถุงูŠู‚ ู„ู†ุง ู…ูŠู†ุŸ Y ูˆูŠู† Y ู‡ุงูŠู‡ุงุŸ 

83
00:08:17,400 --> 00:08:24,560
ุจุฏู‡ ุฃุฌู…ุนู‡ู… ู‡ุฏูˆู„ ูŠุจู‚ู‰ ุฒุงุฆุฏู‡ู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ax ููŠ cos

84
00:08:24,560 --> 00:08:33,520
x ูˆุจุนุฏ ู‡ูŠ ูƒุฏู‡ ุฒุงุฆุฏ bx ููŠ sin x ูƒู„ู‡ ุจูŠุณุงูˆูŠ ุงู„ุทุฑู

85
00:08:33,520 --> 00:08:40,300
ุงู„ู„ูŠ ูŠุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ู‡ูˆ 4 ููŠ sin x ุจู†ุฌูŠ ู†ุฌู…ุน ุนู† 

86
00:08:40,300 --> 00:08:47,940
ax cos ุจุงู„ุณุงู„ุจ ูˆ ax cos ุจุงู„ู…ูˆุฌุจ ุนู†ุง bx sin ุจุงู„ุณุงู„ุจ 

87
00:08:47,940 --> 00:08:53,220
ูˆ bx ุจูŠู…ูŠู† ุจุงู„ู…ูˆุฌุจ ูŠุจู‚ู‰ ุตูุฉ ุงู„ู…ุนุงุฏู„ุฉ ุนู„ู‰ ุงู„ุดูƒู„

88
00:08:53,220 --> 00:09:00,740
ุงู„ุชุงู„ูŠ ู†ุงู‚ุต ุงุซู†ูŠู† a sin x ุฒุงุฆุฏูŠ ุงุซู†ูŠู† b cos x ูƒู„ู‡ 

89
00:09:00,740 --> 00:09:07,540
ุจุฏู‡ ูŠุณุงูˆูŠ ุฃุฑุจุน sin x ุจุนุฏ ุฐู„ูƒ ู†ู‚ุฑุฑ ุงู„ู…ุนุงู…ู„ุงุช ููŠ

90
00:09:07,540 --> 00:09:13,340
ุงู„ุทุฑููŠู† ุฅุฐุง ู„ูˆ ู‚ุฑุฑู†ุง ุงู„ู…ุนุงู…ู„ุงุช ููŠ ุงู„ุทุฑููŠู† ุจุณู†ุง ู†ู‚ุต

91
00:09:13,340 --> 00:09:19,580
ุงุซู†ูŠู† a ุจุฏูŠ ุฃุณุงูˆูŠ ู‚ุฏุงุดุŸ ุฃุฑุจุน ูˆุนู†ุฏูƒ ุงุซู†ูŠู† b ุจุฏูŠ ุนู†ุฏูŠ 

92
00:09:19,580 --> 00:09:26,520
cosine ู‡ู†ุง ู…ุง ุนู†ุฏู†ุงุด ูŠุจู‚ู‰ ุจูŠู‡ Zero ู‡ุฐุง ู…ุนู†ุงู‡ ุฃู† ุงู„ู€ a

93
00:09:26,520 --> 00:09:33,330
ุชุณุงูˆูŠ ุณุงู„ุจ ุงุซู†ูŠู† ูˆ ุงู„ู€ b ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃุตุจุญ ุดูƒู„ ุงู„ู€ 

94
00:09:33,330 --> 00:09:46,570
YP ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ูŠุจู‚ู‰

95
00:09:46,570 --> 00:09:50,570
ุฃุตุจุญ ู‡ุฐุง ุดูƒู„ ุงู„ู€ YP

96
00:10:01,840 --> 00:10:11,150
Y ูŠุณุงูˆูŠ YC ุฒุงุฆุฏ YP ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูŠุตุจุญ y ูŠุณุงูˆูŠ yc ู‡ูŠ 

97
00:10:11,150 --> 00:10:20,070
ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุจู‚ู‰ c1 cos x ุฒุงุฆุฏ c2 ููŠ sin x ูˆุฒุงุฆุฏ 

98
00:10:20,070 --> 00:10:28,010
yp ู†ุงู‚ุต 2x ููŠ cos x ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุญู„ ุงู„ู†ู‡ุงุฆูŠ ุชุจุน ู…ู†ุŸ

99
00:10:28,010 --> 00:10:32,990
ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู„ุงุญุธูŠ ูˆู„ุง term ู…ู† ุงู„ุซู„ุงุซ termุงุช ุฒูŠ

100
00:10:32,990 --> 00:10:38,240
ุงู„ุซุงู†ูŠ ู…ุง ููŠุด ุชุดุงุจู‡ ุจูŠู† ุฃูŠ term ูˆุงู„ู€ term ุงู„ุซุงู†ูŠ

101
00:10:38,240 --> 00:10:46,440
ุงู„ู…ุซุงู„ ุฑู‚ู… ุฃุฑุจุนุฉ ูŠุจู‚ู‰ example ุฃุฑุจุนุฉ 

102
00:10:46,440 --> 00:10:50,720
ุจู‚ูˆู„

103
00:10:50,720 --> 00:10:56,260
ุฏูŠ term a suitable 

104
00:10:56,260 --> 00:11:03,480
form ุดูƒู„

105
00:11:03,480 --> 00:11:09,990
ู…ู†ุงุณุจ For the 

106
00:11:09,990 --> 00:11:19,330
particular solution

107
00:11:19,330 --> 00:11:23,490
of the

108
00:11:23,960 --> 00:11:32,520
Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ YW' ู†ุงู‚ุต

109
00:11:32,520 --> 00:11:49,540
4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 2X ุชุฑุจูŠุน ุฒุงุฆุฏ 4X E ุฃุณ 2X ุฒุงุฆุฏ X

110
00:11:49,540 --> 00:11:55,100
ููŠ Sin 2X ูˆู‡ุฐู‡ ุจุฏูŠ ุงุณู…ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ู…ู† 

111
00:11:55,100 --> 00:12:00,960
ุงู„ู€ star ูˆุจูŠู† ุฌุณูŠู† don't

112
00:12:00,960 --> 00:12:07,800
don't evaluate the 

113
00:12:07,800 --> 00:12:08,620
constants

114
00:12:38,460 --> 00:12:43,640
ู‚ุงู„ุจ ุงู„ูƒูˆูŠู†ุฉ ุชุงู†ูŠู†ู‚ุฑุฃ ุงู„ุณุคุงู„ ู…ุฑุฉ ุซุงู†ูŠุฉ ูˆู†ุดูˆู ุดูˆ

115
00:12:43,640 --> 00:12:51,120
ุงู„ู…ุทู„ูˆุจ ุจูŠู‚ูˆู„ ู„ูŠ ุญุฏุฏ ุญู„ ููŠ ุดูƒู„ ู…ู†ุงุณุจ ู„ู„ู€ particular

116
00:12:51,120 --> 00:12:54,400
solution y, z ุชุจุน ุงู„ู€ differential equation ู‡ุฐุง

117
00:12:54,400 --> 00:12:57,020
ูŠุจู‚ู‰ ุงู„ู†ุงุณ ุจุชุญุฏุฏ ุดูƒู„ ุงู„ู€ particular solution

118
00:12:57,020 --> 00:13:00,840
ูˆูŠู‚ูˆู„ ู„ูŠ ู…ุง ุชุญุณุจุด ุงู„ุซูˆุงุจุช ุงุถุงูŠุน ุดูˆุงุฌุฏูƒ ูˆุฃู†ุช ุจุชุฌูŠุจ

119
00:13:00,840 --> 00:13:04,120
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ุซุงู†ูŠุฉ ูˆุชุนูˆุถ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ูˆุชุฌูŠุจ

120
00:13:04,120 --> 00:13:07,940
ู„ูŠู‡ ู‚ุฏ ุงูŠุด ู‚ูŠู…ุฉ a ูˆ b ุฃูˆ a ูˆ b ูˆ c ูˆู…ุง ุฅู„ุง ุจุชุฏูŠุด ู‚ูŠู…ุฉ

121
00:13:07,940 --> 00:13:11,650
ุซูˆุงุจุช ุจุณ ู‡ุชู„ูŠ ุดูƒู„ ุงู„ู€ main ุงู„ู€ Particular solution ู„ูŠุณ

122
00:13:11,650 --> 00:13:15,790
ู„ุงุฒู… ูŠูƒูˆู† ู‚ูŠู…ุชู‡ ุซุงุจุชุฉ ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ูŠุญุชุงุฌ

123
00:13:15,790 --> 00:13:20,350
ู„ู„ู…ุนุงุฏู„ุฉ ูŠุญุชุงุฌ ุฃู† ูŠุฃุฎุฐ ุงู„ู€ Homogeneous differential

124
00:13:20,350 --> 00:13:24,550
equation ูŠุจู‚ู‰ ูŠุจุฏุฃ ูƒู…ุง ุจุฏุฃุช ููŠ ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ู‚ุจู„ู‡

125
00:13:24,550 --> 00:13:29,290
let Y ุชุณุงูˆูŠ E ุฃุณ RX ุจุฅูŠู‡ุŸ 

126
00:13:41,220 --> 00:13:50,680
ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ the characteristic Equation is R

127
00:13:50,680 --> 00:13:56,060
ุชุฑุจูŠุน ู†ุงู‚ุต ุฃุฑุจุนุฉ R ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุณุงูˆูŠ Zero ุฃูˆ ุฃู† 

128
00:13:56,060 --> 00:14:02,560
ุดุฆุชู… ูู‚ูˆู„ูˆุง R ู†ุงู‚ุต ุงุซู†ูŠู† ู„ูƒู„ ุชุฑุจูŠุน ุชุณุงูˆูŠ Zero ุฃูˆ 

129
00:14:02,560 --> 00:14:09,370
ุงู„ู€ R ุชุณุงูˆูŠ ุงุซู†ูŠู† ูˆุงู„ุญู„ ู‡ุฐุง ู…ูƒุจุฑ ูƒู… ู…ุฑุฉุŸ ูŠุจู‚ู‰ ู…ุฑุชูŠู†

130
00:14:09,370 --> 00:14:12,850
ูŠุจู‚ู‰ of multiplicity two

131
00:14:19,800 --> 00:14:25,640
2 ูŠุนู†ูŠ ุงู„ุญู„ ู…ูƒุฑุฑ ู…ุฑุชูŠู† ุจู†ุงุก ุนู„ูŠู‡ ุจุฑูˆุญ ุจู‚ูˆู„ู‡ ู‡ู†ุง

132
00:14:25,640 --> 00:14:32,220
ูŠุจู‚ู‰ solution yc ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุญู„ real ูˆู…ูƒุฑุฑ ู…ุฑุชูŠู†

133
00:14:32,220 --> 00:14:38,680
ูŠุจู‚ู‰ c1 ุฒุงุฆุฏ c2x e ุฃุณ r

134
00:14:44,740 --> 00:14:49,820
ุจู†ุจุฑูˆุฒ ู‡ุฐุง ุงู„ุญู„ ูˆุจู†ุณูŠุจู‡ ูˆุจู†ุฑูˆุญ ู†ุฑุฌุน ู„ู‡ ุจุนุฏ ู‚ู„ูŠู„

135
00:14:49,820 --> 00:14:52,800
ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ู€ non homogeneous differential

136
00:14:52,800 --> 00:14:56,280
equation ุงู„ู„ูŠ ุงู„ู€ star ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุฏู†ุง ู†ุชุทู„ุน ุนู„ู‰

137
00:14:56,280 --> 00:15:00,240
ุดูƒู„ ุงู„ู€ F of X ุงู„ู„ูŠ ู‡ูˆ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ู‡ู„ ู‡ูŠ 

138
00:15:00,240 --> 00:15:05,740
polynomial ูู‚ุทุŸ ุฃูˆ polynomial ููŠ exponential ุฃูˆ

139
00:15:05,740 --> 00:15:09,360
polynomial ููŠ sin ุฃูˆ cos ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุญู…ุฏ ู„ู„ู‡ ุฌุงูŠุจุฉ 

140
00:15:09,360 --> 00:15:13,720
ุงู„ุซู„ุงุซ ุญุงู„ุงุช ูƒู„ู‡ู… ุจุณุคุงู„ ุงู†ูˆุงุนูŠ ู‡ูŠ polynomial ู…ู†

141
00:15:13,720 --> 00:15:17,180
ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ 

142
00:15:17,180 --> 00:15:21,820
exponential polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ sin ุฅุฐุง 

143
00:15:21,820 --> 00:15:27,630
ุฅูŠุด ู‡ุฃุนู…ู„ ููŠ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ู„ูŠ ุนู†ุฏูŠุŸ ู‡ุฃุฌุฒู‚ู‡ุง ุฅู„ู‰ ุซู„ุงุซ

144
00:15:27,630 --> 00:15:31,690
ู…ุนุงุฏู„ุงุช ุชู…ุงู…ุŸ ูˆ ุฃุญู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ูˆ ุฃุฌูŠุจ ุงู„ู€

145
00:15:31,690 --> 00:15:35,390
particular solution ุชุจุนู‡ุง ูˆุฃุฌู…ุน ุงู„ุญู„ูˆู„ ุงู„ุซู„ุงุซุฉ

146
00:15:35,390 --> 00:15:38,810
ุจูŠุนุทูŠู†ูŠ ุงู„ู€ particular solution ู„ู…ูŠู†ุŸ ู„ู„ู…ุนุงุฏู„ุฉ 

147
00:15:38,810 --> 00:15:43,970
ุทุจู‚ุง ู„ู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุฃุนุทุงู†ูŠู‡ุง ู„ูƒู… ููŠ ุฃูˆู„ section ููŠ 

148
00:15:43,970 --> 00:15:46,970
ุงู„ู€ non homogeneous differential equation ู‚ูˆู„ู†ุง ู„ูƒู…

149
00:15:46,970 --> 00:15:53,150
ู‡ุฐุง ุจูŠู„ุฒู…ู†ุง ู„ู…ูŠู†ุŸ ู„ู„ู€ sections ุงู„ู‚ุงุฏู…ุฉ ุชู…ุงู…ุŸ ูŠุจู‚ู‰ 

150
00:15:53,150 --> 00:16:01,260
ุจุฏุงุฌูŠ ุฃู‚ูˆู„ู‡ ู‡ู†ุง differential equation star is

151
00:16:01,260 --> 00:16:08,360
written as ูŠู…ูƒู†ู†ุง ุฃู† ู†ูƒุชุจู‡ุง ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุงู„ู€ y 

152
00:16:08,360 --> 00:16:14,460
double prime ู†ุงู‚ุต ุฃุฑุจุนุฉ y prime ุฒุงุฆุฏ ุฃุฑุจุนุฉ y ูŠุณุงูˆูŠ 

153
00:16:14,460 --> 00:16:20,580
ูƒู…ุŸ ูŠุณุงูˆูŠ ุงุซู†ูŠู† x ุชุฑุจูŠุน ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ 

154
00:16:20,580 --> 00:16:33,690
ู…ูŠู†ุŸ YW'-4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ 4XE2X 

155
00:16:33,690 --> 00:16:45,370
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุซุงู„ุซุฉ YW'-4Y' ุฒุงุฆุฏ 4Y ูŠุณุงูˆูŠ XSIN2X ูŠุณุงูˆูŠ

156
00:16:45,370 --> 00:16:50,350
X ููŠ SIN2X ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง

157
00:16:58,280 --> 00:17:03,840
ุทูŠุจุŒ ุงู„ุขู† ูŠุนู†ูŠ ูƒุฃู†ู‡ ุตุงุฑ ุนู†ุฏูŠ ู…ุด ู…ุณุฃู„ุฉ ูˆุงุญุฏุฉุŒ ุซู„ุงุซ 

158
00:17:03,840 --> 00:17:07,120
ู…ุณุงุฆู„ุŒ ุจุฏูŠ ุฃุญู„ ูƒู„ ูˆุงุญุฏ ุฃุฌูŠุจ ุงู„ู€ particle solution

159
00:17:07,120 --> 00:17:12,980
ูƒุฃู†ู‡ ู„ุง ุนู„ุงู‚ุฉ ู„ู‡ุง ุจู…ูŠู†ุŸ ุจุงู„ุฃุฎุฑู‰ุŒ ูŠุจู‚ู‰ ู‡ู†ุง ุจุฏูŠ ุฃุฌูŠุจ

160
00:17:12,980 --> 00:17:20,180
ุงู„ู€ YP1 ูŠุจู‚ู‰ YP1 ูŠุณุงูˆูŠ X to the power S ููŠู‡ุŒ ู‡ุฐู‡ 

161
00:17:20,180 --> 00:17:21,740
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ 

162
00:17:34,810 --> 00:17:40,490
ู‡ู„ ุฃูŠ term ู…ู† ู‡ู†ุง ูŠุดุจู‡

163
00:17:40,490 --> 00:17:42,250
ุฃูŠ term ููˆู‚ุŸ

164
00:17:45,280 --> 00:17:52,060
ู…ุถุฑูˆุจุฉ ูŠุนู†ูŠ ู‡ุฐุง C1 E2 X ูˆ C2 X E2 ููŠู‡ุŸ ู…ุง ุนู†ุฏูŠุด 

165
00:17:52,060 --> 00:17:56,020
exponential ู‡ู†ุงูƒ ุจู…ุง ููŠุด ูŠุจู‚ู‰ ู‡ู†ุง S ุจู‚ุฏุฑ ุฅูŠู‡ุŸ ุจ

166
00:17:56,020 --> 00:18:03,680
Zero ูŠุจู‚ู‰ here ุงู„ู€ S ุชุณุงูˆูŠ Zero ูŠุจู‚ู‰ ุฃุตุจุญ Y P1 ุจุฏู‡ 

167
00:18:03,680 --> 00:18:11,780
ูŠุณุงูˆูŠ A0 X ุชุฑุจูŠุน ุฒุงุฆุฏ A1 X ุฒุงุฆุฏ A2 ุณูŠุจูˆู†ุง ู…ู† ู‡ุฐุง

168
00:18:11,780 --> 00:18:20,370
ู†ู†ุชู‚ู„ ุนู„ู‰ ุงู„ู„ูŠ ุจุนุฏู‡ุง ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ ูŠุจู‚ู‰

169
00:18:20,370 --> 00:18:23,230
ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ 

170
00:18:23,230 --> 00:18:26,990
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ 

171
00:18:26,990 --> 00:18:32,070
ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial

172
00:18:32,070 --> 00:18:34,410
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ 

173
00:18:34,410 --> 00:18:37,350
polynomial ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential

174
00:18:37,350 --> 00:18:37,390
exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial ู…ู† ุงู„ุฏุฑุฌุฉ

175
00:18:37,390 --> 00:18:38,650
ุงู„ุฃูˆู„ู‰ ููŠ ุงู„ู€ exponential ูŠุจู‚ู‰ ุจุฏูŠ ุฃูƒุชุจ polynomial

176
0

201
00:20:37,040 --> 00:20:47,000
ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ู…ุถุฑูˆุจ ููŠ cos 2x ุฒุงุฆุฏ e<sup>x</sup>

202
00:20:47,000 --> 00:20:53,980
ุฒุงุฆุฏ e<sup>x</sup> ูƒู„ู‡ ู…ุถุฑูˆุจ ููŠ sin 2x ูˆ exponential ู…ุงุนู†ุฏูŠุด

203
00:20:56,240 --> 00:21:03,100
ู‡ู„ ุฃูŠ term ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ูŠุดุจู‡ ุฃูŠ term

204
00:21:03,100 --> 00:21:07,720
ู…ู† ุงู„ู…ุณุชุทูŠู„ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุงุŸ ู„ุฃ ูˆู„ุง ููŠู‡ sign ูˆู„ุง cos

205
00:21:07,720 --> 00:21:08,120
ุณุงูŠู†

206
00:21:13,370 --> 00:21:20,650
ุงู„ู€ S ุจุฏู‡ุง ุชุณุงูˆูŠ 0 ูŠุจู‚ู‰ ุฃุตุจุญ YP3 ุจุฏู‡ุง ุชุณุงูˆูŠ D e<sup>x</sup>

207
00:21:20,650 --> 00:21:32,590
X ุฒุงุฆุฏ D1 ููŠ Cos 2X ุฒุงุฆุฏ E e<sup>x</sup> ุฒุงุฆุฏ E1 ููŠ Sin

208
00:21:32,590 --> 00:21:38,120
2X ูŠุจู‚ู‰ ุงู„ู€ Particular solution ุงู„ู„ูŠ ุจุฏู†ุง ูŠุง ุจู†ุงุช

209
00:21:38,120 --> 00:21:47,060
ูŠุจู‚ู‰ ูŠุณุงูˆูŠ YP1 ุฒุงุฆุฏ YP2 ุฒุงุฆุฏ YP3 ูŠุจู‚ู‰ ุฃุตุจุญ YP

210
00:21:47,060 --> 00:21:55,380
ูŠุณุงูˆูŠ YP1 ู‡ุงูŠ ูˆ ุจู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ A0 X ุชุฑุจูŠุน A1X ุฒุงุฆุฏ

211
00:21:55,380 --> 00:21:57,580
A2 ุฒุงุฆุฏ

212
00:22:19,860 --> 00:22:21,260
YP2 YP3 YP4 YP5 YP6 YP7

213
00:22:29,550 --> 00:22:36,330
ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ูŠุนุชุจุฑ ู…ู† ุงู„ particular solution ุงู„ู„ูŠ

214
00:22:36,330 --> 00:22:41,990
ู…ุทู„ูˆุจ ุนู†ู‡ุง ุญุฏ ููŠูƒูˆุง ู„ู‡ ุฃูŠ ุชุณุงุคู„ ู‡ู†ุง ููŠ ู‡ุฐุง ุงู„ุณุคุงู„ุŸ

215
00:22:41,990 --> 00:22:48,270
ููŠ ุฃูŠ ุชุณุงุคู„ุŸ ุทูŠุจ ุนู„ู‰ ู‡ูŠูƒ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ section ูˆุฅู„ู‰

216
00:22:48,270 --> 00:22:55,590
ูŠูƒูˆู† ุฃุฑู‚ุงู… ุงู„ู…ุณุงุฆู„ ูŠุจู‚ู‰ exercises ุฎู…ุณุฉ ุณุจุนุฉ

217
00:22:55,590 --> 00:23:01,730
ุงู„ู…ุณุงุฆู„ ุงู„ุชุงู„ูŠุฉ ู…ู† ูˆุงุญุฏ ู„ุบุงูŠุฉ ุนุดุฑูŠู† ูˆู…ู† ุฎู…ุณุฉ

218
00:23:01,730 --> 00:23:08,730
ูˆุนุดุฑูŠู† ู„ุบุงูŠุฉ ุซู„ุงุซูŠู† ู…ุฑู†ูŠ

219
00:23:08,730 --> 00:23:13,530
ุฃุฏูŠูƒูŠ ู‚ุฏ ู…ุง ุชู‚ุฏุฑูŠ ุจุชุตูŠุฑ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุจุตูŠุฑ ุฌุฏุง

220
00:23:26,290 --> 00:23:49,450
ุงู„ู„ูŠ ููˆู‚ ู‡ุฐุง ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ ุฃุธู† ุฎู„ุงุตุŸ

221
00:23:49,450 --> 00:23:55,440
ุทูŠุจ ู„ู…ุง ู†ู†ุชู‚ู„ ุฅู„ู‰ ุงู„ section ุงู„ุฃุฎูŠุฑ ู…ู† ู‡ุฐุง ุงู„

222
00:23:55,440 --> 00:24:00,320
chapter ูˆู‡ูŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุทุฑู‚ ุญู„ ุงู„ non

223
00:24:00,320 --> 00:24:03,800
homogeneous differential equation ูˆู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„

224
00:24:03,800 --> 00:24:11,280
variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ูŠุจู‚ู‰ 85 ุฃูˆ

225
00:24:11,280 --> 00:24:19,340
58 ุงู„ู„ูŠ ู‡ูˆ variation of

226
00:24:20,530 --> 00:24:29,030
Parameters ู†ุณุชุฎุฏู…

227
00:24:29,030 --> 00:24:39,410
ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ to find a

228
00:24:39,410 --> 00:24:45,850
particular solution to find a particular

229
00:24:54,020 --> 00:24:58,120
YP ุงู„ุฑู…ุฒ ู„ู„ุฅูŠู‚ุงุน

230
00:25:01,140 --> 00:25:07,280
Differential equation ู„ู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ a<sub>0</sub> as a

231
00:25:07,280 --> 00:25:14,040
function of x ุฒุงุฆุฏ ุงู„ a<sub>1</sub> as a function of x ู„ู„

232
00:25:14,040 --> 00:25:21,470
derivative n-1 ุฒุงุฆุฏ ู†ุจู‚ู‰ ู…ุงุดูŠ ู„ุบุงูŠุฉ a<sub>n</sub>

233
00:25:21,470 --> 00:25:27,750
-1 as a function of x y' ุฒุงุฆุฏ a<sub>n</sub> as a

234
00:25:27,750 --> 00:25:33,130
function of x ููŠ ุงู„ y ุจุฏู‡ ูŠุณุงูˆูŠ  F(x)

235
00:25:33,130 --> 00:25:36,790
ูˆู‡ุฐู‡ ุงู„ู„ูŠ ูƒู†ุง ุจู†ุทู„ู‚ ุนู„ูŠู‡ุง ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุงู„ู„ูŠ ู‡ูŠ

236
00:25:36,790 --> 00:25:46,210
star where ุญูŠุซ ุงู„ a<sub>0</sub>(x) ูˆ ุงู„ a<sub>1</sub>(x) ูˆ

237
00:25:46,210 --> 00:25:54,330
ู„ุบุงูŠุฉ ุงู„ a<sub>n</sub>(x) ู‡ุฏูˆู„ ูƒู„ู‡ู… need not need not

238
00:25:54,330 --> 00:26:00,510
constants need

239
00:26:00,510 --> 00:26:09,410
not constants and no restriction ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ

240
00:26:09,410 --> 00:26:24,010
ู…ุงุนู†ุฏูŠุด

241
00:26:24,010 --> 00:26:24,850
ู‚ูŠูˆุฏ ุนู„ูŠู‡ุง

242
00:26:33,720 --> 00:26:46,600
YC ูŠุจุฏูˆ ูŠุณุงูˆูŠ C<sub>1</sub>Y<sub>1</sub> ุฒุงุฆุฏ C<sub>2</sub>Y<sub>2</sub> ุฒุงุฆุฏ C<sub>n</sub>Y<sub>n</sub> Assume that

243
00:26:46,600 --> 00:26:57,440
is a solution of the homo

244
00:27:10,960 --> 00:27:16,840
ุฒุงุฆุฏ ุฒุงุฆุฏ a<sub>n-1</sub> as a function of x ููŠ ุงู„ y

245
00:27:16,840 --> 00:27:23,680
prime ุฒุงุฆุฏ a<sub>n</sub>(x) y ุจุฏู‡ ูŠุณุงูˆูŠ ูƒุฏู‡ุŸ ุจุฏู‡ ูŠุณุงูˆูŠ 0

246
00:27:29,020 --> 00:27:32,880
to get a

247
00:27:32,880 --> 00:27:37,540
particular solution

248
00:27:37,540 --> 00:27:46,180
to get a particular solution yp of the

249
00:27:46,180 --> 00:27:56,140
differential equation star by the method

250
00:27:59,990 --> 00:28:07,590
of variation of

251
00:28:07,590 --> 00:28:20,570
parameters replace

252
00:28:20,570 --> 00:28:32,010
ุงุณุชุจุฏู„ replace the above constants above constants

253
00:28:32,010 --> 00:28:42,250
in

254
00:28:42,250 --> 00:28:48,930
the solution yc

255
00:28:48,930 --> 00:28:52,550
by the functions

256
00:28:55,020 --> 00:29:10,660
The functions C<sub>1</sub>(X) C<sub>2</sub>(X) ูˆ ู„ุบุงูŠุฉ C<sub>n</sub>(X) That

257
00:29:10,660 --> 00:29:11,060
is

258
00:29:15,470 --> 00:29:25,490
YP ูŠุตุจุญ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ C<sub>1</sub>(X)Y<sub>1</sub> C<sub>2</sub>(X)Y<sub>2</sub> ุฒุงุฆุฏ

259
00:29:25,490 --> 00:29:29,470
C<sub>n</sub>(X)Y<sub>n</sub>

260
00:29:35,370 --> 00:29:44,010
ุงู„ู€ C<sub>m</sub> as a function of X ูŠุณูˆูŠ ุชูƒุงู…ู„ ุงู„ูˆุฑู†ุณูƒูŠู† m

261
00:29:44,010 --> 00:29:51,350
as a function of X ููŠ F<sub>1</sub>(X) ุนู„ู‰

262
00:29:51,350 --> 00:29:59,090
ุงู„ูˆุฑู†ุณูƒูŠู† (X) ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูˆุงู„ู€ M

263
00:30:02,270 --> 00:30:09,990
ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ

264
00:30:09,990 --> 00:30:14,950
ู„ุบุงูŠุฉ

265
00:30:14,950 --> 00:30:21,750
ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N ูˆ ู„ุบุงูŠุฉ ุงู„ N

266
00:30:28,070 --> 00:30:34,350
is the determinant ุงู„ู…ุญุฏุฏ

267
00:30:34,350 --> 00:30:41,370
obtained from

268
00:30:41,370 --> 00:30:46,810
ุงู„ูˆุงู†ุณูƒูŠู†

269
00:30:46,810 --> 00:30:52,130
of X by replacing

270
00:30:58,290 --> 00:31:15,810
By replacing the m column By the column By

271
00:31:15,810 --> 00:31:26,730
the column Zero Zero ูˆู†ุธู„ ู…ุงุดูŠูŠู† ู„ุบุงูŠุฉ ุงู„ูˆุงุญุฏ and

272
00:31:30,230 --> 00:31:42,150
ุงู„ู€ F<sub>1</sub>(X) ุชุณุงูˆูŠ ุงู„ู€ F(X) ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ A<sub>0</sub>(X)

273
00:31:42,150 --> 00:31:45,550
Note

274
00:31:45,550 --> 00:31:50,310
When

275
00:31:50,310 --> 00:32:00,490
we use the method when we use the method of

276
00:32:00,490 --> 00:32:05,590
variation

277
00:32:05,590 --> 00:32:15,910
of parameters ุนู†ุฏู…ุง

278
00:32:15,910 --> 00:32:23,110
ู†ุณุชุฎุฏู… ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ variation of parameters the

279
00:32:23,110 --> 00:32:23,850
coefficient

280
00:32:33,870 --> 00:32:45,010
ูŠุฌุจ ุฃู† ูŠูƒูˆู† ูŠูˆู…ูŠ ูŠูˆู…ูŠ

281
00:32:45,010 --> 00:32:47,290
ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ ูŠูˆู…ูŠ

282
00:32:58,790 --> 00:33:11,670
is of the second order

283
00:33:11,670 --> 00:33:14,970
that

284
00:33:14,970 --> 00:33:18,690
is

285
00:33:20,880 --> 00:33:30,340
ุงู„ู€ A<sub>0</sub>(x) y'' A<sub>1</sub>(x) y' A<sub>2</sub>(x) y

286
00:33:30,340 --> 00:33:35,420
ุจุฏู‡ุง ุชุณุงูˆูŠ f

287
00:33:35,420 --> 00:33:50,710
of x and f y<sub>1</sub> and y<sub>2</sub> are two solutions are two

288
00:33:50,710 --> 00:33:57,990
solutions of

289
00:33:57,990 --> 00:34:12,570
the homogeneous equation A<sub>0</sub>(x) y'' A<sub>1</sub>(x) 

290
00:34:12,570 --> 00:34:18,570
y' A<sub>2</sub>(x) y ุจุฏูˆ ูŠุณุงูˆูŠ zero then

291
00:34:23,050 --> 00:34:33,070
ุงู„ู€ C<sub>1</sub>(X) ู‡ูˆ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต Y<sub>2</sub> as a function of X

292
00:34:33,070 --> 00:34:39,550
ููŠ ุงู„ู€ F<sub>1</sub>(X) ุนู„ู‰ W(X) DX

293
00:34:43,770 --> 00:34:51,950
ุงู„ู€ C<sub>2</sub> as a function of X ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู…ูŠู†ุŸ

294
00:34:51,950 --> 00:34:58,690
ุจุฏู‡ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู„ู„ู€ Y<sub>1</sub> as a function of X ููŠ ุงู„ู€

295
00:34:58,690 --> 00:35:05,170
F<sub>1</sub>(X) ูƒู„ู‡ ุนู„ู‰ ุงู„ู€ W(X) ููŠ ุงู„ู€ DX

296
00:35:05,170 --> 00:35:10,030
example

297
00:35:10,030 --> 00:35:10,490
1

298
00:35:15,200 --> 00:35:26,200
Find the general solution of

299
00:35:26,200 --> 00:35:32,340
the differential equation ู„ู„ู…ุนุงุฏู„ุฉ

300
00:35:32,340 --> 00:35:38,340
ุงู„ุชูุงุถู„ูŠุฉ Y'''-2Y

301
00:35:43,090 --> 00:35:51,990
ู„ู„ู…ุนุงู…ู„ุฉ ุงู„ุชุญูˆูŠ ุนุถู„ูŠุฉ y

302
00:35:51,990 --> 00:36:03,650
''' ุฒุงุฆุฏ y' ุจุฏูŠ ูŠุณุงูˆูŠ x ูŠุณุงูˆูŠ

303
00:36:03,650 --> 00:36:12,610
x ูˆ ู†ุงู‚ุต y ุนู„ู‰ 2 ุฃู‚ู„ ู…ู† x ุฃู‚ู„ ู…ู† y ุนู„ู‰ 2

304
00:37:01,140 --> 00:37:06,600
ุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ู…ู† ุญู„ ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุบูŠุฑ

305
00:37:06,600 --> 00:37:11,260
ุงู„ู…ุชุฌุงู†ุณุฉ ู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุณู…ู†ู‡ุง ุงู„ variation of

306
00:37:11,260 --> 00:37:14,940
parameters ูŠุจู‚ู‰ ุฃูˆู„ ุทุฑูŠู‚ุฉ ุทุฑูŠู‚ุฉ ุงู„ undetermined

307
00:37:14,940 --> 00:37:18,380
coefficients ูˆุงู„ุทุฑูŠู‚ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุชูŠ ู‡ูŠ ุทุฑูŠู‚ุฉ ุงู„

308
00:37:18,380 --> 00:37:23,200
variation of parameters ุชุบูŠูŠุฑ ุงู„ูˆุณูŠุทุงุช ุชุชู„ุฎุต ู‡ุฐู‡

309
00:37:23,200 --> 00:37:26,740
ุงู„ุทุฑูŠู‚ุฉ ููŠู…ุง ูŠุฃุชูŠ ุทุจุนุง ุงู„ู€ Undetermined

310
00:37:26,740 --> 00:37:30,880
coefficients ู‚ู„ู†ุง ู…ุดุงู† ู†ุดุชุบู„ ุจู‡ุง ุจุฏูŠ ุดุฑุทูŠู† ุฃู†

311
00:37:30,880 --> 00:37:34,860
ุงู„ู…ุนุงู…ู„ุฉ ุซุงุจุชุฉ ูˆ ุงู„ F(x) ุชุจู‚ู‰ ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ุญุณุจ

312
00:37:34,860 --> 00:37:37,660
ุงู„ุฌุฏูˆู„ ุงู„ู„ูŠ ุงุนุทุงู†ุงูƒูˆุง ูŠุนู†ูŠุŒ ู…ุธุจูˆุทุŸ ู‡ู†ุง ุงู„

313
00:37:37,660 --> 00:37:41,460
variation ุจูŠู‚ูˆู„ูŠ ู„ุฃ ุงู„ู…ุนุงู…ู„ุฉ ุซุงุจุชุฉ ูˆ ุงู„ู„ู‡ ู…ุชุบูŠุฑุฉ

314
00:37:41,460 --> 00:37:45,660
ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุงู„ F(x) ุงู„ู„ูŠ ููŠ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ู‡ุฐู‡

315
00:37:45,660 --> 00:37:49,180
ุงู„ F(x) ูƒุงู†ุช ุนู„ู‰ ุดูƒู„ ู…ุนูŠู† ูˆ ุงู„ู„ู‡ ุบูŠุฑ ุนู„ูŠู‡ุง ุดูƒู„

316
00:37:49,180 --> 00:37:53,590
ู…ุนูŠู† ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ูŠุนู†ูŠ ุฃูŠุด ู…ุง ูŠูƒูˆู† ุดูƒู„ ุงู„ F ูŠูƒูˆู† ูˆ

317
00:37:53,590 --> 00:37:56,590
ุงูŠุด ู…ุง ูŠูƒูˆู† ุงู„ู…ุนุงู…ู„ุฉ ุซูˆุงุจุช ุฃูˆ ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด

318
00:37:56,590 --> 00:38:00,970
ู…ุดูƒู„ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุดูƒู„ ุงู„ุนุงู… ู„ู„ู…ุนุงุฏู„ุฉ (*) ุญูŠุซ ู‡ุฏูˆู„

319
00:38:00,970 --> 00:38:05,350
ุงู„ุฏูˆุงู„ need not constants ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ูŠูƒูˆู†ูˆุง constants ูŠุนู†ูŠ

320
00:38:05,350 --> 00:38:08,470
ู…ู…ูƒู† ูŠูƒูˆู†ูˆุง constants ูˆู…ู…ูƒู† ูŠูƒูˆู†ูˆุง ู…ุชุบูŠุฑุงุช ู…ุงุนู†ุฏูŠุด

321
00:38:08,470 --> 00:38:12,070
ู…ุดูƒู„ุฉ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ and

322
00:38:13,430 --> 00:38:18,250
and no restrictions

323
00:38:18,250 --> 00:38:23,170
ู…ุงุนู†ุฏูŠุด ู‚ูŠูˆุฏ ุนู„ู‰ ุดูƒู„ ุงู„ F(x) ููŠ ุงู„ Undetermined

324
00:38:23,170 --> 00:38:25,650
ู‚ู„ุช ูŠุงุจูˆู„ูŠู†ูˆู…ูŠุงู„ ูŠุงุจูˆู„ูŠู†ูˆู…ูŠุงู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„

325
00:38:25,650 --> 00:38:28,830
ูŠุงุจูˆู„ูŠู†ูˆู…ูŠุงู„ ููŠ ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

326
00:38:28,830 --> 00:38:33,850
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

327
00:38:33,850 --> 00:38:35,710
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

328
00:38:35,710 --> 00:38:36,610
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

329
00:38:36,610 --> 00:38:37,770
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

330
00:38:37,770 --> 00:38:38,170
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

331
00:38:38,170 --> 00:38:40,250
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ

332
00:38:40,250 --> 00:38:45,310
ุงู„ุงูƒุณุจูˆู†ู†ุดูŠู„ ููŠ ุงู„ุงูƒุณ ู‡ุฐุง ุงู„ุดุบู„ ุงู„ูˆุญูŠุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุญู„

333
00:38:45,310 --> 00:38:47,610
ุงู„ู€Complementary Solution ุจุฏูŠ ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ู€

334
00:38:47,610 --> 00:38:51,270
Particular Solution ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ ู…ูŠู†ุŸ ุชุจุน ุงู„ู…ุนุงุฏู„ุฉ

335
00:38:51,270 --> 00:38:55,570
(*) ูุจุฌูŠ ุจู‚ูˆู„ ุจุฏูŠ ุฃูุชุฑุถ ุงู„ุญู„ ุจุทุฑูŠู‚ุฉ ุงู„ version of

336
00:38:55,570 --> 00:38:59,870
parameters ู‡ูˆ ู†ูุณ ุงู„ุญู„ ู‡ุฐุง ุจุณ ุจุฏูŠ ุฃุดูŠู„ ุซูˆุงุจุช ูˆ

337
00:38:59,870 --> 00:39:04,230
ุฃุถุน ุจุฏู„ู‡ู… ุฏูˆุงู„ ููŠ X ูŠุจู‚ู‰ (*) ุดูƒู„ ุงู„ Particular

338
00:39:04,230 --> 00:39:09,490
Solution ู‡ูˆ C<sub>1</sub>(X) Y<sub>1</sub> ุฒุงุฆุฏ C<sub>2</sub>(X) Y<sub>2</sub> ุฒุงุฆุฏ ุฒุงุฆุฏ

339
00:39:09,490 --> 00:39:14,560
C<sub>n</sub>(X)Y<sub>n</sub> ุทูŠุจ ู…ูŠู† ู‡ูŠ ุงู„ู€C ู‡ุงุช ูƒูŠู ุจุฏูŠ ุฃุญุณุจู‡ุง

340
00:39:14,560 --> 00:39:19,980
ู‡ุฐู‡ุŸ ุจุนุฏ ุดูˆูŠุฉ ุญุณุงุจุงุช ู„ุฌูŠู†ุง ููŠ ู‚ุงุนุฏุฉ ุจูˆุงุณุทุชู‡ุง ุจุฌูŠุจ

341
00:39:19,980 --> 00:39:25,320
ูƒู„ ุฏุงู„ุฉ ู…ู† ู‡ุฐู‡ ุงู„ุฏูˆุงู„ ู…ูŠู† ู‡ูŠุŸ ู‚ุงุนุฏุฉ C<sub>m</sub>(X) ุทุจุนุง

342
00:39:25,320 --> 00:39:29,500
ุจูˆุงุญุฏ ูˆุงุซู†ูŠู† ู„ุบุงูŠุฉ ุงู„ N ูŠุนู†ูŠ ุจC ูˆุงุญุฏ ูˆC ุงุชู†ูŠู† ูˆC

343
00:39:29,500 --> 00:39:34,890
ุซู„ุงุซุฉ ูƒุฏู‡ ุฅู„ู‰ ุงู„ุขุฎุฑ ูŠุณุงูˆูŠ ุงู„ู€ W(m) F<sub>1</sub>(X) ุนู„ู‰

344
00:39:34,890 --> 00:39:38,530
W(X) DX ู†ุฌูŠ ุนู„ู‰ ุงู„ู€ W(X) ุงู„ู€

345
00:39:38,530 --> 00:39:42,330
W(X) ู‡ุฐุง ุชุงุจุน ู„ู„ุญู„ูˆู„ ุงู„ู„ูŠ ููŠ ุงู„ุญุงู„ุฉ ุงู„ุฃูˆู„ู‰

346
00:39:42,330 --> 00:39:46,190
Y<sub>1</sub> ูˆ Y<sub>2</sub> ูˆ Y<sub>n</sub> ุจุฌูŠุจ ุงู„ู„ูŠ ู‡ู… ุงู„ู€ W(X) ุจูŠูƒูˆู† ู‡ุฐุง

347
00:39:46,190 --> 00:39:50,140
ู‡ูˆ ุงู„ู€ W(X) ุชุงุจุน ู„ุญุตูˆู ุนู„ู‰ ุดุฌุฑุฉ ุจุฏูŠ W(1) ูˆ

348
00:39:50,140 --> 00:39:54,760
W(2) ูˆ W(3) ู„ุบุงูŠุฉ W(n) ู…ูŠู† ู‡ูˆ ู‡ุฐุงุŸ

349
00:39:54,760 --> 00:39:58,720
ู‡ุฐุง ุงู„ W(1) ุจุงุฌูŠ ุนู„ู‰ ุงู„ W(X) ุฏูŠ ุจุดูŠู„

350
00:39:58,720 --> 00:40:02,880
ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูˆ ุจุญุท ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุจุญุณุจ ู‚ุฏุงุด

351
00:40:02,880 --> 00:40:07,890
ู‚ูŠู…ุฉ ุงู„ W(X) ุทุจ ุจุฏูŠ W(2) ุจุณูŠุจ ุงู„ W(X) ู‡ุฐุง

352
00:40:07,890 --> 00:40:13,670
ุฒูŠ ู…ุง ู‡ูˆ ูˆ ุจุฌูŠ ุนู„ู‰ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู†ูŠ ุจุดูŠู„ู‡ ูƒู„ู‡ ูˆ ุจุญุท

353
00:40:13,670 --> 00:40:16,810
ุจุฏุงู„ู‡ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ู‡ูƒุฐุง W(3) W(X)

354
00:40:16,810 --> 00:40:21,210
ู„ุบุงูŠุฉ ุจูƒู…ู„ู‡ู… ูƒู„ู‡ู… ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฌุจุชู‡ุง ุทุจ ู…ูŠู†

355
00:40:21,210 --> 00:40:25,850
ู‡ูŠ ุงู„ F<sub>1</sub>(X) ู‡ุฐู‡ุŸ ุงู‡ ุงู„ F<sub>1</sub>(X) ู‡ุฐู‡ ู„ู…ุง ุชูŠุฌูŠ ุงู„ู…ุนุงุฏู„ุฉ ุจุฏ

356
00:40:25,850 --> 00:40:30,310
ุงู„ู…ุนุงุฏู„ุฉ ู‡ู†ุง ุงู„ู…ุนุงู…ู„ ุชุจุนูŠ ูŠูƒูˆู† ุฌุฏูŠุดู‡ุฐุง ูŠุนู†ูŠ ุฃู†ู†ูŠ

357
00:40:30,310 --> 00:40:36,110
ุฃู‚ุณู… ุงู„ุทุฑููŠู† ุนู„ู‰ ู…ูŠู† ุนู„ู‰ A<sub>0</sub>(X) ูŠุจู‚ู‰ ุงู„ F<sub>1</sub> ู‡ูŠ

358
00:40:36,110 --> 00:40:42,270
ุนุจุงุฑุฉ ุนู† F(x) ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ุงู„ A<sub>0</sub>(X) ูŠุจู‚ู‰ ุงู„ F<sub>1</sub>

359
00:40:42,270 --> 00:40:47,270
(X) ู‡ูŠ ุงู„ F(X) ู…ู‚ุณูˆู…ุฉ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ A<sub>0</sub>(X)

360
00:40:47,270 --> 00:40:52,490
ุฃุตู„ุง ูˆุงุถุญ ูƒู„ุงู… ู‡ุฐุง ุทูŠุจ ุงู„ุขู† ููŠ ู…ู„ุงุญุธุฉ ุจุฏู†ุง ู†ุดูŠุฑ

361
00:40:52,490 --> 00:40:57,290
ุฅู„ูŠู‡ุง ุงู„ู…ู„ุงุญุธุฉ ูƒุงู†ุช ุงู„ุชุงู„ูŠุฉ ู‚ู„ุชู‡ุง ุจุณ ุจุฏู†ุง ู†ุนูŠุฏู‡ุง ู‡ูŠุง

362
00:40:57,290 --> 00:41:00,590
ุนู†ุฏู…ุง ู†ุณุชุฎุฏู… ุงู„ variation of parameters ู„ุงุฒู… ูŠูƒูˆู†

363
00:41:00,590 --> 00:41:05,610
ุงู„ู…ุนุงู…ู„ ุชุจุน Y'' ู‡ูˆ ู…ูŠู† ูˆ ู†ุณูŠุช ูˆ ุญุทูŠุช ุงู„ F(x)

364
00:41:05,610 --> 00:41:11,110
ู‡ุฐู‡ ุจุฏู„ ู‡ุฐู‡ ุจุตูŠ ูƒู„ุงู…ูƒ ุบู„ุท ุจุตูŠ ุชุญู‚ู‚ุด ูˆ ู…ุง ุชู‚ุฏุฑุด

365
00:41:11,110 --> 00:41:16,250
ุชุชูƒุงู…ู„ูŠ ุชู…ุงู… ูŠุจู‚ู‰ ุชุชุฃูƒุฏูŠ ุนู†ุฏู…ุง ุจุฏูƒ ุชุณุชุฎุฏู… ุงู„ุชูƒุงู…ู„

366
00:41:16,250 --> 00:41:20,390
ุจุชุฎู„ูŠ ุงู„ู…ุนุงู…ู„ ุชุจุน Y to the derivative ุฃู† ู‡ูˆ ูˆุงุญุฏ

367
00:41:20,390 --> 00:41:24,610
ุตุญูŠุญ ุชู…ุงู… ู‡ูŠ ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุจุนุฏูŠู† ููŠู†ุง ู…ู„ุงุญุธุฉ ุซุงู†ูŠุฉ

368
00:41:25,260 --> 00:41:28,720
ุจูŠู‚ูˆู„ ุงู„ equation (*) ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ

369
00:41:28,720 --> 00:41:32,680
ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ุจุฏู„ ุงู„ W(1) ูˆ ู†ุต ูƒู†ุชูˆุง ู…ุญุณุจูŠู†ู‡ ูˆ

370
00:41:32,680 --> 00:41:38,320
ุฎู„ุตูŠู†ู‡ ูˆ ุฌุงู‡ุฒูŠู† ุงูŠุด ุจูŠู‚ูˆู„ ุงู„ C<sub>1</sub>(X) ุจุชุญุทูŠ ู„ู„ุญู„

371
00:41:38,320 --> 00:41:42,940
ุงู„ุซุงู†ูŠ ุจุฅุดุงุฑุฉ ุณุงู„ุจ ููŠ ุงู„ F<sub>1</sub>(X) ุนู„ู‰ ุงู„ W(X)

372
00:41:42,940 --> 00:41:48,260
ุทูŠุจ ูˆ ุงู„ C<sub>2</sub>ุŸ ูˆ ุงู„ C<sub>2</sub> ู‡ูŠ ุงู„ุญู„ ุงู„ุฃูˆู„ ููŠ ุงู„ Y<sub>1</sub>(X)

373
00:41:48,260 --> 00:41:51,850
ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ุงู„ W(X) ูŠุจู‚ู‰ ูƒู…ุงู† ู„ุงุจุฏ ุชุญุณุจ

374
00:41:51,850 --> 00:41:54,950
ุงู„ W(X) ู„ุฃ ู‡ุฐุง ุฅู† ูƒุงู†ุช ู…ู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู†ูŠุฉุŒ ู…ู†

375
00:41:54,950 --> 00:41:59,930
ุงู„ุฑุชุจุฉ ุงู„ุซุงู„ุซุฉุŒ ุจุฏูŠ ุฃุฑุฌุน ุนุงู„ู…ูŠุง ู„ู„ูƒู„ุงู… ุงู„ุฃูˆู„ุŒ ูˆุงุถุญ

376
00:41:59,930 --> 00:42:03,590
ูƒู„ุงู… ู‡ูŠูƒุŸ ุงู„ุฃู…ู† ุงู„ู„ูŠ ุญุทูˆู‡ ุนู„ู‰ ุฃุฑุถ ูˆุงู‚ุนุฉ ุฌุงู„ูŠ ูŠุญู„

377
00:42:03,590 --> 00:42:08,430
ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ุจู‚ูˆู„ู‡ ุชู…ุงู… ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุฃุจุฏุฃ ุจุญู„ ุงู„

378
00:42:08,430 --> 00:42:12,190
homogeneous differential equation ูƒู…ุง ูƒู†ุง ู…ู† ู‚ุจู„

379
00:42:12,190 --> 

401
00:44:50,280 --> 00:44:58,140
ูƒู…ุงู† ู…ุฑุฉ Zero ู†ุงู‚ุต Cos X ู†ุงู‚ุต Sine X ุจุฏูŠ ุฃููƒู‡

402
00:44:58,140 --> 00:45:05,170
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ูˆุงุญุฏ ููŠู‡ ู‚ุดุท ุจุตูู‡

403
00:45:05,170 --> 00:45:11,630
ุนู…ูˆุฏู‡ ูŠุจู‚ู‰ Sin ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ Cosine ุชุฑุจูŠุน ุงู„ X

404
00:45:11,630 --> 00:45:16,650
ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด ุงู„ูˆุงุญุฏ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ Ronskian 1 as a

405
00:45:16,650 --> 00:45:20,810
function of X ุจุฏูŠ ุฃุดูŠู„ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ูˆ ุฃุณุชุจุฏู„ู‡ 

406
00:45:20,810 --> 00:45:31,390
ุจุงู„ุนู…ูˆุฏ 001 ูˆุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุฒูŠ ู…ุง ู‡ู… Cos X Sin X -Sin

407
00:45:31,390 --> 00:45:41,050
X Cos X - Cos X - Sin X ูˆูŠุณุงูˆูŠ ุจุฏูŠ ุฃููƒู‡ ุจุฑุถู‡ ุจุงุณุชุฎุฏุงู…

408
00:45:41,050 --> 00:45:46,830
ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ Zero ู†ุงู‚ุต Zero ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ู‚ุดุท

409
00:45:46,830 --> 00:45:51,250
ุจุตูู‡ ุนู…ูˆุฏู‡ Cosine ุชุฑุจูŠุน ุฒุงุฆุฏ Sine ุชุฑุจูŠุน Cosine

410
00:45:51,250 --> 00:45:57,430
ุชุฑุจูŠุน ุงู„ X ุฒุงุฆุฏ Sine ุชุฑุจูŠุน ุงู„ X ูƒู„ู‡ ุจู‚ุฏุงุด ุจูˆุงุญุฏ

411
00:45:57,910 --> 00:46:02,810
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ Ronskian 2 as a

412
00:46:02,810 --> 00:46:05,910
function of x ูŠุจู‚ู‰ ุงู„ุนู…ูˆุฏูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ุฃุฑุฌุน

413
00:46:05,910 --> 00:46:09,970
ูƒู…ุง ูƒุงู† ูŠุง ุจู†ุงุช ุฃูŠ ูˆุงุญุฏ Zero Zero ุงู„ุนู…ูˆุฏูŠ ุงู„ุซุงู†ูŠ

414
00:46:09,970 --> 00:46:13,550
ู‡ูˆ ุงู„ู„ูŠ ุจุฏูŠ ุฃุณุชุจุฏู„ู‡ ุจ Zero Zero ูˆุงุญุฏ ูˆุงู„ุนู…ูˆุฏูŠ 

415
00:46:13,550 --> 00:46:20,110
ุงู„ุซุงู„ุซ ูƒู…ุง ูƒุงู† Sine ุงู„ X Cosine ุงู„ X ู†ุงู‚ุต Sine ุงู„

416
00:46:20,110 --> 00:46:25,970
X ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุฏูŠ ุฃููƒู‡ ุจุงุณุชุฎุฏุงู…

417
00:46:25,970 --> 00:46:31,590
ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‚ุดุท ุจุตูู‡ ูˆุนู…ูˆุฏู‡ Zero ู†ุงู‚ุต 

418
00:46:31,590 --> 00:46:36,470
Cosine ุงู„ X ูŠุจู‚ู‰ ู†ุงู‚ุต Cosine ุงู„ X ุฎู„ูŠู†ุง ู†ุฌูŠุจ

419
00:46:36,470 --> 00:46:43,350
ุงู„ู€ Ronskian 3 as a function of X ูŠุณุงูˆูŠ 1 0 0 ุงู„ุนู…ูˆุฏ

420
00:46:43,350 --> 00:46:50,590
ุงู„ุซุงู†ูŠ ูƒู…ุง ู‡ูˆ Cosine ุงู„ X ู†ุงู‚ุต Sine ุงู„ X ูˆู‡ู†ุง ู†ุงู‚ุต 

421
00:46:50,590 --> 00:46:58,270
Cosine ุงู„ X ูˆู‡ู†ุง 001 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุงู‚ู†ุนู†ุงู‡ ุจุฏูŠ ุฃููƒู‡

422
00:46:58,270 --> 00:47:02,590
ุจุงุณุชุฎุฏุงู… ุนู†ุงุตุฑ ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ุจู‚ุดุท ุจุตู ูˆุนู…ูˆุฏู‡ ู†ุงู‚ุต 

423
00:47:02,590 --> 00:47:11,780
Sin X ุฎู„ุตู†ุง ู…ู†ู‡ุŒ ุณุฃุญุตู„ ุนู„ู‰ ุงู„ู€ C1 as a function of

424
00:47:11,780 --> 00:47:19,880
X ุงู„ุชูƒุงู…ู„ ู…ู† ุฃูŠู†ุŸ ุงู„ุชูƒุงู…ู„ ู„ู„ู€ Ronskian 1 of X ููŠ 

425
00:47:19,880 --> 00:47:24,260
ุงู„ู€ F of X ู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุชุบูŠูŠุฑ ูƒู…ุง ู‡ูŠ ุนู„ู‰ ุงู„ู€ 

426
00:47:24,260 --> 00:47:30,180
Ronskian of X ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DX ูŠุณุงูˆูŠ ุชูƒุงู…ู„ Ronskian 

427
00:47:30,180 --> 00:47:35,670
1 ุทู„ุนู†ุงู‡ ุจู‚ุฏุงุด ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง ูˆุงุญุฏ ููŠู‡ ุงู„ู€ F of X

428
00:47:35,670 --> 00:47:41,410
ุงู„ู„ูŠ ูŠุจู‚ู‰ ุฏู‡ุดุฉ ุจู†ุงุช Sec ุงู„ X ุงุฒุงูŠ ุนู„ู‰ Sec ุงู„ X ุนู„ู‰ 

429
00:47:41,410 --> 00:47:47,270
ุงู„ู€ Ronskian of X ุงู„ุฃูˆู„ ุจุฑุถู‡ ูˆุงุญุฏ ูƒู„ู‡ DX ูŠุจู‚ู‰ ุชูƒุงู…ู„

430
00:47:47,270 --> 00:47:53,190
ุงู„ู€ Sec ู„ูŠู† Absolute value ู„ู€ Sec ุงู„ X ุฒุงุฆุฏ Tan ุงู„ X 

431
00:47:53,190 --> 00:47:59,710
ุจุฏู†ุง ู†ุฌูŠุจ C2 as a function of X ูŠุจู‚ู‰ ุชูƒุงู…ู„ Ronskian 2

432
00:47:59,710 --> 00:48:06,470
of x ููŠ f of x ุนู„ู‰ Ronskian of x dx ูŠุณุงูˆูŠ ุชูƒุงู…ู„

433
00:48:06,470 --> 00:48:11,790
Ronskian 2 ู‡ูˆ ุจู†ุงู‚ุต Cos x

434
00:48:22,510 --> 00:48:28,490
ูŠุจู‚ู‰ ุชูƒุงู…ู„ ู„ู†ุงู‚ุต DX ูŠุจู‚ู‰ ุจู†ุงู‚ุต X ูˆู„ุง ุชูƒุชุจูŠ

435
00:48:28,490 --> 00:48:33,650
Constants ู„ุฃู† ูƒู„ ุตู„ุงุฉ ูˆูƒุชุงุจ ูŠุนู…ู„ูˆุง ู„ูŠู‡ ุชูƒุฑุงุฑ ูŠุจู‚ู‰

436
00:48:33,650 --> 00:48:38,510
ุณูŠุจูŠู† ู…ู† ุงู„ุชูƒุฑุงุฑ ูŠุจู‚ู‰ ุจูƒุชุจู‡ุง ูู‚ุท ุฒูŠ ู‡ูŠูƒ ุจุฏุฃ ูŠุงุฎุฏ 

437
00:48:38,510 --> 00:48:39,590
C3

438
00:48:46,760 --> 00:48:54,240
ูŠุจู‚ู‰ ุจูŠุฏูŠ C3A of X ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ Ronskian 3 of X

439
00:48:54,240 --> 00:49:00,900
ููŠ F of X ุนู„ู‰ Ronskian of X DX Y ูŠุณุงูˆูŠ ุงู„ู€ Ronskian 3

440
00:49:00,900 --> 00:49:09,010
ู„ู‡ ุณุงู„ุจ Sin X ูˆุงู„ุฏุงู„ุฉ Sec ุงู„ X ูˆุงู„ุฑู…ุฒ ูƒุงู† ูˆุงุญุฏ DX

441
00:49:09,010 --> 00:49:15,810
ูŠุจู‚ู‰ ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ุณุงู„ุจ Sin X ุงู„ู€ Sec ู…ู‚ู„ูˆุจ ุงู„ู€ Cos X DX

442
00:49:15,810 --> 00:49:20,570
ุฃุธู† ุงู„ุจุณุทุฉ ูุงุถู„ ุงู„ู…ู‚ุงู… ูŠุจู‚ู‰ ุงู„ุฌูˆุงุจ ู„ูŠู† Absolute 

443
00:49:20,570 --> 00:49:28,570
value ู„ู€ Cos X ูŠุจู‚ู‰ ุฌุจุช ุงู„ู€ C ุงู„ุซู„ุงุซ ูŠุจู‚ู‰ ุณุงุฑ YP 

444
00:49:28,570 --> 00:49:33,720
ูŠุณุงูˆูŠ ูˆูŠู† YP ูŠุง ุจู†ุงุชู‡ูŠู‡ ุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ C1 ุงู„ู€ C1

445
00:49:33,720 --> 00:49:38,720
ุฌูŠุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ู‚ุฏุงุด ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ Ln Absolute value 

446
00:49:38,720 --> 00:49:47,480
ู„ู€ Sec ุงู„ X ุฒุงุฆุฏ Tan ุงู„ X ุฒุงุฆุฏ C2 ูˆูŠู† C2 ู‡ูŠูˆ ุฒุงุฆุฏ

447
00:49:47,480 --> 00:49:52,280
ุงู„ู„ูŠ ู‡ูŠ ู†ุงู‚ุต X ููŠ ู…ูŠู†ุŸ ููŠ Cosine ุงู„ X

448
00:50:04,270 --> 00:50:12,930
ูŠุจู‚ู‰ y ูŠุณุงูˆูŠ yc ู‡ูŠ

449
00:50:12,930 --> 00:50:23,580
ุชุญุช ูŠุจู‚ู‰ c ูˆุงุญุฏ ุฒุงุฆุฏ C2 Cos X ุฒุงุฆุฏ C3 Sin X ุฒุงุฆุฏ YP 

450
00:50:23,580 --> 00:50:28,540
ู‡ุงูŠ ูˆุจุฏูŠ ุฃู†ุฒู„ู‡ ุฒูŠ ู…ุง ู‡ูˆ ุจุณ ู„ูŠู‡ ุฎุงุทุฑ ุฃุฑุชุจู‡ ูŠุจู‚ู‰ ู‡ุงูŠ

451
00:50:28,540 --> 00:50:36,820
Sin X ููŠ Ln Absolute value ู„ู€ Cos X ู†ุงู‚ุต X ููŠ Cos 

452
00:50:36,820 --> 00:50:45,600
X ุฒุงุฆุฏ Ln Absolute value ู„ู€ Sec X ุฒุงุฆุฏ Tan ุงู„ X ูˆูƒุงู†

453
00:50:45,600 --> 00:50:50,160
ุงู„ู„ู‡ ุจุงู„ุณุฑ ุนู„ูŠู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุญู„ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง 

454
00:50:50,160 --> 00:50:54,780
ุชู…ุงู… ูˆู‡ูƒุฐุง ูŠุนู†ูŠ ุงู„ุดุบู„ ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ ุทุจุนุง ู„ูˆ ุฌูŠุจู†ุงูƒ 

455
00:50:54,780 --> 00:50:58,200
ุณุคุงู„ ููŠ ุงู„ุงู…ุชุญุงู† ู„ู† ูŠุฒูŠุฏ ุนู† ุงู„ุฑุชุจุฉ ุงู„ุซุงู„ุซุฉ ุฃู† 

456
00:50:58,200 --> 00:51:01,780
ุฏุฎู„ู†ุง ููŠ ุงู„ุฑุชุจุฉ ุงู„ุฑุงุจุนุฉ ุจุฏูƒ ู…ุญุฏุฏ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฑุงุจุนุฉ

457
00:51:01,780 --> 00:51:05,760
ุจูŠุงุฎุฏ ูˆู‚ุช ูƒุชูŠุฑ ูˆุงู†ุช ุชุญู„ ููŠู‡ ูŠุจู‚ู‰ ูู‚ุท ู…ู† ุงู„ุฏุฑุฌุฉ

458
00:51:05,760 --> 00:51:11,260
ุงู„ุซุงู„ุซุฉ ุฃูˆ ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ู„ุงุฒู„ู†ุง ููŠ 

459
00:51:11,260 --> 00:51:15,600
ู†ูุณ ุงู„ู€ Section ูˆู„ู…ุง ู†ู†ุชู‡ูŠ ุจุนุฏ ููŠ ุนู†ุฏูŠ ุจุนุถ ุงู„ุฃู…ุซู„ุฉ

460
00:51:15,600 --> 00:51:20,060
ุนู„ู‰ ู†ูุณ ุงู„ู…ูˆุถูˆุน ุจุงู„ุฅุถุงูุฉ ุฅู„ู‰ ุขุฎุฑ ุทุฑูŠู‚ุฉ ุงู„ู„ูŠ ู‡ูŠ

461
00:51:20,060 --> 00:51:24,340
ุทุฑูŠู‚ุฉ Reduction of Order ู„ุงุฎุชุฒุงู„ ุงู„ุฑุชุจุฉ ู„ู„ู…ุญุงุถุฑุฉ 

462
00:51:24,340 --> 00:51:26,760
ุงู„ูŠูˆู… ุจุนุฏ ุงู„ุธู‡ุฑ ุฅู† ุดุงุก ุงู„ู„ู‡ ูˆุชุนุงู„ู‰