|
1 |
|
00:00:00,000 --> 00:00:02,700 |
|
ู
ูุณููู |
|
|
|
2 |
|
00:00:10,930 --> 00:00:15,710 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุ ุงูู section ุงููู ุจูู ุฅูุฏููุง |
|
|
|
3 |
|
00:00:15,710 --> 00:00:21,190 |
|
ุงููู ูู section 8-3 ุจุชุญุฏุซ ุนู ุงูู integral test ุงููู |
|
|
|
4 |
|
00:00:21,190 --> 00:00:26,010 |
|
ูู ุงุฎุชุจุงุฑ ุงูุชูุงู
ูุ ุจุชุฐูุฑูุง ูู ู
ุทูุน ุงูู section ุงูู
ุงุถู |
|
|
|
5 |
|
00:00:26,010 --> 00:00:29,550 |
|
ูููุง ุฅููุง ููุญูู
ุนูู ุงูู series ูู ูู converge ุฃู |
|
|
|
6 |
|
00:00:29,550 --> 00:00:36,190 |
|
diverge ู
ู ุฎูุงู ุซูุงุซุฉ series ู
ุดููุฑุฉ ููุฐูู ุณุชุฉ |
|
|
|
7 |
|
00:00:36,190 --> 00:00:39,670 |
|
ุงุฎุชุจุงุฑุงุชุ ุทุจุนุง ูู ุงูู section ุงูู
ุงุถู ุฃุนุทุงูุง ุฃูู |
|
|
|
8 |
|
00:00:39,670 --> 00:00:43,530 |
|
series ุงููู ูู ุงูู geometric seriesุ ููู ูุฐุง ุงูู |
|
|
|
9 |
|
00:00:43,530 --> 00:00:46,910 |
|
section ุจูุฏุฃ ูุนุทููู
ุงูู two series ุงูุชุงููุชูู ุงููู |
|
|
|
10 |
|
00:00:46,910 --> 00:00:52,350 |
|
ูุนุฏูุงูู
ูููู
ุ ุจุงูุฅุถุงูุฉ ุฅูู ุงุฎุชุจุงุฑ ุงูุชูุงู
ูุ ุณูุจุฏุฃ |
|
|
|
11 |
|
00:00:52,350 --> 00:00:57,550 |
|
ุฃููุง ุจุงูู two series ุงูู
ุดููุฑุฉุ ุฃูู ูุงุญุฏุฉ ูู ุงูู |
|
|
|
12 |
|
00:00:57,550 --> 00:01:01,450 |
|
harmonic seriesุ ูุงูุซุงููุฉ ูู ุงูู P series ุฃู ุงูู |
|
|
|
13 |
|
00:01:01,450 --> 00:01:05,880 |
|
hyper harmonic series. ููุฌู ููุฃููู ูุงูู series ุงููู |
|
|
|
14 |
|
00:01:05,880 --> 00:01:09,380 |
|
ุนูู ุงูุดูู ุงููู ูุฏุงู
ูุ ุงูุตู
ุดู ู
ู n equal one to |
|
|
|
15 |
|
00:01:09,380 --> 00:01:13,840 |
|
infinity ููุงุญุฏ ุนูู mุ ุงููู ูุงุญุฏ ุฒูุงุฏุฉุ ูุต ุฒูุงุฏุฉุ ุทูู |
|
|
|
16 |
|
00:01:13,840 --> 00:01:19,180 |
|
ุฒูุงุฏุฉุ ุฑุงุจุน ุฒูุงุฏุฉุ ุฒูุงุฏุฉ ูุงุญุฏ ุนูู m ุฒูุงุฏุฉุ ุฅูู ู
ุง ูุง ููุงูุฉ. |
|
|
|
17 |
|
00:01:19,180 --> 00:01:23,830 |
|
ูุฐู ุจุณู
ููุง harmonic seriesุ ูุนูู ุงูู
ุชุณูุณูุงุช |
|
|
|
18 |
|
00:01:23,830 --> 00:01:28,130 |
|
ุงูุชูุงูููุฉ. ุทุจุนุง ูุจูู ูุฐู ูู ุงูู main ุงููู ูู ุงูู |
|
|
|
19 |
|
00:01:28,130 --> 00:01:32,210 |
|
harmonic series. ุงูู harmonic series ููุฃุณู ุงูุดุฏูุฏ |
|
|
|
20 |
|
00:01:32,210 --> 00:01:37,050 |
|
ู
ุง ูููุง conversion ููุง divergence ุนูู ุทูู ุงูุฎุทุ ูุจูู |
|
|
|
21 |
|
00:01:37,050 --> 00:01:40,270 |
|
ุฑูุญูุง ูููู ุฅู ุงูู the harmonic series ุตู
ุดู ุนูู m |
|
|
|
22 |
|
00:01:40,270 --> 00:01:45,070 |
|
divergeุ ููุฐู ู
ุญูููุฉ ุนูุฏู ูู ุงููุชุงุจ ุนูู ุดูู ู
ุซุงู |
|
|
|
23 |
|
00:01:45,070 --> 00:01:50,950 |
|
ูู ุตูุญุฉ 535. ุจุชุนุฑู ููู ูู diverge ู |
|
|
|
24 |
|
00:01:50,950 --> 00:01:55,070 |
|
ุงูุฑุฃ ุงูู
ุซุงูุ ููู ุฃูุง ุจุงููุณุจุฉ ูู ู
ุด ูุนุชุจุฑูุง ู
ุซุงู |
|
|
|
25 |
|
00:01:55,070 --> 00:01:59,730 |
|
ูุนุชุจุฑูุง ูุงุนุฏุฉ ูุฃุจุฏุฃ ุงุดุชุบู ุจูุง ุจุนุฏ ูุฏูุ ูุฅูู
ุง ุฃุดูููุง |
|
|
|
26 |
|
00:01:59,730 --> 00:02:03,470 |
|
ุจูุชุจ diverge ุจุณ ู
ุด diverge ุจูุชุจ diverge harmonic |
|
|
|
27 |
|
00:02:03,470 --> 00:02:09,230 |
|
ูุนูู ุงูุณุจุจ ูู ุฅูููุง diverge ูู main harmonic series. |
|
|
|
28 |
|
00:02:09,230 --> 00:02:14,290 |
|
ุชู
ุงู
ุ ูุจูู ููุณุชุฎุฏู
ูุง ูู ุงูุญูู
ุนูู ุงูู series ุงูุฃุฎุฑู |
|
|
|
29 |
|
00:02:14,290 --> 00:02:20,580 |
|
ูู ูู converge ุฃู diverge. ุงูุณูุฑูุฒ ุงูุซุงููุฉ the |
|
|
|
30 |
|
00:02:20,580 --> 00:02:24,540 |
|
theory of summation ู
ู n equal one to infinity |
|
|
|
31 |
|
00:02:24,540 --> 00:02:30,400 |
|
ููุงุญุฏ ุนูู n to the power pุ ูุจูู ูู ูุงุญุฏุ ูุงุญุฏ ุนูู |
|
|
|
32 |
|
00:02:30,400 --> 00:02:34,640 |
|
ุงุซููู ุฃูุณ ุจูุ ุฒุงุฆุฏ ูุงุญุฏ ุนูู ุซูุงุซุฉ ุฃูุณ ุจูุ ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
33 |
|
00:02:34,640 --> 00:02:37,940 |
|
ุนูู ุฃุฑุจุนุฉ ุฃูุณ ุจูุ ุฒุงุฆุฏ ุฒุงุฆุฏ ุฒุงุฆุฏ ูุบุงูุฉ ู
ุง ูุตู ูุงุญุฏ |
|
|
|
34 |
|
00:02:37,940 --> 00:02:43,010 |
|
ุนูู n to the power pุ ุฒุงุฆุฏ ุฅูู ู
ุง ูุง ููุงูุฉ. ูุจูู ูุฐู |
|
|
|
35 |
|
00:02:43,010 --> 00:02:48,470 |
|
ุจุณู
ููุง P seriesุ ุจุนุถ ุงููุชุจ ุจุณู
ููุง hyper harmonic |
|
|
|
36 |
|
00:02:48,470 --> 00:02:53,910 |
|
seriesุ ูุนูู ูุฃูู ููุง ุนูุงูุฉ ุจุงูู harmonic series. |
|
|
|
37 |
|
00:02:53,910 --> 00:02:58,690 |
|
ู ูุนูุง ููุง ุนูุงูุฉ ุจุงูู harmonic seriesุ ูููุ ูู ุฌููุง |
|
|
|
38 |
|
00:02:58,690 --> 00:03:03,240 |
|
ุดููุช ุงูู P ูุญุทูุช ู
ูุงููุง ูุงุญุฏ ุจุตูุฑ ูู ุงูู harmonic |
|
|
|
39 |
|
00:03:03,240 --> 00:03:08,340 |
|
seriesุ ุชู
ุงู
ุ ููุฐุง ุณูุชุถุญ ู
ู ุฎูุงู ููุงู
ูุง ุนูู ุงูู |
|
|
|
40 |
|
00:03:08,340 --> 00:03:12,100 |
|
convergence ูุงูู divergence ุงููู ุจููู ุฅู ุงูู P is the |
|
|
|
41 |
|
00:03:12,100 --> 00:03:15,860 |
|
summation ุนูู 1 to the .. ุฃู 1 ุนูู N to the power |
|
|
|
42 |
|
00:03:15,860 --> 00:03:21,730 |
|
P converge ุฅุฐุง P ุฃูุจุฑ ู
ู ูุงุญุฏุฉ ุตุญูุญุฉุ ูู ูุงูุช ุฃูู ู
ู |
|
|
|
43 |
|
00:03:21,730 --> 00:03:26,290 |
|
ุฃู ุชุณุงูู ูุงุญุฏุฉ ุตุญูุญุฉ ุฃูุช ุจุชุจูู diverse. ููู ูุงูุช P |
|
|
|
44 |
|
00:03:26,290 --> 00:03:30,950 |
|
ุจูุงุญุฏุฉ ุตุญูุญุฉ ุจูุญุตู ุนุงูู
ูุง ุนูู ุงูู harmonic series |
|
|
|
45 |
|
00:03:30,950 --> 00:03:36,110 |
|
ุงููู ูู ุงูุฃูููุ ูุจุงูุชุงูู ุจูุตูุฑ diverse ูุฃูู |
|
|
|
46 |
|
00:03:36,110 --> 00:03:41,150 |
|
summation ุจูุตูุฑ ูุงุญุฏ ุนูู Nุ ุฅุฐุง ู
ู ุงูู alpha ุณุงุนุฏ ุงูู |
|
|
|
47 |
|
00:03:41,150 --> 00:03:45,450 |
|
harmonic series ูู ุญุงูุฉ ุฎุงุตุฉ ู
ู ุงูู hyper harmonic |
|
|
|
48 |
|
00:03:45,450 --> 00:03:51,320 |
|
series. ุจูุฌู
ู ุงูููุงู
ุงููู ูููุงู ูู ููู
ุฉ ู
ุฎุชุตุฑุฉุ ุงูู |
|
|
|
49 |
|
00:03:51,320 --> 00:03:54,760 |
|
harmonic diverges ุนูู ุทูู ุงูุฎุทุ ุทุจุนุง ุงูุชุงููุฉ ุจุฑุถู |
|
|
|
50 |
|
00:03:54,760 --> 00:04:00,160 |
|
ู
ุซุงู ู
ุญููู ุตูุญุฉ ุงููู ูู 555ุ ุจููู |
|
|
|
51 |
|
00:04:00,160 --> 00:04:04,600 |
|
ู
ุง ูุฃุชูุ ุงูู harmonic series diverges ุนูู ุทููุ ุงูู P |
|
|
|
52 |
|
00:04:04,600 --> 00:04:07,940 |
|
series ุจุฏู ุฃุนุฑููุง converge ููุง divergeุ ุจุทู ุนูู |
|
|
|
53 |
|
00:04:07,940 --> 00:04:13,890 |
|
ุงูุฃุณ ุชุจุน ู
ู ุชุจุน ุงูู N ุงููู ู
ูุฌูุฏุฉ ูู ุงูู
ูุงู
ุ ุฅุฐุง ูุต |
|
|
|
54 |
|
00:04:13,890 --> 00:04:17,530 |
|
ุฃูุจุฑ ู
ู ูุงุญุฏ ุตุญูุญุฉุ ุฅู ุดุงุก ุงููู ูููู ูุงุญุฏุ ูุงุญุฏ ู
ู |
|
|
|
55 |
|
00:04:17,530 --> 00:04:23,270 |
|
ุฃููุ ูุจูู ุงูู series convertุ ูุฅุฐุง ุจูุณุงูู ูุงุญุฏ ุตุญูุญุฉ ุฃู |
|
|
|
56 |
|
00:04:23,270 --> 00:04:28,430 |
|
ุฃูู ู
ู ูุงุญุฏ ุตุญูุญุฉ ูุจูู ุงูู series ุจูุจูู ู
ุนุงูุง by |
|
|
|
57 |
|
00:04:28,430 --> 00:04:32,790 |
|
various. ุงูุขู ุตุงุฑ ุนูุฏู ูู ุงูู ุซูุงุซุฉ series ุงูู
ุดููุฑุฉ |
|
|
|
58 |
|
00:04:32,790 --> 00:04:36,430 |
|
ุงููู ุจุฏู ุงุณุชุฎุฏู
ูุง ูู ุงูุญูู
ุนูู ุงูู series ุงูุฃุฎุฑูุ ูู |
|
|
|
59 |
|
00:04:36,430 --> 00:04:41,860 |
|
ูู convert ุฃู by various. ูุงุถุญ ููุงู
ูุ ุญุฏ ุจุฏู ูุณุฃู ุฃู |
|
|
|
60 |
|
00:04:41,860 --> 00:04:48,840 |
|
ุณุคุงู ูุจู ุฅู ูุฏุฎู ุงูุฃู
ุซูุ ุชูุถู ุฒู |
|
|
|
61 |
|
00:04:48,840 --> 00:04:53,740 |
|
ู
ุง ุจุฏู ุชูููุ because it's harmonic series ุงููู |
|
|
|
62 |
|
00:04:53,740 --> 00:04:57,440 |
|
ุฃุณุฃููุ ู
ูู ุฃุณุฃููุ ุชููู hyper harmonic series ูุงููู |
|
|
|
63 |
|
00:04:57,440 --> 00:05:02,000 |
|
harmonic ุฎูุงุต ุงูุชูููุง ู
ููุง ูุจูู harmonic ูุงู
ุดูุ ุญุฏ |
|
|
|
64 |
|
00:05:02,000 --> 00:05:06,600 |
|
ุจุฏู ูุณุฃู ุฃู ุณุคุงู ุซุงููุ ุทูุจ ุงุจู ุงูุฌู ุงูุขู ุจูููู ูู |
|
|
|
65 |
|
00:05:06,600 --> 00:05:11,280 |
|
ุญุฏุฏ ูู ุชูุงุฑุจ ูู ู
ู ุงูู
ุชุณูุณูุงุช ุงูุชุงููุฉุ ูู
ุนุทููู ุงูู |
|
|
|
66 |
|
00:05:11,280 --> 00:05:14,800 |
|
series ุจุงูุดูู ุงููู ุนูุฏู ูุฐุงุ ุจููู ูู ุฃูุง ุจุฏู ุฃุดูู ุงูู |
|
|
|
67 |
|
00:05:14,800 --> 00:05:19,140 |
|
series ูุฐู converge ูุงููู ุถุงููู ูุนูู ุจููู ูู ู
ุงุดู |
|
|
|
68 |
|
00:05:19,140 --> 00:05:24,360 |
|
ุงูุณุงูุจ ุซู
ุงููุฉ ูุฐุง ู
ุง ูู constantุ ูุจูู ูุฃูู ูุฐุง ุงูู |
|
|
|
69 |
|
00:05:24,360 --> 00:05:29,720 |
|
summation ู
ู N equal one to infinity ูุณุงูุจ ุซู
ุงููุฉ |
|
|
|
70 |
|
00:05:29,720 --> 00:05:37,010 |
|
ู
ุถุฑูุจุฉ ูู ูุงุญุฏ ุนูู Mุ ุฃู ุณุงูุจ ุซู
ุงููุฉ ุจุฑุฉ ู summation |
|
|
|
71 |
|
00:05:37,010 --> 00:05:42,830 |
|
ููุงุญุฏ ุนูู N ู
ู N equal one to infinityุ ุถุฑุจ ุงูู |
|
|
|
72 |
|
00:05:42,830 --> 00:05:46,590 |
|
series ูู ู
ูุฏุงุฑ ุซุงุจุชุ ูู ุงูู section ุงูู
ุงุถู ุฃุฎุฐูุง ูุง |
|
|
|
73 |
|
00:05:46,590 --> 00:05:50,030 |
|
ุจุซุฑ ุนูู convergence ููุง ุนูู divergenceุ ุทูุจ ุงููู |
|
|
|
74 |
|
00:05:50,030 --> 00:05:54,220 |
|
ุฌูุง ุงูู summation ู
ูู ูู ูุฐูุ ูุงุฑู
ููููุ ุฅุฐุง ูุฐู ููุณุช |
|
|
|
75 |
|
00:05:54,220 --> 00:05:57,960 |
|
ุฏุงูููุฑุฌ ุนูู ุทูู ุงูุฎุทุ ูุจุฑูุญ ุจููู ูู ูุฐู ุงูุณูุฑูุฒ |
|
|
|
76 |
|
00:05:57,960 --> 00:06:06,260 |
|
ูุชุจูุงูุง ุงููู ูู ุฏุงูููุฑุฌ ูุงุฑู
ูููู ุณูุฑูุฒุ ูุฑูุญ ูุฎูููุง |
|
|
|
77 |
|
00:06:06,260 --> 00:06:13,100 |
|
ุฎูุงุต ุงูุชูููุง ู
ููุงุ ุฎูู ุณูุฑูุฒ ุซุงููุ ูู
ุฑ ุงุซูููุ ุจุฏู |
|
|
|
78 |
|
00:06:13,100 --> 00:06:21,000 |
|
summation ู
ู N equal one to infinity ูุชูุงุชุฉ ุนูู |
|
|
|
79 |
|
00:06:21,000 --> 00:06:29,200 |
|
ุฌุฐุฑ ุงูู Nุ ุจุฌู ุจููู ูู ูููุณุ ูุจุฌู ูุฐู ุชูุงุชุฉ ุจุฑุฉ ููุงู |
|
|
|
80 |
|
00:06:29,200 --> 00:06:34,680 |
|
summation ู
ู N equal one to infinity ููุงุญุฏ ุนูู N |
|
|
|
81 |
|
00:06:34,680 --> 00:06:45,290 |
|
ุฃุต ูุตุ ูุจุฌู ูุฐู ูู
ุงู ูู convergeุ ููุช ูู ุงูู P ูุจูู |
|
|
|
82 |
|
00:06:45,290 --> 00:06:56,690 |
|
ูุฐู diverse P Series ูุฃู P ุชุณุงูู ุงููุตุ ูุงููุต ู
ุง ูู |
|
|
|
83 |
|
00:06:56,690 --> 00:07:03,210 |
|
ุฃูู ู
ู ุงููุงุญุฏ ุงูุตุญูุญ. ุณุคุงู ุงูุซุงูุซ ุจูููู ุงูู |
|
|
|
84 |
|
00:07:03,210 --> 00:07:10,470 |
|
summation ู
ู N equal one to infinity ูููุต ุงุซููู ุนูู |
|
|
|
85 |
|
00:07:10,470 --> 00:07:16,500 |
|
N ุฌุฐุฑ ุงูู Mุ ุจููู ูู ูุฐู ุงูู series ุจูุฏุฑ ุฃูุชุจูุง ุนูู |
|
|
|
86 |
|
00:07:16,500 --> 00:07:20,920 |
|
ุงูุดูู ุงูุชุงููุ summation ู
ู N equal one to infinity |
|
|
|
87 |
|
00:07:20,920 --> 00:07:27,020 |
|
ูุณุงูุจ ุงุซููู ุจูุฏุฑ ุฃุฎุฏูุง ุจุฑุฉ ูุจูู ุณุงูุจ ุงุซููู |
|
|
|
88 |
|
00:07:27,020 --> 00:07:36,260 |
|
summation ููุงุญุฏ ุนูู ูุฐู N ููุฐู N ุฃุต ูุต ูุจูู N ุฃุต |
|
|
|
89 |
|
00:07:36,260 --> 00:07:38,500 |
|
ุซูุงุซุฉ ุนูู ุงุซููู. |
|
|
|
90 |
|
00:07:41,020 --> 00:07:49,260 |
|
converge P seriesุ ูุงูุณุจุจ ูู ุงูู convergence because |
|
|
|
91 |
|
00:07:49,260 --> 00:07:55,520 |
|
ุฅู P ูุณุงูู ุซูุงุซุฉ ุนูู ุงุซููู ุฃูุจุฑ ู
ู ุงููุงุญุฏ ุงูุตุญูุญ. |
|
|
|
92 |
|
00:07:55,520 --> 00:08:03,710 |
|
ุงูุณุคุงู ุงูุฑุงุจุน. ุณุคุงู ุงูุฑุงุจุน ุจูููู summation ู
ู n |
|
|
|
93 |
|
00:08:03,710 --> 00:08:11,050 |
|
equal one to infinity ููุงุญุฏ ุนูู ุงุซููู n ูุงูุต ูุงุญุฏ |
|
|
|
94 |
|
00:08:11,050 --> 00:08:15,150 |
|
ุจุงูุดูู |
|
|
|
95 |
|
00:08:15,150 --> 00:08:20,480 |
|
ุงููู ุนูุฏูุง ูุฐุงุ ุจููู ูุฐู ู
ุง ูู harmonic series ููุง |
|
|
|
96 |
|
00:08:20,480 --> 00:08:24,740 |
|
ุญุชู hyper harmonic seriesุ ุฅุฐุง ู
ุง ูู ุงูุญู ูู ู
ุซู |
|
|
|
97 |
|
00:08:24,740 --> 00:08:30,180 |
|
ูุฐู ุงูุญุงูุฉุ ุจููู ุจุณูุทุฉุ ุจุฏูุง ูุญุงูู ูุญูุฑ ูุฐู ุงูู
ุณุฃูุฉ |
|
|
|
98 |
|
00:08:30,180 --> 00:08:35,020 |
|
ุจูุง ุชุตูุฑ harmonic series ุฃู hyper harmonic series. |
|
|
|
99 |
|
00:08:35,510 --> 00:08:41,230 |
|
ุจููู ูุจูู ุงุซููู M ูุงูุต ูุงุญุฏ ูุฐู ู
ู
ูู ุฃุญุทูุง ุจู
ุชุบูุฑ |
|
|
|
100 |
|
00:08:41,230 --> 00:08:48,450 |
|
ุบูุฑูุงุ ูุจูู ูู ุญุทูุช ุงูู M ุชุณุงูู ุงุซููู M ูุงูุต ูุงุญุฏ |
|
|
|
101 |
|
00:08:48,450 --> 00:08:54,880 |
|
ูุฐุง ู
ุนูุงู ุฅู ุงูู M ุฒุงุฆุฏ ูุงุญุฏ ุจุฏู ูุณุงูู ุฌุฏุงุด 2nุ ุฃูุง |
|
|
|
102 |
|
00:08:54,880 --> 00:09:00,540 |
|
ู
ุง ุจุฏู 2n ุจุฏู n ููุญุฏูุงุ ูุจูู ูุฐุง ุจูุจูู ูุนุทูู ุฅู ุงูู |
|
|
|
103 |
|
00:09:00,540 --> 00:09:07,340 |
|
M ุนูู 2 ุฒุงุฆุฏ 1 ุนูู 2 ูุณุงูู ู
ุงูุ ูุณุงูู ุงูู M |
|
|
|
104 |
|
00:09:25,280 --> 00:09:30,300 |
|
ูุฐุง ุจุฏู ูุณุงูู summationุ ูุฏูู ูููุต ุนูู ุงูุดุฌุฉ |
|
|
|
105 |
|
00:09:30,300 --> 00:09:37,660 |
|
ุงูุซุงููุฉ ุจุตูุฑ M ุนูู 2 ุชุณุงูู ูุต ุฅูู infinity ูููุงุญุฏ |
|
|
|
106 |
|
00:09:37,660 --> 00:09:44,300 |
|
ุนูู Mุ ู
ุง ููุด ุญุงุฌุฉ ุงุณู
ุงูุญุฏ ุฑูู
ูุต ููุง ุฑูู
ุชูุช ุฃุฑุจุน. |
|
|
|
107 |
|
00:09:47,360 --> 00:09:52,820 |
|
ูุจูู ูู ุถุฑุจูุง ูู ุงุซููู ุจุตูุฑ ุงูู summation ู
ู M |
|
|
|
108 |
|
00:09:52,820 --> 00:09:59,440 |
|
equal one to infinity ููุงุญุฏ ุนูู M. ู
ู ูู ูุฐูุ |
|
|
|
109 |
|
00:09:59,440 --> 00:10:03,620 |
|
Series ุงูุฃููุงููุฉ. ูุจูู ุตุงุฑุช ูุฐู ูู ุงูู harmonic |
|
|
|
110 |
|
00:10:03,620 --> 00:10:04,160 |
|
series. |
|
|
|
111 |
|
00:10:13,250 --> 00:10:18,470 |
|
ุทุจ ูููุณุ ุงูุขู ุจุฏูุง ููุฌู ููุนููุงู ุงููู ุงุญูุง ุฑุงูุนููู |
|
|
|
112 |
|
00:10:18,470 --> 00:10:31,530 |
|
ุงููู ูู ุงูู integral testุ ุงูู |
|
|
|
113 |
|
00:10:31,530 --> 00:10:37,650 |
|
integral test ุจูููู ู
ุง ูุฃุชูุ let |
|
|
|
114 |
|
00:10:57,230 --> 00:10:59,570 |
|
ุงูุญุฏูุฏ ูููุง ู
ูุฌุจุฉ. |
|
|
|
115 |
|
00:11:16,030 --> 00:11:23,090 |
|
ุจูุญุตู ุนูููุง by replacing by |
|
|
|
116 |
|
00:11:25,850 --> 00:11:38,290 |
|
replacing ุจุงุณุชุจุฏุงู ุงูู N by Xุ N by X in the formula |
|
|
|
117 |
|
00:11:38,290 --> 00:11:46,050 |
|
of N if |
|
|
|
118 |
|
00:11:46,050 --> 00:11:50,630 |
|
ุงูู F of X is positive |
|
|
|
119 |
|
00:11:52,730 --> 00:11:59,190 |
|
ู continuous and |
|
|
|
120 |
|
00:11:59,190 --> 00:12:07,230 |
|
decreasingุ positive continuousุ ููุฐูู decreasing |
|
|
|
121 |
|
00:12:07,230 --> 00:12:17,530 |
|
for all ุฅู ุงููู ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู capital Mุ then the |
|
|
|
122 |
|
00:12:17,530 --> 00:12:26,530 |
|
series ููู summation ู
ู N equal capital N to |
|
|
|
123 |
|
00:12:26,530 --> 00:12:35,050 |
|
infinity ููู A Nุ ุฃู ุชูุงู
ู ู
ู N ุฅูู infinity ููู F of |
|
|
|
124 |
|
00:12:35,050 --> 00:12:46,310 |
|
X DX are both convergeุ are both converge or both |
|
|
|
125 |
|
00:12:46,310 --> 00:12:50,270 |
|
divergeุ example |
|
|
|
126 |
|
00:13:12,300 --> 00:13:21,400 |
|
ุงูุณุคุงู ุงูุฃูู ุจูููู ูู ุงูู summation ู
ู N equal 4 to |
|
|
|
127 |
|
00:13:21,400 --> 00:13:27,120 |
|
infinity ูุฅู ุงูู N ุนูู ุฌุฐุฑ ุงูู N |
|
|
|
128 |
|
00:13:58,580 --> 00:14:04,440 |
|
ูุจู ูุฐุง ุงูุงุฎุชุจุงุฑ ุงุญูุง ุฃุฎุฐูุง ุงุฎุชุจุงุฑ ุขุฎุฑุ ุงูุงุฎุชุจุงุฑ |
|
|
|
129 |
|
00:14:04,440 --> 00:14:09,660 |
|
ุงูุฃุฎุฑ ูุงู ุงุฎุชุจุงุฑ ุงูุญุฏ ุงูููููุ ุงูุณุคุงู ูู ูู ุงุณุชุฎุฏู
ูุง |
|
|
|
130 |
|
00:14:09,660 --> 00:14:14,880 |
|
ูู ุงุฎุชุจุงุฑ ุงูุญุฏ ุงููููู ุฃู ุงูุญุฏูุฏ ุชููู ู
ูุฌุจุฉุ ูุงุ ู
ุง |
|
|
|
131 |
|
00:14:14,880 --> 00:14:19,180 |
|
ุงุณุชุฎุฏู
ูุงูุ ุงุณุชุฎุฏู
ูุงู ููุงุฆููุงุ ุงูุญุฏ ุงููููู ุฃูุด ู
ุง ูููู |
|
|
|
132 |
|
00:14:19,180 --> 00:14:23,670 |
|
ุดูููุ ูุฃุฎุฐ ูู ุงูู limitุ ุฅุฐุง ูุงู ูุณุงูู zero ุจููุดู ุงูุงุฎุชุจุงุฑ |
|
|
|
133 |
|
00:14:23,670 --> 00:14:29,290 |
|
ูุญุฏ ุฅูู ูุจูู ูุณูู ุฑูู
ุฃู ู
ุงูู ููุงูุฉุ ูุจูู ุงูู series |
|
|
|
134 |
|
00:14:29,290 --> 00:14:33,770 |
|
diverseุ ููู ูู
ุง ููุฌู ููุงุฎุชุจุงุฑ ูุฃู ูุฐุง ุงุฎุชุจุงุฑ |
|
|
|
135 |
|
00:14:33,770 --> 00:14:38,710 |
|
ุงูุชูุงู
ูุ ูุฐุง ุงูู section ูู ุงูู section ุงููุญูุฏ ุงูุฐู |
|
|
|
136 |
|
00:14:38,710 --> 00:14:44,330 |
|
ูุนุชู
ุฏ ุนูู ุงูู improper integral ุงููู ูู section 87 |
|
|
|
137 |
|
00:14:45,630 --> 00:14:51,230 |
|
ุงูุณููุดู ูุฐุง ูุฃูู improper integrals ูุธุฑุง ูุฐูู |
|
|
|
138 |
|
00:14:51,230 --> 00:14:56,170 |
|
ุงุนุชู
ุฏ ุนูู ุณููุดู ุซู
ุงููุฉ ุณุจุนุฉุ ุจูููู ูููุ ุทุจุนูุง ุนูุฏู ุงูู |
|
|
|
139 |
|
00:14:56,170 --> 00:15:01,050 |
|
summation ู
ู n equal one to infinity ููู a n ุนุจุงุฑุฉ |
|
|
|
140 |
|
00:15:01,050 --> 00:15:06,730 |
|
ุนู series with positive termsุ ูุจูู ูุงุญุธ ุงุจุชุฏุงุก ู
ู |
|
|
|
141 |
|
00:15:06,730 --> 00:15:11,410 |
|
ูุฐุง ุงูุงุฎุชุจุงุฑ ู ูุบุงูุฉ ุงูุฃุฑุจุนุฉ ุงุฎุชุจุงุฑุงุช ุงููู ุฌุงุกุช |
|
|
|
142 |
|
00:15:11,410 --> 00:15:15,750 |
|
ุจุนุฏู ูู
ุงู ููู ุจุฏูุง ูุณุชุฎุฏู
ูููุง ุฃููู series with |
|
|
|
143 |
|
00:15:15,750 --> 00:15:21,490 |
|
positive termsุ ูุนูู ูู ุงูุญุฏูุฏ ู
ูุฌุจุฉ ููุฐู ุงูู series |
|
|
|
144 |
|
00:15:21,490 --> 00:15:27,370 |
|
ููุง ููุฌุฏ ูููุง ุญุฏ ุณุงูุจุ ุทูุจ ูุจูู ุงูู summation ูุฐู |
|
|
|
145 |
|
00:15:27,370 --> 00:15:31,950 |
|
series with positive termsุ ุทูุจ ูุจุนุฏูู ุฌุฆูุงุ ุฌุฆูุง ุนูู |
|
|
|
146 |
|
00:15:31,950 --> 00:15:36,450 |
|
ุงูุญุฏ ุงููููู ุชุจุน ุงูู series ูุดูููุง ููุ ุฅูู ุญุทููุง |
|
|
|
147 |
|
00:15:36,450 --> 00:15:43,440 |
|
ู
ูููุงููุ ุฃูููุซูุฑู ุนูุฏู function ูู Xุ ุฌุนูุช ุงูู f of x ุนุจุงุฑุฉ |
|
|
|
148 |
|
00:15:43,440 --> 00:15:48,880 |
|
ุนู function ุญุตููุง ุนูููุง ุจุงุณุชุจุฏุงู ูู n ูู ุงูุญุฏ |
|
|
|
149 |
|
00:15:48,880 --> 00:15:54,680 |
|
ุงููููู ุจู x ูู ุงูุตูุบุฉ ุชุจุน ุงูู a nุ ุทูุจ ุจุฏููุง ูุฎูุตูุง |
|
|
|
150 |
|
00:15:54,680 --> 00:15:59,580 |
|
ุจุนุฏ ููู ุจุฏูุง ูุฑูุญ ููู function ุงูุฌุฏูุฏุฉุ ุจูุฏุฑ ุฃุดูู ุฅุฐุง |
|
|
|
151 |
|
00:15:59,580 --> 00:16:05,380 |
|
ุชุญููุช ูููุง ุซูุงุซุฉ ุดุฑูุทุ ุจูุฏุฑ ุฃุณุชุฎุฏู
ุงูู integral test |
|
|
|
152 |
|
00:16:05,380 --> 00:16:10,440 |
|
ู
ุง ูู ุงูุดุฑูุท ุงูุซูุงุซุฉุ ุงูุฃููุ ุชุจูู ูู ุญุฏูุฏูุง ู
ูุฌุจุฉุ |
|
|
|
153 |
|
00:16:10,440 --> 00:16:14,940 |
|
ููู ุงูู series ูู ุญุฏูุฏูุง ู
ูุฌุจุฉุ ุฅุฐุง ุงูู function |
|
|
|
154 |
|
00:16:14,940 --> 00:16:19,820 |
|
ู
ูุฌุจุฉ ุนูู ุทูู ุงูุฎุทุ ูุจูู ุงูุดุฑุท ุงูุฃูู ุชุญุตูู ุญุงุตูุ |
|
|
|
155 |
|
00:16:19,820 --> 00:16:25,020 |
|
ุงูุดุฑุท ุงูุซุงููุ ููููุง function ูุจูู ุจุฏูุง ุชููู continuous |
|
|
|
156 |
|
00:16:25,020 --> 00:16:30,060 |
|
ุญุชู ูููู ุงูุชูุงู
ู ุจุนุฏ ุฐูู existุ ูุนูู ุงูุดุฑุท ุฃู |
|
|
|
157 |
|
00:16:30,060 --> 00:16:35,180 |
|
ุงูุฏุงูุฉ ุชุจูู integrableุ ูุงุจูุฉ ููุชูุงู
ูุ ููููู ุฏุงูุฉ |
|
|
|
158 |
|
00:16:35,180 --> 00:16:40,420 |
|
ู
ุชุตูุฉุ ุงูุดุฑุท ุงูุซุงูุซ ุจุฏูุง ุชุจูู decreasing ูุนูู |
|
|
|
159 |
|
00:16:40,420 --> 00:16:47,890 |
|
ุงูุฏุงูุฉ ุชูุงูุตูุฉ ุฃู ุงูู
ุชุณูุณูุฉ ุชูุงูุตูุฉ ูุฐููุ ุฅุฐุง ูุฏุฑุช |
|
|
|
160 |
|
00:16:47,890 --> 00:16:51,850 |
|
ุฃุซุจุช ุฅู ุงูุฏุงูุฉ ุชูุงูุตูุฉ ุนู ุทุฑูู ุงูู derivative ุงููู ูู |
|
|
|
161 |
|
00:16:51,850 --> 00:16:56,430 |
|
ุงูุงุดุชูุงูุ ูุนูู ู
ุดุชูุชูุง ุฃูู ู
ู ุงูู zeroุ ุฅุฐุง ูู |
|
|
|
162 |
|
00:16:56,430 --> 00:17:02,230 |
|
decreasingุ ู
ุง ูุฏุฑุช ูุฌูุช ูููุง ุตุนูุจุฉ ููุง ุฃุณูู ุฅู ุฃุดูู |
|
|
|
163 |
|
00:17:02,230 --> 00:17:06,550 |
|
ูู ุงูู series ูุฐู converge ููุง divergeุ ูุจูู ุนูู |
|
|
|
164 |
|
00:17:06,550 --> 00:17:11,750 |
|
ุทูู ุงูุฎุท ุจุฑูุญ ูู
ููุ ูุงุ ุงูู series ุจุดูู ูู ุงูุญุฏ ุงููููู |
|
|
|
165 |
|
00:17:12,000 --> 00:17:16,240 |
|
ุฃูุจุฑ ู
ู ุงูุญุฏ ุงููู ูุฒุงูุฏ ูุงุญุฏ ููุง ูุงุ ุฅู ูุงู ุฃูุจุฑ ู
ูู |
|
|
|
166 |
|
00:17:16,240 --> 00:17:19,960 |
|
ูุจูู ุงูู series decreasing ูุจุงูุชุงูู ุงูู function |
|
|
|
167 |
|
00:17:19,960 --> 00:17:23,840 |
|
decreasingุ ูุจูู ุจุชููู ุชุญููุช ุงูุดุฑูุท ุงูุซูุงุซุฉุ ูุจูู |
|
|
|
168 |
|
00:17:23,840 --> 00:17:29,300 |
|
ุจูุฏุฑ ุฃุณุชุฎุฏู
ุงูู integral testุ ูู ุงุฎุชู ุฃู ุดุฑุท ู
ู |
|
|
|
169 |
|
00:17:29,300 --> 00:17:34,800 |
|
ุงูุดุฑูุท ุงูุซูุงุซุฉุ ูุง ูู
ูู ูุณุชุฎุฏู
ุงูู integral testุ ุทุจ |
|
|
|
170 |
|
00:17:34,800 --> 00:17:38,570 |
|
ุงูุด ุงูู integral testุ ุจูููู ูู ูู ูุฐู ุงูุญุงูุฉ ูู
ูู |
|
|
|
171 |
|
00:17:38,570 --> 00:17:42,850 |
|
ุชุจูู positive ู continuous ู decreasingุ ูุฑุงุญ ูุงู |
|
|
|
172 |
|
00:17:42,850 --> 00:17:49,050 |
|
ูู for all n ุงููู ุฃูุจุฑ ู
ู ุฃู ูุณุงูู Nุ ุดู ูุฐุงุ |
|
|
|
173 |
|
00:17:49,050 --> 00:17:53,190 |
|
ูุงููู ุนูู ููุงุ ุงุญูุง ุงูู series ุจุฏุฃ ู
ู ูููุ ุทูุจ ุฃูุง |
|
|
|
174 |
|
00:17:53,190 --> 00:17:56,350 |
|
ุฌูุช ุนูุฏ ุงููุงุญุฏุ ูุฌูุช ุงูู function positive ู |
|
|
|
175 |
|
00:17:56,350 --> 00:18:00,790 |
|
continuous ูู
ุง ูู decreasing ุนูุฏ ุงููุงุญุฏุ ุงู ุชู
ุงู
ุ |
|
|
|
176 |
|
00:18:00,790 --> 00:18:05,570 |
|
ูุจูู ุงุฎุชู ุงูุดุฑุท ุนูุฏ n ุชุณุงูู ูุงุญุฏุ ููู
ููุ ุจุฑูุญ ุนูู ู
ููุ |
|
|
|
177 |
|
00:18:05,570 --> 00:18:09,690 |
|
ุนูู n ุชุณุงูู ุงุซูููุ ูุฌูุชูุง positive ู continuous ู |
|
|
|
178 |
|
00:18:09,690 --> 00:18:10,730 |
|
ู
ุง ูู decreasing |
|
|
|
179 |
|
00:18:14,370 --> 00:18:21,810 |
|
ู
ู ุนูุฏ ุงูุณุจุนุฉ ุซู
ููู ุณุจุนุฉุ ุซู
ุงููุฉุ ุชุณุนุฉ ุฅูู ุขุฎุฑูุ ูุฌุฆุช |
|
|
|
180 |
|
00:18:21,810 --> 00:18:28,470 |
|
ุงูุซูุงุซุฉ ุดุฑูุท ู
ุญููุฉ ู
ู ุนูุฏ ุงูุณุจุนุฉ ูู
ุง ูููุ ูู ุงูุดุฑูุท |
|
|
|
181 |
|
00:18:28,470 --> 00:18:34,790 |
|
ู
ุญููุฉุ ุฅุฐุง ุงูุชูุงู
ู exist ู
ู ุณุจุนุฉ ูุบุงูุฉ infinity |
|
|
|
182 |
|
00:18:38,950 --> 00:18:43,410 |
|
ุณุชุฉ ุญุฏูุฏุ ุงูู
ุ ุงูุนุฏุฏ ุงูู
ุญุฏูุฏ ู
ู ุญุฏูุฏ ุงูู series ุฃู |
|
|
|
183 |
|
00:18:43,410 --> 00:18:47,750 |
|
above two ูุง ูุคุซุฑ ุนูู ุงูู convergence ููุง ุนูู ุงูู |
|
|
|
184 |
|
00:18:47,750 --> 00:18:51,770 |
|
divergenceุ ูุงุนุฏุฉ ุฃุฎุฐูุงูุง ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูู ููุงูุฉ |
|
|
|
185 |
|
00:18:51,770 --> 00:18:57,750 |
|
section ุนุดุฑุฉ ุงุซูููุ ู
ุธุจูุทุ ุทูุจ ุชู
ุงู
ุ ุทูุจ ูุจูู ุนุฑููุง |
|
|
|
186 |
|
00:18:57,750 --> 00:19:03,210 |
|
ู
ุง ูู ุงูุณุฑ ูู ุฃู n ุฃูุจุฑ ู
ู capital N ุญูุซ N is an |
|
|
|
187 |
|
00:19:03,210 --> 00:19:08,160 |
|
integer ุฃู positive integer ุนุฏุฏ ุตุญูุญ ู
ูุฌุจุ ุฅู ุญุฏุซ |
|
|
|
188 |
|
00:19:08,160 --> 00:19:13,740 |
|
ุฐููุ ูุจูู ูุฐู ุจุฏู ุฃุดูููุง converge ููุง divergeุ ุจุฑูุญ |
|
|
|
189 |
|
00:19:13,740 --> 00:19:19,100 |
|
ุจุญุณุจ ุงูู improper integral ููุฏ ุชุนูู
ูุง ูุจู ุฐูู ููููุฉ |
|
|
|
190 |
|
00:19:19,100 --> 00:19:23,220 |
|
ุญุณุงุจ ุงูู improper integral ุฃู ููููุฉ ุงูุญูู
ุนูู ุงูู |
|
|
|
191 |
|
00:19:23,220 --> 00:19:26,720 |
|
improper integral ุฅุฐุง ูุงู ู
ุด ูุงุฏุฑูู ููู
ูู ุจุงูู |
|
|
|
192 |
|
00:19:26,720 --> 00:19:28,900 |
|
comparison ุฃู ุงูู limit comparison ุจูุฐู ุงูุทุฑููุฉ |
|
|
|
193 |
|
00:19:28,900 --> 00:19:33,540 |
|
ุงููู ุชูุฏุฑ ุนูููุงุ ุฏู ูู ูุงูุช ุชูุงู
ู ูุฐุง diverge is in |
|
|
|
194 |
|
00:19:33,540 --> 00:19:37,430 |
|
ุงูู series ูุฐู diverseุ ูู ูุงู ุงูุชูุงู
ู converge |
|
|
|
195 |
|
00:19:37,430 --> 00:19:44,350 |
|
either series or both divergent |
|
|
|
196 |
|
00:19:44,350 --> 00:19:47,370 |
|
ุฅุฐุง |
|
|
|
197 |
|
00:19:47,370 --> 00:19:51,230 |
|
ุชุจูุช ูุงุญุฏุฉ ูููู
convergeุ either ุงูุชุงููุ ูุฅุฐุง ุชุจูุช |
|
|
|
198 |
|
00:19:51,230 --> 00:19:56,050 |
|
ูุงุญุฏุฉ ูููู
ุงูุชูุงู
ู divergent ูุจูู seriesุ ููุฐุง ูุญุฏ |
|
|
|
199 |
|
00:19:56,050 --> 00:20:00,410 |
|
ููุง ุงูุชูู ุงูู integral test ูุจูุชููู ููุชูู ูู ุงูุฌุฒุก |
|
|
|
200 |
|
00:20:00,410 --> 00:20:04,150 |
|
ุงููุธุฑู ุชุจุน ุงูู sectionุ ุญุฏ ูู ุฃู ุดูุก ุงููู ูู ูุชุณุงุฆู ูุจู ู
ุง |
|
|
|
201 |
|
00:20:04,150 --> 00:20:08,790 |
|
ุฃุจุฏุฃ ูู ุงูุฃู
ุซูุฉุ ุญุฏ ุจุฏู ุฃุณุฃูุ ุฃููุฉ |
|
|
|
202 |
|
00:20:12,050 --> 00:20:15,730 |
|
ุงุญูุง ุจูููู ุฅููุ ุงูุฃุตู ุจูููู ู
ู ุนูุฏ n ุชุณุงูู ูุงุญุฏ |
|
|
|
203 |
|
00:20:15,730 --> 00:20:19,450 |
|
ุฅูู infinity ุฒู ู
ุง ุงุญูุง ูุงุชุจููุ ููู ุฌุฆุช ุนูุฏ ุงูู n |
|
|
|
204 |
|
00:20:19,450 --> 00:20:23,890 |
|
ุชุณุงูู ูุงุญุฏุ ูุฌุฆุช positive ู
ุซููุง ู decreasing ููููุง |
|
|
|
205 |
|
00:20:23,890 --> 00:20:28,230 |
|
ููุณุช continuousุ ูู discontinuity ูุนูู ุงูู
ูุงู
ูุณุงูู |
|
|
|
206 |
|
00:20:28,230 --> 00:20:33,170 |
|
zero ููุฏุงูุฉ ุงููู ุนูุฏูุง ูุฐู ุนูุฏ n ุชุณุงูู zero ู
ุซููุง |
|
|
|
207 |
|
00:20:33,170 --> 00:20:37,930 |
|
ูุนูู ูุงุญุฏุ ุฅุฐุง ุงููุงุญุฏ ูุฐุง ู
ุงููุ ุจุถูู ุตูุญุฉ ุดุฌุฑุฉุ ุจุงุฎุฏ |
|
|
|
208 |
|
00:20:37,930 --> 00:20:41,430 |
|
ุนูุฏู ุงุซูููุ ูุฌุฆุช ุนูุฏู ุงุซููู ู
ุซููุง positive |
|
|
|
209 |
|
00:20:41,430 --> 00:20:47,790 |
|
ู continuous ู
ูุฌูุฏุฉ ูู ุฌุงูุจ ุฃุฎููุ ุฑูุญุช ุนูุฏู ุงูุซูุงุซุฉ |
|
|
|
210 |
|
00:20:47,790 --> 00:20:52,810 |
|
ู
ุซููุงุ ูุฌุฏุช positive ู continuous ู decreasing ูู
ู |
|
|
|
211 |
|
00:20:52,810 --> 00:20:57,630 |
|
ุงูุซูุงุซุฉ ูู
ุง ูููุ ุฑุฌุนุช ุฏุงุฆู
ูุง ูุฃุจุฏูุง positive |
|
|
|
212 |
|
00:20:57,630 --> 00:21:02,710 |
|
ู continuous ู decreasingุ ุจุตูุฑ ุงูุชูุงู
ู ู
ู ุฃููุ ู
ู |
|
|
|
213 |
|
00:21:02,710 --> 00:21:07,650 |
|
ุซูุงุซุฉ ุฅูู infinityุ ูุนูู ุฃูู
ู ุงุซููู ุญุฏูู ู
ู ุญุฏูุฏ ุงูู |
|
|
|
214 |
|
00:21:07,650 --> 00:21:11,530 |
|
seriesุ ุจุฑูุญ ุขุฎุฐ ุงูุชูุงู
ู ู
ู ุนูุฏ ุงูุซูุงุซุฉ ูู infinity |
|
|
|
215 |
|
00:21:11,530 --> 00:21:14,710 |
|
ุฅุฐุง ุงูุชูุงู
ู converged ูุจูู ุงูู series convergedุ ุฅุฐุง |
|
|
|
216 |
|
00:21:14,710 --> 00:21:18,270 |
|
ุงูุชูุงู
ู diverged ูุจูู ุงูู series divergedุ ูุงูุชูููุง |
|
|
|
217 |
|
00:21:18,270 --> 00:21:23,600 |
|
ู
ู ุงููุตุฉ ูุฐูุ ุทูุจ ูุฌู ุงูุขู ุนูู ุงูุฃู
ุซูุฉุ ูุงู ูู test |
|
|
|
218 |
|
00:21:23,600 --> 00:21:28,460 |
|
ุงุฎุชุจุฑ ุชูุงุฑุจ ุงูู
ุชุณูุณูุงุช ุงูุชุงููุฉุ ูุงุทููุง ู
ุชุณูุณูุฉ |
|
|
|
219 |
|
00:21:28,460 --> 00:21:32,860 |
|
summation ู
ู N equal four to infinity ูู ln ุงูู N ุนูู |
|
|
|
220 |
|
00:21:32,860 --> 00:21:38,170 |
|
ุงูุฌุฐุฑ ุงูุชุฑุจูุนูุ ูู ln ุงูู Nุ ูุจูู ุฏู ุจุทูุน ูุฃูู ูููุฉ |
|
|
|
221 |
|
00:21:38,170 --> 00:21:43,390 |
|
ุจุฃูู
ููุงุ ุจูุฏุฑ ุฃูู
ููุง ุจุณ ูููุง ุฑูุญุฉ ุตุนูุจุฉ ุดููุฉุ ููู ูู |
|
|
|
222 |
|
00:21:43,390 --> 00:21:49,650 |
|
ูุฏุฑุช ุฃุชุฎูุต ู
ู ุงูุฌุฐุฑ ุจูููู ุฃุณูู ููุ ุจุตูุฑ ln ุงูู N ุนูู |
|
|
|
223 |
|
00:21:49,650 --> 00:21:54,010 |
|
N ุฃู ln ุงูู X ุนูู Xุ ุณูู ุฏู ุฃูู
ููุง ุจุณ ุจูุฐุง ุงูุดูู |
|
|
|
224 |
|
00:21:54,010 --> 00:21:59,030 |
|
ูุฒูุฌูู ุดููุฉุ ุฃููุฉุ ูุจูู ุงูุดุบู ูู ุฏูุ ุจุฏู ุชูู
ู ุนูู ุทูู |
|
|
|
225 |
|
00:21:59,030 --> 00:22:03,710 |
|
ููุจูุง ุจุณ ูุชุงุฎุฏ ู
ูู ููุช ูุชูุฑุ ููู ุงุญูุง ู
ู
ูู ูุญูุฑ |
|
|
|
226 |
|
00:22:03,710 --> 00:22:10,700 |
|
ุงูุดูู ุฅูู ุดูู ุขุฎุฑุ ูููุ ุจุฏู ุฃุดูู ุฌุฐุฑ ุงูู N ูุฃุญุทู ุจุฃู |
|
|
|
227 |
|
00:22:10,700 --> 00:22:20,880 |
|
ู
ุชุบูุฑ ุขุฎุฑุ ุฅุฐุง ุฃูุง ูู ุฌุฆุช ููุช ูู ุงููู put ุญุท ูู ุงูู M |
|
|
|
228 |
|
00:22:20,880 --> 00:22:29,600 |
|
ูุณุงูู ุฌุฐุฑ ุงูู Nุ ูุจูู ุจูุงุก ุนููู ุงูู M ุชุฑุจูุน ูุณุงูู ู
ููุ |
|
|
|
229 |
|
00:22:29,600 --> 00:22:35,580 |
|
ุงูู Nุ ุทุจ ูุฏู ุจุชุนู
ู ูููุ ูุฏู ุญููุช ููู
ุณุฃูุฉ ุฅูู ุงูุดูู |
|
|
|
230 |
|
00:22:35,580 --> 00:22:42,140 |
|
ุงูุชุงููุ summation N ูู ุงูู M ุชุฑุจูุน ุชุณุงูู ุฃุฑุจุนุฉ ุฅูู |
|
|
|
231 |
|
00:22:42,140 --> 00:22:49,780 |
|
infinity ูู ln ุงูู M ุชุฑุจูุน ุนูู Mุ ูุจูู ุดูููุง ุฌุฏุฑ ุงูู N |
|
|
|
232 |
|
00:22:49,780 --> 00:22:51,520 |
|
ูุญุทููุง ู
ูุงูู M |
|
|
|
233 |
|
00:23:00,810 --> 00:23:08,840 |
|
ูุฐู ุงูุงุฎุชุตุงุฑุงุช ูุชุฃุฎุฐ ุงูุดูู ุงูุชุงููุ ูุฃุฎุฐ ุงูุฌุฐุฑ ุงูุชุฑุจูุนู |
|
|
|
234 |
|
00:23:08,840 --> 00:23:12,080 |
|
ููู index ุงููู ุชุญุช ุงูู summationุ ูุจูู M ูุชุจุฏุฃ ู
ู |
|
|
|
235 |
|
00:23:12,080 --> 00:23:17,640 |
|
ูููุ ู
ู ุนูุฏ ุงุซูููุ ูุจูู M ุชุณุงูู ุงุซููู ูุบุงูุฉ |
|
|
|
236 |
|
00:23:17,640 --> 00:23:24,680 |
|
infinityุ ูุฐู ุจุฏุฑุฉ ู
ูุชูุจุฉุ ุงุซููู ู
ู ุงูู M ุนูู ู
ููุ ุนูู |
|
|
|
237 |
|
00:23:24,680 --> 00:23:30,860 |
|
Mุ ูุจูู ูู ุงุชุฎูุตุช ู
ู ุงูุฌุฐุฑ ูุตุงุฑ ุงูุชุนุงู
ู ู
ุน ูุฐุง |
|
|
|
238 |
|
00:23:30,860 --> 00:23:36,190 |
|
ุงูุดูู ุฃุณูู ู
ู ุงูุชุนุงู
ู ู
ุน ุงูุดูู main ุงูุฃููุ ุจุนุฏ ูู |
|
|
|
239 |
|
00:23:36,190 --> 00:23:43,150 |
|
ุงุฎุชุจุงุฑ ุนููู ุชุจุฏู ุงูุฑู
ุฒ ุงููู ุนูุฏู ุจู
ููุ ูุชุณู
ู ุงูุฏุงูุฉ |
|
|
|
240 |
|
00:23:43,150 --> 00:23:50,270 |
|
ูุชูุฌุฉ f of xุ ุฅุฐุง ุฃูุง ุนูุฏู ููุง f of x ุจุฏูุง ุชุณุงูู ln 2 |
|
|
|
241 |
|
00:23:50,270 --> 00:23:53,210 |
|
ln ุงูู x ุนูู x |
|
|
|
242 |
|
00:23:56,450 --> 00:24:00,930 |
|
ูู ุงูุฏุงูุฉ ุงููู ุนูุฏูุง ุฏู positive ู continuous ู |
|
|
|
243 |
|
00:24:00,930 --> 00:24:06,350 |
|
decreasing ููุง ูุฃุ ุงูุดุฑูุท ุงูุซูุงุซุฉ ุฅูุงูุงุ ูุนูู ุจุฏู |
|
|
|
244 |
|
00:24:06,350 --> 00:24:10,690 |
|
ู
ู ูููุ ุฅุฐุง ู
ู ุนูุฏู ุงุซููู ูู
ุง ูููุ ูุจููุง ู
ุงููุด |
|
|
|
245 |
|
00:24:10,690 --> 00:24:17,430 |
|
ุนูุงูุฉ ูููุงุ ูู ุฌุฆุช ุงูุขู ูุฐู ุทุจุนูุง ูุฅู ุงูู X ุจูุงุฎุฏุด |
|
|
|
246 |
|
00:24:17,430 --> 00:24:22,660 |
|
ููู
ุฉ ุณุงูุจุฉ ุฅูุง ูุจู ุงููุงุญุฏุ ูุงุญูุง ุจุฏููุง ู
ู ูููุ ุจูู |
|
|
|
247 |
|
00:24:22,660 --> 00:24:27,260 |
|
ุนูุฏ ุงุซูููุ ู
ู ุงุซูููุ ู
ูุฑูุถ ุงููู ู
ูุฌุจ ูุงูู
ูุงู
ู
ู |
|
|
|
248 |
|
00:24:27,260 --> 00:24:31,160 |
|
ุงุซูููุ ู
ูุฑูุถ ู
ูุฌุจุ ูุจูู ูุฐู positiveุ ุงูู |
|
|
|
249 |
|
00:24:31,160 --> 00:24:38,220 |
|
discontinuity ุจูุญุตู ุนูุฏ zeroุ ุนูุฏ zero ู
ุงููุด ุนูุงูุฉ |
|
|
|
250 |
|
00:24:38,220 --> 00:24:43,640 |
|
ููู ูุฃูู ุจุฏุฃ ู
ู ูููุ ูุจูู ุฃูู ุดุฑุทูู ุงุชุญูููุง ุฃูุชูู
ุงุชูู |
|
|
|
251 |
|
00:24:43,640 --> 00:24:50,580 |
|
ูุจูู ุงูุฏุงูุฉ F of X ูุฐู positive |
|
|
|
252 |
|
00:24:50,580 --> 00:24:51,840 |
|
and |
|
|
|
253 |
|
00:24:55,460 --> 00:25:01,500 |
|
continuous ุฏู ุงููู ู
ุชุตู for all x ุงููู ุฃูุจุฑ ู
ู ุฃู |
|
|
|
254 |
|
00:25:01,500 --> 00:25:09,160 |
|
ูุณุงูู 102ุจุงูู
ูุงุณุจุฉ ุงูู decreasingุ decreasing ูู
ุง ูููู |
|
|
|
255 |
|
00:25:09,160 --> 00:25:14,860 |
|
ุนูุฏู ุฏุงูุฉ ุจุณุท ูู
ูุงู
ุ ูุจูู ุฃูุถู ุทุฑููุฉ ููุญูู
ุนูููุง |
|
|
|
256 |
|
00:25:14,860 --> 00:25:19,760 |
|
increasing ู ูุง decreasing ุจูุงุณุทุฉ ุงูุงุดุชูุงูุ ุจุฏูุง |
|
|
|
257 |
|
00:25:19,760 --> 00:25:26,920 |
|
ูุฑูุญ ูุดุชููุงุ ูุจุงุฌู ุจูููู F prime of X ูุณุงูู ุงูู
ูุงู
|
|
|
|
258 |
|
00:25:26,920 --> 00:25:35,930 |
|
ูู ู
ุดุชูุฉ ุงูุจุณุท ูุงูุต ุงูุจุณุท ูู ู
ุดุชูุฉ |
|
|
|
259 |
|
00:25:35,930 --> 00:25:42,370 |
|
ุงูู
ูุงู
ุงููู ูู ุจูุงุญุฏ ุนูู ู
ุฑุจุน ุงูู
ูุงู
ุงูุฃุตูู ูุจูู |
|
|
|
260 |
|
00:25:42,370 --> 00:25:49,130 |
|
ูุฐุง ุจุฏู ูุตูุฑ X ูุชุฑูุญ ู
ุน ุงู X ูุฐู ุชู
ุงู
ุ ููุชููู ุฎููู |
|
|
|
261 |
|
00:25:49,130 --> 00:25:55,290 |
|
ุจุฑุง ุนุงู
ู ู
ุดุชุฑู ุจุธู ูุงุญุฏ ูุงูุต ูุฅู ุงู X ุนูู ู
ููุ ุนูู |
|
|
|
262 |
|
00:25:55,290 --> 00:26:02,980 |
|
X ุชุฑุจูุน ุจุงุฌู ุจููู ุงุชููู ู
ูุฌุจุฉ ูุงูุงูุณ ุชุฑุจูุนูุง ุฏุงุฆู
ุง |
|
|
|
263 |
|
00:26:02,980 --> 00:26:06,340 |
|
ู ุฏุงุฆู
ุง ู
ูุฌุจุฉ ุฅุฐุง ูุฐู ู
ุงููุงุด ุฏุนูุฉ ูู ุงูุฅุดุงุฑุฉ ู
ูุฌุจุฉ |
|
|
|
264 |
|
00:26:06,340 --> 00:26:09,580 |
|
ุงููู ุตุงุฑ ุจููุชู
ูุง ุฅุฐุง ุงููู ุจุฏู ุงุชุญูู
ูู ุงูุฅุดุงุฑุฉ |
|
|
|
265 |
|
00:26:09,580 --> 00:26:16,620 |
|
ุงูู
ูุฏุงุฑ ุจูู ุงูููุณูู ุทุจุนุง ุจุงุฌู ููู
ูุฏุงุฑ ุจูู ุงูููุณูู |
|
|
|
266 |
|
00:26:16,620 --> 00:26:22,640 |
|
ุงุญูุง ุจุฏููุง ู
ู ุนูุฏู ูุงุดุทุจ ูู ุฌูุช ุจุฏุฃุช ู
ู ุนูุฏ |
|
|
|
267 |
|
00:26:22,640 --> 00:26:28,300 |
|
ุงูุงุชูููุ ูู ุงูุฌุซ ูุฐุง ู
ูุฌุจ ููุง ุณุงูุจุ ุจูููู ุขูุ ูู |
|
|
|
268 |
|
00:26:28,300 --> 00:26:33,600 |
|
ุงุชููู ุฃูู ู
ู ุงููุงุญุฏุ ุตุญูุญ ููุง ูุฃุ ูููุ ุนุดุงู ูู |
|
|
|
269 |
|
00:26:33,600 --> 00:26:37,940 |
|
ุงูู e ุจูุงุญุฏุ ูุงูู e ุจุงุชููู ูุงูุณุจุนุฉ ู
ู ุนุดุฑุฉ ุฅุฐุง ูุฐุง |
|
|
|
270 |
|
00:26:37,940 --> 00:26:44,500 |
|
ุนูุฏ ุงุชููู ุจูุนุทููู ููู
ุฉ ู
ูุฌุจุฉ ูููุณ ุณุงูุจุฉ ุตุญุ ูู ููุช |
|
|
|
271 |
|
00:26:44,500 --> 00:26:50,480 |
|
ุงูู E ุจูุงุญุฏ ูุจูู ูู ููุช ุงูู N ุฃู ุงูู X ุจุงุชููู ูุงูุณุจุนุฉ |
|
|
|
272 |
|
00:26:50,480 --> 00:26:55,680 |
|
ู
ู ุนุดุฑ ุงููู ูู ุงูุนุฏุฏ ุงููุ ุจุตูุฑ ูุงุญุฏ ูุงูุต ูุงุญุฏ ูุจูู |
|
|
|
273 |
|
00:26:55,680 --> 00:27:01,460 |
|
ุงูุชููุช ู
ู ู
ูุฌุจ ุงูู ุตูุฑ ุทุจ ูู ุฌูุช ุจุนุฏ ุงุชููู ูุณุจุนุฉ |
|
|
|
274 |
|
00:27:01,460 --> 00:27:04,940 |
|
ู
ู ุนุดุฑุฉ ุงุชููู ุชู
ุงููุฉ ู
ู ุนุดุฑุฉ ุงุชููู ุชุณุนุฉ ู
ู ุนุดุฑุฉ |
|
|
|
275 |
|
00:27:04,940 --> 00:27:11,020 |
|
ููู ุงุญูุง ุงูุนูุงุตุฑ ูู ุงู series ูููุง ุฃุนุฏุงุฏ ุตุญูุญุฉ ูุจูู |
|
|
|
276 |
|
00:27:11,020 --> 00:27:16,600 |
|
ุจุชุงุฎุฏ ู
ู ุงูุนุฏุฏ ูุจูู ุฃูู ุฑูู
ุตุญูุญ ูู ุงูุนุฏุฏ ุงูุชูุงุชุฉ |
|
|
|
277 |
|
00:27:16,600 --> 00:27:22,610 |
|
ูุฃู ุงูุชูุงุชุฉ ูุงุญุฏ ูุดููุฉ ู
ุธุจูุทุ ูุฃูู ุงุชููู ูุณุจุนุฉ ู
ู |
|
|
|
278 |
|
00:27:22,610 --> 00:27:27,750 |
|
ุนุดุฑ ุฃูู ู
ู ูุงุญุฏ ุจุนุฏู ุชุตูุฑ ูุงุญุฏ ููุณุฑ ุฅุฐุง ูุงุญุฏ ูุงูุต |
|
|
|
279 |
|
00:27:27,750 --> 00:27:33,790 |
|
ูุงุญุฏ ููุณุฑ ุจูุนุทููู ููู
ุฉ ุณุงูุจุฉ ูุจูู ูุฐุง ุฃูู ู
ู ุงู |
|
|
|
280 |
|
00:27:33,790 --> 00:27:41,190 |
|
zero ููู ุงู X ุงููู ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู ู
ู ุชูุงุชุฉ ุทุจุนุง |
|
|
|
281 |
|
00:27:41,190 --> 00:27:41,830 |
|
ููุง |
|
|
|
282 |
|
00:27:50,450 --> 00:28:02,040 |
|
ุงูู F is decreasing ููู X ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู ุทูุจ ุชุนุงู |
|
|
|
283 |
|
00:28:02,040 --> 00:28:07,460 |
|
ูุชุทูุน ูุงู ุงู positive ู continuous ู
ู ุนูุฏ ุงุชููู |
|
|
|
284 |
|
00:28:07,460 --> 00:28:12,600 |
|
ูู
ุง ููู ููู ูุง ุชูู ู
ู ุนูุฏ ุงูุชูุงุชุฉ ูู
ุง ููู ุฅุฐุง |
|
|
|
285 |
|
00:28:12,600 --> 00:28:17,240 |
|
ุงูุดุฑูุท ุงูุชูุงุชุฉ ุชุชุญูู ููู ุงููุงุญุฏ ู
ู ูููุ ู
ู ุนูุฏ |
|
|
|
286 |
|
00:28:17,240 --> 00:28:25,240 |
|
ุงูุชูุงุชุฉ ูู
ุง ููู ูุจูู ุจุงุฌู ุจููู ุงู F is positive ู |
|
|
|
287 |
|
00:28:25,240 --> 00:28:29,320 |
|
continuous and |
|
|
|
288 |
|
00:28:30,180 --> 00:28:31,900 |
|
decreasing |
|
|
|
289 |
|
00:28:33,810 --> 00:28:39,690 |
|
For all X greater than or equal to ู
ุงุ ููู ุชูุงุชุฉุ |
|
|
|
290 |
|
00:28:39,690 --> 00:28:44,570 |
|
ูุจูู N ูุฐู ูุงุจูุชุงู ุฃุดูุฑูู ูู ุณุคุงููุง ู
ูุฏุงุดุ ุฅุฐุง ุจุชุฑูุญ |
|
|
|
291 |
|
00:28:44,570 --> 00:28:49,670 |
|
ุชุงุฎุฏ ุงูุชูุงูู
ุงููู ู
ู ูููุ ูุนูู ูุฃูู ูู
ูุช ุฃูู ุญุฏ ู
ู |
|
|
|
292 |
|
00:28:49,670 --> 00:28:53,410 |
|
ุญุฏูุฏ ุงู seriesุ ููุฐุง ูุง ูุคุซุฑ ูุง ุนูู convergence |
|
|
|
293 |
|
00:28:53,410 --> 00:28:59,990 |
|
ููุง ุนูู divergence ุนุฑููุง ุดู ู
ุนูู N ุฃูุจุฑ ู
ู ุฃู ูุณุงูู |
|
|
|
294 |
|
00:28:59,990 --> 00:29:05,180 |
|
ูุงุจูุชุงู N ุงููู ููุช ุจุชููู
ูููุง ูุธุฑู ูุจู ูููู ููู ููู |
|
|
|
295 |
|
00:29:05,180 --> 00:29:09,880 |
|
ุงูุขู ุดูููุงู ุนู
ููุง ูุนูู ุฃูู
ููุง ุฃูู ุญุฏ ู
ู ุญุฏูุฏ ุงู |
|
|
|
296 |
|
00:29:09,880 --> 00:29:14,160 |
|
series ูู ุงูุณุคุงู ุชุจุนูุง ูุฐุง ุฅุฐุง ุจุฏูุง ูุฑูุญ ูุงุฎุฏ ุงูุขู |
|
|
|
297 |
|
00:29:14,160 --> 00:29:22,100 |
|
ุชูุงู
ู ู
ู ุชูุงุชุฉ ุฅูู infinity ููุฅุชููู ูุฅู ุงู X ุนูู X |
|
|
|
298 |
|
00:29:22,100 --> 00:29:27,010 |
|
DX ูุงููู ุฅุฐุง ุงูุชูุงู
ู ูุฐุง converge ูุจูู ุงู series |
|
|
|
299 |
|
00:29:27,010 --> 00:29:30,330 |
|
converge ูุฅุฐุง ุงูุชูุงู
ู diverge ูุจูู ุงู series |
|
|
|
300 |
|
00:29:30,330 --> 00:29:35,310 |
|
diverge ุจููููู ุจุณูุทุฉ ุฌุฏุง ูุจูู ูุฐุง improper |
|
|
|
301 |
|
00:29:35,310 --> 00:29:41,190 |
|
integral ูู ุฅุฐุง ูุงู ุงูุชูุงู
ู ู
ู ุซูุงุซุฉ ุฅูู ุจูู ูู
ุง |
|
|
|
302 |
|
00:29:41,190 --> 00:29:47,610 |
|
ุจูู tends to infinity ูู
ูุ ููู ุงุชููู ูุฅู ุงู X ูุฐุง |
|
|
|
303 |
|
00:29:47,610 --> 00:29:55,310 |
|
ููู ุนุจุงุฑุฉ ุนู ุงููุู
ุดุชูุฉ ู
ูุ ููุง ุงู X ูุง ุจุฌุฏู ููุง ุงู |
|
|
|
304 |
|
00:29:55,310 --> 00:30:03,730 |
|
X ููุฃูู ุงุญูุง ุจุฏูุง ููุงู
ู ุงุชููู y d1 ู
ุธุจูุท ูุจูู |
|
|
|
305 |
|
00:30:03,730 --> 00:30:11,110 |
|
ุชูุงู
ููุง high limit ูู
ุง b tends to infinity ู len x |
|
|
|
306 |
|
00:30:11,110 --> 00:30:17,570 |
|
ุงููู ุชุฑุจูุน ุนูู ุงุชููู ู
ุน ุงุชููู ุงููู ูุณูู ุนูููุง ูุถูุช |
|
|
|
307 |
|
00:30:17,570 --> 00:30:21,550 |
|
ุญุฏูุฏ ุงู .. ูุงููู ูุงููู ูู ุนูู ุงุชููู ูููุง ุงุชููู |
|
|
|
308 |
|
00:30:21,550 --> 00:30:24,910 |
|
ูููุง ู
ู ุชูุงุชุฉ ุงููู ุจูุจูู .. ุจูุงุด ูุงุญุฏ ููููู ุงูุช |
|
|
|
309 |
|
00:30:24,910 --> 00:30:30,020 |
|
ุบูุท ููุง ุบูุท ููุง ุญุงุฌุฉุ ุงู ุงุชููู ู
ุน ุงุชูููุ ุจุฏู ุงุนูุถ |
|
|
|
310 |
|
00:30:30,020 --> 00:30:35,280 |
|
ุจุญุฏูุฏ ุงูุชูุงู
ูุ ูุจูู ูุฐุง ุงูููุงู
ูุณุชูู ุงู limit ูู
ุง |
|
|
|
311 |
|
00:30:35,280 --> 00:30:41,900 |
|
B tends to infinity ูู
ูุ ูุฅู ุงู B ุงููู ุชุฑุจูุน ูุงูุต |
|
|
|
312 |
|
00:30:41,900 --> 00:30:50,240 |
|
ูุฅู ุชูุงุชุฉ ุงููู ุชุฑุจูุน ุนูุฏู
ุง ุชุฐูุจ ููุฅูููููุชู ูุฅู |
|
|
|
313 |
|
00:30:50,240 --> 00:30:54,800 |
|
ุงูุฅูููููุชู ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
314 |
|
00:30:54,800 --> 00:30:58,060 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
315 |
|
00:30:58,060 --> 00:31:02,180 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
316 |
|
00:31:02,180 --> 00:31:06,680 |
|
ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง ุชูุฑูุจุง |
|
|
|
317 |
|
00:31:06,680 --> 00:31:12,660 |
|
ุชู |
|
|
|
318 |
|
00:31:13,210 --> 00:31:19,010 |
|
ู
ุฏููุฉ ุฏุงูููุฑุฌ ุจุงูุชุฌุฑุงู ุชุณุช ุจูููู ุงู series ุฃูุง |
|
|
|
319 |
|
00:31:19,010 --> 00:31:28,830 |
|
ู
ุนุงูุง ุฏุงูููุฑุฌ ูุจุฌู ุจูููู by the integral test the |
|
|
|
320 |
|
00:31:28,830 --> 00:31:29,990 |
|
series |
|
|
|
321 |
|
00:31:32,390 --> 00:31:38,350 |
|
ุงูุฃุตููุฉ summation ู
ู ุงู N equal ุฃุฑุจุนุฉ to infinity |
|
|
|
322 |
|
00:31:38,350 --> 00:31:45,590 |
|
ูุฅู ุงู N ุนูู ุงูุฌุฐุฑ ุงูุชุฑุจูุนู ู N ู
ุง ููุง divergence |
|
|
|
323 |
|
00:31:45,590 --> 00:31:46,930 |
|
ูุงูุชูููุง ู
ู ุงูู
ุซุงู |
|
|
|
324 |
|
00:32:05,300 --> 00:32:11,220 |
|
ุณุคุงู ุซุงูู ุณุคุงู |
|
|
|
325 |
|
00:32:11,220 --> 00:32:17,580 |
|
ุงุชููู ุจูููู ุงู summation ู
ู N equal one to |
|
|
|
326 |
|
00:32:17,580 --> 00:32:24,320 |
|
infinity ููุงุญุฏ ู square root ูู N ู square root ูู |
|
|
|
327 |
|
00:32:24,320 --> 00:32:26,600 |
|
N ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
328 |
|
00:32:29,260 --> 00:32:34,780 |
|
ูุจูู ูู ุฑูุญูุง ูุงุฎุฏูุง ุงู F of X ุงู F of X ุจูุจูู |
|
|
|
329 |
|
00:32:34,780 --> 00:32:42,260 |
|
ุชุณุงูู ูุงุญุฏ ุนูู ุฌุฐุฑ ุงู X ูู ุฌุฐุฑ ุงู X ุฒุงุฆุฏ ูุงุญุฏ ุงูุด |
|
|
|
330 |
|
00:32:42,260 --> 00:32:47,560 |
|
ุฑุฃูููุง ูู ุงู function ูุฐู ุนู
ุฑูุง ุจุชุงุฎุฏ ููู
ุฉ ุณุงูุจุฉ |
|
|
|
331 |
|
00:32:47,560 --> 00:32:52,640 |
|
ู
ู ุงููุงุญุฏ ูู
ุง ููู ูุจูู positive ุงูู discontinuity |
|
|
|
332 |
|
00:32:52,640 --> 00:32:59,980 |
|
ุจูุญุตู ุนูุฏ ุงูุตูุฑ ุชู
ุงู
ุงูุตูุฑ ุจุฑุง ุงููุชุฑุฉ ุงููู ุฃูุง |
|
|
|
333 |
|
00:32:59,980 --> 00:33:03,660 |
|
ู
ุงููุด ุนูุงูุฉ ููู ูุจูู ู
ุนูุงุชู positive ู continuous |
|
|
|
334 |
|
00:33:03,660 --> 00:33:11,500 |
|
ู
ู ุนูุฏ ุงููุงุญุฏ ูู
ุง ููู ูุจูู ูุฐู positive and |
|
|
|
335 |
|
00:33:11,500 --> 00:33:19,140 |
|
continuous for all x ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู ุงููุงุญุฏ |
|
|
|
336 |
|
00:33:26,820 --> 00:33:31,820 |
|
ุจุงูุฌุฃ ูุนู
ููุฉ ุงูุงุดุชูุงู ุฅุฐุง ุงู ุจุณุท ู
ุชุบูุฑ ู ุงูู
ูุงู
|
|
|
|
337 |
|
00:33:31,820 --> 00:33:36,820 |
|
ู
ุชุบูุฑ ููู ุฅุฐุง ุงู ุจุณุท ุซุงุจุช ุจุตูุฑ ู
ู ุฃุณูู ู
ุง ูููู |
|
|
|
338 |
|
00:33:36,820 --> 00:33:42,620 |
|
ุจุฑุฌุน ูู series ุงูุฃุตููุฉ ุจููู ุงูุญุฏ ุงููููู ุงููุงุญุฏ ุนูู |
|
|
|
339 |
|
00:33:42,620 --> 00:33:49,740 |
|
ุฌุฏุฑ ุงู N ุฌุฏุฑ ุงู N ุฒุงุฆุฏ ูุงุญุฏ ุงูุญุฏ ุงููููู ุงูุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
340 |
|
00:33:49,740 --> 00:33:55,160 |
|
ูุงุญุฏ ุนูู ุงูุฌุฐุฑ ุงูุชุฑุจูุนู ูุฅู ุฒุงุฆุฏ ูุงุญุฏ ูู ุงูุฌุฐุฑ |
|
|
|
341 |
|
00:33:55,160 --> 00:34:00,720 |
|
ุงูุชุฑุจูุนู ูุฅู ุฒุงุฆุฏ ูุงุญุฏ ุฒุงุฆุฏ ูุงุญุฏ ุงูู ูู ู
ุง ุฃูุจุฑ |
|
|
|
342 |
|
00:34:00,720 --> 00:34:06,690 |
|
ุงูุญุฏ ุงูุฃูู ููุง ุงูุชุงููุ ุงูุฃูู ูุจูู ูุฐุง ุฃูุจุฑ ู
ู ูุฐุง |
|
|
|
343 |
|
00:34:06,690 --> 00:34:10,510 |
|
ูุฐุง ูุนูู ุงู ุงู series decreasing ูุจุงูุชุงูู ุงู |
|
|
|
344 |
|
00:34:10,510 --> 00:34:16,870 |
|
function decreasing ูุจูู ูุฐุง ุจุฏู ูุนุทูู ุงูุดุฑุท |
|
|
|
345 |
|
00:34:16,870 --> 00:34:24,920 |
|
ุงูุชุงูุช ููู ุงูู ุงู decreasing ููู ุงู N ุฃูุจุฑ ู
ู ุฃู |
|
|
|
346 |
|
00:34:24,920 --> 00:34:31,040 |
|
ุชุณุงูู 100 ุงููุงุญุฏ ุฅุฐุง ุงูุชุญูุช ุงูุดุฑูุท ุงูุชูุงุชุฉ ู
ู ุนูุฏ X |
|
|
|
347 |
|
00:34:31,040 --> 00:34:36,980 |
|
ูุณุงูู ูุงุญุฏ ูู
ุง ููู ุฅุฐุง ู
ุง ุนูู ุงููู ุฃุฑูุญ ุฃุงุฎุฏ ุชูุงู
ู |
|
|
|
348 |
|
00:34:36,980 --> 00:34:44,680 |
|
ู
ู ูุงุญุฏ ู infinity ู DX ุนูู ุฌุฐุฑ ุงู X ูู ุฌุฐุฑ ุงู X |
|
|
|
349 |
|
00:34:44,680 --> 00:34:51,070 |
|
ุฒุงุฆุฏ ูุงุญุฏ ููู DX ูุฐุง ุงูู Improper Integral ููุฌุจ |
|
|
|
350 |
|
00:34:51,070 --> 00:34:56,130 |
|
ุงูุฐุฆุฉ ุญุณุจู as a limit ูู
ุง b tends to infinity ู
ู |
|
|
|
351 |
|
00:34:56,130 --> 00:35:03,730 |
|
ูุงุญุฏ ุฅูู ุจู ููุงุญุฏ ุนูู ุฌุฐุฑ ุงู X ุฌุฐุฑ ุงู X ุฒุงุฆุฏ ูุงุญุฏ |
|
|
|
352 |
|
00:35:03,730 --> 00:35:10,950 |
|
DX ุจุนุฏ ููู ุถู
ุช ุงูุนู
ููุฉ ุนู
ููุฉ ุฌุฑุงุก ุงูุชูุงู
ู ููุฐู |
|
|
|
353 |
|
00:35:10,950 --> 00:35:16,740 |
|
ุงูุจูุฏ ุจุงูุดูู ูุฐุง ุดูููุง ูููุฉ ู ู
ุด ูุทูู ููู ุงูุง ู
ู
ูู |
|
|
|
354 |
|
00:35:16,740 --> 00:35:23,700 |
|
ุงุนู
ู ุชุนููุถุฉ ู
ุนููุฉ ุงุจุณุท ุงูุดูู ุชุจุน ูุฐู ุงุชุจุงูุฉ ูุนูู |
|
|
|
355 |
|
00:35:23,700 --> 00:35:30,680 |
|
ูู ุฌูุช ูููุชูู ุญุท ุฌุฐุฑ ุงู X ุฒุงุฆุฏ ูุงุญุฏ ููู ุจุฏู ูุณุงูู |
|
|
|
356 |
|
00:35:30,680 --> 00:35:39,350 |
|
T ุฅุฐุงู ูุงุญุฏ ุนูู ุงุชููู ุฌุฐุฑ ุงู X DX ุจูุณุงูู ู
ุงูุ DX DX |
|
|
|
357 |
|
00:35:39,350 --> 00:35:43,650 |
|
DX DX DX DX DX DX |
|
|
|
358 |
|
00:35:43,650 --> 00:35:43,690 |
|
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX |
|
|
|
359 |
|
00:35:43,690 --> 00:35:51,670 |
|
DX DX DX DX DX DX DX DX DX DX |
|
|
|
360 |
|
00:35:51,670 --> 00:35:51,690 |
|
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX |
|
|
|
361 |
|
00:35:51,690 --> 00:35:51,710 |
|
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX |
|
|
|
362 |
|
00:35:51,710 --> 00:35:52,150 |
|
DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX DX |
|
|
|
363 |
|
00:35:59,980 --> 00:36:05,580 |
|
ูุจูู ุขูุฉ ุงูู
ุณุฃูุฉ ุฅูู limit ูู
ุง B tends to infinity |
|
|
|
364 |
|
00:36:05,580 --> 00:36:10,540 |
|
ูุชูุงู
ู 2DT |
|
|
|
365 |
|
00:36:10,540 --> 00:36:11,600 |
|
ุนูู T |
|
|
|
366 |
|
00:36:14,920 --> 00:36:17,480 |
|
ูุง ุฃุฑูุฏ ุฃู ุฃุบูุฑ ุญุฏูุฏ ุงูุชูุงู
ู ูุฃููู ูู
ุช ุจุชุบููุฑูุง |
|
|
|
367 |
|
00:36:17,480 --> 00:36:21,660 |
|
ุจุฏูุงูุฉ ุงู index ูุชุญุช ุงู limit ูุฃ ูุฃ ุฎููููุง ู ุจุฑุฌุน |
|
|
|
368 |
|
00:36:21,660 --> 00:36:27,220 |
|
ูู
ุง ุฃูู
ู ุฅูู ุฃุตููุง ูุจูู ูุฐุง ุงูููุงู
ูุณูู limit ูู
ุง |
|
|
|
369 |
|
00:36:27,220 --> 00:36:32,820 |
|
b tends to infinity ูู ุงุชููู ูุงูุจุณุทู ูุงุถู ุงูู
ูุงู
|
|
|
|
370 |
|
00:36:32,820 --> 00:36:41,240 |
|
ูุจูู len absolute value ูู
ูุ ุงูุชู ุชุจูู P ูู ุฌุฐุฑ ุงู |
|
|
|
371 |
|
00:36:41,240 --> 00:36:47,460 |
|
X ุฒุงุฆุฏ ูุงุญุฏ ูุจูู ุฌุฐุฑ ุงู X ุฒุงุฆุฏ ูุงุญุฏ ูุงูุงู ุจููู ู
ู |
|
|
|
372 |
|
00:36:47,460 --> 00:36:54,110 |
|
ูุงุญุฏ ูุบุงูุฉ ุงู P ูุจูู ูุงู
ูุชูุง ุจุงูู ุงู T ุดููุช ุงู T |
|
|
|
373 |
|
00:36:54,110 --> 00:36:59,810 |
|
ูุญุทูุช ุงู X ุฒุงุฆุฏ ูุงุญุฏ ูุฑุฌุนุช ุญุฏูุฏ ุงูุชูู
ู ูู
ุง ูุงูุช |
|
|
|
374 |
|
00:36:59,810 --> 00:37:05,070 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ู ุงูุฎููู ุจุฑุง ููู limit |
|
|
|
375 |
|
00:37:05,070 --> 00:37:10,290 |
|
ูู
ุง B tends to infinity ูููุง ุงู len absolute value |
|
|
|
376 |
|
00:37:10,290 --> 00:37:17,490 |
|
ูุฌุฐุฑ ุงูู B ุฒุงุฆุฏ ูุงุญุฏ ูุงูุต ุงูู len absolute value ูููุงุญุฏ |
|
|
|
377 |
|
00:37:17,490 --> 00:37:24,950 |
|
ุฒุงุฆุฏ ุงููุงุญุฏ ูุจุฏุฃ ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู 2 ููู ุงูุขู ูู
ุง |
|
|
|
378 |
|
00:37:24,950 --> 00:37:28,290 |
|
ุจูุจุฏุฃ ุชุฑูุญ ููู infinity ุงูู square root ููู infinity |
|
|
|
379 |
|
00:37:28,290 --> 00:37:34,390 |
|
ุจู infinity ุฒุงุฆุฏ ูุงุญุฏ ูุฃู ุงูู infinity ุจู infinity |
|
|
|
380 |
|
00:37:34,390 --> 00:37:40,670 |
|
ูุงูุต ูุฃู ุงุซููู ุงููู ูู ุจุฌุฏุงุฑ ุจู infinity ู
ุฏุงู
|
|
|
|
381 |
|
00:37:40,670 --> 00:37:46,670 |
|
infinity ูุจูู ุชูุงู
ู ู
ู ูุงุญุฏ ูู infinity ููุงุญุฏ ุนูู |
|
|
|
382 |
|
00:37:46,670 --> 00:37:55,920 |
|
ุฌุฐุฑ ุงูู X ุฌุฐุฑ ุงูู X ุฒุงุฆุฏ ูุงุญุฏ DX ู
ุนูุงู diverse ุจุงูู |
|
|
|
383 |
|
00:37:55,920 --> 00:38:05,460 |
|
integral test by the integral test the series |
|
|
|
384 |
|
00:38:05,460 --> 00:38:13,800 |
|
summation ู
ู n equal one to infinity ููุงุญุฏ ุนูู ุฌุฐุฑ |
|
|
|
385 |
|
00:38:13,800 --> 00:38:20,660 |
|
ุงูู n ุฌุฐุฑ ุงูู n ุฒุงุฆุฏ ูุงุญุฏ ู
ุงููุง diverge ูุงูุชูููุง ู
ู |
|
|
|
386 |
|
00:38:20,660 --> 00:38:21,760 |
|
ุงูู
ุณุฃูุฉ |
|
|
|
387 |
|
00:38:40,640 --> 00:38:43,620 |
|
ู
ุซุงู ุฑูู
ุซูุงุซุฉ |
|
|
|
388 |
|
00:38:46,740 --> 00:38:52,740 |
|
ุงูู
ุซุงู ุฑูู
ุซูุงุซุฉ ุจูููู ู
ุง ูุฃุชู summation ู
ู N |
|
|
|
389 |
|
00:38:52,740 --> 00:39:02,420 |
|
equal ุซูุงุซุฉ to infinity ูู
ููุ ููุงุญุฏ ุนูู N ูู ุงูู N |
|
|
|
390 |
|
00:39:02,810 --> 00:39:09,070 |
|
ุงูุฌุฏุฑู ุงูุชุฑุจูู ุงูู ูู ุงูู N ููู ุชุฑุจูุน ูุงูุต ูุงุญุฏ |
|
|
|
391 |
|
00:39:09,070 --> 00:39:18,290 |
|
ูุจูู ุจุฏูุง ูุฑูุญ ูุงุฎุฏ ู
ู ุงูู F of X ุงููุงุญุฏ ุนูู X ูู |
|
|
|
392 |
|
00:39:18,290 --> 00:39:24,830 |
|
ุงูู X ุงูุฌุฏุฑู ุงูุชุฑุจูู ุงูู ูู ุงูู X ููู ุชุฑุจูุน ูุงูุต |
|
|
|
393 |
|
00:39:24,830 --> 00:39:33,510 |
|
ูุงุญุฏ ุงูู summation ุจุฏู ู
ู ุนูุฏู ุงูุชูุงุชุฉ ุนู
ุฑ ุงูู
ูุงู
|
|
|
|
394 |
|
00:39:33,510 --> 00:39:40,270 |
|
ูุฐุง ุจูููู ุบูุฑ ู
ุนุฑู ุนูุฏ ุงูุชูุงุชุฉ ุซูุงุซุฉ ู
ุงุดู ููู |
|
|
|
395 |
|
00:39:40,270 --> 00:39:45,270 |
|
ุซูุงุซุฉ ู
ุงุดู ููู ุซูุงุซุฉ ุจูุงุญุฏ ูุดููุฉ ูู
ุง ุชุฑุงุจู ูู
ุงู |
|
|
|
396 |
|
00:39:45,270 --> 00:39:50,970 |
|
ุจูุงุญุฏ ูุดููุฉ ูุจูู ููู
ุฉ ู
ุนุฑูุฉ ูุจูู ู
ุนูู ูุฐุง ุงูููุงู
|
|
|
|
397 |
|
00:39:50,970 --> 00:39:55,130 |
|
ุฃู ุงูู
ูุงู
ูุง ูู
ูู ุฃู ูุฃุฎุฐ zero ู
ู ุนูุฏ ุงูุชูุงุชุฉ |
|
|
|
398 |
|
00:39:55,130 --> 00:40:01,920 |
|
ูู
ุนููู ูุจูู continuous positive ูุฐูู ูู ูุฃุฎุฐ ููุฌุงุชู |
|
|
|
399 |
|
00:40:01,920 --> 00:40:05,920 |
|
ุบูุฑ ุฌุงุจ ุงูู
ูู ุงููุงุญุฏ ุงุญูุง ู
ู ููู ูุงูุฏู ุงูุชูุงุชุฉ |
|
|
|
400 |
|
00:40:05,920 --> 00:40:11,960 |
|
ูุจูู ูุฐู positive and |
|
|
|
401 |
|
00:40:11,960 --> 00:40:17,260 |
|
continuous |
|
|
|
402 |
|
00:40:17,260 --> 00:40:24,600 |
|
for all x ุฃูุจุฑ ู
ู ุฃู ุชุณุงูู ุซูุงุซุฉ |
|
|
|
403 |
|
00:40:32,690 --> 00:40:41,640 |
|
ุงูุญุฏ ุงู ุงูุง ุงู ูุงุญุฏ ุนูู ุงู ูุงู ุงูุงูุงูุฌุฏุฑู ุงูุชุฑุจููู |
|
|
|
404 |
|
00:40:41,640 --> 00:40:48,040 |
|
ูุฅู ุงูู N ููู ุชุฑุจูู ูุงูุต ูุงุญุฏ greater than ุงูู A N |
|
|
|
405 |
|
00:40:48,040 --> 00:40:54,380 |
|
plus one ุงููู ูู ุจุฏู ูุณุงูู ูุงุญุฏ ุนูู N plus one ูุฃู |
|
|
|
406 |
|
00:40:54,380 --> 00:41:01,120 |
|
ุงูู N plus one ุงูู square root ูุฅู ุงูู N plus one ููู |
|
|
|
407 |
|
00:41:01,120 --> 00:41:09,490 |
|
ุชุฑุจูู ุฃูุจุฑ ู
ู ูุฐุง ูุจูู ูุฐุง ุจุฏู ูุนุทููุง decreasing |
|
|
|
408 |
|
00:41:09,490 --> 00:41:12,510 |
|
series for all x |
|
|
|
409 |
|
00:41:15,780 --> 00:41:21,000 |
|
ุซูุงุซุฉ ุฅุฐุง ุชุญููุช ุงูุดุฑูุท ุงูุซูุงุซุฉ ุฅุฐุง ุจูุฏุฑ ุงุณุชุฎุฏู
ุงูู |
|
|
|
410 |
|
00:41:21,000 --> 00:41:26,160 |
|
integral test ูุจูู ุจุฑูุญ ุฃุฎุฏ ุชูุงู
ู ู
ู ุซูุงุซุฉ ูู |
|
|
|
411 |
|
00:41:26,160 --> 00:41:33,480 |
|
infinity ูุฏู x ุนูู x ูุฅู ุงูู x ุงูุฌุฏุฑู ุงูุชุฑุจูุฉ ูุฅู |
|
|
|
412 |
|
00:41:33,480 --> 00:41:40,170 |
|
ุงูู x ููู ุชุฑุจูุฉ ูุงูุต ูุงุญุฏ ุชูุงู
ู ูุฐุง improper |
|
|
|
413 |
|
00:41:40,170 --> 00:41:46,570 |
|
integral ูุจูู ุจุฏูุง ูุฑูุญ ูุญุณุจู as an improper |
|
|
|
414 |
|
00:41:46,570 --> 00:41:52,630 |
|
integral ู
ู ุซูุงุซุฉ ุฅูู ุจู ูู
ุง ุจู tends to infinity |
|
|
|
415 |
|
00:41:52,630 --> 00:42:01,890 |
|
ูู
ููุ ูุฏู x ุนูู ู
ููุ ุนูู x ูู ูู ุงูุงูุณ ุงูุฌุฏุฑู |
|
|
|
416 |
|
00:42:01,890 --> 00:42:08,250 |
|
ุงูุชุฑุจูุฉ ููู ุงูุงูุณ ููู ุชุฑุจูุฉ ูุงูุต ูุงุญุฏุฉ ูุนูู ูุฐุง ุจุฏู |
|
|
|
417 |
|
00:42:08,250 --> 00:42:14,670 |
|
ูุณุงูู limit ูู
ุง B tends to infinity ุชูุงู
ู ู
ู ุซูุงุซุฉ |
|
|
|
418 |
|
00:42:14,670 --> 00:42:20,790 |
|
ุงูู ุจูู ุทูุนูู ูู ุฃุญุฏ ุนูู X DX ูุฐู ู
ุด ูู ู
ุดุชูุฉ ููู |
|
|
|
419 |
|
00:42:20,790 --> 00:42:28,760 |
|
ุงูู X ูุจูู ูุฐู ุจูุฏุฑ ุงููู ุฏู ูุฅู ุงูู X ุนูู ูุฅู ุงูู X |
|
|
|
420 |
|
00:42:28,760 --> 00:42:35,280 |
|
ุงูุฌุฏุฑู ุงูุชุฑุจูุฉ ูุฅู ุงูู X ููู ุชุฑุจูุฉ ูุงูุต ูุงุญุฏ ูุจูู |
|
|
|
421 |
|
00:42:35,280 --> 00:42:39,500 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณูู ุงูู limit ูู
ุง B tends to |
|
|
|
422 |
|
00:42:39,500 --> 00:42:47,340 |
|
infinity ุทูุนูู ููุฐู ูุฅููุง DY ุนูู Y ู Y ุชุฑุจูุฉ ูุงูุต |
|
|
|
423 |
|
00:42:47,340 --> 00:42:54,360 |
|
ูุงุญุฏ ุชุญุช ุงูุฌุฏุฑู ุณู ุงููุฑุณ ูุจูู ูุฐู ุงูู limit ูุณู |
|
|
|
424 |
|
00:42:54,360 --> 00:43:01,440 |
|
ุงููุฑุณ ูู ุงูู X ูุงูุญูู ู
ู ุซูุงุซุฉ ูุบุงูุฉ ู
ูู
ูุบุงูุฉ B |
|
|
|
425 |
|
00:43:01,440 --> 00:43:06,360 |
|
ุฅุฐุง ูุฐุง ุงูููุงู
ูุณูู ุงูู limit ูู
ุง B tends to |
|
|
|
426 |
|
00:43:06,360 --> 00:43:16,840 |
|
infinity ูุณู ุงููุฑุณ ูู ุงูู B ูุงูุต ุณู ุงููุฑุณ ูู |
|
|
|
427 |
|
00:43:16,840 --> 00:43:23,320 |
|
ุงูุซูุงุซุฉ ุดูู ุนูุฏูุง ูุฐุง ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
428 |
|
00:43:23,320 --> 00:43:27,300 |
|
ูุณุงูู |
|
|
|
429 |
|
00:43:27,300 --> 00:43:33,440 |
|
ุณู ุงููุฑุณ ูู ุจูุจูุจ ู
ุงููุง ููุงูุฉ ูู ู
ุงููุง ููุงูุฉ ุณู |
|
|
|
430 |
|
00:43:33,440 --> 00:43:39,100 |
|
ุงููุฑุณ ุนูุฏ ู
ุงููุง ููุงูุฉ ุจุงู ุนูู ุงุซููู ูุจูู ุจุงู ุนูู |
|
|
|
431 |
|
00:43:39,100 --> 00:43:46,810 |
|
ุงุซููู ู
ุธุจูุท ูุงูุต ุณู ุงููุฑุณ ูู ุซูุงุซุฉ ุจุฑุถู ูุฐุง ู
ูุฏุฑ |
|
|
|
432 |
|
00:43:46,810 --> 00:43:52,310 |
|
ุซุงุจุช ููุฐุง ู
ูุฏุฑ ุซุงุจุช ุฅุฐุง ุงุนุทุงูู ููู
ุฉ ุนุฏุฏูุฉ ู
ุฏุงู
|
|
|
|
433 |
|
00:43:52,310 --> 00:43:58,210 |
|
ููู
ุฉ ุนุฏุฏูุฉ ูุจูู ุจูุงุก ุนููู ุงูุชูุงู
ู ู
ู ุซูุงุซุฉ |
|
|
|
434 |
|
00:43:58,210 --> 00:44:04,230 |
|
ูุฅูููููุชู ููุงุญุฏ ุนูู X ูุฅู X ุงูุฌุฏุฑู ุงูุชุฑุจูุฉ ูุฅู X |
|
|
|
435 |
|
00:44:04,230 --> 00:44:13,840 |
|
ุงููู ุชุฑุจูุน ูุงูุต ูุงุญุฏ DX convert ู
ุง ุฏุงู
ุชุชูุงู
ู ุจูู |
|
|
|
436 |
|
00:44:13,840 --> 00:44:22,080 |
|
ุงูู series ุงูุงุตููุฉ by the integral test |
|
|
|
437 |
|
00:44:25,740 --> 00:44:30,800 |
|
ุงููู ูู summation ู
ู N equal ุซูุงุซุฉ to infinity |
|
|
|
438 |
|
00:44:30,800 --> 00:44:38,020 |
|
ููุงุญุฏ ุนูู N ูุฅู ุงูู N ุงูุฌุฐุฑ ุงูุชุฑุจูุนู ูุฅู ุงูู ูู |
|
|
|
439 |
|
00:44:38,020 --> 00:44:44,700 |
|
ุชุฑุจูุน ูุงูุต ูุงุญุฏ converge ูุงูุชูููุง ู
ู ุงูู
ุณุฃูุฉ |
|
|