abdullah's picture
Add files using upload-large-folder tool
0b4c820 verified
raw
history blame
47.9 kB
1
00:00:00,000 --> 00:00:02,700
ู…ูˆุณูŠู‚ู‰
2
00:00:10,930 --> 00:00:15,710
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู…ุŒ ุงู„ู€ section ุงู„ู„ูŠ ุจูŠู† ุฅูŠุฏูŠู†ุง
3
00:00:15,710 --> 00:00:21,190
ุงู„ู„ูŠ ู‡ูˆ section 8-3 ุจุชุญุฏุซ ุนู† ุงู„ู€ integral test ุงู„ู„ูŠ
4
00:00:21,190 --> 00:00:26,010
ู‡ูˆ ุงุฎุชุจุงุฑ ุงู„ุชูƒุงู…ู„ุŒ ุจุชุฐูƒุฑูˆุง ููŠ ู…ุทู„ุน ุงู„ู€ section ุงู„ู…ุงุถูŠ
5
00:00:26,010 --> 00:00:29,550
ู‚ู„ู†ุง ุฅู†ู†ุง ู‡ู†ุญูƒู… ุนู„ู‰ ุงู„ู€ series ู‡ู„ ู‡ูŠ converge ุฃูˆ
6
00:00:29,550 --> 00:00:36,190
diverge ู…ู† ุฎู„ุงู„ ุซู„ุงุซุฉ series ู…ุดู‡ูˆุฑุฉ ูˆูƒุฐู„ูƒ ุณุชุฉ
7
00:00:36,190 --> 00:00:39,670
ุงุฎุชุจุงุฑุงุชุŒ ุทุจุนุง ููŠ ุงู„ู€ section ุงู„ู…ุงุถูŠ ุฃุนุทุงู†ุง ุฃูˆู„
8
00:00:39,670 --> 00:00:43,530
series ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ geometric seriesุŒ ูˆููŠ ู‡ุฐุง ุงู„ู€
9
00:00:43,530 --> 00:00:46,910
section ุจู†ุฏุฃ ู†ุนุทูŠูƒู… ุงู„ู€ two series ุงู„ุชุงู†ูŠุชูŠู† ุงู„ู„ูŠ
10
00:00:46,910 --> 00:00:52,350
ูˆุนุฏู†ุงูƒู… ููŠู‡ู…ุŒ ุจุงู„ุฅุถุงูุฉ ุฅู„ู‰ ุงุฎุชุจุงุฑ ุงู„ุชูƒุงู…ู„ุŒ ุณู†ุจุฏุฃ
11
00:00:52,350 --> 00:00:57,550
ุฃูˆู„ุง ุจุงู„ู€ two series ุงู„ู…ุดู‡ูˆุฑุฉุŒ ุฃูˆู„ ูˆุงุญุฏุฉ ู‡ูŠ ุงู„ู€
12
00:00:57,550 --> 00:01:01,450
harmonic seriesุŒ ูˆุงู„ุซุงู†ูŠุฉ ู‡ูŠ ุงู„ู€ P series ุฃูˆ ุงู„ู€
13
00:01:01,450 --> 00:01:05,880
hyper harmonic series. ู†ูŠุฌูŠ ู„ู„ุฃูˆู„ู‰ ู‡ุงู„ู€ series ุงู„ู„ูŠ
14
00:01:05,880 --> 00:01:09,380
ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ู„ูŠ ู‚ุฏุงู…ูŠุŒ ุงู„ุตู…ุดู† ู…ู† n equal one to
15
00:01:09,380 --> 00:01:13,840
infinity ู„ูˆุงุญุฏ ุนู„ู‰ mุŒ ุงู„ู„ูŠ ูˆุงุญุฏ ุฒูŠุงุฏุฉุŒ ู†ุต ุฒูŠุงุฏุฉุŒ ุทูˆู„
16
00:01:13,840 --> 00:01:19,180
ุฒูŠุงุฏุฉุŒ ุฑุงุจุน ุฒูŠุงุฏุฉุŒ ุฒูŠุงุฏุฉ ูˆุงุญุฏ ุนู„ู‰ m ุฒูŠุงุฏุฉุŒ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ.
17
00:01:19,180 --> 00:01:23,830
ู‡ุฐู‡ ุจุณู…ูŠู‡ุง harmonic seriesุŒ ูŠุนู†ูŠ ุงู„ู…ุชุณู„ุณู„ุงุช
18
00:01:23,830 --> 00:01:28,130
ุงู„ุชูˆุงูู‚ูŠุฉ. ุทุจุนุง ูŠุจู‚ู‰ ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ main ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€
19
00:01:28,130 --> 00:01:32,210
harmonic series. ุงู„ู€ harmonic series ู„ู„ุฃุณู ุงู„ุดุฏูŠุฏ
20
00:01:32,210 --> 00:01:37,050
ู…ุง ููŠู‡ุง conversion ูˆู„ุง divergence ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุŒ ูŠุจู‚ู‰
21
00:01:37,050 --> 00:01:40,270
ุฑูˆุญู†ุง ู†ู‚ูˆู„ ุฅู† ุงู„ู€ the harmonic series ุตู…ุดู† ุนู„ู‰ m
22
00:01:40,270 --> 00:01:45,070
divergeุŒ ูˆู‡ุฐู‡ ู…ุญู„ูˆู„ุฉ ุนู†ุฏูƒ ููŠ ุงู„ูƒุชุงุจ ุนู„ู‰ ุดูƒู„ ู…ุซุงู„
23
00:01:45,070 --> 00:01:50,950
ููŠ ุตูุญุฉ 535. ุจุชุนุฑู ูƒูŠู ู‡ูŠ diverge ูˆ
24
00:01:50,950 --> 00:01:55,070
ุงู‚ุฑุฃ ุงู„ู…ุซุงู„ุŒ ู„ูƒู† ุฃู†ุง ุจุงู„ู†ุณุจุฉ ู„ูŠ ู…ุด ู‡ุนุชุจุฑู‡ุง ู…ุซุงู„
25
00:01:55,070 --> 00:01:59,730
ู‡ุนุชุจุฑู‡ุง ู‚ุงุนุฏุฉ ูˆุฃุจุฏุฃ ุงุดุชุบู„ ุจู‡ุง ุจุนุฏ ูƒุฏู‡ุŒ ูˆุฅู†ู…ุง ุฃุดูˆูู‡ุง
26
00:01:59,730 --> 00:02:03,470
ุจูƒุชุจ diverge ุจุณ ู…ุด diverge ุจูƒุชุจ diverge harmonic
27
00:02:03,470 --> 00:02:09,230
ูŠุนู†ูŠ ุงู„ุณุจุจ ููŠ ุฅู†ู‘ู‡ุง diverge ู‡ูŠ main harmonic series.
28
00:02:09,230 --> 00:02:14,290
ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ู†ุณุชุฎุฏู…ู‡ุง ููŠ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ู€ series ุงู„ุฃุฎุฑู‰
29
00:02:14,290 --> 00:02:20,580
ู‡ู„ ู‡ูŠ converge ุฃูˆ diverge. ุงู„ุณูŠุฑูŠุฒ ุงู„ุซุงู†ูŠุฉ the
30
00:02:20,580 --> 00:02:24,540
theory of summation ู…ู† n equal one to infinity
31
00:02:24,540 --> 00:02:30,400
ู„ูˆุงุญุฏ ุนู„ู‰ n to the power pุŒ ูŠุจู‚ู‰ ู‡ูŠ ูˆุงุญุฏุŒ ูˆุงุญุฏ ุนู„ู‰
32
00:02:30,400 --> 00:02:34,640
ุงุซู†ูŠู† ุฃูˆุณ ุจูŠุŒ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ ุซู„ุงุซุฉ ุฃูˆุณ ุจูŠุŒ ุฒุงุฆุฏ ูˆุงุญุฏ
33
00:02:34,640 --> 00:02:37,940
ุนู„ู‰ ุฃุฑุจุนุฉ ุฃูˆุณ ุจูŠุŒ ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ู„ุบุงูŠุฉ ู…ุง ู†ุตู„ ูˆุงุญุฏ
34
00:02:37,940 --> 00:02:43,010
ุนู„ู‰ n to the power pุŒ ุฒุงุฆุฏ ุฅู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ. ูŠุจู‚ู‰ ู‡ุฐู‡
35
00:02:43,010 --> 00:02:48,470
ุจุณู…ูŠู‡ุง P seriesุŒ ุจุนุถ ุงู„ูƒุชุจ ุจุณู…ูŠู‡ุง hyper harmonic
36
00:02:48,470 --> 00:02:53,910
seriesุŒ ูŠุนู†ูŠ ูƒุฃู†ู‡ ู„ู‡ุง ุนู„ุงู‚ุฉ ุจุงู„ู€ harmonic series.
37
00:02:53,910 --> 00:02:58,690
ูˆ ูุนู„ุง ู„ู‡ุง ุนู„ุงู‚ุฉ ุจุงู„ู€ harmonic seriesุŒ ูƒูŠูุŸ ู„ูˆ ุฌูŠู†ุง
38
00:02:58,690 --> 00:03:03,240
ุดูŠู„ุช ุงู„ู€ P ูˆุญุทูŠุช ู…ูƒุงู†ู‡ุง ูˆุงุญุฏ ุจุตูŠุฑ ู‡ูŠ ุงู„ู€ harmonic
39
00:03:03,240 --> 00:03:08,340
seriesุŒ ุชู…ุงู…ุŸ ูˆู‡ุฐุง ุณูŠุชุถุญ ู…ู† ุฎู„ุงู„ ูƒู„ุงู…ู†ุง ุนู„ู‰ ุงู„ู€
40
00:03:08,340 --> 00:03:12,100
convergence ูˆุงู„ู€ divergence ุงู„ู„ูŠ ุจู‚ูˆู„ ุฅู† ุงู„ู€ P is the
41
00:03:12,100 --> 00:03:15,860
summation ุนู„ู‰ 1 to the .. ุฃูˆ 1 ุนู„ู‰ N to the power
42
00:03:15,860 --> 00:03:21,730
P converge ุฅุฐุง P ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏุฉ ุตุญูŠุญุฉุŒ ู„ูˆ ูƒุงู†ุช ุฃู‚ู„ ู…ู†
43
00:03:21,730 --> 00:03:26,290
ุฃูˆ ุชุณุงูˆูŠ ูˆุงุญุฏุฉ ุตุญูŠุญุฉ ุฃู†ุช ุจุชุจู‚ู‰ diverse. ูู„ูˆ ูƒุงู†ุช P
44
00:03:26,290 --> 00:03:30,950
ุจูˆุงุญุฏุฉ ุตุญูŠุญุฉ ุจู†ุญุตู„ ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€ harmonic series
45
00:03:30,950 --> 00:03:36,110
ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃูˆู„ู‰ุŒ ูˆุจุงู„ุชุงู„ูŠ ุจูŠุตูŠุฑ diverse ู„ุฃู†ู‡
46
00:03:36,110 --> 00:03:41,150
summation ุจูŠุตูŠุฑ ูˆุงุญุฏ ุนู„ู‰ NุŒ ุฅุฐุง ู…ู† ุงู„ู€ alpha ุณุงุนุฏ ุงู„ู€
47
00:03:41,150 --> 00:03:45,450
harmonic series ู‡ูŠ ุญุงู„ุฉ ุฎุงุตุฉ ู…ู† ุงู„ู€ hyper harmonic
48
00:03:45,450 --> 00:03:51,320
series. ุจู†ุฌู…ู„ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ ููŠ ูƒู„ู…ุฉ ู…ุฎุชุตุฑุฉุŒ ุงู„ู€
49
00:03:51,320 --> 00:03:54,760
harmonic diverges ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุŒ ุทุจุนุง ุงู„ุชุงู†ูŠุฉ ุจุฑุถู‡
50
00:03:54,760 --> 00:04:00,160
ู…ุซุงู„ ู…ุญู„ูˆู„ ุตูุญุฉ ุงู„ู„ูŠ ู‡ูˆ 555ุŒ ุจู‚ูˆู„
51
00:04:00,160 --> 00:04:04,600
ู…ุง ูŠุฃุชูŠุŒ ุงู„ู€ harmonic series diverges ุนู„ู‰ ุทูˆู„ุŒ ุงู„ู€ P
52
00:04:04,600 --> 00:04:07,940
series ุจุฏูŠ ุฃุนุฑูู‡ุง converge ูˆู„ุง divergeุŒ ุจุทู„ ุนู„ู‰
53
00:04:07,940 --> 00:04:13,890
ุงู„ุฃุณ ุชุจุน ู…ู† ุชุจุน ุงู„ู€ N ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู…ู‚ุงู…ุŒ ุฅุฐุง ู†ุต
54
00:04:13,890 --> 00:04:17,530
ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุตุญูŠุญุฉุŒ ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠูƒูˆู† ูˆุงุญุฏุŒ ูˆุงุญุฏ ู…ู†
55
00:04:17,530 --> 00:04:23,270
ุฃู„ูุŒ ูŠุจู‚ู‰ ุงู„ู€ series convertุŒ ูˆุฅุฐุง ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญุฉ ุฃูˆ
56
00:04:23,270 --> 00:04:28,430
ุฃู‚ู„ ู…ู† ูˆุงุญุฏ ุตุญูŠุญุฉ ูŠุจู‚ู‰ ุงู„ู€ series ุจูŠุจู‚ู‰ ู…ุนุงู‡ุง by
57
00:04:28,430 --> 00:04:32,790
various. ุงู„ุขู† ุตุงุฑ ุนู†ุฏูŠ ู‡ูŠ ุงู„ู€ ุซู„ุงุซุฉ series ุงู„ู…ุดู‡ูˆุฑุฉ
58
00:04:32,790 --> 00:04:36,430
ุงู„ู„ูŠ ุจุฏูŠ ุงุณุชุฎุฏู…ู‡ุง ููŠ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ู€ series ุงู„ุฃุฎุฑู‰ุŒ ู‡ู„
59
00:04:36,430 --> 00:04:41,860
ู‡ูŠ convert ุฃูˆ by various. ูˆุงุถุญ ูƒู„ุงู…ูŠุŸ ุญุฏ ุจุฏูŠ ูŠุณุฃู„ ุฃูŠ
60
00:04:41,860 --> 00:04:48,840
ุณุคุงู„ ู‚ุจู„ ุฅู† ู†ุฏุฎู„ ุงู„ุฃู…ุซู„ุŒ ุชูุถู„ ุฒูŠ
61
00:04:48,840 --> 00:04:53,740
ู…ุง ุจุฏูƒ ุชู‚ูˆู„ุŒ because it's harmonic series ุงู„ู„ูŠ
62
00:04:53,740 --> 00:04:57,440
ุฃุณุฃู„ูƒุŒ ู…ูŠู† ุฃุณุฃู„ูƒุŒ ุชู‚ูˆู„ hyper harmonic series ูˆุงู„ู„ู‡
63
00:04:57,440 --> 00:05:02,000
harmonic ุฎู„ุงุต ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง ูŠุจู‚ู‰ harmonic ูˆุงู…ุดูŠุŒ ุญุฏ
64
00:05:02,000 --> 00:05:06,600
ุจุฏูŠ ูŠุณุฃู„ ุฃูŠ ุณุคุงู„ ุซุงู†ูŠุŸ ุทูŠุจ ุงุจู† ุงูŠุฌูŠ ุงู„ุขู† ุจูŠู‚ูˆู„ ู„ูŠ
65
00:05:06,600 --> 00:05:11,280
ุญุฏุฏ ู„ูŠ ุชู‚ุงุฑุจ ูƒู„ ู…ู† ุงู„ู…ุชุณู„ุณู„ุงุช ุงู„ุชุงู„ูŠุฉุŒ ูˆู…ุนุทูŠู†ูŠ ุงู„ู€
66
00:05:11,280 --> 00:05:14,800
series ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู‡ ู‡ุฐุงุŒ ุจู‚ูˆู„ ู„ู‡ ุฃู†ุง ุจุฏูŠ ุฃุดูˆู ุงู„ู€
67
00:05:14,800 --> 00:05:19,140
series ู‡ุฐูŠ converge ูˆุงู„ู„ู‡ ุถุงูŠูู‡ ูŠุนู†ูŠ ุจู‚ูˆู„ ู„ู‡ ู…ุงุดูŠ
68
00:05:19,140 --> 00:05:24,360
ุงู„ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ู‡ุฐุง ู…ุง ู„ู‡ constantุŒ ูŠุจู‚ู‰ ูƒุฃู†ู‡ ู‡ุฐุง ุงู„ู€
69
00:05:24,360 --> 00:05:29,720
summation ู…ู† N equal one to infinity ู„ุณุงู„ุจ ุซู…ุงู†ูŠุฉ
70
00:05:29,720 --> 00:05:37,010
ู…ุถุฑูˆุจุฉ ููŠ ูˆุงุญุฏ ุนู„ู‰ MุŒ ุฃูˆ ุณุงู„ุจ ุซู…ุงู†ูŠุฉ ุจุฑุฉ ูˆ summation
71
00:05:37,010 --> 00:05:42,830
ู„ูˆุงุญุฏ ุนู„ู‰ N ู…ู† N equal one to infinityุŒ ุถุฑุจ ุงู„ู€
72
00:05:42,830 --> 00:05:46,590
series ููŠ ู…ู‚ุฏุงุฑ ุซุงุจุชุŒ ููŠ ุงู„ู€ section ุงู„ู…ุงุถูŠ ุฃุฎุฐู†ุง ู„ุง
73
00:05:46,590 --> 00:05:50,030
ุจุซุฑ ุนู„ู‰ convergence ูˆู„ุง ุนู„ู‰ divergenceุŒ ุทูŠุจ ุงู„ู„ูŠ
74
00:05:50,030 --> 00:05:54,220
ุฌูˆุง ุงู„ู€ summation ู…ูŠู† ู‡ูŠ ู‡ุฐู‡ุŸ ู‡ุงุฑู…ูˆู†ูŠูƒุŒ ุฅุฐุง ู‡ุฐู‡ ู„ูŠุณุช
75
00:05:54,220 --> 00:05:57,960
ุฏุงูŠููŠุฑุฌ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุŒ ูุจุฑูˆุญ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุงู„ุณูŠุฑูŠุฒ
76
00:05:57,960 --> 00:06:06,260
ูƒุชุจู†ุงู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุฏุงูŠููŠุฑุฌ ู‡ุงุฑู…ูˆู†ูŠูƒ ุณูŠุฑูŠุฒุŒ ูˆุฑูˆุญ ูˆุฎู„ูŠู‡ุง
77
00:06:06,260 --> 00:06:13,100
ุฎู„ุงุต ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุงุŒ ุฎู„ูŠ ุณูŠุฑูŠุฒ ุซุงู†ูŠุŒ ู†ู…ุฑ ุงุซู†ูŠู†ุŒ ุจุฏูŠ
78
00:06:13,100 --> 00:06:21,000
summation ู…ู† N equal one to infinity ู„ุชู„ุงุชุฉ ุนู„ู‰
79
00:06:21,000 --> 00:06:29,200
ุฌุฐุฑ ุงู„ู€ NุŒ ุจุฌูŠ ุจู‚ูˆู„ ู„ู‡ ูƒูˆูŠุณุŒ ูŠุจุฌูŠ ู‡ุฐู‡ ุชู„ุงุชุฉ ุจุฑุฉ ูˆู‡ุงูŠ
80
00:06:29,200 --> 00:06:34,680
summation ู…ู† N equal one to infinity ู„ูˆุงุญุฏ ุนู„ู‰ N
81
00:06:34,680 --> 00:06:45,290
ุฃุต ู†ุตุŒ ูŠุจุฌูŠ ู‡ุฐู‡ ูƒู…ุงู† ู‡ูŠ convergeุŒ ู‚ู„ุช ููŠ ุงู„ู€ P ูŠุจู‚ู‰
82
00:06:45,290 --> 00:06:56,690
ู‡ุฐู‡ diverse P Series ู„ุฃู† P ุชุณุงูˆูŠ ุงู„ู†ุตุŒ ูˆุงู„ู†ุต ู…ุง ู„ู‡
83
00:06:56,690 --> 00:07:03,210
ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ. ุณุคุงู„ ุงู„ุซุงู„ุซ ุจูŠู‚ูˆู„ ุงู„ู€
84
00:07:03,210 --> 00:07:10,470
summation ู…ู† N equal one to infinity ู„ู†ู‚ุต ุงุซู†ูŠู† ุนู„ู‰
85
00:07:10,470 --> 00:07:16,500
N ุฌุฐุฑ ุงู„ู€ MุŒ ุจู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ ุงู„ู€ series ุจู‚ุฏุฑ ุฃูƒุชุจู‡ุง ุนู„ู‰
86
00:07:16,500 --> 00:07:20,920
ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ summation ู…ู† N equal one to infinity
87
00:07:20,920 --> 00:07:27,020
ูˆุณุงู„ุจ ุงุซู†ูŠู† ุจู‚ุฏุฑ ุฃุฎุฏู‡ุง ุจุฑุฉ ูŠุจู‚ู‰ ุณุงู„ุจ ุงุซู†ูŠู†
88
00:07:27,020 --> 00:07:36,260
summation ู„ูˆุงุญุฏ ุนู„ู‰ ู‡ุฐู‡ N ูˆู‡ุฐู‡ N ุฃุต ู†ุต ูŠุจู‚ู‰ N ุฃุต
89
00:07:36,260 --> 00:07:38,500
ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู†.
90
00:07:41,020 --> 00:07:49,260
converge P seriesุŒ ูˆุงู„ุณุจุจ ููŠ ุงู„ู€ convergence because
91
00:07:49,260 --> 00:07:55,520
ุฅู† P ูŠุณุงูˆูŠ ุซู„ุงุซุฉ ุนู„ู‰ ุงุซู†ูŠู† ุฃูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ.
92
00:07:55,520 --> 00:08:03,710
ุงู„ุณุคุงู„ ุงู„ุฑุงุจุน. ุณุคุงู„ ุงู„ุฑุงุจุน ุจูŠู‚ูˆู„ summation ู…ู† n
93
00:08:03,710 --> 00:08:11,050
equal one to infinity ู„ูˆุงุญุฏ ุนู„ู‰ ุงุซู†ูŠู† n ู†ุงู‚ุต ูˆุงุญุฏ
94
00:08:11,050 --> 00:08:15,150
ุจุงู„ุดูƒู„
95
00:08:15,150 --> 00:08:20,480
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุŒ ุจู‚ูˆู„ ู‡ุฐู‡ ู…ุง ู‡ูŠ harmonic series ูˆู„ุง
96
00:08:20,480 --> 00:08:24,740
ุญุชู‰ hyper harmonic seriesุŒ ุฅุฐุง ู…ุง ู‡ูˆ ุงู„ุญู„ ููŠ ู…ุซู„
97
00:08:24,740 --> 00:08:30,180
ู‡ุฐู‡ ุงู„ุญุงู„ุฉุŸ ุจู‚ูˆู„ ุจุณูŠุทุฉุŒ ุจุฏู†ุง ู†ุญุงูˆู„ ู†ุญูˆุฑ ู‡ุฐู‡ ุงู„ู…ุณุฃู„ุฉ
98
00:08:30,180 --> 00:08:35,020
ุจู‡ุง ุชุตูŠุฑ harmonic series ุฃูˆ hyper harmonic series.
99
00:08:35,510 --> 00:08:41,230
ุจู‚ูˆู„ ูŠุจู‚ู‰ ุงุซู†ูŠู† M ู†ุงู‚ุต ูˆุงุญุฏ ู‡ุฐู‡ ู…ู…ูƒู† ุฃุญุทู‡ุง ุจู…ุชุบูŠุฑ
100
00:08:41,230 --> 00:08:48,450
ุบูŠุฑู‡ุงุŒ ูŠุจู‚ู‰ ู„ูˆ ุญุทูŠุช ุงู„ู€ M ุชุณุงูˆูŠ ุงุซู†ูŠู† M ู†ุงู‚ุต ูˆุงุญุฏ
101
00:08:48,450 --> 00:08:54,880
ู‡ุฐุง ู…ุนู†ุงู‡ ุฅู† ุงู„ู€ M ุฒุงุฆุฏ ูˆุงุญุฏ ุจุฏู‡ ูŠุณุงูˆูŠ ุฌุฏุงุด 2nุŒ ุฃู†ุง
102
00:08:54,880 --> 00:09:00,540
ู…ุง ุจุฏูŠ 2n ุจุฏูŠ n ู„ูˆุญุฏู‡ุงุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุจูŠุจู‚ู‰ ูŠุนุทูŠูƒ ุฅู† ุงู„ู€
103
00:09:00,540 --> 00:09:07,340
M ุนู„ู‰ 2 ุฒุงุฆุฏ 1 ุนู„ู‰ 2 ูŠุณุงูˆูŠ ู…ุงู†ุŸ ูŠุณุงูˆูŠ ุงู„ู€ M
104
00:09:25,280 --> 00:09:30,300
ู‡ุฐุง ุจุฏู‡ ูŠุณุงูˆูŠ summationุŒ ูˆุฏูŠู‡ ู„ู„ู†ุต ุนู„ู‰ ุงู„ุดุฌุฉ
105
00:09:30,300 --> 00:09:37,660
ุงู„ุซุงู†ูŠุฉ ุจุตูŠุฑ M ุนู„ู‰ 2 ุชุณุงูˆูŠ ู†ุต ุฅู„ู‰ infinity ู„ู„ูˆุงุญุฏ
106
00:09:37,660 --> 00:09:44,300
ุนู„ู‰ MุŒ ู…ุง ููŠุด ุญุงุฌุฉ ุงุณู… ุงู„ุญุฏ ุฑู‚ู… ู†ุต ูˆู„ุง ุฑู‚ู… ุชู„ุช ุฃุฑุจุน.
107
00:09:47,360 --> 00:09:52,820
ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจู†ุง ููŠ ุงุซู†ูŠู† ุจุตูŠุฑ ุงู„ู€ summation ู…ู† M
108
00:09:52,820 --> 00:09:59,440
equal one to infinity ู„ูˆุงุญุฏ ุนู„ู‰ M. ู…ู† ู‡ูŠ ู‡ุฐู‡ุŸ
109
00:09:59,440 --> 00:10:03,620
Series ุงู„ุฃูˆู„ุงู†ูŠุฉ. ูŠุจู‚ู‰ ุตุงุฑุช ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ harmonic
110
00:10:03,620 --> 00:10:04,160
series.
111
00:10:13,250 --> 00:10:18,470
ุทุจ ูƒูˆูŠุณุŒ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู„ุนู†ูˆุงู† ุงู„ู„ูŠ ุงุญู†ุง ุฑุงูุนูŠู†ู‡
112
00:10:18,470 --> 00:10:31,530
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ integral testุŒ ุงู„ู€
113
00:10:31,530 --> 00:10:37,650
integral test ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠุŒ let
114
00:10:57,230 --> 00:10:59,570
ุงู„ุญุฏูˆุฏ ูƒู„ู‡ุง ู…ูˆุฌุจุฉ.
115
00:11:16,030 --> 00:11:23,090
ุจู†ุญุตู„ ุนู„ูŠู‡ุง by replacing by
116
00:11:25,850 --> 00:11:38,290
replacing ุจุงุณุชุจุฏุงู„ ุงู„ู€ N by XุŒ N by X in the formula
117
00:11:38,290 --> 00:11:46,050
of N if
118
00:11:46,050 --> 00:11:50,630
ุงู„ู€ F of X is positive
119
00:11:52,730 --> 00:11:59,190
ูˆ continuous and
120
00:11:59,190 --> 00:12:07,230
decreasingุŒ positive continuousุŒ ูˆูƒุฐู„ูƒ decreasing
121
00:12:07,230 --> 00:12:17,530
for all ุฅู† ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ capital MุŒ then the
122
00:12:17,530 --> 00:12:26,530
series ู„ูŠู‡ summation ู…ู† N equal capital N to
123
00:12:26,530 --> 00:12:35,050
infinity ู„ู„ู€ A NุŒ ุฃู† ุชูƒุงู…ู„ ู…ู† N ุฅู„ู‰ infinity ู„ู„ู€ F of
124
00:12:35,050 --> 00:12:46,310
X DX are both convergeุŒ are both converge or both
125
00:12:46,310 --> 00:12:50,270
divergeุŒ example
126
00:13:12,300 --> 00:13:21,400
ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ุจูŠู‚ูˆู„ ููŠ ุงู„ู€ summation ู…ู† N equal 4 to
127
00:13:21,400 --> 00:13:27,120
infinity ู„ุฅู† ุงู„ู€ N ุนู„ู‰ ุฌุฐุฑ ุงู„ู€ N
128
00:13:58,580 --> 00:14:04,440
ู‚ุจู„ ู‡ุฐุง ุงู„ุงุฎุชุจุงุฑ ุงุญู†ุง ุฃุฎุฐู†ุง ุงุฎุชุจุงุฑ ุขุฎุฑุŒ ุงู„ุงุฎุชุจุงุฑ
129
00:14:04,440 --> 00:14:09,660
ุงู„ุฃุฎุฑ ูƒุงู† ุงุฎุชุจุงุฑ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠุŒ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงุณุชุฎุฏู…ู†ุง
130
00:14:09,660 --> 00:14:14,880
ููŠ ุงุฎุชุจุงุฑ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุฃู† ุงู„ุญุฏูˆุฏ ุชูƒูˆู† ู…ูˆุฌุจุฉุŸ ู„ุงุŒ ู…ุง
131
00:14:14,880 --> 00:14:19,180
ุงุณุชุฎุฏู…ู†ุงู‡ุŒ ุงุณุชุฎุฏู…ู†ุงู‡ ู†ู‡ุงุฆูŠู‹ุงุŒ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุฃูŠุด ู…ุง ูŠูƒูˆู†
132
00:14:19,180 --> 00:14:23,670
ุดูƒู„ู‡ุŒ ู†ุฃุฎุฐ ู„ู‡ ุงู„ู€ limitุŒ ุฅุฐุง ูƒุงู† ูŠุณุงูˆูŠ zero ุจูŠูุดู„ ุงู„ุงุฎุชุจุงุฑ
133
00:14:23,670 --> 00:14:29,290
ู„ุญุฏ ุฅู†ู‡ ูŠุจู‚ู‰ ูŠุณูˆูŠ ุฑู‚ู… ุฃูˆ ู…ุงู„ู‡ ู†ู‡ุงูŠุฉุŒ ูŠุจู‚ู‰ ุงู„ู€ series
134
00:14:29,290 --> 00:14:33,770
diverseุŒ ู„ูƒู† ู„ู…ุง ู†ูŠุฌูŠ ู„ู„ุงุฎุชุจุงุฑ ู„ุฃู† ู‡ุฐุง ุงุฎุชุจุงุฑ
135
00:14:33,770 --> 00:14:38,710
ุงู„ุชูƒุงู…ู„ุŒ ู‡ุฐุง ุงู„ู€ section ู‡ูˆ ุงู„ู€ section ุงู„ูˆุญูŠุฏ ุงู„ุฐูŠ
136
00:14:38,710 --> 00:14:44,330
ูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ู€ improper integral ุงู„ู„ูŠ ู‡ูˆ section 87
137
00:14:45,630 --> 00:14:51,230
ุงู„ุณูŠูƒุดู† ู‡ุฐุง ู„ุฃู†ู‡ improper integrals ู†ุธุฑุง ู„ุฐู„ูƒ
138
00:14:51,230 --> 00:14:56,170
ุงุนุชู…ุฏ ุนู„ู‰ ุณูŠูƒุดู† ุซู…ุงู†ูŠุฉ ุณุจุนุฉุŒ ุจูŠู‚ูˆู„ ู„ูŠู‡ุŸ ุทุจุนู‹ุง ุนู†ุฏูŠ ุงู„ู€
139
00:14:56,170 --> 00:15:01,050
summation ู…ู† n equal one to infinity ู„ู„ู€ a n ุนุจุงุฑุฉ
140
00:15:01,050 --> 00:15:06,730
ุนู† series with positive termsุŒ ูŠุจู‚ู‰ ู„ุงุญุธ ุงุจุชุฏุงุก ู…ู†
141
00:15:06,730 --> 00:15:11,410
ู‡ุฐุง ุงู„ุงุฎุชุจุงุฑ ูˆ ู„ุบุงูŠุฉ ุงู„ุฃุฑุจุนุฉ ุงุฎุชุจุงุฑุงุช ุงู„ู„ูŠ ุฌุงุกุช
142
00:15:11,410 --> 00:15:15,750
ุจุนุฏู‡ ูƒู…ุงู† ูƒู„ู‡ ุจุฏู†ุง ู†ุณุชุฎุฏู… ููŠู‡ุง ุฃู†ู‘ู‡ series with
143
00:15:15,750 --> 00:15:21,490
positive termsุŒ ูŠุนู†ูŠ ูƒู„ ุงู„ุญุฏูˆุฏ ู…ูˆุฌุจุฉ ู„ู‡ุฐู‡ ุงู„ู€ series
144
00:15:21,490 --> 00:15:27,370
ูˆู„ุง ูŠูˆุฌุฏ ููŠู‡ุง ุญุฏ ุณุงู„ุจุŒ ุทูŠุจ ูŠุจู‚ู‰ ุงู„ู€ summation ู‡ุฐู‡
145
00:15:27,370 --> 00:15:31,950
series with positive termsุŒ ุทูŠุจ ูˆุจุนุฏูŠู† ุฌุฆู†ุงุŒ ุฌุฆู†ุง ุนู„ู‰
146
00:15:31,950 --> 00:15:36,450
ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุชุจุน ุงู„ู€ series ูˆุดูŠู„ู†ุง ูƒู„ุŒ ุฅู†ู‡ ุญุทูŠู†ุง
147
00:15:36,450 --> 00:15:43,440
ู…ูŽูƒูŽุงู†ู‡ุŒ ุฃูŽูƒู’ุซูŽุฑูŽ ุนู†ุฏูŠ function ููŠ XุŒ ุฌุนู„ุช ุงู„ู€ f of x ุนุจุงุฑุฉ
148
00:15:43,440 --> 00:15:48,880
ุนู† function ุญุตู„ู†ุง ุนู„ูŠู‡ุง ุจุงุณุชุจุฏุงู„ ูƒู„ n ููŠ ุงู„ุญุฏ
149
00:15:48,880 --> 00:15:54,680
ุงู„ู†ูˆู†ูŠ ุจู€ x ููŠ ุงู„ุตูŠุบุฉ ุชุจุน ุงู„ู€ a nุŒ ุทูŠุจ ุจุฏู„ู†ุง ูˆุฎู„ุตู†ุง
150
00:15:54,680 --> 00:15:59,580
ุจุนุฏ ู‡ูŠูƒ ุจุฏู†ุง ู†ุฑูˆุญ ู„ู„ู€ function ุงู„ุฌุฏูŠุฏุฉุŒ ุจู‚ุฏุฑ ุฃุดูˆู ุฅุฐุง
151
00:15:59,580 --> 00:16:05,380
ุชุญู‚ู‚ุช ููŠู‡ุง ุซู„ุงุซุฉ ุดุฑูˆุทุŒ ุจู‚ุฏุฑ ุฃุณุชุฎุฏู… ุงู„ู€ integral test
152
00:16:05,380 --> 00:16:10,440
ู…ุง ู‡ูŠ ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉุŸ ุงู„ุฃูˆู„ุŒ ุชุจู‚ู‰ ูƒู„ ุญุฏูˆุฏู‡ุง ู…ูˆุฌุจุฉุŒ
153
00:16:10,440 --> 00:16:14,940
ูƒูˆู† ุงู„ู€ series ูƒู„ ุญุฏูˆุฏู‡ุง ู…ูˆุฌุจุฉุŒ ุฅุฐุง ุงู„ู€ function
154
00:16:14,940 --> 00:16:19,820
ู…ูˆุฌุจุฉ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุŒ ูŠุจู‚ู‰ ุงู„ุดุฑุท ุงู„ุฃูˆู„ ุชุญุตูŠู„ ุญุงุตู„ุŒ
155
00:16:19,820 --> 00:16:25,020
ุงู„ุดุฑุท ุงู„ุซุงู†ูŠุŒ ูƒูˆู†ู‡ุง function ูŠุจู‚ู‰ ุจุฏู‡ุง ุชูƒูˆู† continuous
156
00:16:25,020 --> 00:16:30,060
ุญุชู‰ ูŠูƒูˆู† ุงู„ุชูƒุงู…ู„ ุจุนุฏ ุฐู„ูƒ existุŒ ูŠุนู†ูŠ ุงู„ุดุฑุท ุฃู†
157
00:16:30,060 --> 00:16:35,180
ุงู„ุฏุงู„ุฉ ุชุจู‚ู‰ integrableุŒ ู‚ุงุจู„ุฉ ู„ู„ุชูƒุงู…ู„ุŒ ู‡ูŠูƒูˆู† ุฏุงู„ุฉ
158
00:16:35,180 --> 00:16:40,420
ู…ุชุตู„ุฉุŒ ุงู„ุดุฑุท ุงู„ุซุงู„ุซ ุจุฏู‡ุง ุชุจู‚ู‰ decreasing ูŠุนู†ูŠ
159
00:16:40,420 --> 00:16:47,890
ุงู„ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ุฃูˆ ุงู„ู…ุชุณู„ุณู„ุฉ ุชู†ุงู‚ุตูŠุฉ ูƒุฐู„ูƒุŒ ุฅุฐุง ู‚ุฏุฑุช
160
00:16:47,890 --> 00:16:51,850
ุฃุซุจุช ุฅู† ุงู„ุฏุงู„ุฉ ุชู†ุงู‚ุตูŠุฉ ุนู† ุทุฑูŠู‚ ุงู„ู€ derivative ุงู„ู„ูŠ ู‡ูˆ
161
00:16:51,850 --> 00:16:56,430
ุงู„ุงุดุชู‚ุงู‚ุŒ ูŠุนู†ูŠ ู…ุดุชู‚ุชู‡ุง ุฃู‚ู„ ู…ู† ุงู„ู€ zeroุŒ ุฅุฐุง ู‡ูŠ
162
00:16:56,430 --> 00:17:02,230
decreasingุŒ ู…ุง ู‚ุฏุฑุช ู„ุฌูŠุช ููŠู‡ุง ุตุนูˆุจุฉ ูˆู„ุง ุฃุณู‡ู„ ุฅู† ุฃุดูˆู
163
00:17:02,230 --> 00:17:06,550
ู‡ู„ ุงู„ู€ series ู‡ุฐูŠ converge ูˆู„ุง divergeุŒ ูŠุจู‚ู‰ ุนู„ู‰
164
00:17:06,550 --> 00:17:11,750
ุทูˆู„ ุงู„ุฎุท ุจุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ุงุŒ ุงู„ู€ series ุจุดูˆู ู‡ู„ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ
165
00:17:12,000 --> 00:17:16,240
ุฃูƒุจุฑ ู…ู† ุงู„ุญุฏ ุงู„ู„ูŠ ู†ุฒุงูŠุฏ ูˆุงุญุฏ ูˆู„ุง ู„ุงุŒ ุฅู† ูƒุงู† ุฃูƒุจุฑ ู…ู†ู‡
166
00:17:16,240 --> 00:17:19,960
ูŠุจู‚ู‰ ุงู„ู€ series decreasing ูˆุจุงู„ุชุงู„ูŠ ุงู„ู€ function
167
00:17:19,960 --> 00:17:23,840
decreasingุŒ ูŠุจู‚ู‰ ุจุชูƒูˆู† ุชุญู‚ู‚ุช ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉุŒ ูŠุจู‚ู‰
168
00:17:23,840 --> 00:17:29,300
ุจู‚ุฏุฑ ุฃุณุชุฎุฏู… ุงู„ู€ integral testุŒ ู„ูˆ ุงุฎุชู„ ุฃูŠ ุดุฑุท ู…ู†
169
00:17:29,300 --> 00:17:34,800
ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉุŒ ู„ุง ูŠู…ูƒู† ู†ุณุชุฎุฏู… ุงู„ู€ integral testุŒ ุทุจ
170
00:17:34,800 --> 00:17:38,570
ุงูŠุด ุงู„ู€ integral testุŸ ุจูŠู‚ูˆู„ ู„ูŠ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ูŠู…ูƒู†
171
00:17:38,570 --> 00:17:42,850
ุชุจู‚ู‰ positive ูˆ continuous ูˆ decreasingุŒ ูˆุฑุงุญ ู‚ุงู„
172
00:17:42,850 --> 00:17:49,050
ู„ูŠ for all n ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ NุŒ ุดูˆ ู‡ุฐุงุŸ
173
00:17:49,050 --> 00:17:53,190
ูุงู„ู„ูŠ ุนู„ูŠ ู‡ู†ุงุŒ ุงุญู†ุง ุงู„ู€ series ุจุฏุฃ ู…ู† ูˆูŠู†ุŸ ุทูŠุจ ุฃู†ุง
174
00:17:53,190 --> 00:17:56,350
ุฌูŠุช ุนู†ุฏ ุงู„ูˆุงุญุฏุŒ ู„ุฌูŠุช ุงู„ู€ function positive ูˆ
175
00:17:56,350 --> 00:18:00,790
continuous ูˆู…ุง ู‡ูŠ decreasing ุนู†ุฏ ุงู„ูˆุงุญุฏุŒ ุงู‡ ุชู…ุงู…ุŒ
176
00:18:00,790 --> 00:18:05,570
ูŠุจู‚ู‰ ุงุฎุชู„ ุงู„ุดุฑุท ุนู†ุฏ n ุชุณุงูˆูŠ ูˆุงุญุฏุŒ ู†ู‡ู…ู„ู‡ุŒ ุจุฑูˆุญ ุนู„ู‰ ู…ูŠู†ุŸ
177
00:18:05,570 --> 00:18:09,690
ุนู„ู‰ n ุชุณุงูˆูŠ ุงุซู†ูŠู†ุŒ ู„ุฌูŠุชู‡ุง positive ูˆ continuous ูˆ
178
00:18:09,690 --> 00:18:10,730
ู…ุง ู‡ูŠ decreasing
179
00:18:14,370 --> 00:18:21,810
ู…ู† ุนู†ุฏ ุงู„ุณุจุนุฉ ุซู… ููˆู‚ ุณุจุนุฉุŒ ุซู…ุงู†ูŠุฉุŒ ุชุณุนุฉ ุฅู„ู‰ ุขุฎุฑู‡ุŒ ู„ุฌุฆุช
180
00:18:21,810 --> 00:18:28,470
ุงู„ุซู„ุงุซุฉ ุดุฑูˆุท ู…ุญู‚ู‚ุฉ ู…ู† ุนู†ุฏ ุงู„ุณุจุนุฉ ูู…ุง ููˆู‚ุŒ ูƒู„ ุงู„ุดุฑูˆุท
181
00:18:28,470 --> 00:18:34,790
ู…ุญู‚ู‚ุฉุŒ ุฅุฐุง ุงู„ุชูƒุงู…ู„ exist ู…ู† ุณุจุนุฉ ู„ุบุงูŠุฉ infinity
182
00:18:38,950 --> 00:18:43,410
ุณุชุฉ ุญุฏูˆุฏุŒ ุงู‡ู…ุŒ ุงู„ุนุฏุฏ ุงู„ู…ุญุฏูˆุฏ ู…ู† ุญุฏูˆุฏ ุงู„ู€ series ุฃูˆ
183
00:18:43,410 --> 00:18:47,750
above two ู„ุง ูŠุคุซุฑ ุนู„ู‰ ุงู„ู€ convergence ูˆู„ุง ุนู„ู‰ ุงู„ู€
184
00:18:47,750 --> 00:18:51,770
divergenceุŒ ู‚ุงุนุฏุฉ ุฃุฎุฐู†ุงู‡ุง ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ููŠ ู†ู‡ุงูŠุฉ
185
00:18:51,770 --> 00:18:57,750
section ุนุดุฑุฉ ุงุซู†ูŠู†ุŒ ู…ุธุจูˆุทุŒ ุทูŠุจ ุชู…ุงู…ุŒ ุทูŠุจ ูŠุจู‚ู‰ ุนุฑูู†ุง
186
00:18:57,750 --> 00:19:03,210
ู…ุง ู‡ูˆ ุงู„ุณุฑ ููŠ ุฃู† n ุฃูƒุจุฑ ู…ู† capital N ุญูŠุซ N is an
187
00:19:03,210 --> 00:19:08,160
integer ุฃูˆ positive integer ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจุŒ ุฅู† ุญุฏุซ
188
00:19:08,160 --> 00:19:13,740
ุฐู„ูƒุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏูŠ ุฃุดูˆูู‡ุง converge ูˆู„ุง divergeุŒ ุจุฑูˆุญ
189
00:19:13,740 --> 00:19:19,100
ุจุญุณุจ ุงู„ู€ improper integral ูˆู‚ุฏ ุชุนู„ู…ู†ุง ู‚ุจู„ ุฐู„ูƒ ูƒูŠููŠุฉ
190
00:19:19,100 --> 00:19:23,220
ุญุณุงุจ ุงู„ู€ improper integral ุฃูˆ ูƒูŠููŠุฉ ุงู„ุญูƒู… ุนู„ู‰ ุงู„ู€
191
00:19:23,220 --> 00:19:26,720
improper integral ุฅุฐุง ูƒุงู† ู…ุด ู‚ุงุฏุฑูŠู† ู†ูƒู…ู„ู‡ ุจุงู„ู€
192
00:19:26,720 --> 00:19:28,900
comparison ุฃูˆ ุงู„ู€ limit comparison ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ
193
00:19:28,900 --> 00:19:33,540
ุงู„ู„ูŠ ุชู‚ุฏุฑ ุนู„ูŠู‡ุงุŒ ุฏู‡ ู„ูˆ ูƒุงู†ุช ุชูƒุงู…ู„ ู‡ุฐุง diverge is in
194
00:19:33,540 --> 00:19:37,430
ุงู„ู€ series ู‡ุฐู‡ diverseุŒ ู„ูˆ ูƒุงู† ุงู„ุชูƒุงู…ู„ converge
195
00:19:37,430 --> 00:19:44,350
either series or both divergent
196
00:19:44,350 --> 00:19:47,370
ุฅุฐุง
197
00:19:47,370 --> 00:19:51,230
ุชุจู‚ุช ูˆุงุญุฏุฉ ููŠู‡ู… convergeุŒ either ุงู„ุชุงู†ูŠุŒ ูˆุฅุฐุง ุชุจู‚ุช
198
00:19:51,230 --> 00:19:56,050
ูˆุงุญุฏุฉ ููŠู‡ู… ุงู„ุชูƒุงู…ู„ divergent ูŠุจู‚ู‰ seriesุŒ ูˆู‡ุฐุง ู„ุญุฏ
199
00:19:56,050 --> 00:20:00,410
ู‡ู†ุง ุงู†ุชู‡ู‰ ุงู„ู€ integral test ูˆุจู†ุชู‡ูŠู‡ ูŠู†ุชู‡ูŠ ูƒู„ ุงู„ุฌุฒุก
200
00:20:00,410 --> 00:20:04,150
ุงู„ู†ุธุฑูŠ ุชุจุน ุงู„ู€ sectionุŒ ุญุฏ ููŠ ุฃูŠ ุดูŠุก ุงู„ู„ูŠ ู‡ูˆ ูŠุชุณุงุฆู„ ู‚ุจู„ ู…ุง
201
00:20:04,150 --> 00:20:08,790
ุฃุจุฏุฃ ููŠ ุงู„ุฃู…ุซู„ุฉุŸ ุญุฏ ุจุฏูŠ ุฃุณุฃู„ุŸ ุฃูŠูˆุฉ
202
00:20:12,050 --> 00:20:15,730
ุงุญู†ุง ุจูŠู‚ูˆู„ ุฅูŠู‡ุŸ ุงู„ุฃุตู„ ุจูŠู‚ูˆู„ ู…ู† ุนู†ุฏ n ุชุณุงูˆูŠ ูˆุงุญุฏ
203
00:20:15,730 --> 00:20:19,450
ุฅู„ู‰ infinity ุฒูŠ ู…ุง ุงุญู†ุง ูƒุงุชุจูŠู†ุŒ ู„ูƒู† ุฌุฆุช ุนู†ุฏ ุงู„ู€ n
204
00:20:19,450 --> 00:20:23,890
ุชุณุงูˆูŠ ูˆุงุญุฏุŒ ู„ุฌุฆุช positive ู…ุซู„ู‹ุง ูˆ decreasing ู„ูƒู†ู‡ุง
205
00:20:23,890 --> 00:20:28,230
ู„ูŠุณุช continuousุŒ ููŠ discontinuity ูŠุนู†ูŠ ุงู„ู…ู‚ุงู… ูŠุณุงูˆูŠ
206
00:20:28,230 --> 00:20:33,170
zero ู„ู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุนู†ุฏ n ุชุณุงูˆูŠ zero ู…ุซู„ู‹ุง
207
00:20:33,170 --> 00:20:37,930
ูŠุนู†ูŠ ูˆุงุญุฏุŒ ุฅุฐุง ุงู„ูˆุงุญุฏ ู‡ุฐุง ู…ุงู„ู‡ุŸ ุจุถู„ู‡ ุตูุญุฉ ุดุฌุฑุฉุŒ ุจุงุฎุฏ
208
00:20:37,930 --> 00:20:41,430
ุนู†ุฏูŠ ุงุซู†ูŠู†ุŒ ู„ุฌุฆุช ุนู†ุฏูŠ ุงุซู†ูŠู† ู…ุซู„ู‹ุง positive
209
00:20:41,430 --> 00:20:47,790
ูˆ continuous ู…ูˆุฌูˆุฏุฉ ููŠ ุฌุงู†ุจ ุฃุฎูˆูƒุŒ ุฑูˆุญุช ุนู†ุฏูŠ ุงู„ุซู„ุงุซุฉ
210
00:20:47,790 --> 00:20:52,810
ู…ุซู„ู‹ุงุŒ ูˆุฌุฏุช positive ูˆ continuous ูˆ decreasing ูˆู…ู†
211
00:20:52,810 --> 00:20:57,630
ุงู„ุซู„ุงุซุฉ ูู…ุง ููˆู‚ุŒ ุฑุฌุนุช ุฏุงุฆู…ู‹ุง ูˆุฃุจุฏู‹ุง positive
212
00:20:57,630 --> 00:21:02,710
ูˆ continuous ูˆ decreasingุŒ ุจุตูŠุฑ ุงู„ุชูƒุงู…ู„ ู…ู† ุฃูŠู†ุŸ ู…ู†
213
00:21:02,710 --> 00:21:07,650
ุซู„ุงุซุฉ ุฅู„ู‰ infinityุŒ ูŠุนู†ูŠ ุฃู‡ู…ู„ ุงุซู†ูŠู† ุญุฏูŠู† ู…ู† ุญุฏูˆุฏ ุงู„ู€
214
00:21:07,650 --> 00:21:11,530
seriesุŒ ุจุฑูˆุญ ุขุฎุฐ ุงู„ุชูƒุงู…ู„ ู…ู† ุนู†ุฏ ุงู„ุซู„ุงุซุฉ ู„ู€ infinity
215
00:21:11,530 --> 00:21:14,710
ุฅุฐุง ุงู„ุชูƒุงู…ู„ converged ูŠุจู‚ู‰ ุงู„ู€ series convergedุŒ ุฅุฐุง
216
00:21:14,710 --> 00:21:18,270
ุงู„ุชูƒุงู…ู„ diverged ูŠุจู‚ู‰ ุงู„ู€ series divergedุŒ ูˆุงู†ุชู‡ูŠู†ุง
217
00:21:18,270 --> 00:21:23,600
ู…ู† ุงู„ู‚ุตุฉ ู‡ุฐู‡ุŒ ุทูŠุจ ู†ุฌูŠ ุงู„ุขู† ุนู„ู‰ ุงู„ุฃู…ุซู„ุฉุŒ ู‚ุงู„ ู„ูŠ test
218
00:21:23,600 --> 00:21:28,460
ุงุฎุชุจุฑ ุชู‚ุงุฑุจ ุงู„ู…ุชุณู„ุณู„ุงุช ุงู„ุชุงู„ูŠุฉุŒ ูˆุงุทู„ู†ุง ู…ุชุณู„ุณู„ุฉ
219
00:21:28,460 --> 00:21:32,860
summation ู…ู† N equal four to infinity ู„ู€ ln ุงู„ู€ N ุนู„ู‰
220
00:21:32,860 --> 00:21:38,170
ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠุŒ ู‡ูŠ ln ุงู„ู€ NุŒ ูŠุจู‚ู‰ ุฏูŠ ุจุทู„ุน ู„ุฃูˆู„ ูˆู‡ู„ุฉ
221
00:21:38,170 --> 00:21:43,390
ุจุฃูƒู…ู„ู‡ุงุŒ ุจู‚ุฏุฑ ุฃูƒู…ู„ู‡ุง ุจุณ ููŠู‡ุง ุฑูŠุญุฉ ุตุนูˆุจุฉ ุดูˆูŠุฉุŒ ู„ูƒู† ู„ูˆ
222
00:21:43,390 --> 00:21:49,650
ู‚ุฏุฑุช ุฃุชุฎู„ุต ู…ู† ุงู„ุฌุฐุฑ ุจูŠูƒูˆู† ุฃุณู‡ู„ ู„ูŠุŒ ุจุตูŠุฑ ln ุงู„ู€ N ุนู„ู‰
223
00:21:49,650 --> 00:21:54,010
N ุฃูˆ ln ุงู„ู€ X ุนู„ู‰ XุŒ ุณู‡ู„ ุฏูŠ ุฃูƒู…ู„ู‡ุง ุจุณ ุจู‡ุฐุง ุงู„ุดูƒู„
224
00:21:54,010 --> 00:21:59,030
ู‡ุฒู‡ุฌู†ูŠ ุดูˆูŠุฉุŒ ุฃูŠูˆุฉุŒ ูŠุจู‚ู‰ ุงู„ุดุบู„ ููŠ ุฏูƒุŒ ุจุฏูƒ ุชูƒู…ู„ ุนู„ู‰ ุทูˆู„
225
00:21:59,030 --> 00:22:03,710
ูƒู†ุจู‡ุง ุจุณ ู‡ุชุงุฎุฏ ู…ู†ูƒ ูˆู‚ุช ูƒุชูŠุฑุŒ ู„ูƒู† ุงุญู†ุง ู…ู…ูƒู† ู†ุญูˆุฑ
226
00:22:03,710 --> 00:22:10,700
ุงู„ุดูƒู„ ุฅู„ู‰ ุดูƒู„ ุขุฎุฑุŒ ูƒูŠูุŸ ุจุฏูŠ ุฃุดูŠู„ ุฌุฐุฑ ุงู„ู€ N ูˆุฃุญุทู‡ ุจุฃูŠ
227
00:22:10,700 --> 00:22:20,880
ู…ุชุบูŠุฑ ุขุฎุฑุŒ ุฅุฐุง ุฃู†ุง ู„ูˆ ุฌุฆุช ู‚ู„ุช ู‡ู‡ ุงู„ู„ูŠ put ุญุท ู„ูŠ ุงู„ู€ M
228
00:22:20,880 --> 00:22:29,600
ูŠุณุงูˆูŠ ุฌุฐุฑ ุงู„ู€ NุŒ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ M ุชุฑุจูŠุน ูŠุณุงูˆูŠ ู…ูŠู†ุŸ
229
00:22:29,600 --> 00:22:35,580
ุงู„ู€ NุŒ ุทุจ ู‡ุฏู‰ ุจุชุนู…ู„ ู„ูŠู‡ุŸ ู‡ุฏู‰ ุญูˆู„ุช ู„ู„ู…ุณุฃู„ุฉ ุฅู„ู‰ ุงู„ุดูƒู„
230
00:22:35,580 --> 00:22:42,140
ุงู„ุชุงู„ูŠุŒ summation N ู‡ูŠ ุงู„ู€ M ุชุฑุจูŠุน ุชุณุงูˆูŠ ุฃุฑุจุนุฉ ุฅู„ู‰
231
00:22:42,140 --> 00:22:49,780
infinity ู„ู€ ln ุงู„ู€ M ุชุฑุจูŠุน ุนู„ู‰ MุŒ ูŠุจู‚ู‰ ุดูŠู„ู†ุง ุฌุฏุฑ ุงู„ู€ N
232
00:22:49,780 --> 00:22:51,520
ูˆุญุทูŠู†ุง ู…ูƒุงู†ู‡ M
233
00:23:00,810 --> 00:23:08,840
ู‡ุฐู‡ ุงู„ุงุฎุชุตุงุฑุงุช ู‡ุชุฃุฎุฐ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠุŒ ู†ุฃุฎุฐ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ
234
00:23:08,840 --> 00:23:12,080
ู„ู„ู€ index ุงู„ู„ูŠ ุชุญุช ุงู„ู€ summationุŒ ูŠุจู‚ู‰ M ู‡ุชุจุฏุฃ ู…ู†
235
00:23:12,080 --> 00:23:17,640
ูˆูŠู†ุŸ ู…ู† ุนู†ุฏ ุงุซู†ูŠู†ุŒ ูŠุจู‚ู‰ M ุชุณุงูˆูŠ ุงุซู†ูŠู† ู„ุบุงูŠุฉ
236
00:23:17,640 --> 00:23:24,680
infinityุŒ ู‡ุฐู‡ ุจุฏุฑุฉ ู…ูƒุชูˆุจุฉุŒ ุงุซู†ูŠู† ู…ู† ุงู„ู€ M ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰
237
00:23:24,680 --> 00:23:30,860
MุŒ ูŠุจู‚ู‰ ู‡ูŠ ุงุชุฎู„ุตุช ู…ู† ุงู„ุฌุฐุฑ ูˆุตุงุฑ ุงู„ุชุนุงู…ู„ ู…ุน ู‡ุฐุง
238
00:23:30,860 --> 00:23:36,190
ุงู„ุดูƒู„ ุฃุณู‡ู„ ู…ู† ุงู„ุชุนุงู…ู„ ู…ุน ุงู„ุดูƒู„ main ุงู„ุฃูˆู„ุŒ ุจุนุฏ ูƒู„
239
00:23:36,190 --> 00:23:43,150
ุงุฎุชุจุงุฑ ุนู„ูŠูƒ ุชุจุฏู„ ุงู„ุฑู…ุฒ ุงู„ู„ูŠ ุนู†ุฏูƒ ุจู…ูŠู†ุŸ ูˆุชุณู…ูŠ ุงู„ุฏุงู„ุฉ
240
00:23:43,150 --> 00:23:50,270
ู†ุชูŠุฌุฉ f of xุŒ ุฅุฐุง ุฃู†ุง ุนู†ุฏูŠ ู‡ู†ุง f of x ุจุฏู‡ุง ุชุณุงูˆูŠ ln 2
241
00:23:50,270 --> 00:23:53,210
ln ุงู„ู€ x ุนู„ู‰ x
242
00:23:56,450 --> 00:24:00,930
ู‡ู„ ุงู„ุฏุงู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฏูŠ positive ูˆ continuous ูˆ
243
00:24:00,930 --> 00:24:06,350
decreasing ูˆู„ุง ู„ุฃุŒ ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ุฅูŠุงู‡ุงุŸ ูŠุนู†ูŠ ุจุฏู‡
244
00:24:06,350 --> 00:24:10,690
ู…ู† ูˆูŠู†ุŸ ุฅุฐุง ู…ู† ุนู†ุฏูŠ ุงุซู†ูŠู† ูู…ุง ููˆู‚ุŒ ู‚ุจู„ู‡ุง ู…ุงู„ูŠุด
245
00:24:10,690 --> 00:24:17,430
ุนู„ุงู‚ุฉ ููŠู‡ุงุŒ ู„ูˆ ุฌุฆุช ุงู„ุขู† ู‡ุฐู‡ ุทุจุนู‹ุง ู„ุฅู† ุงู„ู€ X ุจูŠุงุฎุฏุด
246
00:24:17,430 --> 00:24:22,660
ู‚ูŠู…ุฉ ุณุงู„ุจุฉ ุฅู„ุง ู‚ุจู„ ุงู„ูˆุงุญุฏุŒ ูˆุงุญู†ุง ุจุฏูŠู†ุง ู…ู† ูˆูŠู†ุŸ ุจูŠู†
247
00:24:22,660 --> 00:24:27,260
ุนู†ุฏ ุงุซู†ูŠู†ุŒ ู…ู† ุงุซู†ูŠู†ุŒ ู…ูุฑูˆุถ ุงู„ู„ูŠ ู…ูˆุฌุจ ูˆุงู„ู…ู‚ุงู… ู…ู†
248
00:24:27,260 --> 00:24:31,160
ุงุซู†ูŠู†ุŒ ู…ูุฑูˆุถ ู…ูˆุฌุจุŒ ูŠุจู‚ู‰ ู‡ุฐู‡ positiveุŒ ุงู„ู€
249
00:24:31,160 --> 00:24:38,220
discontinuity ุจูŠุญุตู„ ุนู†ุฏ zeroุŒ ุนู†ุฏ zero ู…ุงู„ูŠุด ุนู„ุงู‚ุฉ
250
00:24:38,220 --> 00:24:43,640
ููŠู‡ ู„ุฃู†ู‡ ุจุฏุฃ ู…ู† ูˆูŠู†ุŸ ูŠุจู‚ู‰ ุฃูˆู„ ุดุฑุทูŠู† ุงุชุญู‚ู‚ูˆุง ุฃูˆุชูˆู…ุงุชูŠูƒ
251
00:24:43,640 --> 00:24:50,580
ูŠุจู‚ู‰ ุงู„ุฏุงู„ุฉ F of X ู‡ุฐู‡ positive
252
00:24:50,580 --> 00:24:51,840
and
253
00:24:55,460 --> 00:25:01,500
continuous ุฏู‡ ุงู„ู„ูŠ ู…ุชุตู„ for all x ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ุฃูˆ
254
00:25:01,500 --> 00:25:09,160
ูŠุณุงูˆูŠ 102ุจุงู„ู…ู†ุงุณุจุฉ ุงู†ู‡ decreasingุŒ decreasing ู„ู…ุง ูŠูƒูˆู†
255
00:25:09,160 --> 00:25:14,860
ุนู†ุฏูŠ ุฏุงู„ุฉ ุจุณุท ูˆู…ู‚ุงู…ุŒ ูŠุจู‚ู‰ ุฃูุถู„ ุทุฑูŠู‚ุฉ ู„ู„ุญูƒู… ุนู„ูŠู‡ุง
256
00:25:14,860 --> 00:25:19,760
increasing ูˆ ู„ุง decreasing ุจูˆุงุณุทุฉ ุงู„ุงุดุชู‚ุงู‚ุŒ ุจุฏู†ุง
257
00:25:19,760 --> 00:25:26,920
ู†ุฑูˆุญ ู†ุดุชู‚ู‡ุงุŒ ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ F prime of X ูŠุณุงูˆูŠ ุงู„ู…ู‚ุงู…
258
00:25:26,920 --> 00:25:35,930
ููŠ ู…ุดุชู‚ุฉ ุงู„ุจุณุท ู†ุงู‚ุต ุงู„ุจุณุท ููŠ ู…ุดุชู‚ุฉ
259
00:25:35,930 --> 00:25:42,370
ุงู„ู…ู‚ุงู… ุงู„ู„ูŠ ู‡ูˆ ุจูˆุงุญุฏ ุนู„ู‰ ู…ุฑุจุน ุงู„ู…ู‚ุงู… ุงู„ุฃุตู„ูŠ ูŠุจู‚ู‰
260
00:25:42,370 --> 00:25:49,130
ู‡ุฐุง ุจุฏู‡ ูŠุตูŠุฑ X ู‡ุชุฑูˆุญ ู…ุน ุงู„ X ู‡ุฐูŠ ุชู…ุงู…ุŸ ูˆูŠุชู†ูŠู† ุฎู„ูŠูƒ
261
00:25:49,130 --> 00:25:55,290
ุจุฑุง ุนุงู…ู„ ู…ุดุชุฑูƒ ุจุธู„ ูˆุงุญุฏ ู†ุงู‚ุต ู„ุฅู† ุงู„ X ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰
262
00:25:55,290 --> 00:26:02,980
X ุชุฑุจูŠุน ุจุงุฌูŠ ุจู‚ูˆู„ ุงุชู†ูŠู† ู…ูˆุฌุจุฉ ูˆุงู„ุงูƒุณ ุชุฑุจูŠุนู‡ุง ุฏุงุฆู…ุง
263
00:26:02,980 --> 00:26:06,340
ูˆ ุฏุงุฆู…ุง ู…ูˆุฌุจุฉ ุฅุฐุง ู‡ุฐู‡ ู…ุงู„ู‡ุงุด ุฏุนูˆุฉ ููŠ ุงู„ุฅุดุงุฑุฉ ู…ูˆุฌุจุฉ
264
00:26:06,340 --> 00:26:09,580
ุงู„ู„ูŠ ุตุงุฑ ุจูŠู‡ุชู…ูˆุง ุฅุฐุง ุงู„ู„ูŠ ุจุฏูŠ ุงุชุญูƒู… ููŠ ุงู„ุฅุดุงุฑุฉ
265
00:26:09,580 --> 00:26:16,620
ุงู„ู…ู‚ุฏุงุฑ ุจูŠู† ุงู„ู‚ูˆุณูŠู† ุทุจุนุง ุจุงุฌูŠ ู„ู„ู…ู‚ุฏุงุฑ ุจูŠู† ุงู„ู‚ูˆุณูŠู†
266
00:26:16,620 --> 00:26:22,640
ุงุญู†ุง ุจุฏูŠู†ุง ู…ู† ุนู†ุฏู‡ ูŠุงุดุทุจ ู„ูˆ ุฌูŠุช ุจุฏุฃุช ู…ู† ุนู†ุฏ
267
00:26:22,640 --> 00:26:28,300
ุงู„ุงุชู†ูŠู†ุŒ ู‡ู„ ุงู„ุฌุซ ู‡ุฐุง ู…ูˆุฌุจ ูˆู„ุง ุณุงู„ุจุŸ ุจู‚ูˆู„ู‡ ุขู‡ุŒ ู„ู†
268
00:26:28,300 --> 00:26:33,600
ุงุชู†ูŠู† ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ู„ูŠู‡ุŸ ุนุดุงู† ู„ู†
269
00:26:33,600 --> 00:26:37,940
ุงู„ู€ e ุจูˆุงุญุฏุŒ ูˆุงู„ู€ e ุจุงุชู†ูŠู† ูˆุงู„ุณุจุนุฉ ู…ู† ุนุดุฑุฉ ุฅุฐุง ู‡ุฐุง
270
00:26:37,940 --> 00:26:44,500
ุนู†ุฏ ุงุชู†ูŠู† ุจูŠุนุทูŠู†ูŠ ู‚ูŠู…ุฉ ู…ูˆุฌุจุฉ ูˆู„ูŠุณ ุณุงู„ุจุฉ ุตุญุŸ ู„ูˆ ู‚ู„ุช
271
00:26:44,500 --> 00:26:50,480
ุงู„ู€ E ุจูˆุงุญุฏ ูŠุจู‚ู‰ ู„ูˆ ู‚ู„ุช ุงู„ู€ N ุฃูˆ ุงู„ู€ X ุจุงุชู†ูŠู† ูˆุงู„ุณุจุนุฉ
272
00:26:50,480 --> 00:26:55,680
ู…ู† ุนุดุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุฏุฏ ุงูŠู‡ุŸ ุจุตูŠุฑ ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰
273
00:26:55,680 --> 00:27:01,460
ุงู†ุชู‚ู„ุช ู…ู† ู…ูˆุฌุจ ุงู„ู‰ ุตูุฑ ุทุจ ู„ูˆ ุฌูŠุช ุจุนุฏ ุงุชู†ูŠู† ูˆุณุจุนุฉ
274
00:27:01,460 --> 00:27:04,940
ู…ู† ุนุดุฑุฉ ุงุชู†ูŠู† ุชู…ุงู†ูŠุฉ ู…ู† ุนุดุฑุฉ ุงุชู†ูŠู† ุชุณุนุฉ ู…ู† ุนุดุฑุฉ
275
00:27:04,940 --> 00:27:11,020
ู„ูƒู† ุงุญู†ุง ุงู„ุนู†ุงุตุฑ ููŠ ุงู„ series ูƒู„ู‡ุง ุฃุนุฏุงุฏ ุตุญูŠุญุฉ ูŠุจู‚ู‰
276
00:27:11,020 --> 00:27:16,600
ุจุชุงุฎุฏ ู…ู† ุงู„ุนุฏุฏ ูŠุจู‚ู‰ ุฃูˆู„ ุฑู‚ู… ุตุญูŠุญ ู‡ูˆ ุงู„ุนุฏุฏ ุงู„ุชู„ุงุชุฉ
277
00:27:16,600 --> 00:27:22,610
ู„ุฃู† ุงู„ุชู„ุงุชุฉ ูˆุงุญุฏ ูˆุดูˆูŠุฉ ู…ุธุจูˆุทุŸ ู„ุฃู†ู‡ ุงุชู†ูŠู† ูˆุณุจุนุฉ ู…ู†
278
00:27:22,610 --> 00:27:27,750
ุนุดุฑ ุฃู‚ู„ ู…ู† ูˆุงุญุฏ ุจุนุฏู‡ ุชุตูŠุฑ ูˆุงุญุฏ ูˆูƒุณุฑ ุฅุฐุง ูˆุงุญุฏ ู†ุงู‚ุต
279
00:27:27,750 --> 00:27:33,790
ูˆุงุญุฏ ูˆูƒุณุฑ ุจูŠุนุทูŠู†ูŠ ู‚ูŠู…ุฉ ุณุงู„ุจุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุฃู‚ู„ ู…ู† ุงู„
280
00:27:33,790 --> 00:27:41,190
zero ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ู…ู† ุชู„ุงุชุฉ ุทุจุนุง
281
00:27:41,190 --> 00:27:41,830
ู‡ู†ุง
282
00:27:50,450 --> 00:28:02,040
ุงู„ู€ F is decreasing ู„ูƒู„ X ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ุทูŠุจ ุชุนุงู„
283
00:28:02,040 --> 00:28:07,460
ู†ุชุทู„ุน ู‚ุงู„ ุงู„ positive ูˆ continuous ู…ู† ุนู†ุฏ ุงุชู†ูŠู†
284
00:28:07,460 --> 00:28:12,600
ูู…ุง ููˆู‚ ู„ูƒู† ู„ุง ุชู‚ู„ ู…ู† ุนู†ุฏ ุงู„ุชู„ุงุชุฉ ูู…ุง ููˆู‚ ุฅุฐุง
285
00:28:12,600 --> 00:28:17,240
ุงู„ุดุฑูˆุท ุงู„ุชู„ุงุชุฉ ุชุชุญู‚ู‚ ููŠู† ุงู„ูˆุงุญุฏ ู…ู† ูˆูŠู†ุŸ ู…ู† ุนู†ุฏ
286
00:28:17,240 --> 00:28:25,240
ุงู„ุชู„ุงุชุฉ ูู…ุง ููˆู‚ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ุงู„ F is positive ูˆ
287
00:28:25,240 --> 00:28:29,320
continuous and
288
00:28:30,180 --> 00:28:31,900
decreasing
289
00:28:33,810 --> 00:28:39,690
For all X greater than or equal to ู…ุงุŸ ู„ูŠู‡ ุชู„ุงุชุฉุŸ
290
00:28:39,690 --> 00:28:44,570
ูŠุจู‚ู‰ N ู‡ุฐู‡ ูƒุงุจูŠุชุงู„ ุฃุดูŠุฑูˆู† ููŠ ุณุคุงู„ู‡ุง ู…ู‚ุฏุงุดุŒ ุฅุฐุง ุจุชุฑูˆุญ
291
00:28:44,570 --> 00:28:49,670
ุชุงุฎุฏ ุงู„ุชูุงู‡ู… ุงู„ู„ูŠ ู…ู† ูˆูŠู†ุŸ ูŠุนู†ูŠ ูƒุฃู†ู‡ ู‡ู…ู„ุช ุฃูˆู„ ุญุฏ ู…ู†
292
00:28:49,670 --> 00:28:53,410
ุญุฏูˆุฏ ุงู„ seriesุŒ ูˆู‡ุฐุง ู„ุง ูŠุคุซุฑ ู„ุง ุนู„ู‰ convergence
293
00:28:53,410 --> 00:28:59,990
ูˆู„ุง ุนู„ู‰ divergence ุนุฑูู†ุง ุดูˆ ู…ุนู†ู‰ N ุฃูƒุจุฑ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
294
00:28:59,990 --> 00:29:05,180
ูƒุงุจูŠุชุงู„ N ุงู„ู„ูŠ ูƒู†ุช ุจุชูƒู„ู… ู„ูƒูˆุง ู†ุธุฑูŠ ู‚ุจู„ ู‚ู„ูŠู„ ู„ูƒู† ู‡ูŠู‡
295
00:29:05,180 --> 00:29:09,880
ุงู„ุขู† ุดูˆูู†ุงู‡ ุนู…ู„ูŠุง ูŠุนู†ูŠ ุฃู‡ู…ู„ู†ุง ุฃูˆู„ ุญุฏ ู…ู† ุญุฏูˆุฏ ุงู„
296
00:29:09,880 --> 00:29:14,160
series ููŠ ุงู„ุณุคุงู„ ุชุจุนู†ุง ู‡ุฐุง ุฅุฐุง ุจุฏู†ุง ู†ุฑูˆุญ ู†ุงุฎุฏ ุงู„ุขู†
297
00:29:14,160 --> 00:29:22,100
ุชูƒุงู…ู„ ู…ู† ุชู„ุงุชุฉ ุฅู„ู‰ infinity ู„ู„ุฅุชู†ูŠู† ู„ุฅู† ุงู„ X ุนู„ู‰ X
298
00:29:22,100 --> 00:29:27,010
DX ูˆุงู„ู„ู‡ ุฅุฐุง ุงู„ุชูƒุงู…ู„ ู‡ุฐุง converge ูŠุจู‚ู‰ ุงู„ series
299
00:29:27,010 --> 00:29:30,330
converge ูˆุฅุฐุง ุงู„ุชูƒุงู…ู„ diverge ูŠุจู‚ู‰ ุงู„ series
300
00:29:30,330 --> 00:29:35,310
diverge ุจู†ู‚ูˆู„ู‡ ุจุณูŠุทุฉ ุฌุฏุง ูŠุจู‚ู‰ ู‡ุฐุง improper
301
00:29:35,310 --> 00:29:41,190
integral ู„ูˆ ุฅุฐุง ูƒุงู† ุงู„ุชูƒุงู…ู„ ู…ู† ุซู„ุงุซุฉ ุฅู„ู‰ ุจูŠู‡ ู„ู…ุง
302
00:29:41,190 --> 00:29:47,610
ุจูŠู‡ tends to infinity ู„ู…ู†ุŸ ู„ู„ูŠ ุงุชู†ูŠู† ู„ุฅู† ุงู„ X ู‡ุฐุง
303
00:29:47,610 --> 00:29:55,310
ูƒู„ู‡ ุนุจุงุฑุฉ ุนู† ุงูŠู‡ุŸู…ุดุชู‚ุฉ ู…ู†ุŸ ู„ู†ุง ุงู„ X ูŠุง ุจุฌุฏูŠ ู„ู†ุง ุงู„
304
00:29:55,310 --> 00:30:03,730
X ูˆูƒุฃู†ู‡ ุงุญู†ุง ุจุฏู†ุง ู†ูƒุงู…ู„ ุงุชู†ูŠู† y d1 ู…ุธุจูˆุท ูŠุจู‚ู‰
305
00:30:03,730 --> 00:30:11,110
ุชูƒุงู…ู„ู‡ุง high limit ู„ู…ุง b tends to infinity ู„ len x
306
00:30:11,110 --> 00:30:17,570
ุงู„ูƒู„ ุชุฑุจูŠุน ุนู„ู‰ ุงุชู†ูŠู† ู…ุน ุงุชู†ูŠู† ุงู„ู„ู‡ ูŠุณู‡ู„ ุนู„ูŠู‡ุง ูˆุถู„ุช
307
00:30:17,570 --> 00:30:21,550
ุญุฏูˆุฏ ุงู„ .. ูˆุงู„ู„ู‡ ูŠุงู„ู„ู‡ ู‡ูŠ ุนู„ู‰ ุงุชู†ูŠู† ูˆู‡ู†ุง ุงุชู†ูŠู†
308
00:30:21,550 --> 00:30:24,910
ูˆู‡ู†ุง ู…ู† ุชู„ุงุชุฉ ุงู„ู„ูŠ ุจูŠุจู‚ู‰ .. ุจู„ุงุด ูˆุงุญุฏ ูŠู‚ูˆู„ูƒ ุงู†ุช
309
00:30:24,910 --> 00:30:30,020
ุบู„ุท ูˆู„ุง ุบู„ุท ูˆู„ุง ุญุงุฌุฉุŒ ุงูŠ ุงุชู†ูŠู† ู…ุน ุงุชู†ูŠู†ุŒ ุจุฏูŠ ุงุนูˆุถ
310
00:30:30,020 --> 00:30:35,280
ุจุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ุŒ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุชูˆูŠ ุงู„ limit ู„ู…ุง
311
00:30:35,280 --> 00:30:41,900
B tends to infinity ู„ู…ู†ุŸ ู„ุฅู† ุงู„ B ุงู„ูƒู„ ุชุฑุจูŠุน ู†ุงู‚ุต
312
00:30:41,900 --> 00:30:50,240
ู„ุฅู† ุชู„ุงุชุฉ ุงู„ูƒู„ ุชุฑุจูŠุน ุนู†ุฏู…ุง ุชุฐู‡ุจ ู„ู„ุฅู†ููŠู†ูŠุชูŠ ู„ุฅู†
313
00:30:50,240 --> 00:30:54,800
ุงู„ุฅู†ููŠู†ูŠุชูŠ ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
314
00:30:54,800 --> 00:30:58,060
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
315
00:30:58,060 --> 00:31:02,180
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
316
00:31:02,180 --> 00:31:06,680
ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง ุชู‚ุฑูŠุจุง
317
00:31:06,680 --> 00:31:12,660
ุชู‚
318
00:31:13,210 --> 00:31:19,010
ู…ุฏูŠู†ุฉ ุฏุงูŠููŠุฑุฌ ุจุงู†ุชุฌุฑุงู„ ุชุณุช ุจูŠูƒูˆู† ุงู„ series ุฃู†ุง
319
00:31:19,010 --> 00:31:28,830
ู…ุนุงู‡ุง ุฏุงูŠููŠุฑุฌ ูุจุฌูŠ ุจู‚ูˆู„ู‡ by the integral test the
320
00:31:28,830 --> 00:31:29,990
series
321
00:31:32,390 --> 00:31:38,350
ุงู„ุฃุตู„ูŠุฉ summation ู…ู† ุงู„ N equal ุฃุฑุจุนุฉ to infinity
322
00:31:38,350 --> 00:31:45,590
ู„ุฅู† ุงู„ N ุนู„ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ N ู…ุง ู„ู‡ุง divergence
323
00:31:45,590 --> 00:31:46,930
ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซุงู„
324
00:32:05,300 --> 00:32:11,220
ุณุคุงู„ ุซุงู†ูŠ ุณุคุงู„
325
00:32:11,220 --> 00:32:17,580
ุงุชู†ูŠู† ุจูŠู‚ูˆู„ ุงู„ summation ู…ู† N equal one to
326
00:32:17,580 --> 00:32:24,320
infinity ู„ูˆุงุญุฏ ู„ square root ู„ู„ N ู„ square root ู„ู„
327
00:32:24,320 --> 00:32:26,600
N ุฒุงุฆุฏ ูˆุงุญุฏ
328
00:32:29,260 --> 00:32:34,780
ูŠุจู‚ู‰ ู„ูˆ ุฑูˆุญู†ุง ูˆุงุฎุฏู†ุง ุงู„ F of X ุงู„ F of X ุจูŠุจู‚ู‰
329
00:32:34,780 --> 00:32:42,260
ุชุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ุฌุฐุฑ ุงู„ X ููŠ ุฌุฐุฑ ุงู„ X ุฒุงุฆุฏ ูˆุงุญุฏ ุงูŠุด
330
00:32:42,260 --> 00:32:47,560
ุฑุฃูŠูƒูˆุง ููŠ ุงู„ function ู‡ุฐู‡ ุนู…ุฑู‡ุง ุจุชุงุฎุฏ ู‚ูŠู…ุฉ ุณุงู„ุจุฉ
331
00:32:47,560 --> 00:32:52,640
ู…ู† ุงู„ูˆุงุญุฏ ูู…ุง ููˆู‚ ูŠุจู‚ู‰ positive ุงู„ู€ discontinuity
332
00:32:52,640 --> 00:32:59,980
ุจูŠุญุตู„ ุนู†ุฏ ุงู„ุตูุฑ ุชู…ุงู… ุงู„ุตูุฑ ุจุฑุง ุงู„ูุชุฑุฉ ุงู„ู„ูŠ ุฃู†ุง
333
00:32:59,980 --> 00:33:03,660
ู…ุงู„ูŠุด ุนู„ุงู‚ุฉ ููŠู‡ ูŠุจู‚ู‰ ู…ุนู†ุงุชู‡ positive ูˆ continuous
334
00:33:03,660 --> 00:33:11,500
ู…ู† ุนู†ุฏ ุงู„ูˆุงุญุฏ ูู…ุง ููˆู‚ ูŠุจู‚ู‰ ู‡ุฐู‡ positive and
335
00:33:11,500 --> 00:33:19,140
continuous for all x ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆูŠ ุงู„ูˆุงุญุฏ
336
00:33:26,820 --> 00:33:31,820
ุจุงู„ุฌุฃ ู„ุนู…ู„ูŠุฉ ุงู„ุงุดุชู‚ุงู‚ ุฅุฐุง ุงู„ ุจุณุท ู…ุชุบูŠุฑ ูˆ ุงู„ู…ู‚ุงู…
337
00:33:31,820 --> 00:33:36,820
ู…ุชุบูŠุฑ ู„ูƒู† ุฅุฐุง ุงู„ ุจุณุท ุซุงุจุช ุจุตูŠุฑ ู…ู† ุฃุณู‡ู„ ู…ุง ูŠูƒูˆู†
338
00:33:36,820 --> 00:33:42,620
ุจุฑุฌุน ู„ู„ series ุงู„ุฃุตู„ูŠุฉ ุจู‚ูˆู„ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุงู„ูˆุงุญุฏ ุนู„ู‰
339
00:33:42,620 --> 00:33:49,740
ุฌุฏุฑ ุงู„ N ุฌุฏุฑ ุงู„ N ุฒุงุฆุฏ ูˆุงุญุฏ ุงู„ุญุฏ ุงู„ู†ูˆู†ูŠ ุงู„ุฒุงุฆุฏ ูˆุงุญุฏ
340
00:33:49,740 --> 00:33:55,160
ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ุฅู† ุฒุงุฆุฏ ูˆุงุญุฏ ููŠ ุงู„ุฌุฐุฑ
341
00:33:55,160 --> 00:34:00,720
ุงู„ุชุฑุจูŠุนูŠ ู„ุฅู† ุฒุงุฆุฏ ูˆุงุญุฏ ุฒุงุฆุฏ ูˆุงุญุฏ ุงูŠู‡ ู‡ูˆ ู…ุง ุฃูƒุจุฑ
342
00:34:00,720 --> 00:34:06,690
ุงู„ุญุฏ ุงู„ุฃูˆู„ ูˆู„ุง ุงู„ุชุงู„ูŠุŸ ุงู„ุฃูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง ุฃูƒุจุฑ ู…ู† ู‡ุฐุง
343
00:34:06,690 --> 00:34:10,510
ู‡ุฐุง ูŠุนู†ูŠ ุงู† ุงู„ series decreasing ูˆุจุงู„ุชุงู„ูŠ ุงู„
344
00:34:10,510 --> 00:34:16,870
function decreasing ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠูƒ ุงู„ุดุฑุท
345
00:34:16,870 --> 00:34:24,920
ุงู„ุชุงู„ุช ูˆู‡ูˆ ุงูŠู‡ ุงู„ decreasing ู„ูƒู„ ุงู„ N ุฃูƒุจุฑ ู…ู† ุฃูˆ
346
00:34:24,920 --> 00:34:31,040
ุชุณุงูˆูŠ 100 ุงู„ูˆุงุญุฏ ุฅุฐุง ุงู†ุชุญู‚ุช ุงู„ุดุฑูˆุท ุงู„ุชู„ุงุชุฉ ู…ู† ุนู†ุฏ X
347
00:34:31,040 --> 00:34:36,980
ูŠุณุงูˆูŠ ูˆุงุญุฏ ูู…ุง ููˆู‚ ุฅุฐุง ู…ุง ุนู„ูŠ ุงู„ู„ูŠ ุฃุฑูˆุญ ุฃุงุฎุฏ ุชูƒุงู…ู„
348
00:34:36,980 --> 00:34:44,680
ู…ู† ูˆุงุญุฏ ู„ infinity ู„ DX ุนู„ู‰ ุฌุฐุฑ ุงู„ X ููŠ ุฌุฐุฑ ุงู„ X
349
00:34:44,680 --> 00:34:51,070
ุฒุงุฆุฏ ูˆุงุญุฏ ูƒู„ู‡ DX ู‡ุฐุง ุงู„ู€ Improper Integral ูŠู„ุฌุจ
350
00:34:51,070 --> 00:34:56,130
ุงู„ุฐุฆุฉ ุญุณุจู‡ as a limit ู„ู…ุง b tends to infinity ู…ู†
351
00:34:56,130 --> 00:35:03,730
ูˆุงุญุฏ ุฅู„ู‰ ุจูŠ ู„ูˆุงุญุฏ ุนู„ู‰ ุฌุฐุฑ ุงู„ X ุฌุฐุฑ ุงู„ X ุฒุงุฆุฏ ูˆุงุญุฏ
352
00:35:03,730 --> 00:35:10,950
DX ุจุนุฏ ู‡ูŠูƒ ุถู…ุช ุงู„ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุฌุฑุงุก ุงู„ุชูƒุงู…ู„ ู„ู‡ุฐู‡
353
00:35:10,950 --> 00:35:16,740
ุงู„ุจู„ุฏ ุจุงู„ุดูƒู„ ู‡ุฐุง ุดูƒู„ู‡ุง ูƒู„ูƒุฉ ูˆ ู…ุด ู„ุทูŠู ู„ูƒู† ุงู†ุง ู…ู…ูƒู†
354
00:35:16,740 --> 00:35:23,700
ุงุนู…ู„ ุชุนูˆูŠุถุฉ ู…ุนูŠู†ุฉ ุงุจุณุท ุงู„ุดูƒู„ ุชุจุน ู‡ุฐู‡ ุงุชุจุงู„ุฉ ูŠุนู†ูŠ
355
00:35:23,700 --> 00:35:30,680
ู„ูˆ ุฌูŠุช ู‚ูˆู„ุชู„ูƒ ุญุท ุฌุฐุฑ ุงู„ X ุฒุงุฆุฏ ูˆุงุญุฏ ูƒู„ู‡ ุจุฏู‡ ูŠุณุงูˆูŠ
356
00:35:30,680 --> 00:35:39,350
T ุฅุฐุงู‹ ูˆุงุญุฏ ุนู„ู‰ ุงุชู†ูŠู† ุฌุฐุฑ ุงู„ X DX ุจูŠุณุงูˆูŠ ู…ุงู†ุŸ DX DX
357
00:35:39,350 --> 00:35:43,650
DX DX DX DX DX DX
358
00:35:43,650 --> 00:35:43,690
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX
359
00:35:43,690 --> 00:35:51,670
DX DX DX DX DX DX DX DX DX DX
360
00:35:51,670 --> 00:35:51,690
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX
361
00:35:51,690 --> 00:35:51,710
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX
362
00:35:51,710 --> 00:35:52,150
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX
363
00:35:59,980 --> 00:36:05,580
ูŠุจู‚ู‰ ุขู„ุฉ ุงู„ู…ุณุฃู„ุฉ ุฅู„ู‰ limit ู„ู…ุง B tends to infinity
364
00:36:05,580 --> 00:36:10,540
ู„ุชูƒุงู…ู„ 2DT
365
00:36:10,540 --> 00:36:11,600
ุนู„ู‰ T
366
00:36:14,920 --> 00:36:17,480
ู„ุง ุฃุฑูŠุฏ ุฃู† ุฃุบูŠุฑ ุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู„ุฃู†ู†ูŠ ู‚ู…ุช ุจุชุบูŠูŠุฑู‡ุง
367
00:36:17,480 --> 00:36:21,660
ุจุฏู„ุงู„ุฉ ุงู„ index ู„ุชุญุช ุงู„ limit ู„ุฃ ู„ุฃ ุฎู„ู‘ูŠู‡ุง ูˆ ุจุฑุฌุน
368
00:36:21,660 --> 00:36:27,220
ู„ู…ุง ุฃูƒู…ู„ ุฅู„ู‰ ุฃุตู„ู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณูˆู‰ limit ู„ู…ุง
369
00:36:27,220 --> 00:36:32,820
b tends to infinity ู‡ูŠ ุงุชู†ูŠู† ูˆุงู„ุจุณุทู‰ ูุงุถู„ ุงู„ู…ู‚ุงู…
370
00:36:32,820 --> 00:36:41,240
ูŠุจู‚ู‰ len absolute value ู„ู…ู†ุŸ ุงู„ุชูŠ ุชุจู‚ู‰ P ููŠ ุฌุฐุฑ ุงู„
371
00:36:41,240 --> 00:36:47,460
X ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ุฌุฐุฑ ุงู„ X ุฒุงุฆุฏ ูˆุงุญุฏ ูˆุงู„ุงู† ุจู‚ูˆู„ ู…ู†
372
00:36:47,460 --> 00:36:54,110
ูˆุงุญุฏ ู„ุบุงูŠุฉ ุงู„ P ูŠุจู‚ู‰ ูƒุงู…ู„ุชู‡ุง ุจุงู„ู† ุงู„ T ุดูŠู„ุช ุงู„ T
373
00:36:54,110 --> 00:36:59,810
ูˆุญุทูŠุช ุงู„ X ุฒุงุฆุฏ ูˆุงุญุฏ ูˆุฑุฌุนุช ุญุฏูˆุฏ ุงู„ุชูƒู…ู„ ูƒู…ุง ูƒุงู†ุช
374
00:36:59,810 --> 00:37:05,070
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู† ุงู„ุฎู„ูŠูƒ ุจุฑุง ูˆู‡ูŠ limit
375
00:37:05,070 --> 00:37:10,290
ู„ู…ุง B tends to infinity ูˆู‡ู†ุง ุงู„ len absolute value
376
00:37:10,290 --> 00:37:17,490
ู„ุฌุฐุฑ ุงู„ู€ B ุฒุงุฆุฏ ูˆุงุญุฏ ู†ุงู‚ุต ุงู„ู€ len absolute value ู„ู„ูˆุงุญุฏ
377
00:37:17,490 --> 00:37:24,950
ุฒุงุฆุฏ ุงู„ูˆุงุญุฏ ูŠุจุฏุฃ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ 2 ููŠู‡ ุงู„ุขู† ู„ู…ุง
378
00:37:24,950 --> 00:37:28,290
ุจูŠุจุฏุฃ ุชุฑูˆุญ ู„ู„ู€ infinity ุงู„ู€ square root ู„ู„ู€ infinity
379
00:37:28,290 --> 00:37:34,390
ุจู€ infinity ุฒุงุฆุฏ ูˆุงุญุฏ ู„ุฃู† ุงู„ู€ infinity ุจู€ infinity
380
00:37:34,390 --> 00:37:40,670
ู†ุงู‚ุต ู„ุฃู† ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุจุฌุฏุงุฑ ุจู€ infinity ู…ุฏุงู…
381
00:37:40,670 --> 00:37:46,670
infinity ูŠุจู‚ู‰ ุชูƒุงู…ู„ ู…ู† ูˆุงุญุฏ ู„ู€ infinity ู„ูˆุงุญุฏ ุนู„ู‰
382
00:37:46,670 --> 00:37:55,920
ุฌุฐุฑ ุงู„ู€ X ุฌุฐุฑ ุงู„ู€ X ุฒุงุฆุฏ ูˆุงุญุฏ DX ู…ุนู†ุงู‡ diverse ุจุงู„ู€
383
00:37:55,920 --> 00:38:05,460
integral test by the integral test the series
384
00:38:05,460 --> 00:38:13,800
summation ู…ู† n equal one to infinity ู„ูˆุงุญุฏ ุนู„ู‰ ุฌุฐุฑ
385
00:38:13,800 --> 00:38:20,660
ุงู„ู€ n ุฌุฐุฑ ุงู„ู€ n ุฒุงุฆุฏ ูˆุงุญุฏ ู…ุงู„ู‡ุง diverge ูˆุงู†ุชู‡ูŠู†ุง ู…ู†
386
00:38:20,660 --> 00:38:21,760
ุงู„ู…ุณุฃู„ุฉ
387
00:38:40,640 --> 00:38:43,620
ู…ุซุงู„ ุฑู‚ู… ุซู„ุงุซุฉ
388
00:38:46,740 --> 00:38:52,740
ุงู„ู…ุซุงู„ ุฑู‚ู… ุซู„ุงุซุฉ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ summation ู…ู† N
389
00:38:52,740 --> 00:39:02,420
equal ุซู„ุงุซุฉ to infinity ู„ู…ูŠู†ุŸ ู„ูˆุงุญุฏ ุนู„ู‰ N ู„ู† ุงู„ู€ N
390
00:39:02,810 --> 00:39:09,070
ุงู„ุฌุฏุฑูŠ ุงู„ุชุฑุจูŠู‡ ุงู„ู‰ ู„ู† ุงู„ู€ N ู„ูƒู„ ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ
391
00:39:09,070 --> 00:39:18,290
ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุงุฎุฏ ู…ู† ุงู„ู€ F of X ุงู„ูˆุงุญุฏ ุนู„ู‰ X ู„ู†
392
00:39:18,290 --> 00:39:24,830
ุงู„ู€ X ุงู„ุฌุฏุฑูŠ ุงู„ุชุฑุจูŠู‡ ุงู„ู‰ ู„ู† ุงู„ู€ X ู„ูƒู„ ุชุฑุจูŠุน ู†ุงู‚ุต
393
00:39:24,830 --> 00:39:33,510
ูˆุงุญุฏ ุงู„ู€ summation ุจุฏู‰ ู…ู† ุนู†ุฏูŠ ุงู„ุชู„ุงุชุฉ ุนู…ุฑ ุงู„ู…ู‚ุงู…
394
00:39:33,510 --> 00:39:40,270
ู‡ุฐุง ุจูŠูƒูˆู† ุบูŠุฑ ู…ุนุฑู ุนู†ุฏ ุงู„ุชู„ุงุชุฉ ุซู„ุงุซุฉ ู…ุงุดูŠ ู„ูŠู†
395
00:39:40,270 --> 00:39:45,270
ุซู„ุงุซุฉ ู…ุงุดูŠ ู„ูŠู† ุซู„ุงุซุฉ ุจูˆุงุญุฏ ูˆุดูˆูŠุฉ ู„ู…ุง ุชุฑุงุจู‡ ูƒู…ุงู†
396
00:39:45,270 --> 00:39:50,970
ุจูˆุงุญุฏ ูˆุดูˆูŠุฉ ูŠุจู‚ู‰ ู‚ูŠู…ุฉ ู…ุนุฑูุฉ ูŠุจู‚ู‰ ู…ุนู†ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
397
00:39:50,970 --> 00:39:55,130
ุฃู† ุงู„ู…ู‚ุงู… ู„ุง ูŠู…ูƒู† ุฃู† ูŠุฃุฎุฐ zero ู…ู† ุนู†ุฏ ุงู„ุชู„ุงุชุฉ
398
00:39:55,130 --> 00:40:01,920
ูู…ุนููˆู‚ ูŠุจู‚ู‰ continuous positive ูƒุฐู„ูƒ ู„ู† ูŠุฃุฎุฐ ู†ูŠุฌุงุชู
399
00:40:01,920 --> 00:40:05,920
ุบูŠุฑ ุฌุงุจ ุงู„ู…ูŠู† ุงู„ูˆุงุญุฏ ุงุญู†ุง ู…ู† ูˆูŠู† ู„ุงู†ุฏูŠ ุงู„ุชู„ุงุชุฉ
400
00:40:05,920 --> 00:40:11,960
ูŠุจู‚ู‰ ู‡ุฐู‡ positive and
401
00:40:11,960 --> 00:40:17,260
continuous
402
00:40:17,260 --> 00:40:24,600
for all x ุฃูƒุจุฑ ู…ู† ุฃูˆ ุชุณุงูˆู‰ ุซู„ุงุซุฉ
403
00:40:32,690 --> 00:40:41,640
ุงู„ุญุฏ ุงู† ุงู†ุง ุงู† ูˆุงุญุฏ ุนู„ู‰ ุงู† ู„ุงู† ุงู„ุงู†ุงู„ุฌุฏุฑูŠ ุงู„ุชุฑุจูŠู‡ูŠ
404
00:40:41,640 --> 00:40:48,040
ู„ุฅู† ุงู„ู€ N ู„ูƒู„ ุชุฑุจูŠู‡ ู†ุงู‚ุต ูˆุงุญุฏ greater than ุงู„ู€ A N
405
00:40:48,040 --> 00:40:54,380
plus one ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ N plus one ู„ุฃู†
406
00:40:54,380 --> 00:41:01,120
ุงู„ู€ N plus one ุงู„ู€ square root ู„ุฅู† ุงู„ู€ N plus one ู„ูƒู„
407
00:41:01,120 --> 00:41:09,490
ุชุฑุจูŠู‡ ุฃูƒุจุฑ ู…ู† ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง decreasing
408
00:41:09,490 --> 00:41:12,510
series for all x
409
00:41:15,780 --> 00:41:21,000
ุซู„ุงุซุฉ ุฅุฐุง ุชุญู‚ู‚ุช ุงู„ุดุฑูˆุท ุงู„ุซู„ุงุซุฉ ุฅุฐุง ุจู‚ุฏุฑ ุงุณุชุฎุฏู… ุงู„ู€
410
00:41:21,000 --> 00:41:26,160
integral test ูŠุจู‚ู‰ ุจุฑูˆุญ ุฃุฎุฏ ุชูƒุงู…ู„ ู…ู† ุซู„ุงุซุฉ ู„ู€
411
00:41:26,160 --> 00:41:33,480
infinity ู„ุฏูŠ x ุนู„ู‰ x ู„ุฅู† ุงู„ู€ x ุงู„ุฌุฏุฑู‰ ุงู„ุชุฑุจูŠุฉ ู„ุฅู†
412
00:41:33,480 --> 00:41:40,170
ุงู„ู€ x ู„ูƒู„ ุชุฑุจูŠุฉ ู†ุงู‚ุต ูˆุงุญุฏ ุชูƒุงู…ู„ ู‡ุฐุง improper
413
00:41:40,170 --> 00:41:46,570
integral ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุญุณุจู‡ as an improper
414
00:41:46,570 --> 00:41:52,630
integral ู…ู† ุซู„ุงุซุฉ ุฅู„ู‰ ุจูŠ ู„ู…ุง ุจูŠ tends to infinity
415
00:41:52,630 --> 00:42:01,890
ู„ู…ูŠู†ุŸ ู„ุฏูŠ x ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ x ููŠ ู„ู† ุงู„ุงูƒุณ ุงู„ุฌุฏุฑู‰
416
00:42:01,890 --> 00:42:08,250
ุงู„ุชุฑุจูŠุฉ ู„ู„ู† ุงู„ุงูƒุณ ู„ูƒู„ ุชุฑุจูŠุฉ ู†ุงู‚ุต ูˆุงุญุฏุฉ ูŠุนู†ูŠ ู‡ุฐุง ุจุฏู‡
417
00:42:08,250 --> 00:42:14,670
ูŠุณุงูˆูŠ limit ู„ู…ุง B tends to infinity ุชูƒุงู…ู„ ู…ู† ุซู„ุงุซุฉ
418
00:42:14,670 --> 00:42:20,790
ุงู„ู‰ ุจูŠู‡ ุทู„ุนู„ูŠ ู„ูˆ ุฃุญุฏ ุนู„ู‰ X DX ู‡ุฐู‡ ู…ุด ู‡ูŠ ู…ุดุชู‚ุฉ ู„ูŠู†
419
00:42:20,790 --> 00:42:28,760
ุงู„ู€ X ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู‚ุฏุฑ ุงู‚ูˆู„ ุฏูŠ ู„ุฅู† ุงู„ู€ X ุนู„ู‰ ู„ุฅู† ุงู„ู€ X
420
00:42:28,760 --> 00:42:35,280
ุงู„ุฌุฏุฑูŠ ุงู„ุชุฑุจูŠุฉ ู„ุฅู† ุงู„ู€ X ู„ูƒู„ ุชุฑุจูŠุฉ ู†ุงู‚ุต ูˆุงุญุฏ ูŠุจู‚ู‰
421
00:42:35,280 --> 00:42:39,500
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณูˆูŠ ุงู„ู€ limit ู„ู…ุง B tends to
422
00:42:39,500 --> 00:42:47,340
infinity ุทู„ุนู„ู‡ ู„ู‡ุฐู‡ ูƒุฅู†ู‡ุง DY ุนู„ู‰ Y ูˆ Y ุชุฑุจูŠุฉ ู†ุงู‚ุต
423
00:42:47,340 --> 00:42:54,360
ูˆุงุญุฏ ุชุญุช ุงู„ุฌุฏุฑู‰ ุณูƒ ุงู†ูุฑุณ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ limit ู„ุณูƒ
424
00:42:54,360 --> 00:43:01,440
ุงู†ูุฑุณ ู„ู† ุงู„ู€ X ูˆุงู„ุญูƒูŠ ู…ู† ุซู„ุงุซุฉ ู„ุบุงูŠุฉ ู…ู‡ู… ู„ุบุงูŠุฉ B
425
00:43:01,440 --> 00:43:06,360
ุฅุฐุง ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณูˆูŠ ุงู„ู€ limit ู„ู…ุง B tends to
426
00:43:06,360 --> 00:43:16,840
infinity ู„ุณูƒ ุงู†ูุฑุณ ู„ู† ุงู„ู€ B ู†ุงู‚ุต ุณูƒ ุงู†ูุฑุณ ู„ู†
427
00:43:16,840 --> 00:43:23,320
ุงู„ุซู„ุงุซุฉ ุดูƒู„ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
428
00:43:23,320 --> 00:43:27,300
ูŠุณุงูˆูŠ
429
00:43:27,300 --> 00:43:33,440
ุณูƒ ุงู†ูุฑุณ ู„ู† ุจูŠุจูŠุจ ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ู„ู† ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ุณูƒ
430
00:43:33,440 --> 00:43:39,100
ุงู†ูุฑุณ ุนู†ุฏ ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ุจุงูŠ ุนู„ู‰ ุงุซู†ูŠู† ูŠุจู‚ู‰ ุจุงูŠ ุนู„ู‰
431
00:43:39,100 --> 00:43:46,810
ุงุซู†ูŠู† ู…ุธุจูˆุท ู†ุงู‚ุต ุณูƒ ุงู†ูุฑุณ ู„ู† ุซู„ุงุซุฉ ุจุฑุถู‡ ู‡ุฐุง ู…ู‚ุฏุฑ
432
00:43:46,810 --> 00:43:52,310
ุซุงุจุช ูˆู‡ุฐุง ู…ู‚ุฏุฑ ุซุงุจุช ุฅุฐุง ุงุนุทุงู†ูŠ ู‚ูŠู…ุฉ ุนุฏุฏูŠุฉ ู…ุฏุงู…
433
00:43:52,310 --> 00:43:58,210
ู‚ูŠู…ุฉ ุนุฏุฏูŠุฉ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ุชูƒุงู…ู„ ู…ู† ุซู„ุงุซุฉ
434
00:43:58,210 --> 00:44:04,230
ู„ุฅู†ููŠู†ูŠุชูŠ ู„ูˆุงุญุฏ ุนู„ู‰ X ู„ุฅู† X ุงู„ุฌุฏุฑู‰ ุงู„ุชุฑุจูŠุฉ ู„ุฅู† X
435
00:44:04,230 --> 00:44:13,840
ุงู„ูƒู„ ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ DX convert ู…ุง ุฏุงู… ุชุชูƒุงู…ู„ ุจู‚ู‰
436
00:44:13,840 --> 00:44:22,080
ุงู„ู€ series ุงู„ุงุตู„ูŠุฉ by the integral test
437
00:44:25,740 --> 00:44:30,800
ุงู„ู„ูŠ ู‡ูŠ summation ู…ู† N equal ุซู„ุงุซุฉ to infinity
438
00:44:30,800 --> 00:44:38,020
ู„ูˆุงุญุฏ ุนู„ู‰ N ู„ุฅู† ุงู„ู€ N ุงู„ุฌุฐุฑ ุงู„ุชุฑุจูŠุนูŠ ู„ุฅู† ุงู„ู€ ูƒู„
439
00:44:38,020 --> 00:44:44,700
ุชุฑุจูŠุน ู†ุงู‚ุต ูˆุงุญุฏ converge ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุณุฃู„ุฉ