abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
raw
history blame
54.8 kB
1
00:00:00,000 --> 00:00:07,980
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ุซุงู†ูŠุฉ ุจุนุฏ
2
00:00:07,980 --> 00:00:18,940
ุงู„ุทูˆุงุฑุฆ ูˆู‡ูŠ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุญูˆุณุจุฉ ุงู„ู…ุชู†ู‚ู„ุฉ ู„ู…ุณุงู‚
3
00:00:18,940 --> 00:00:25,220
ุฑูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ูƒู„ูŠุฉ technology
4
00:00:25,220 --> 00:00:32,700
ุงู„ู…ุนู„ูˆู…ุงุช ุจุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ูุฑุน ุงู„ุฌู†ูˆุจ ุงู„ู…ุญุงุถุฑุฉ
5
00:00:32,700 --> 00:00:37,800
ุงู„ูŠูˆู… ู‡ูŠ ุจุนู†ูˆุงู† matrix determinant ุฃูˆ ู…ุญุฏุฏ
6
00:00:37,800 --> 00:00:42,920
ุงู„ู…ุตููˆูุฉ ููŠ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ู†ุชุนุฑู ุนู„ู‰
7
00:00:42,920 --> 00:00:49,210
ุดุบู„ุชูŠู†.. ู‡ู†ุนุฑู ุดุบู„ุชูŠู† ุฃุณุงุณูŠุชูŠู† ู‡ูŠ ูƒูŠู ู†ุฌุฏ ู…ุญุฏุฏ
8
00:00:49,210 --> 00:00:56,270
ุงู„ู…ุตููˆูุฉ ูˆุงู„ุฃู…ุฑ ุงู„ุขุฎุฑ ู‡ูˆ ูƒูŠู ู†ุฌุฏ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ
9
00:00:56,270 --> 00:01:02,630
ู„ู„ู…ุตููˆูุฉ ููŠ ุญุงู„ ูˆุฌูˆุฏ ู‡ุฐุง ุงู„ู…ุนูƒูˆุณ ุฏุนูˆู†ุง ุงู„ุขู† ู†ุชุนุฑู
10
00:01:02,630 --> 00:01:08,370
ุนู„ู‰ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุฃูˆ ุงู„ู€ matrix determinant ุงู„ู€
11
00:01:08,370 --> 00:01:13,150
Matrix Determinant ุฃูˆ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ู‡ูˆ ู…ุญุฏุฏ
12
00:01:13,150 --> 00:01:20,110
ู„ู…ุตููˆูุฉ ู…ุฑุจุนุฉ ูŠุนู†ูŠ ู…ุตููˆูุฉ ุฏุฑุฌุชู‡ุง 2ร—2 ุฃูˆ 3ร—3 ุฃูˆ 4ร—4
13
00:01:20,110 --> 00:01:25,510
ุฃูˆ Nร—N ุจุตูˆุฑุฉ ุนุงู…ุฉ ุฃุญู†ุง ุงู„ุขู† ู‡ู†ุชุนุฑู ููŠ ุงู„ุจุฏุงูŠุฉ ุดูˆ
14
00:01:25,510 --> 00:01:30,710
ู…ุนู†ุงุชู‡ุง ุฃูˆ ู…ุง ู‡ูˆ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ the determinant of
15
00:01:30,710 --> 00:01:37,550
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ูƒูˆู†ุฉ ู…ู† ุงู„ู„ูŠ ู‡ูˆ ุฃูˆ ู…ู† ุงู„ุฏุฑุฌุฉ
16
00:01:37,550 --> 00:01:43,360
ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู† ุงู„ู„ูŠ ู‡ูŠ A,B,C,D ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ุชุนุฑูŠู
17
00:01:43,360 --> 00:01:49,660
ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุฃูˆ the determinant of the matrix ู‡ูˆ
18
00:01:49,660 --> 00:01:54,200
ูƒู…ุงู„ูŠ ุทุจุนู‹ุง ุจู†ุฑู…ุฒ ู„ู‡ ุจุงู„ุฑู…ุฒ ุงู„ู„ูŠ ู‡ูˆ column ู‡ู†ุง ูˆ
19
00:01:54,200 --> 00:01:57,840
column ู‡ู†ุง ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุนู…ูˆุฏ ู…ู† ู‡ู†ุง ูˆ ุนู…ูˆุฏ ู…ู† ู‡ู†ุง ูˆ
20
00:01:57,840 --> 00:02:02,280
ุจูŠู†ู‡ู… ู…ูƒุชูˆุจุฉ ู†ูุณ ุงู„ู…ุตููˆูุฉ ุงู„ุนุงุฏูŠุฉ ู†ูˆุฌุฏ ุงู„ู…ุญุฏุฏ ุจูŠุฌูŠ
21
00:02:02,280 --> 00:02:07,560
ุจู†ุถุฑุจ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู†ุงู‚ุต ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ
22
00:02:07,560 --> 00:02:11,260
ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุนุจุงุฑุฉ ุนู† ุฑู‚ู… ู‡ูŠุทู„ุน ุงู„ู„ูŠ
23
00:02:11,260 --> 00:02:16,680
ู‡ูˆ A ููŠ D ู†ุงู‚ุต B ููŠ C ู‡ุฐุง ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ู†
24
00:02:16,680 --> 00:02:22,540
ุงู„ุฏุฑุฌุฉ 2 ููŠ 2 ุจุงู„ุงุณุชุนุงู†ุฉ ุจู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ู…ู† ุงู„ุฏุฑุฌุฉ 2
25
00:02:22,540 --> 00:02:29,240
ููŠ 2 ู‡ู†ุนุฑู ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ู„ู…ุง ุชูƒูˆู† ุฏุฑุฌุฉ ุงู„ู…ุตููˆูุฉ 3 ููŠ
26
00:02:29,240 --> 00:02:33,860
3 ู‡ูŠ ุฃู…ุงู…ู†ุง ู…ุตููˆูุฉ 3 ููŠ 3 ูˆู‡ูŠ ุนู†ุงุตุฑู‡ุง ู…ูˆุฌูˆุฏุฉ ุฌูˆุง
27
00:02:33,860 --> 00:02:40,880
ุจุฏู†ุง ู†ุญุฏุฏ ุงู„ู„ูŠ ู‡ูˆ ุดูˆ ู…ุญุฏุฏู‡ุง ุฃูˆ ู†ูˆุฌุฏ ุดูˆ ู…ุญุฏุฏู‡ุง ุงู„ุขู†
28
00:02:40,880 --> 00:02:43,760
ุงู„ู€ determinant ู‡ูŠ ุงู„ู€ determinant ุงู„ู„ูŠ ู‡ูˆ ุนู…ูˆุฏ
29
00:02:43,760 --> 00:02:46,740
ุฏู†ู‡ุงู† ุนู…ูˆุฏ ุฏู†ู‡ุงู† ุฃูˆ ุนุตุงู… ุฏู†ู‡ุงู† ุฃูˆ ุนุตุงู… ุฏู†ู‡ุงู† ุงู„
30
00:02:46,740 --> 00:02:51,820
determinant ู‡ุฐุง ู‡ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ ุจู†ูŠุฌูŠ ูŠุง ุจู†ุณุชุฎุฏู…
31
00:02:51,820 --> 00:02:58,260
ุนู†ุงุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุนู†ุงุตุฑ ุงู„ุตู ุงู„ุนู…ูˆุฏ ุฃูˆ ุนู†ุงุตุฑ ุงู„ุตู ููŠ
32
00:02:58,260 --> 00:03:01,820
ุฅูŠุฌุงุฏ ุงู„ู…ุญุฏุฏ ุฅูŠุด ุจูŠุนู†ูŠุŸ ุดูˆููˆุง ุฅูŠุด ุจูŠุนู†ูŠ ุฎู„ูŠู†ุง
33
00:03:01,820 --> 00:03:06,500
ู†ุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุนู†ุงุตุฑ ู…ู† ุงู„ุนู…ูˆุฏ ุงู„ุฃูˆู„ ูุจูƒูˆู† ุนู†ุฏูŠ
34
00:03:06,500 --> 00:03:14,100
ุงู„ู„ูŠ ู‡ูˆ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุจูŠุณุงูˆูŠ A ููŠ ุงู„ู„ูŠ ู‡ูˆ ู…ุญุฏุฏ
35
00:03:14,100 --> 00:03:21,130
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ู†ุงู‚ุต ุงู„ุขู† ู…ูˆุฌุจ ู†ุงู‚ุต ู†ุงู‚ุต D ููŠ ู…ุญุฏุฏ
36
00:03:21,130 --> 00:03:26,030
ุงู„ู…ุตููˆูุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ G ููŠ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ
37
00:03:26,030 --> 00:03:30,270
ุฃูŠุถู‹ุง ู…ู† ุงู„ุฏุฑุฌุงุช ุงู„ุซุงู†ูŠุฉ ุจู†ุจุฏุฃ ุจู…ูˆุฌุจ ุณุงู„ุจ ู…ูˆุฌุจ ูˆู„ูˆ
38
00:03:30,270 --> 00:03:33,330
ุฃุฎุฐู†ุง ุงู„ุณุทุฑ ุงู„ุซุงู†ูŠ ุจุฑุถู‡ ู‡ู†ุจุฏุฃ ุจู…ูˆุฌุจ ุณุงู„ุจ ู…ูˆุฌุจ
39
00:03:33,330 --> 00:03:36,390
ุฎู„ูŠู†ุง ู†ุจุฏุฃ ููŠ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ
40
00:03:36,390 --> 00:03:40,380
ุนู†ุฏู†ุง ุจู‚ูˆู„ู†ุง A ูˆ ุจุงุฏูŠ ุจุฏูˆุฑุฉ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุจุฏูˆุฑ ุจุงู„ู€ A
41
00:03:40,380 --> 00:03:45,020
ููŠู‡ ุจุดุทุจ ู‡ุฐุง ุงู„ุณุทุฑ ุงู„ู„ูŠ ููŠู‡ ุงู„ู€ A ูˆ ุจุดุทุจ ู‡ุฐุง
42
00:03:45,020 --> 00:03:50,340
ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ููŠู‡ ุงู„ู€ A ุจูŠุธู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุงู„ู„ูŠ
43
00:03:50,340 --> 00:03:54,960
ู‡ูˆ ุงู„ู€ E ูˆ ุงู„ู€ F ูˆ ุงู„ู€ H ูˆ ุงู„ู€ I ุฅุฐุง ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„ู€
44
00:03:54,960 --> 00:03:59,980
A ููŠ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ู†ุชุฌ ุจุนุฏ ุชุดุทูŠุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุตู ูˆ
45
00:03:59,980 --> 00:04:05,250
ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ุจูŠุญุชูˆูŠ A ู†ูุณ ุงู„ุดูŠุก ุจุงู„ู†ุณุจุฉ ู„ู€ D ุจู†ุดุทุจ
46
00:04:05,250 --> 00:04:09,550
ุจุงู„ุณุทุฑ ูˆ ุจู†ุดุทุจ ุจุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ู‡ูŠ ููŠู‡ ุจูŠุธู„ B ูˆ C ูˆ
47
00:04:09,550 --> 00:04:13,790
H ูˆ I B ูˆ C ูˆ H ูˆ I ุฅุฐุง ู†ุงู‚ุต D ููŠ ุงู„ู„ูŠ ู‡ูˆ
48
00:04:13,790 --> 00:04:14,070
ู‡ุฐุง
49
00:04:17,090 --> 00:04:23,010
ุจู†ู‚ุต D ูˆู…ู† ุซู… ุฒุงุฆุฏ G ุจู†ุดุทุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุทุฑ ูˆ
50
00:04:23,010 --> 00:04:26,390
ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ููŠู‡ ุจูŠุธู„ B ูˆ C ุจุณ ุฃู†ุง ุจุฎุทุฃ ูŠุนู†ูŠ ุจุณ
51
00:04:26,390 --> 00:04:30,590
ู…ูˆุฌูˆุฏ ุงู„ู„ูŠ ู‡ูŠ B ูˆ C ู‡ุฐู‡ B ูˆ ู‡ุฐู‡ C ูˆ ุจูŠุธู„ ู…ู†
52
00:04:30,590 --> 00:04:36,190
ูƒู…ุงู† ู„ู…ุง ู†ุดุทุจ ู‡ุฐุง ูˆ ู‡ุฐุง ุจูŠุธู„ ูƒู…ุงู† E ูˆ F ู‡ุฐู‡ ุงู„ุขู†
53
00:04:36,190 --> 00:04:40,630
ู‡ูŠ ุงู„ู„ูŠ ู†ุงุชุฌ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ููˆู‚ ูƒูŠู
54
00:04:40,630 --> 00:04:43,850
ุจู†ูˆุฌุฏ ู‡ู†ุง ุฒูŠ ู…ุง ูˆุฌุฏู†ุง ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† EI
55
00:04:43,850 --> 00:04:48,550
ู†ุงู‚ุต H ููŠ F ุงู„ู„ูŠ ุจูŠุทู„ุน ู…ู†ู‡ ู†ุถุฑุจู‡ ููŠ ุงู„ู€ A ูˆู†ูุณ ุงู„ุดูŠุก
56
00:04:48,550 --> 00:04:54,310
ู‚ู„ุจูƒ ูŠุนู†ูŠ ุงู„ุขู† ู†ุฃุฎุฐ ู…ุซุงู„ ุนุฏุฏูŠ ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุง find
57
00:04:54,310 --> 00:04:57,490
the determinant of ู‡ูŠ ุนู†ุฏู†ุง ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุจุฏู†ุง ู†ูˆุฌุฏ
58
00:04:57,490 --> 00:05:02,110
ุฅูŠุด ู…ุงู„ู‡ุง ุจุฏู†ุง ู†ูˆุฌุฏ ู…ุญุฏุฏ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุฏู‡ ู†ุดูˆู ูƒูŠู
59
00:05:02,110 --> 00:05:05,590
ู†ูˆุฌุฏ ุญุฏ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุจุฏุฃ ุงุณุชุฎุฏู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู…ูˆุฏ
60
00:05:05,590 --> 00:05:10,360
ุงู„ุฃูˆู„ ุฅุฐุง 1 ููŠ ุงู„ู…ุญุฏุฏ
61
00:05:10,360 --> 00:05:15,420
ุงู„ุซุงู†ูˆูŠ ุชุจุนู‡ุง ู†ุงู‚ุต 1 ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ุชุจุนู‡ุง
62
00:05:15,420 --> 00:05:19,180
2 ููŠ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ุงู„ู„ูŠ ุชุจุนู‡ุง ุฅูŠุด ู…ู‚ุตูˆุฏ
63
00:05:19,180 --> 00:05:23,220
ุจุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ูƒูŠู ู‡ูˆ ู†ุฌูŠ
64
00:05:23,220 --> 00:05:27,720
1 ููŠ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุดุทุจ ุจุณุทุฑ ูˆ ุจู†ุดุทุจ ุจุฅูŠุด ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ
65
00:05:27,720 --> 00:05:31,660
ู‡ูˆ ููŠู‡ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุจูŠุธู„ ุจู†ุณู…ูŠู‡ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ู„ู…ูŠู†
66
00:05:31,660 --> 00:05:36,840
ู„ู„ูˆุงุญุฏ ุจูŠุตูŠุฑ 1 ููŠ ู†ุงู‚ุต 1 4 ููŠ 5 ุจุนุฏ ู…ุง
67
00:05:36,840 --> 00:05:43,040
ุดุทุจู†ุง ุงู„ุณุทุฑ ู‡ุฐุง ูˆ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ู†ุงู‚ุต ุงู„ุขู† 1 ู‡ุฐุง
68
00:05:43,040 --> 00:05:49,540
ุงู„ุซุงู†ูŠ 1 ูˆ ุจุดุทุจ ุณุทุฑู‡ ูˆ ุจุดุทุจ ุนู…ูˆุฏู‡ ุจูŠุถู„ ุงู„ู…ุญุฏุฏ
69
00:05:49,540 --> 00:05:52,400
ุงู„ุซุงู†ูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 2 ูˆ 3 ูˆ 4 ูˆ 5 ู‡ูŠ
70
00:05:52,400 --> 00:05:56,320
2 ูˆ 3 ูˆ 4 ูˆ 5 ุฒุงุฆุฏ ุถู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู†ุตุฑ
71
00:05:56,320 --> 00:06:00,380
ุงู„ุฃุฎูŠุฑ 2 ุจุดุทุจ ู‡ุฐุง ุงู„ุณุทุฑ ูˆ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ุจูŠุตูŠุฑ ุนู†ุฏ
72
00:06:00,380 --> 00:06:05,460
2 ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ
73
00:06:05,460 --> 00:06:09,160
ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ู‡ุฐุง 2 3 0 ู†ุงู‚ุต 1 ุจูƒู…ู„
74
00:06:09,160 --> 00:06:13,220
ุงู„ุขู† ุนุดุงู† ุฃูˆุฌุฏ ุงู„ู‚ูŠู…ุฉ ู‡ุฐู‡ ุงู„ุขู† 1 ู…ุถุฑูˆุจุฉ ุจูุชุญ
75
00:06:13,220 --> 00:06:19,980
ู‚ูˆุณ ุงู„ุขู† ุฌุฏุงุด ู‚ูŠู…ุฉ ู‡ุฐุง 0 ููŠ 5 ู†ุงู‚ุต ู†ุงู‚ุต 4
76
00:06:19,980 --> 00:06:26,990
ููŠ 1 ูŠุนู†ูŠ ุฒุงุฆุฏ 4 ููŠ 1 ุงู„ู„ูŠ ู‡ูˆ 1 ูŠุนู†ูŠ ุจู…ุนู†ู‰
77
00:06:26,990 --> 00:06:34,530
ุขุฎุฑ ุฃู‡ุง 0 ุฎู„ุตู†ุง ู…ู† ู‡ุฐุง ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆ ุจู†ุถุฑุจ
78
00:06:34,530 --> 00:06:37,090
ู‡ุฐุง ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ุจูŠุทู„ุน ุนู†ุฏูŠ ู†ุงู‚ุต 1 ููŠ 4
79
00:06:37,090 --> 00:06:40,370
ุจู†ุงู‚ุต 4 ูˆ ู†ุงู‚ุต ุงู„ุฃุตู„ูŠ ุจูŠุตูŠุฑ ู†ุงู‚ุต ู†ุงู‚ุต 4
80
00:06:40,370 --> 00:06:43,910
ุจู†ุฌูŠ ู„ู„ุซุงู†ูŠ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ู†ุงู‚ุต 1 ู‡ุฐุง ุงู„ู„ูŠ ู…ู† ุฃุตู„
81
00:06:43,910 --> 00:06:48,330
ุงู„ู…ูˆุถูˆุน ูˆ ุจู†ุฌูŠ ุจู†ุถุฑุจ ุงู„ุฑุฆูŠุณูŠ 2 ููŠ 5 ุจูŠุทู„ุน
82
00:06:48,330 --> 00:06:52,740
ุจู€ 10 ู†ุงู‚ุต 4 ููŠ 3 ุงู„ู„ูŠ ู‡ูŠ 12 ุฎู„ุตู†ุง ู…ู†
83
00:06:52,740 --> 00:06:55,900
ู‡ุฐู‡ 2 ูˆ ุจู†ูุชุญ ู‚ูˆุณ ุงู„ู…ุญุฏุฏ 2 ููŠ ู†ุงู‚ุต 1
84
00:07:22,220 --> 00:07:27,160
ุฅุฐุง ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูŠุนู†ูŠ ุงู„ุฃู…ุฑ
85
00:07:27,160 --> 00:07:29,860
ุณู‡ู„ ุฅูŠุฌุงุฏ ุงู„ู…ุญุฏุฏ
86
00:07:33,440 --> 00:07:37,780
ุนู†ุฏูŠ ู„ุงุญุธ ูˆู„ู…ุง ุงุญู†ุง ุฃูˆุฌุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ
87
00:07:37,780 --> 00:07:41,200
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุซุงู†ูŠุฉ ู…ุง ู„ุฒู…ู†ุงุด ู„ุบูŠุฑ ู‡ุฐุง ู†ูˆุฌุฏู‡ ู„ุญุงู„ู‡
88
00:07:41,200 --> 00:07:46,120
ู„ูƒู† ู„ู…ุง ุฃูˆุฌุฏู†ุง ู…ุญุฏุฏ ู„ู…ุตููˆูุฉ ู…ู† 3 ููŠ 3 ุทู„ุน
89
00:07:46,120 --> 00:07:51,820
ู„ุฒู…ู†ุง ู†ูˆุฌุฏ ู…ุญุฏุฏุงุช ุซุงู†ูˆูŠุฉ 3 1 2 3 ูŠุนู†ูŠ
90
00:07:51,820 --> 00:07:55,770
ุจุฏุฑุฌุฉ ุงู„ู…ุญุฏุฏ ูˆู„ูˆ ูƒุงู† ููŠ ุนู†ุฏู†ุง matrix 4 ููŠ
91
00:07:55,770 --> 00:07:59,670
4 ุจู†ุนู…ู„ ุจู†ูุณ ุงู„ุฃุณู„ูˆุจ ุจุณ ุงู„ู„ูŠ ุจูŠุทู„ุน ุฅู† ุนู†ุฏู†ุง
92
00:07:59,670 --> 00:08:04,410
ุงู„ู…ุญุฏุฏุงุช ุงู„ุซุงู†ูˆูŠุฉ ุงู„ู„ูŠ ู‡ูŠ 3 ููŠ 3 ุจู†ุนู…ู„ ู…ุญุฏุฏ
93
00:08:04,410 --> 00:08:09,950
ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู…ุน ู…ูŠู† ู…ุน ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง ุงู„ุณุคุงู„ ุงู„ุขู†
94
00:08:09,950 --> 00:08:14,290
ูˆู‡ูƒุฐุง ุจุตูˆุฑุฉ ุนุงู…ุฉ ุงู„ุขู† ุงุญู†ุง ูŠุนู†ูŠ ู‡ู†ุดุชุบู„ ุดุบู„ู†ุง ุจุณ
95
00:08:14,290 --> 00:08:16,710
ุนู„ู‰ ุงู„ู…ุญุฏุฏุงุช ุงู„ู„ูŠ ูˆู‡ูŠู† ุงู„ู„ูŠ ู‡ูŠ ู…ู† ุงู„ุฏุฑุฌุฉ 3 ููŠ
96
00:08:16,710 --> 00:08:21,640
3 ุฃูˆ 2 ููŠ 2 ุงู„ุขู† ุจุฏู†ุง ู†ุนุฑู ุญุงุฌุฉ ุงุณู…ู‡ุง
97
00:08:21,640 --> 00:08:25,320
the inverse of a matrix ุงู„ู„ูŠ ู‡ูˆ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู†
98
00:08:25,320 --> 00:08:27,760
ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู
99
00:08:27,760 --> 00:08:28,060
ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡
100
00:08:28,060 --> 00:08:28,740
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ
101
00:08:28,740 --> 00:08:29,620
ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู
102
00:08:29,620 --> 00:08:29,860
ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡
103
00:08:29,860 --> 00:08:30,440
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ
104
00:08:30,440 --> 00:08:34,700
ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู
105
00:08:34,700 --> 00:08:38,500
ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡
106
00:08:38,500 --> 00:08:43,620
ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ ู…ู† ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‡ุฏู ุงู„ุซุงู†ูŠ
107
00:08:43,620 --> 00:08:48,420
ู…ู† 2ร—2ุŒ 3ร—3ุŒ 4ร—4ุŒ 5ร—5 ุงู„ุฃุฎุฑู‰
108
00:08:51,710 --> 00:08:57,750
non-singular ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ุง
109
00:08:57,750 --> 00:09:02,850
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุจูŠูƒูˆู† ู…ุญุฏุฏู‡ุง ู…ุด ุตูุฑ ู„ู…ุง ูŠูƒูˆู† ู…ุญุฏุฏู‡ุง
110
00:09:02,850 --> 00:09:07,030
ู…ุด ุตูุฑ ุจู†ุถู…ู† ุงู„ู„ูŠ ู‡ูˆ ุจุนุฏ ุดูˆูŠุฉ ู‡ุชุดูˆู ุงู„ุชุนุฑูŠู ุฃู†ู‡ ููŠ
111
00:09:07,030 --> 00:09:11,430
ู„ู‡ุง ู…ุนูƒูˆุณ ุถุฑุจูŠ ุฅุฐุง ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุจุชูƒูˆู† non
112
00:09:11,430 --> 00:09:17,080
-singular ู‡ูŠ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู…ุญุฏุฏู‡ุง ู„ุง ูŠุณุงูˆูŠ ุตูุฑ ุงู„ุขู†
113
00:09:17,080 --> 00:09:23,340
ู„ูˆ ูˆุฌุฏู†ุง ุงู„ู€ matrix B ุถุฑุจู†ุงู‡ุง ููŠ A ุจูŠุณุงูˆูŠ I ู„ุฃ ุทุจุนู‹ุง
114
00:09:23,340 --> 00:09:25,180
ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู€ A ุงู„ู„ูŠ ุฃุฎุฏุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ non
115
00:09:25,180 --> 00:09:29,840
singular ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ู…ุญุฏุฏู‡ุง ู…ุด ุตูุฑ ู„ูˆ
116
00:09:29,840 --> 00:09:33,840
ูˆุฌุฏู†ุง ู…ุตููˆูุฉ ุซุงู†ูŠุฉ ุงุณู…ู‡ุง B ูˆุถุฑุจู†ุงู‡ุง ููŠู‡ุง ุทู„ุนุช ุนู†ุฏ
117
00:09:33,840 --> 00:09:37,330
ุงู„ู€ identity ูˆุถุฑุจู†ุงู‡ุง ู…ู† ุงู„ุฌู‡ุฉ ุงู„ุซุงู†ูŠุฉ B ููŠ A
118
00:09:37,330 --> 00:09:41,750
ุจุฑุถู‡ ุทู„ุนุช ุนู†ุฏ ุงู„ู€ identity ุจู†ุณู…ูŠ ุงู„ู…ุตููˆูุฉ B ููŠ ู‡ุฐู‡
119
00:09:41,750 --> 00:09:46,370
ุงู„ุญุงู„ุฉ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ inverse ู„ู„ู€ A ุจู†ุฑู…ุฒ ู„ู‡ุง ู…ู†
120
00:09:46,370 --> 00:09:52,750
ุงู„ุฑู…ุฒ A inverse ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ
121
00:09:52,750 --> 00:09:57,890
A ุฅุฐุง ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ A ู‡ูˆ ุงู„ู€ matrix ุงู„ู„ูŠ
122
00:09:57,890 --> 00:10:01,410
ู„ูˆ ุถุฑุจู†ุงู‡ ููŠ ุงู„ู…ุตููˆูุฉ ุงู„ุฃุตู„ูŠุฉ ู…ู† ุงู„ูŠู…ูŠู† ุฃูˆ ุงู„ูŠุณุงุฑ
123
00:10:01,410 --> 00:10:06,630
ุจูŠุทู„ุน ู„ู„ู€ identity matrix ูŠุนู†ูŠ ู…ุซู„ ู„ูˆ ุฃุฏูŠุช ุฌุฑุจุช ู‡ุฐู‡
124
00:10:06,630 --> 00:10:10,170
ุงู„ู…ุตููˆูุฉ ุฒูŠ ู…ุง ุงุชุนู„ู…ู†ุง ุงู„ุถุฑุจ ูˆุถุฑุจู†ุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ
125
00:10:10,170 --> 00:10:14,030
ููŠู‡ุง ู‡ู†ู„ุงู‚ูŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ููŠ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุฅูŠุด ุจุชุณุงูˆูŠ
126
00:10:14,030 --> 00:10:18,850
ุจุณุงูˆูŠ ุงู„ู€ identity ุจู†ุงุก ุนู„ูŠู‡ ุจู†ู‚ูˆู„ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุฃูˆ
127
00:10:18,850 --> 00:10:23,130
ุญุชู‰ ู‡ุฐู‡ ูŠุนู†ูŠ ู„ูˆ ุณู…ุนู†ุง .. ุจู†ู‚ูˆู„ ู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€
128
00:10:23,130 --> 00:10:27,250
inverse ู„ู‡ุฐู‡ ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู‡ุฐู‡ุŒ ูˆ ุฃูŠุถุง
129
00:10:27,250 --> 00:10:31,190
ู‡ุฐู‡ ู‡ุชูƒูˆู† ู‡ูŠ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู…ูŠู†ุŸ ู„ู„ุซุงู†ูŠุฉ ุงู„ุขู†
130
00:10:31,190 --> 00:10:34,790
ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุงุญู†ุง ุงุชุนู„ู…ู†ุงู‡ุง ููŠุด ุฏู‡ in a ุฏู‡ ู‡ุฐุง
131
00:10:34,790 --> 00:10:37,190
ู…ุนู†ุงุชู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ
132
00:10:37,190 --> 00:10:40,350
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู„ูˆ
133
00:10:40,350 --> 00:10:43,830
ุถุฑุจู†ุงู‡ุง ู…ู† ุงู„ูŠู…ูŠู† ูˆู…ู† ุงู„ูŠุณุงุฑ ุจุชุณุงูˆูŠ ุงู„ู€ identity ุทุจ
134
00:10:43,830 --> 00:10:46,630
ูƒูŠู ุจุฏู†ุง ู†ูˆุฌุฏู‡ุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนูƒูˆุณ
135
00:10:46,630 --> 00:10:51,870
ุงู„ุถุฑุจูŠ ุงู„ุขู†ุŸ ููŠ ุงู„ุจุฏุงูŠุฉ ุฎู„ูŠู†ุง ู†ูŠุฌูŠ ู„ุทุฑูŠู‚ุฉ ุจุฏุงูŠุฉ
136
00:10:51,870 --> 00:10:57,010
ู„ุฅูŠุฌุงุฏู‡ุง ูˆู†ุดูˆู ุฌุฏุงุด ุจุชุบู„ุจู†ุงุŒ ูˆู…ู† ุซู… ุจู†ุชุนู„ู… ู‚ุงุนุฏุฉ
137
00:10:57,010 --> 00:11:02,190
ูƒูŠู ู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุจูƒู„ ุณู‡ูˆู„ุฉ
138
00:11:02,190 --> 00:11:11,190
ุงู„ุขู† ู„ูˆ ุฃุฎุฐู†ุง ุงู„ู…ุตููˆูุฉ 8 -10 -3 -4 ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู…ู†
139
00:11:11,190 --> 00:11:15,650
ุงู„ุฏุฑุฌุฉ 2x2 ู„ูˆ ุจุฏู†ุง ู†ูˆุฌุฏ ุงู„ู€ inverse ู„ู‡ุง ุฃูˆ ู†ูˆุฌุฏ
140
00:11:15,650 --> 00:11:19,730
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู‡ุงุŒ ู†ูุชุฑุถ ุฃู† ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู‡ุง
141
00:11:19,730 --> 00:11:25,390
ุนุจุงุฑุฉ ุนู† a,b,c,d ู…ุงุดูŠ ุงู„ุญุงู„ุŒ ูˆุฃู‚ูˆู„ ู„ุฃ ุนุดุงู† ุชูƒูˆู† ู‡ุฐู‡
142
00:11:25,390 --> 00:11:29,870
ู…ุนูƒูˆุณ ุถุฑุจูŠ ู„ุงุฒู… ุฃุถุฑุจ ู‡ุฐู‡ ููŠ ู‡ุฐู‡ ูŠุทู„ุน ู…ู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
143
00:11:29,870 --> 00:11:35,190
ุงู„ู€ identity matrix 1 1 0 0 ุตุงุฑ ุนู†ุฏูŠ ู‡ุงูŠ ู‚ูŠู…ุชูŠู† ู…ุถุฑุจุงุช
144
00:11:35,190 --> 00:11:39,370
ููŠ ุจุนุถ ู„ุงุฒู… ูŠุณุงูˆู† ู‡ุฏูˆู„ ุนุดุงู† ุชุทู„ุน ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู†
145
00:11:39,370 --> 00:11:47,060
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู‡ุง ู…ุงุดูŠ ุงู„ุญุงู„ ุงู„ุขู† ุงู„ุขู† ู†ุถุฑุจ ู‡ุฐู‡ ููŠ
146
00:11:47,060 --> 00:11:50,800
ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉุŒ ู†ุถุฑุจ ุถุฑุจ ุนุงุฏูŠ ุงุถุฑุจ ุซู…ุงู†ูŠุฉ ููŠ
147
00:11:50,800 --> 00:11:55,820
a ููŠ c ุจุชุทู„ุน ุนู†ุฏูŠ ุซู…ุงู†ูŠุฉ a ู†ุงู‚ุต ุนุดุฑุฉ ููŠ c ู†ุถุฑุจ
148
00:11:55,820 --> 00:12:02,450
ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูˆุจู†ุถุฑุจ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุทุฑ ููŠ ู‡ุฐุง ุงู„ุนู…ูˆุฏ
149
00:12:02,450 --> 00:12:05,830
ุจุชุทู„ุน ุนู†ุฏ ู‡ุฐู‡ ู‚ูŠู…ุฉ ุฒูŠ ู…ุง ุงุชุนู„ู…ู†ุง ู‚ุจู„ูŠู†ุŒ ูˆุจู†ุถุฑุจ ู‡ุฐุง
150
00:12:05,830 --> 00:12:09,010
ุงู„ุณุทุฑ ููŠ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ุจุชุทู„ุน ุนู†ุฏ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉุŒ ูˆุจู†ุถุฑุจ
151
00:12:09,010 --> 00:12:12,870
ู‡ุฐุง ุงู„ุณุทุฑ ููŠ ู‡ุฐุง ุงู„ุนู…ูˆุฏ ุจุชุทู„ุน ุนู†ุฏ ู‡ุฐู‡ ุงู„ู‚ูŠู…ุฉ ุทุจุนุง
152
00:12:12,870 --> 00:12:15,710
ูƒูŠูุŸ ุฎู„ู†ุง ุฃุถุฑุจ ุงู„ุฃุฎูŠุฑุฉ ู‡ุฐุง ุนุดุงู† ุชูƒูˆู† ููŠ ุงู„ุตูˆุฑุฉ ูƒูŠู
153
00:12:15,710 --> 00:12:20,230
ุชุถุฑุจ ู†ุงู‚ุต ุซู„ุงุซุฉ ููŠ b ููŠ c ู†ุงู‚ุต ุซู„ุงุซุฉ b ุฒุงุฆุฏ ุฃุฑุจุนุฉ
154
00:12:20,230 --> 00:12:23,730
ููŠ d ููŠ c ุฒุงุฆุฏ ุฃุฑุจุนุฉ d ู‡ุฐุง ูƒู„ู‡ ู„ุงุฒู… ูŠุณุงูˆูŠ ูˆุงุญุฏุŒ ูˆ
155
00:12:23,730 --> 00:12:27,900
ุตูุฑ ูˆ ุตูุฑ ูˆ ูˆุงุญุฏ ุตุงุฑ ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ
156
00:12:27,900 --> 00:12:32,240
ู‡ูˆ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุจุชุณุงูˆูŠ ู‡ุฐุง ุงู„ู…ุตููˆูุฉ ุนุดุงู† ูŠุทู„ุน ุฅู†
157
00:12:32,240 --> 00:12:37,760
ู‡ุฐุง ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู‡ุฐุง ุทูŠุจุŒ ุจุงุฏูŠ ูƒู„ ู…ุณุงูˆุงุฉ
158
00:12:37,760 --> 00:12:42,140
ู…ุตููˆูุชูŠู† ู…ุนู†ุงุชู‡ ุฅู† ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ ูˆุงุญุฏุŒ ูˆู‡ุฐุง
159
00:12:42,140 --> 00:12:45,700
ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ ุตูุฑุŒ ูˆู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ ุตูุฑุŒ ูˆู‡ุฐุง
160
00:12:45,700 --> 00:12:49,880
ุงู„ู…ู‚ุฏุงุฑ ุจุณุงูˆูŠ ูˆุงุญุฏ ู‡ูŠ ุนู†ุฏูŠ ู‡ุฐูˆู„ ู‡ุฐู‡ ุงู„ู„ูŠ ู†ุงุชุฌุฉ ู…ู†
161
00:12:49,880 --> 00:12:54,560
ู‡ุฐุงุŒ ูˆู‡ุฐู‡ ู†ุงุชุฌุฉ ู…ู† ู‡ุฐุงุŒ ูˆู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู†ุงุชุฌุฉ ู…ู† ู‡ุฐุง
162
00:12:55,560 --> 00:13:00,620
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู‡ูŠ ู†ุงู‚ุต ุซู„ุงุซุฉ b ุฒุงุฆุฏ ุฃุฑุจุนุฉ d ุจุณุงูˆูŠ ูˆุงุญุฏ
163
00:13:00,620 --> 00:13:04,520
ู†ุงุชุฌุฉ ู…ู† ุงู„ู„ูŠ ููˆู‚ ู„ุฃู† ุตุงุฑ ุนู†ุฏูŠ ุฃู†ุง ู…ุนุงุฏู„ุชูŠ ุฃุฑุจุน
164
00:13:04,520 --> 00:13:10,020
ู…ุนุงุฏู„ุงุช ููŠ ู†ูุณ ุงู„ูˆู‚ุช ุขู†ูŠุฉ ุงู„ุขู† ุฎู„ูŠู†ุง ู†ุญู„ ุงู„ู…ุนุงุฏู„ุฉ
165
00:13:10,020 --> 00:13:14,500
ู‡ุฐู‡ ู…ุน ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ุŒ ุญู„ู‡ุง ุนุงุฏูŠ ุจุงู„ู…ุนุงุฏู„ุงุช ุงู„ุขู†ูŠู‘ุฉ
166
00:13:14,500 --> 00:13:17,440
ุงู„ู„ูŠ ุงุญู†ุง ุจู†ุนุฑูู‡ุง ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ุง ููŠ ุซุงู†ูŠ ุฅุนุฏุงุฏูŠ ุฃูˆ
167
00:13:17,440 --> 00:13:23,610
ุซุงู„ุซ ุฅุนุฏุงุฏูŠ ุจู†ุญู„ู‡ุง ุจู†ูˆุฌุฏ ู‚ูŠู…ุฉ ุงู„ู€ A ูˆ ุงู„ู€ C ู„ุฃู†
168
00:13:23,610 --> 00:13:28,510
ู…ุนุงุฏู„ุชูŠู† ููŠู‡ ู…ุฌู‡ูˆู„ูŠู† ูุชุทู„ุน AุŒ ูˆุชุทู„ุน ู‚ูŠู…ุฉ C ุทู„ุนุช
169
00:13:28,510 --> 00:13:33,430
ุนู†ุฏูŠ A ุงุซู†ูŠู†ุŒ ูˆุชุทู„ุนุช ุนู†ุฏูŠ C ุจุณุงูˆูŠ ูˆุงุญุฏ ูˆู†ุตุŒ ุงู„ุฃู‡ู…
170
00:13:33,430 --> 00:13:38,370
ุงู„ุญู„ ู‡ุฐูˆู„ ู†ูุณ ุงู„ุดูŠุก ู‡ูŠุทู„ุน ุนู†ุฏูŠ ู…ุนุงุฏู„ุชูŠู† ุฃู†ูŠุชูŠู† ู…ุน
171
00:13:38,370 --> 00:13:43,260
ุจุนุถ ู‡ูŠุทู„ุน ุนู†ุฏูŠ B ุจุณุงูˆูŠ ุฎู…ุณุฉุŒ ูˆ D ุจุณุงูˆูŠ ุฃุฑุจุนุฉ ู‡ุฐู‡
172
00:13:43,260 --> 00:13:47,600
ุงู„ู„ูŠ ู‡ูŠ ุดุงูŠููŠู† ุงุญู†ุง ุฌุฏุงุด ุงุชุบู„ุจู†ุง ููŠ ุงู„ุฅูŠุฌุงุฏุŒ ูˆุงุญู†ุง
173
00:13:47,600 --> 00:13:50,660
ู‚ุงุนุฏูŠู† ุงู„ู„ูŠ ู‡ูˆ ูŠู…ูƒู† ุจุนุถูƒู… ู†ุงุณูŠ ูƒูŠู ุงู„ู…ุนุงุฏู„ุงุช
174
00:13:50,660 --> 00:13:54,480
ุงู„ุขู†ูŠุฉ ูˆูƒูŠู ุญู„ูˆู„ ุงู„ู…ุนุงุฏู„ุงุช ุงู„ุขู†ูŠุฉุŒ ูˆุจุฏู†ุง ู†ุชุนู„ู…ู‡ุง
175
00:13:54,480 --> 00:13:59,060
ุนุดุงู† ู†ูˆุฌุฏ ู…ู† ุงู„ู€ a inverse ุงู„ุขู† ุงุญู†ุง ู…ุด ู‡ู†ุธู„ ู†ุดุชุบู„
176
00:13:59,060 --> 00:14:02,980
ู‡ูŠูƒ ูŠุนู†ูŠ ู‡ุฐุง ุจุณ ุนุดุงู† ุฅู† ุฃู†ุช ุชุดูˆู ุฌุฏุงุด ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐุง
177
00:14:02,980 --> 00:14:07,900
ู‡ูŠุบู„ุจ ู„ูˆ ุฃู†ุง ุฃุฌูŠุช ูˆุฌุฏุช ุจุทุฑู‚ ุงู„ุนุงุฏูŠุฉ ู‡ุฐู‡ ุนุดุงู† ุฃูˆุฌุฏ
178
00:14:07,900 --> 00:14:12,130
ุงู„ู€ inverse ุงู„ุขู† ู„ูˆ ูƒุงู†ุช ุจุตููˆูุฉ ุซู„ุงุซุฉ ููŠ ุซู„ุงุซุฉ ุชู‚ูˆู„
179
00:14:12,130 --> 00:14:16,810
ู‡ูŠุตูŠุฑ ุนู†ุฏู†ุง ุจุฏู„ ู…ุง ู‡ู†ุง ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู†
180
00:14:16,810 --> 00:14:20,870
ุฃุฑุจุน ู…ุนุงุฏู„ุงุช ู‡ูŠุทู„ุน ุนู†ุฏูŠ ุนุจุงุฑุฉ ุนู† ุชุณุนุฉ ู…ุนุงุฏู„ุงุชุŒ ุงูŠุด
181
00:14:20,870 --> 00:14:24,330
ุงู„ุชุณุนุฉ ู…ุนุงุฏู„ุงุช ููŠ ุชุณุนุฉ ู…ุฌู‡ูˆู„ ูˆู…ุด ุนุงุฑู ุงูŠุด ุทุจุนุง
182
00:14:24,330 --> 00:14:28,950
ู‡ุชุบู„ุจูˆุง ููƒูˆุฑุฉ ุบู„ุจุฉ ูƒุจูŠุฑุฉุŒ ุนุดุงู† ู‡ูŠูƒ ุจุฏู†ุง ู†ุฑูŠุญูƒู… ูˆู‡ูŠ
183
00:14:28,950 --> 00:14:34,050
ููŠ ุนู†ุฏู†ุง ุงู„ุทุฑูŠู‚ุฉ finding the inverse of two by two
184
00:14:34,050 --> 00:14:39,450
matrices ู†ุดูˆู ูƒูŠู ุจู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverse ู„ู€ two
185
00:14:39,450 --> 00:14:46,350
by two matrices ู‡ุฐุง ู‡ูˆ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู…ุญุงุถุฑุฉ
186
00:14:46,350 --> 00:14:50,210
ูˆุงู„ุฌุฒุก
187
00:14:50,210 --> 00:14:55,690
ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ ู‡ูŠ finding inverse of 2x2
188
00:14:55,690 --> 00:15:00,270
matrices ุฃูˆ ุฅูŠุฌุงุฏ ุงู„ู…ุนุงูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉุŒ ูˆุฎู„ู‘ูŠู†ุง
189
00:15:00,270 --> 00:15:04,490
ู†ูˆู‚ู ุนู†ุฏู†ุง ูˆู†ุนู…ู„ ุงู„ู…ุญุงุถุฑุฉ ุนู„ู‰ ุฌุฒุกูŠู†ุŒ ูˆ ุงู„ู„ู‡ ูŠุนุทูŠูƒูˆุง
190
00:15:04,490 --> 00:15:08,390
ุงู„ุนุงููŠุฉ ู†ูƒู…ู„ ุงู„ุขู† ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ู…ุญุงุถุฑุฉ
191
00:15:15,680 --> 00:15:19,100
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ
192
00:15:19,100 --> 00:15:22,240
ุงู„ู…ุนูƒูˆุณ
193
00:15:22,240 --> 00:15:27,300
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ
194
00:15:27,300 --> 00:15:28,780
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ
195
00:15:28,780 --> 00:15:28,880
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ
196
00:15:28,880 --> 00:15:28,980
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ
197
00:15:28,980 --> 00:15:29,180
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ
198
00:15:29,180 --> 00:15:32,220
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ู‡ุฐู‡
199
00:15:32,220 --> 00:15:36,380
ุงู„ู…ุตููˆูุฉ ุจุฏู†ุง ู†ุดูˆู ูƒูŠู ู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ
200
00:15:36,380 --> 00:15:40,100
ู„ู„ู…ุตููˆูุฉ ู‚ุจู„ ู…ุง ู†ูˆุฌุฏ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ู„ุงุฒู…
201
00:15:40,100 --> 00:15:44,000
ู†ุนุฑู ุงู„ุดูŠุก ู„ุฃู† ุงู„ู…ุตููˆูุฉ ุนุดุงู† ูŠูƒูˆู† ู„ู‡ุง ู…ุนูƒูˆุณ ุถุฑุจูŠ
202
00:15:44,000 --> 00:15:49,160
ู„ุงุฒู… ูŠูƒูˆู† ุงู„ู€ determinant ู„ู‡ุง ู…ุง ุจูŠุณุงูˆูŠ ุตูุฑ ูŠุนู†ูŠ
203
00:15:49,160 --> 00:15:54,660
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ู…ุญุฏุฏู‡ุง ุตูุฑ ู„ูŠุณ ู„ู‡ุง ู…ุนูƒูˆุณ ุถุฑุจูŠ ุฅุฐู†
204
00:15:54,660 --> 00:16:00,410
ุงู„ุขู† ุงุญู†ุง ุฃูˆู„ ุดุบู„ุฉ ุจู†ุนู…ู„ู‡ุง ุนุดุงู† ู†ุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ
205
00:16:00,410 --> 00:16:05,250
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ู‡ุฐู‡ ุฅู†ู‡ ุจู†ุดูˆู
206
00:16:05,250 --> 00:16:11,150
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ determinant ู„ู‡ุง ุฅุฐุง AD ู†ุงู‚ุต BC ู…ุด ุตูุฑ
207
00:16:11,150 --> 00:16:15,630
ู…ุนู†ุงุชู‡ ุฅุญู†ุง ุฌุงู‡ุฒูŠู† ู„ุฅู† ู†ุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ
208
00:16:15,630 --> 00:16:19,780
ู„ู„ู…ุตููˆูุฉ ุดูˆููˆุง ุฎู„ู‘ูŠู†ุง ู†ุดูˆู ูƒูŠู ุงู„ู„ูŠ ู‡ูˆ ู†ูˆุฌุฏู‡ุง
209
00:16:19,780 --> 00:16:23,100
ุงู„ุนู…ู„ูŠุฉ ุณู‡ู„ุฉ ุฌุฏุง ููŠ ุญุงู„ุฉ ุงู„ู…ุตููˆูุฉ ุงุซู†ูŠู† ุจุงุซู†ูŠู†
210
00:16:23,100 --> 00:16:27,440
ุจู†ูŠุฌูŠ ู„ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ุจู†ุจุฏู„ู‡ุง ู…ุน ุจุนุถ ูŠุนู†ูŠ
211
00:16:27,440 --> 00:16:32,140
ุจูŠุตูŠุฑ ุงู„ู€ D ู‡ู†ุง ูˆุงู„ู€ A ู‡ู†ุงุŒ ุงู„ุฃุณุงุณูŠ ุงู„ุฑุฆูŠุณูŠ ุงู„ุนู†ุงุตุฑ
212
00:16:32,140 --> 00:16:37,020
ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ุจุณ ุจู†ุบูŠุฑ ุฅุดุงุฑุชู‡ุง ู‡ุฐู‡ ุจูŠุตูŠุฑ ู†ุงู‚ุตูŠ
213
00:16:37,020 --> 00:16:42,780
ู†ุงู‚ุต ุจูŠ ุงู„ู„ูŠ ุจูŠุทู„ุน ู‡ุฐุง ุจู†ุถุฑุจู‡ ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู…ุญุฏุฏ
214
00:16:43,270 --> 00:16:49,130
ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุทู„ุน ุจูƒูˆู† ู‡ูˆ ู…ูŠู†ุŸ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู…ุนูƒูˆุณ
215
00:16:49,130 --> 00:16:55,110
ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ a,b,c,d ูˆุงุถุญ ุฅู† ุงู„ุฃู…ุฑ ุณู‡ู„ ุฌุฏุง ุนู†
216
00:16:55,110 --> 00:16:58,550
ุงู„ู…ุซุงู„ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ุงุณุชุฎุฏู…ู†ุง ุงู„ุทุฑู‚
217
00:16:58,550 --> 00:17:02,870
ุงู„ุฃูˆู„ูŠุฉ ููŠู‡ ูˆูƒุงู†ุช ุงู„ู„ูŠ ู‡ูŠ ุจุชุณุชู„ุฒู… ู†ุนุฑู ู…ุนุงุฏู„ุฉ
218
00:17:02,870 --> 00:17:06,210
ุขู†ูŠุฉ ูˆู…ุนุงุฏู„ุฉ ุขู†ูŠุฉ ูˆุงุญู†ุง ุทุจุนุง ููŠู‡ ู…ู…ูƒู† ู†ูƒูˆู†
219
00:17:06,210 --> 00:17:12,310
ุฌุฒุก ู†ุงุณูŠ ุงู„ุฃู…ุฑ ู†ุดูˆู ุงู„ุขู† ู…ุซุงู„ ุนุฏุฏูŠ ู„ุงู„ู„ูŠ ุจู†ุญูƒูŠ ุนู†
220
00:17:12,310 --> 00:17:18,190
ุงู„ุฅูŠุฌุงุฏ ุนู† ุทุฑูŠู‚ ุงู„ู…ุซุงู„ ุงู„ุนุฏุฏูŠ ุฅุฐุง ูƒุงู†ุช ุงู„ู€ A ู‡ูŠ
221
00:17:18,190 --> 00:17:23,410
ุงู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุฃู…ุงู…ู†ุง ู‡ุฐู‡ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู‡ุง ู‡ูˆ
222
00:17:23,410 --> 00:17:28,410
ุนุจุงุฑุฉ ุนู† ุงู„ู€ DA ุจุนุฏ ู…ุง ุจุฏู„ู†ุง ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ
223
00:17:28,410 --> 00:17:35,970
ู…ุน ุจุนุถ ุฃุณู ููŠ ุงู„ุฑุฆูŠุณูŠ ูˆุบูŠุฑู†ุง ุนู†ุงุตุฑ ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ุจุณ
224
00:17:35,970 --> 00:17:39,630
ุฅุดุงุฑุชู‡ุง ูˆุถุฑุจู†ุงู‡ุง ููŠ ูˆุงุญุฏ ุนู„ู‰ ู‚ูŠู…ุฉ ุงู„ู€ determinant
225
00:17:39,630 --> 00:17:44,890
ุทู„ุน ุนู†ุฏู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ A inverse ุฃูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ
226
00:17:44,890 --> 00:17:49,470
ู„ู„ู…ุตููˆูุฉ ู†ุดูˆู ู…ุซุงู„ ุนุฏุฏูŠ ุงู„ุขู† ู†ุทู„ุน ู„ู€ Find the
227
00:17:49,470 --> 00:17:53,810
inverse of A ู‡ูŠ ุงู„ู€ A ุนู†ุฏูŠ ุงู„ุขู† ู‡ูŠ ุงู„ู…ุตููˆูุฉ ุฏูŠ ุจุณ
228
00:17:53,810 --> 00:17:57,830
ุงูŠุด ุจุฏู‡ ู†ูˆุฌุฏ ุงู„ุขู† ูŠุง ุดุจุงุจ ูˆูŠุง ุจู†ุงุช ุงู„ุขู† ุจุณ ุจุฏู‡
229
00:17:57,830 --> 00:18:01,930
ู†ุฌูŠ ู†ุถุฑุจ ู†ูˆุฌุฏ ู…ุญุฏุฏ ุงู„ู…ุตููˆูุฉ ุงูŠุด ุงู„ู…ุญุฏุฏุŸ ุงุซู†ูŠู† ููŠ
230
00:18:01,930 --> 00:18:07,130
ู†ุงู‚ุต ุนุดุฑุฉ ู‡ูŠ ู†ุงู‚ุต ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต ุฃุฑุจุนุฉ ููŠ ุฃุฑุจุนุฉ ู‡ูŠ
231
00:18:07,130 --> 00:18:13,440
ู†ุงู‚ุต ุนุดุฑูŠู† ุฃูˆ ุฒุงุฆุฏ ุณุชุฉ ุนุดุฑ ุจูŠุธู„ ุงูŠู‡ุŸ ุดู…ุงู„ู‡ ู†ุงู‚ุต
232
00:18:13,440 --> 00:18:17,700
ุฃุฑุจุนุฉ ุฅุฐุง ุงู„ู…ุญุฏุฏ ุจูŠุณุงูˆูŠ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุฅุฐุง ู…ุฏุงู… ุงู„ู…ุญุฏุฏ
233
00:18:17,700 --> 00:18:22,020
ู…ุด ุตูุฑ ุฅุฐุง ุงู„ู…ุนุงูƒูˆุณ ุงู„ุถุฑุจูŠ ู…ูˆุฌูˆุฏ ุนู„ู‰ ุทูˆู„ ุงู„ู…ุนุงูƒูˆุณ
234
00:18:22,020 --> 00:18:25,560
ุงู„ุถุฑุจูŠ inverse ุงูŠู‡ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ู‚ูŠู…ุฉ ุงู„ู€
235
00:18:25,560 --> 00:18:29,900
determinant ู‡ูŠ ู†ุงู‚ุต ุฃุฑุจุนุฉ ูˆุจู†ูŠุฌูŠ ู„ู…ุตููˆูุชู†ุง ู‡ุฐู‡ ุจุณ
236
00:18:29,900 --> 00:18:33,000
ุจู†ุจุฏู„ ุงู„ู†ุงู‚ุต ุนุดุฑุฉ ู…ุน ุงู„ุงุซู†ูŠู† ู‡ู†ุง ุจุฏู„ู†ุงู‡ุง ุตุงุฑุช
237
00:18:33,000 --> 00:18:37,180
ู†ุงู‚ุต ุนุดุฑุฉ ูˆู‡ูŠ ุงุซู†ูŠู†ุŒ ูˆุจู†ุจุฏู„ ุฅุดุงุฑุฉ ู†ุงู‚ุต ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ
238
00:18:37,180 --> 00:18:41,330
ุฃุฑุจุนุฉ ุจู†ุจุฏู„ ุฅุดุงุฑุฉ ุงู„ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ ู†ุงู‚ุต ุฃุฑุจุนุฉ ู‡ุฐุง ุงู„ุขู†
239
00:18:41,330 --> 00:18:44,650
ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ A inverse ุฃูˆ
240
00:18:44,650 --> 00:18:50,030
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ A ูŠุณุงูˆูŠ ุจู†ุถุฑุจ ู‡ุฐู‡ ุทุจุนุง ู‡ุฐุง
241
00:18:50,030 --> 00:18:54,030
ุงู„ุถุฑุจ ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุชุฏุฎู„ ุนู„ู‰ ูƒู„ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู€
242
00:18:54,030 --> 00:18:58,150
matrix ูุจูŠุตูŠุฑ ู†ุงู‚ุต ุนุดุฑุฉ ููŠ ู†ุงู‚ุต ุฑุจุน ุนุจุงุฑุฉ ุนู† ุฎู…ุณุฉ
243
00:18:58,150 --> 00:19:02,910
ุนู„ู‰ ุงุซู†ูŠู† ู†ุงู‚ุต ุฃุฑุจุนุฉ ููŠ ู†ุงู‚ุต ุฑุจุน ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุงู„ู„ูŠ
244
00:19:02,910 --> 00:19:06,610
ู‡ูˆ ู†ุงู‚ุต ุฑุจุน ููŠ ุฃุฑุจุนุฉ ุจูŠุทู„ุน ู†ุงู‚ุต ูˆุงุญุฏ ู†ุงู‚ุต ุฑุจุน ููŠ
245
00:19:06,610 --> 00:19:10,950
ุงุซู†ูŠู† ุจูŠุทู„ุน ู†ุงู‚ุต ู†ุต ุฅุฐู† ู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู…ุนูƒูˆุณ
246
00:19:10,950 --> 00:19:14,550
ุงู„ุถุฑุจูŠ ู„ูˆ ุฃู†ุช ููŠ ุงู„ุฏุงุฑ ู„ุฃ ุฌูŠุช ูˆู‚ูˆู„ุช ูˆุงู„ู„ู‡ ุจุฏูŠ
247
00:19:14,550 --> 00:19:18,990
ุฃุดูˆู ูƒู„ุงู…ู†ุง ุตุญ ูˆู„ุง ู„ุฃ ุงุถุฑุจ ู„ู‡ุฏูŠ ููŠ ู‡ุฏูŠ ู‡ุชู„ุงู‚ูŠ ุจูŠุทู„ุน
248
00:19:18,990 --> 00:19:23,090
ุนุจุงุฑุฉ ุนู† ุงู„ู€ identity matrix ุฅุฐู† ุนู…ู„ูŠุฉ ุงู„ุฅูŠุฌุงุฏ ุงู„ู„ูŠ
249
00:19:23,090 --> 00:19:26,250
ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ุณู‡ู„ุฉ ู„ุฃู† ุงู„ู…ุตููˆูุฉ ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู†
250
00:19:26,700 --> 00:19:33,640
ุงู„ุขู† ู…ุนูƒู… ุงู„ุขู† ุงู„ุฌุฒุก ู…ู† ุงู„ู€ homework ู„ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ
251
00:19:33,640 --> 00:19:37,660
ุจุฏูƒู… ุชุญู„ูˆุง ูŠุง ุฌู…ุงุนุฉ ู‡ุฐุง ุงู„ุณุคุงู„ ู‡ุฐุง ููŠ ุงู„ homework
252
00:19:37,660 --> 00:19:42,020
find the inverse of a ูˆ b ูˆ c ุญูŠุซ a ู‡ูŠู‡ุง ูˆ b ู‡ูŠู‡ุง
253
00:19:42,020 --> 00:19:46,420
ูˆ c ู‡ูŠ ุฏู‡ ุจู†ุชุธุฑ ู…ู†ูƒู… ุงู„ู„ูŠ ู‡ูˆ ุญู„ ู‡ุฐุง ููŠ ุงู„ homework
254
00:19:46,420 --> 00:19:52,550
ุทุจุนุง ุฌุงูŠ ู„ุงุญู‚ุง ูƒู…ุงู† ุดุบู„ุฉ ูƒูŠู ุจุฏู†ุง ู†ุฌุฏ ู…ุง ู‡ูˆ find
255
00:19:52,550 --> 00:19:58,210
the inverse of a 3x3 matrix ูƒูŠู ุจุฏู†ุง ู†ุฌุฏ ู…ุง ู‡ูˆ
256
00:19:58,210 --> 00:20:03,650
ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู…ุตููˆูุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุชู„ุงุชุฉ ููŠ ุชู„ุงุชุฉ
257
00:20:03,650 --> 00:20:10,260
ุดูˆููˆุง ุนู„ูŠ ุฎู„ูŠู†ุง ู†ุทู„ุน ู‡ู†ุง ุฃุฑุจุน ุฎุทูˆุงุช ุฃุฑุจุน ุฎุทูˆุงุช ุงู„ู„ูŠ
258
00:20:10,260 --> 00:20:14,540
ู‡ูˆ ุงุญู†ุง ุจุงุฎุชุตุงุฑ ุฎู„ู‘ูŠู†ุง ู†ู‚ูˆู„ู‡ุง ุฃูˆู„ ุดูŠุก ุจุชูˆุฌุฏ ุญุงุฌุฉ
259
00:20:14,540 --> 00:20:19,180
ุงุณู…ู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ matrix of minor determinants
260
00:20:19,180 --> 00:20:24,000
ุญุงุฌุงุช ู‡ู†ู‚ูˆู„ ุงูŠุด ุงู„ุงู† ุจู†ุบูŠุฑ ุงุดุงุฑุงุช ุงู„ู„ูŠ ู‡ูŠ ูƒู„
261
00:20:24,000 --> 00:20:30,100
ุงู„ุนู†ุงุตุฑ ู…ุง ุนุฏุง ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆุนู†ุงุตุฑ ู‚ุทุฑ ู…ูŠู†
262
00:20:30,100 --> 00:20:35,350
ุงู„ุซุงู†ูˆูŠ ุงู„ุงู† ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู„ูŠ ุจูŠุทู„ุน ุนู†ุฏู†ุง ุงู„ู„ูŠ
263
00:20:35,350 --> 00:20:39,390
ุจู†ุนู…ู„ู‡ ุจู†ุงุฎุฏู‡ ู„ Transpose ุงู„ู„ูŠ ู‡ูˆ ู…ุฏูˆุฑ ุงู„ู…ุตููˆูุฉ ูˆ
264
00:20:39,390 --> 00:20:42,650
ุจุนุฏูŠู† ุงู„ู„ูŠ ุจูŠุทู„ุน ุจู†ุถุฑุจู‡ ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ determinant
265
00:20:42,650 --> 00:20:46,890
ุจูŠุทู„ุน ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู†ุดูˆู ู‡ุฐุง ูŠู…ูƒู†
266
00:20:46,890 --> 00:20:50,610
ุงู„ูƒู„ุงู… ุงู„ู†ุธุฑูŠ ุดูˆูŠุฉ ู…ุด ูˆุงุถุญ ุฎู„ูŠู†ุง ู†ุดูˆู ูƒูŠู ุนู…ู„ูŠุง
267
00:20:50,930 --> 00:20:55,050
ู†ูˆุฌุฏ ุงู„ูƒูˆุจูŠุง ู‚ุจู„ ู…ุง ู†ุญูƒูŠ ุนู† ู…ุง ู‡ูˆ ู†ูˆุฌุฏ ุงู„ inverse
268
00:20:55,050 --> 00:20:59,070
ุจุณ ุนุณุงุณ ุงู† ู‡ูˆ ุชูˆุถูŠุญ ุงูŠุด ู‡ูˆ ุงู„ matrix of minor
269
00:20:59,070 --> 00:21:02,430
determinants ุงู„ุงู† ุจุฏู†ุง ู†ุนุฑู ุดูˆ ู…ุนู†ุงุชู‡ ุงู„ minor
270
00:21:02,430 --> 00:21:05,630
determinants ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุญุฏุฏุงุช ุงู„ุซุงู†ูˆูŠุฉ ุญูƒูŠุชู‡ุง ู‚ุจู„
271
00:21:05,630 --> 00:21:10,540
ุจุดูˆูŠุฉ ููŠ ุงู„ุฌุฒุก ุงู„ุฃูˆู„ ู…ู† ุงู„ู…ุญุงุถุฑุฉ ุงู„ุงู† ูŠุนู†ูŠ ุจุฏูŠ ุงุดูˆู
272
00:21:10,540 --> 00:21:13,700
ุงูŠุด ุงู„ minor determinant ู„ู„ุฎู…ุณุฉ ุงู„ู„ูŠ ุจุงู„ู†ุณุจุฉ
273
00:21:13,700 --> 00:21:18,380
ู„ู„ุนู†ุตุฑ ุฎู…ุณุฉ ู‡ุฐุง ู…ูุชุฑุถ ุงู†ู‡ ู…ุญุฏุฏ ุฃูˆ matrix ุจุฏู†ุง ุงู„
274
00:21:18,380 --> 00:21:21,400
minor determinant ู„ู„ุฎู…ุณุฉ ุงู„ minor determinant ุฃูˆ
275
00:21:21,400 --> 00:21:24,620
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ุจุงุฎุชุตุงุฑ ูŠุง ุฌู…ุงุนุฉ ุจุชูŠุฌูŠ
276
00:21:24,620 --> 00:21:28,600
ุจุงู„ุดุท ุจุงู„ุตู ุงู„ู„ูŠ ู‡ูŠ ููŠู‡ ูˆ ุงู„ุนู…ูˆุฏ ุงู„ู„ูŠ ู‡ูŠ ููŠู‡ ุจุทู„ุน
277
00:21:28,600 --> 00:21:32,200
ุนู†ุฏ ุงู„ู…ุญุฏุฏ ุงู„ู…ุญุฏุฏ ุงู„ู„ูŠ ุจุทู„ุน ู‡ุฐุง ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ ุงู„
278
00:21:32,200 --> 00:21:36,350
minor determinant ู„ู…ู†ุŸ ู„ู„ุฎู…ุณุฉ ุงู„ุงู† ูˆุงุญุฏ ูŠู‚ูˆู„ ุงู„ู„ูŠ
279
00:21:36,350 --> 00:21:39,550
ุจุฏูŠ ุงู„ minor determinant ู„ู…ู†ุงู‚ุณ ุซู„ุงุซุฉ ุจู‚ูˆู„ ู„ู‡ ุญุงุถุฑ
280
00:21:39,550 --> 00:21:44,870
ุดุท ุจุงู„ุณุทุฑ ูˆ ุดุท ุจุงู„ุนู…ูˆุฏ ุจุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ุถุงู„
281
00:21:44,870 --> 00:21:49,710
ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ุจูƒูˆู† ู‡ูˆ ุงู„ minor
282
00:21:49,710 --> 00:21:53,510
determinant ู„ู…ู†ุงู‚ุณ ุซู„ุงุซุฉ ูˆุงุญุฏ ู‚ุงู„ ู„ุฃ ุจุฏูŠ ู„ู„ุชู…ุงู†ูŠุฉ
283
00:21:53,510 --> 00:21:58,530
ุจู‚ูˆู„ ู„ู‡ ุญุงุถุฑ ู‡ูŠ ู„ู„ุชู…ุงู†ูŠุฉ ุดุท ุจุนู…ูˆุฏู‡ ูˆ ุดุท ุจุตูู‡ ุงู„ู„ูŠ
284
00:21:58,530 --> 00:22:03,030
ุจุถู„ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ minor determinant ู„ู…ู† ู„ู„ุชู…ุงู†ูŠุฉ
285
00:22:03,370 --> 00:22:09,450
ุฃูˆ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ู„ู„ุนู†ุตุฑ ู…ู† ุชู…ุงู†ูŠุฉ ู„ูˆ ูƒุงู† ู„ูŠู‡ ุจุฏูŠ
286
00:22:09,450 --> 00:22:12,730
ุฃูˆุฌุฏุช ู‚ูŠู…ุชู‡ ุจู‚ูˆู„ ุงู‡ ุณู‡ู„ ุงูŠุฌุงุฏู‡ุง ูˆุงุญุฏ ููŠ ุชู„ุงุชุฉ
287
00:22:12,730 --> 00:22:17,690
ุจุชู„ุงุชุฉ ุชู„ุงุชุฉ ู†ุงู‚ุต ู†ุงู‚ุต ุฃุฑุจุนุฉ ูŠุนู†ูŠ ูˆุงุญุฏ ุฒุงุฆุฏ ุฃุฑุจุนุฉ
288
00:22:17,690 --> 00:22:21,670
ูŠุนู†ูŠ ุฎู…ุณุฉ ุขุณู ุชู„ุงุชุฉ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุนู†ูŠ ุณุจุนุฉ ุงู„ู„ูŠ ู‡ูˆ
289
00:22:21,670 --> 00:22:27,010
ุชู„ุงุชุฉ ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูŠุนู†ูŠ ุณุจุนุฉ ู‡ุฐุง ู‚ูŠู…ุฉ ู…ู† ุงู„ minor
290
00:22:27,010 --> 00:22:30,980
determinant of ุชู…ุงู†ูŠุฉ ูŠุนู†ูŠ ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ู„ู…ูŠู†ุŸ
291
00:22:30,980 --> 00:22:36,140
ู„ุชู…ุงู†ูŠุฉ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‚ุฏู…ู†ุงู‡ ุนุดุงู† ู†ุณุชุฎุฏู…ู‡ ู…ุจุงุนุฏ ุจุดูˆูŠุฉ
292
00:22:36,140 --> 00:22:42,600
ููŠ ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุฌุงุฏ ุงู„ inverse ู„ู„ู…ุตููˆูุฉ ุดูˆููˆุง ..
293
00:22:42,600 --> 00:22:45,420
ุดูˆููˆุง ุตู„ู‰ ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ุจุนุชู‚ุฏ ุงู„ุฃู…ูˆุฑ ุฅู† ุดุงุก ุงู„ู„ู‡
294
00:22:45,420 --> 00:22:49,440
ู‡ุชูƒูˆู† ูˆุงุถุญุฉ ุฌุฏุง ุงู„ุงู† ุงู„ determinant ุฃู… ุงู„ matrix
295
00:22:49,440 --> 00:22:54,000
ุฃู… ุงู„ู…ุตููˆูุฉ ุฃู… ุงู„ู…ุทู„ูˆุจ ุฅูŠุฌุงุฏ ุงู„ inverse ู„ู‡ุฐู‡
296
00:22:54,000 --> 00:23:00,880
ุงู„ู…ุตููˆูุฉ ุนู†ุฏู†ุง ุฃุฑุจุน ุฎุทูˆุงุช ุนุดุงู† ู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„
297
00:23:00,880 --> 00:23:04,880
.. ุงู„ .. ุงู„ .. ุงู„ inverse ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุฃุฑุจุน ุฎุทูˆุงุช
298
00:23:04,880 --> 00:23:07,900
ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุฃูƒูŠุฏ ูƒู„ูƒู… ุญูŠู‚ูˆู„ ุจุฏู†ุง ู†ุฌุฏ ุงู„
299
00:23:07,900 --> 00:23:11,600
determinant ูŠุนู†ูŠ ุจุฏู†ุง ู†ุชุฃูƒุฏ ุฃูˆ ุดูŠุก make sure ุงู†ู‡
300
00:23:11,600 --> 00:23:14,320
non-singular ุงูŠุด ูŠุนู†ูŠ non-singular ูŠุนู†ูŠ
301
00:23:14,320 --> 00:23:17,300
determinant ู„ู‡ ู…ุด ุตูุฑ ู„ูˆ ุญุณุจุชูˆุง ุงู„ determinant ู„ู‡
302
00:23:17,300 --> 00:23:20,060
ุฒูŠ ู…ุง ุฃุฎุฏู†ุงู‡ ููŠ ุงู„ุทุฑูŠู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ุฅูŠุด ู†ุถูŠุน ุงู„ูˆุฌุฏ ููŠ
303
00:23:20,060 --> 00:23:23,800
ุญุณุงุจุงุชู‡ุง ู„ุฅู† ุญุณุจู†ุงู‡ุง ู‚ุจู„ ู‡ูŠูƒ ุจุชุญุณุจูˆู‡ุง ู‡ุชู„ุงู‚ูˆุง ุงู„
304
00:23:23,800 --> 00:23:28,520
determinant ู„ู‡ุฐู‡ ุงู„ M ุงูŠุด ุทุงู„ุน ุนู†ุฏู†ุง -156 ูŠุนู†ูŠ ู…ุด
305
00:23:28,520 --> 00:23:32,800
ุตูุฑ ู…ุฒุง ู…ุด ู…ุด ุตูุฑ ุฅุฐุง ุงู„ุงู† ุชุฃูƒุฏู†ุง ุฅู†ู‡ non
306
00:23:32,800 --> 00:23:37,120
singular ู‡ุฐู‡ ุทุจุนุง ููŠ ุงู„ุขุฎุฑ ุงู„ู„ูŠ ู‡ูŠ ุจุณุชุฎุฏู…ู‡ุง ุงู„ู„ูŠ
307
00:23:37,120 --> 00:23:42,300
ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ determinant ู†ุฌูŠ ู„ู„ุฎุทูˆุงุช ุงู„ู„ูŠ ุจุฏู†ุง ู†ุตู„
308
00:23:42,300 --> 00:23:46,640
ููŠู‡ุง ู„ู„ inverse ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูˆ find the
309
00:23:46,640 --> 00:23:49,840
matrix of minor determinants ูŠุนู†ูŠ ุจุฏุฃ ุฃูˆุฌุฏ ุงู„
310
00:23:49,840 --> 00:23:53,800
matrix ุงู„ู„ูŠ ุจุฌูŠุจู‡ ู…ู† ู…ูŠู† ู…ู† minor determinants
311
00:23:54,610 --> 00:23:58,350
ุจุชู†ุดูˆู ุจู†ูˆุฌุฏ ุงูˆู„ ุดูŠุก ู„ู„ุชู„ุงุชุฉ ุดูŠุก ุงู„ minor
312
00:23:58,350 --> 00:24:03,670
determinant ู„ู„ุชู„ุงุชุฉ ุงู„ุงู† ู‡ุงูŠ ุงู„ุชู„ุงุชุฉ ุดุทุจู†ุง ุงู„ุณุทุฑ
313
00:24:03,670 --> 00:24:08,590
ุดุทุจู†ุง ุงู„ุนู…ูˆุฏ ุถู„ ุนู†ุฏูŠ ู‡ุฐุง ู‡ุฐุง ู‚ุฏุงุด ู‚ูŠู…ุชู‡ ู†ุงู‚ุต
314
00:24:08,590 --> 00:24:12,850
ุงุชู†ูŠู† ููŠ ู†ุงู‚ุต ุงุชู†ูŠู† ูŠุนู†ูŠ ุงุฑุจุนุฉ ู†ุงู‚ุต ุฎู…ุณุฉ ูˆุนุดุฑูŠู†
315
00:24:12,850 --> 00:24:16,570
ุงุฑุจุนุฉ ู†ุงู‚ุต ุฎู…ุณุฉ ูˆุนุดุฑูŠู† ู‚ุฏุงุด ุจุทู„ุน ู†ุงู‚ุต ูˆุงุญุฏ ูˆุนุดุฑูŠู†
316
00:24:16,570 --> 00:24:20,450
ุฅุฐุง ุจูƒุชุจ ุงู„ู†ุงู‚ุต ูˆุงุญุฏ ูˆุนุดุฑูŠู† ู‡ุฐุง ุฎู„ุตู†ุง ู…ู† ุงู„ุนู†ุตุฑ
317
00:24:20,450 --> 00:24:24,690
ุงู„ุฃูˆู„ ู†ุฌูŠ ู„ู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ุจุฏู‡ ุฃูˆุฌุฏ ุงู„ minor
318
00:24:24,690 --> 00:24:29,770
determinant ู„ู…ู† ูŠุง ุดุจุงุจ ู„ู„ุณุจุนุฉ ุฎู„ุตู†ุง ู…ู† ุงู„ุชู„ุงุชุฉ
319
00:24:29,770 --> 00:24:33,850
ู†ุฌูŠ ู„ู„ุณุจุนุฉ ุทุจ ุงู„ุณุจุนุฉ ูƒูŠู ู†ูุณ ุงู„ุดูŠุก ุจู†ุดุทุจ ุงู„ุณุทุฑ ูˆ
320
00:24:33,850 --> 00:24:36,930
ุจู†ุดุทุจ ุงู„ุนู…ูˆุฏ ูˆ ุจู†ุญุณุจ ุงู„ minor determinant ุงู„ู„ูŠ ู‡ูˆ
321
00:24:36,930 --> 00:24:40,990
ูˆุงุญุฏ ููŠ ู†ุงู‚ุต ุงุชู†ูŠู† ุจูŠุทู„ุน ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุงู„ู„ูŠ
322
00:24:40,990 --> 00:24:47,070
ุจูŠุตูŠุฑ ุฒุงุฆุฏ ุฎู…ุณุชุงุดุฑ ุงุชู†ูŠู† ู†ู‚ุต ุงุชู†ูŠู† ุฒุงุฆุฏ ุฎู…ุณุชุงุนุด
323
00:24:47,070 --> 00:24:53,050
ุจูŠุทู„ุน ู‚ุฏุงุด ุนุจุงุฑุฉ ุนู† ุชู„ุงุช ุนุดุฑุฉ ุฎู„ุตู†ุง ู…ู† ุงู„ุณุจุนุฉ ุจู†ูˆุฌุฏ
324
00:24:53,050 --> 00:24:56,870
ุงู„ minor determinant ู„ู…ู† ุงู„ุงู† ู„ู„ุชู†ูŠู† ุซุงู†ูŠ ุชุดูˆู ุงู„
325
00:24:56,870 --> 00:24:58,510
minor determinant ู„ู„ุชู†ูŠู†
326
00:25:02,080 --> 00:25:08,660
ูˆุดุท ุจุงู„ุนู…ูˆุฏ ุทู„ุน ุงู„ู€ Minor Determinant ุฃูŠ ุงู„ู…ุญุฏุฏ
327
00:25:08,660 --> 00:25:15,680
ุงู„ุซุงู†ูˆูŠ ู„ู„ุนู†ุตุฑ 2 ุงู„ู…ุญุฏุฏ ุงู„ุซุงู†ูˆูŠ ู„ู„ุนู†ุตุฑ 2 ุฎู…ุณุฉ ุฒุงุฆุฏ
328
00:25:15,680 --> 00:25:20,020
ุงู„ู„ูŠ ู‡ูŠ ุจุตูŠุฑ ู†ุงู‚ุต ุณุชุฉ ุฎู…ุณุฉ ู†ุงู‚ุต ุณุชุฉ ุจุทู„ุน ู†ุงู‚ุต ูˆุงุญุฏ
329
00:25:20,020 --> 00:25:26,780
ู†ุชุฃูƒุฏ ุงู„ูƒู„ุงู… ุตุญูŠุญ ุฎู„ุตู†ุง ู…ู† ุงู„ุณุทุฑ ุงู„ุฃูˆู„ ูƒู„ู‡ ูˆ ู†ุจุฏุฃ
330
00:25:26,780 --> 00:25:31,540
ุจุงู„ูˆุงุญุฏ ูˆู‡ูŠ ู†ูุณ ุงู„ู‚ุตุฉ ูˆู‡ูŠ ุงู„ุณุทุฑ ูˆู‡ูŠ ุงู„ุนู…ูˆุฏ ูˆู‡ูŠ
331
00:25:31,540 --> 00:25:35,760
ุงู„ุณุทุฑ ูˆู‡ูŠ minor determinant ุจู†ูˆุฌุฏ ู‚ูŠู…ุชู‡ ุณุจุนุฉ ููŠ
332
00:25:35,760 --> 00:25:40,680
ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุงุฑุจุนุฉ ุนุดุฑ ู†ุงู‚ุต ุนุดุฑุฉ ูŠุนู†ูŠ ุนุจุงุฑุฉ ุนู†
333
00:25:40,680 --> 00:25:45,680
ู†ุงู‚ุต ุงุฑุจุน ูˆุนุดุฑูŠู† ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ ุจู†ุฌูŠ ู„ู…ูŠู†
334
00:25:45,680 --> 00:25:49,600
ุงู„ุงู† ู†ุงู‚ุต ุงุชู†ูŠู† ุฎู„ูŠู†ูŠ ู†ุดูˆู ูŠุง ุดุจุงุจ ู†ุงู‚ุต ุงุชู†ูŠู† ุจู†ูุณ
335
00:25:49,600 --> 00:25:53,180
ุงู„ุงุณู„ูˆุจ ู‡ุงูŠ ุงู„ minor determinant ุงู„ู„ูŠ ู‡ูˆ ุชู„ุงุชุฉ ููŠ
336
00:25:53,180 --> 00:25:57,300
ู†ุงู‚ุต ุงุชู†ูŠู† ู†ุงู‚ุต ุณุชุฉ ู†ุงู‚ุต ุณุชุฉ ูˆุฒุงูŠุฉ ุณุชุฉ ุจุทู„ุน ูƒุฏู‡
337
00:25:57,300 --> 00:26:02,440
ุตูุฑ ุทูŠุจ ุฎู„ุตู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู†ุงู‚ุต ุงุชู†ูŠู† ุจู†ุทู„ุน ู„ู…ูŠู†
338
00:26:02,440 --> 00:26:08,550
ุงู„ุงู† ู„ู„ุฎู…ุณุฉ ุฏู„ุงู„ ุงู„ุฎู…ุณุฉ ุงู„ู…ุญุฏุฏุฉ
339
00:26:08,550 --> 00:26:13,900
ุงู„ุซุงู†ูˆูŠุฉ ู„ู„ุฎู…ุณุฉ ุจู†ุดุทุจ ุณุทุฑ ุงู„ุฎู…ุณุฉ ูˆ ุนู…ูˆุฏ ุงู„ุฎู…ุณุฉ ุจุทู„ุน
340
00:26:13,900 --> 00:26:18,640
ุนู†ุฏ ุงู„ู…ุญุฏุฏ ุจุญุณุจ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุฎู…ุณุฉ ุนุดุฑ ุฒุงุฆุฏ ูˆุงุญุฏ ูˆ
341
00:26:18,640 --> 00:26:23,500
ุนุดุฑูŠู† ุจุทู„ุน ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุณุชุฉ ูˆ ุชู„ุงุชูŠู† ุฎู„ุตู†ุง ู‡ุฐู‡
342
00:26:23,500 --> 00:26:27,420
ุจู†ูŠุฌูŠ ู„ู„ุณุทุฑ ุงู„ุซุงู„ุซ ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู† ู†ุงู‚ุต ุชู„ุงุชุฉ
343
00:26:27,420 --> 00:26:31,500
ุจู†ูุณ ุงู„ุงุณู„ูˆุจ ู‡ูŠ ู…ุญุฏุฏู‡ุง ู…ุญุฏุฏู‡ุง ู…ู† ูˆุฌูˆุฏ ู‚ูŠู…ุชู‡ ุจุชุทู„ุน
344
00:26:31,500 --> 00:26:35,880
ุชุณุนุฉ ูˆ ุชู„ุงุชูŠู† ุฎู„ุตู†ุง ู…ู† ู†ุงู‚ุต ุชู„ุงุชุฉ ุจู†ูŠุฌูŠ ู„ู„ุฎู…ุณุฉ
345
00:26:35,880 --> 00:26:40,280
ุงู„ู„ูŠ ู‡ูˆ ุฎู…ุณุฉ ู…ุญุฏุฏู‡ุง ู‚ุฏุงุด ุจุทู„ุน ุจู†ุญุณุจู‡ ุจุทู„ุน ุชู„ุช ุนุดุฑุฉ
346
00:26:40,810 --> 00:26:43,910
ุจู†ูุณ ุงู„ุงุณู„ูˆุจ ุงู„ู„ูŠ ู‚ุจู„ุช ุงู„ุงู† ุฎู„ุตู†ุง ู…ู† ุงู„ุฎู†ุตุฉ ุฏู‡
347
00:26:43,910 --> 00:26:48,110
ุงู„ู„ูŠ ุนู†ุฏูŠ ู†ู‚ุต ุงุชู†ูŠู† ู‡ูŠ ู…ุญุฏุฏู‡ุง ุจู†ุญุณุจ ู…ุญุฏุฏู‡ุง ู‡ุฏู
348
00:26:48,110 --> 00:26:50,050
ู‡ุฏู ู†ู‚ุต ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู
349
00:26:50,050 --> 00:26:54,290
ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู
350
00:26:54,290 --> 00:26:55,550
ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู
351
00:26:55,550 --> 00:26:55,570
ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู
352
00:26:55,570 --> 00:27:05,830
ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู ู‡ุฏู
353
00:27:05,830 --> 00:27:11,840
ู‡ู„ุนู†ุงุตุฑ ุงู„ู…ุตููˆูุฉ ูŠุนู†ูŠ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ุซุงู†ูˆูŠ
354
00:27:11,840 --> 00:27:16,780
ู„ู„ุชู„ุงุชุฉ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ู…ุญุฏุฏ ุซุงู†ูˆูŠ ู„ู„ุณุจุนุฉ ู‡ุฐุง ุงู„ู…ุญุฏุฏ
355
00:27:16,780 --> 00:27:20,120
ุงู„ุซุงู†ูˆูŠ ู„ู„ุชุงู†ูŠู† ุฒูŠ ู…ุง ุญูƒูŠู†ุง ูˆ ุงู„ุจุฌูŠุงุช ู†ูุณ ุงู„ุดูŠุก
356
00:27:20,120 --> 00:27:25,620
ุฅุฐุง ู‡ุฐู‡ ุฃูˆู„ ุฎุทูˆุฉ ู†ุฌูŠ ู„ู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุขู† ุงู„ุฎุทูˆุฉ
357
00:27:25,620 --> 00:27:31,600
ุงู„ุซุงู†ูŠุฉ ุจู†ูŠุฌูŠ ุจู†ุญุฏุฏ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆ ุนู†ุงุตุฑ
358
00:27:31,600 --> 00:27:36,660
ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆุงู„ู„ูŠ ุจุถู„ู†ุง ุจู†ู‚ู„ุจ ุฅุดุงุฑุชูŠู† ุจุณ ุงู„ู„ูŠ ู‡ูˆ
359
00:27:36,660 --> 00:27:40,380
alternate the sign of the minor which don't lie on
360
00:27:40,380 --> 00:27:44,440
the diagonals ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุขู† ู‡ูŠ ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูŠ
361
00:27:44,440 --> 00:27:47,460
ุงู„ู„ูŠ ู…ุด ุนู„ู‰ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ุฃูˆ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ุจุฏู†ุง
362
00:27:47,460 --> 00:27:51,560
ู†ุบูŠุฑ ุฅุดุงุฑุชูŠู† ุจูŠุตูŠุฑ ู‡ุฐุง 24 ูˆู‡ุฐุง 13 ูˆู‡ุฐุง ู†ุงู‚ุต 13 ูˆู‡ุฐุง
363
00:27:51,560 --> 00:27:58,080
ุงูŠุด ุณุงู„ุจ 36 ุฎู„ูŠู†ุง ู†ุดูˆูู‡ุง ูุนู„ุง ู‡ูŠู‡ุง ุณุงู„ุจ 13 ุณุงู„ุจ 36
364
00:27:58,080 --> 00:28:04,640
ุณุงู„ุจ 13 24 ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ู†ุฌูŠ ู„ู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ ุงู„ุฎุทูˆุฉ
365
00:28:04,640 --> 00:28:09,440
ุงู„ุซุงู„ุซุฉ ู‡ุฐุง ุงู„ุงู† ุงู„ู„ูŠ ุจุทู„ุน ุงู„ู„ูŠ ุทู„ุน ููŠ ุงู„ุฎุทูˆุฉ
366
00:28:09,440 --> 00:28:13,120
ุงู„ุซุงู†ูŠุฉ ุจุฏู†ุง ู†ุฌูŠุจู„ู‡ transpose ูŠุนู†ูŠ ุจุฏูŠ ุฃุฌูŠุจู„ู‡ ุงูŠุด
367
00:28:13,120 --> 00:28:18,540
ู…ุฏูˆุฑ ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู…ุฏูˆุฑู‡ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุทุฑ ุจูŠุตูŠุฑ ุนู…ูˆุฏ
368
00:28:18,540 --> 00:28:21,700
ุงู„ุณุทุฑ ุจูŠุตูŠุฑ ุนู…ูˆุฏ ุงู„ุณุทุฑ ุจูŠุตูŠุฑ ุนู…ูˆุฏ ุจูŠูƒูˆู† ุฃูˆุฌุฏู†ุง ู…ูŠู†
369
00:28:21,700 --> 00:28:27,580
ู„ Transpose ู‡ุงูŠ ุนู†ุฏูŠ ุงู„ุณุทุฑ ุงู„ุฃูˆู„ ุตุงุฑ ุนู…ูˆุฏ ุงู„ุณุทุฑ
370
00:28:27,580 --> 00:28:32,350
ุงู„ุซุงู†ูŠ ุตุงุฑ ุนู…ูˆุฏ ุงู„ุณุทุฑ ุงู„ุซุงู„ุซ ุตุงุฑ ุงู„ุนู…ูˆุฏ ุงู„ุซุงู„ุซ ู‡ุฐุง
371
00:28:32,350 --> 00:28:36,850
ุงู„ู„ูŠ ู‡ูˆ ุงูŠุด ุจู†ุณู…ูŠู‡ ู„ Transpose ุจุงู„ู…ู†ุงุณุจุฉ ู‡ุฐุง ุงู„ู„ูŠ
372
00:28:36,850 --> 00:28:40,730
ุทู„ุน ููŠ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู„ุซุฉ ุงู„ู„ูŠ ู‡ูˆ ู„ Transpose ู‡ุฐุง ุจุนุฏ
373
00:28:40,730 --> 00:28:47,690
ุดูˆูŠุฉ ู‡ู†ุณู…ูŠู‡ ู‡ูŠ ุงู„ Adjoint ู„ Matrix M ูŠุนู†ูŠ ู„ูˆ ุทู„ุจ
374
00:28:47,690 --> 00:28:52,550
ุนู†ุฏูŠ ุงู„ Adjoint ู„ Matrix M ุจูŠุฌูŠุจ ุจุนู…ู„ ุชู„ุช ุฎุทูˆุงุช
375
00:28:52,550 --> 00:28:57,150
ู†ุฌุฏ ุงู„ Matrix ุงู„ู„ูŠ ู‡ูˆ ุชุจุน ุงู„ minor determinants
376
00:28:57,400 --> 00:29:01,980
ุจู†ุบูŠุฑ ุฅุดุงุฑุงุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ุนู†ุงุตุฑ ูƒู„ู‡ุง ู…ุนุฏุฉ ุนู†ุงุตุฑ ุงู„ู„ูŠ
377
00:29:01,980 --> 00:29:05,640
ู‡ูˆ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆุจุนุฏูŠู† ุจู†ุงุฎุฏู‡ุง ู„ู„
378
00:29:05,640 --> 00:29:10,240
Transverse ู‡ุฐุง ุงู„ู„ูŠ ุจู†ุณู…ูŠ ุงู„ู€ Adjunct ุงู„ู€ Adjoint
379
00:29:10,240 --> 00:29:14,600
ู„ู„ู…ุตููˆูุฉ ุงู„ุงู† ุจุฏูŠ ุงู†ุง ุงู„ู€ inverse ุงู„ู€ inverse ููŠ
380
00:29:14,600 --> 00:29:18,960
ุงู„ุดุชู‘ุงู„ ู…ู†ู‡ุง ุงูŠุด ุทุงู„ุช ุงู„ุฎุทูˆุฉ ุงู„ุฃุฎูŠุฑุฉ Divide By
381
00:29:18,960 --> 00:29:23,600
Determinant ุจู†ุฌุณู… ู‡ุฐุง ุจุฅูŠุด ุจุงู„ู€ determinant ู„ู„ู€ M
382
00:29:23,600 --> 00:29:27,500
ูŠุนู†ูŠ ุงู„ุขู† ุจู†ุถุฑุจ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€ minus
383
00:29:27,500 --> 00:29:32,160
ุณุชุฉ ูˆุฎู…ุณูŠู† ุจูŠุทู„ุน ู…ูŠู† ู‡ูˆ ุงู„ู€ M inverse ุจุณุงูˆูŠ ู†ุงู‚ุต
384
00:29:32,160 --> 00:29:36,540
ูˆุงุญุฏ ุนู„ู‰ ู…ุฆุฉ ูˆุณุชุฉ ูˆุฎู…ุณูŠู† ููŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ู…ุตููˆูุฉ
385
00:29:36,540 --> 00:29:41,740
ุงู„ู„ูŠ ุจูŠุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง ุงู„ู€ M inverse ู‡ูˆ ุงู„ุงู† ุนุจุงุฑุฉ ุนู†
386
00:29:41,740 --> 00:29:46,740
ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ inverse ู„ู„ู…ุตููˆูุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุงู† ุจุชุตูˆุฑ
387
00:29:46,740 --> 00:29:52,640
ุงู„ุฃู…ูˆุฑ ูˆุงุถุญุฉ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุฎุทูˆุฉ
388
00:29:52,640 --> 00:29:56,860
ุงู„ุซุงู„ุซุฉ ุงู„ุฎุทูˆุฉ ุงู„ุฑุงุจุนุฉ ูˆูƒูˆู† ุญุตู„ู†ุง ุนุงู„ู…ูŠุง ุนู„ู‰ ุงู„ู€ M
389
00:29:56,860 --> 00:30:02,040
inverse ุฃูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ุถุฑุจูŠ ู„ู„ู…ุตููˆูุฉ M ู†ุฌูŠ ู†ุงุฎุฏ ู…ุซุงู„
390
00:30:02,040 --> 00:30:07,300
ุซุงู†ูŠ ู‡ูŠ ุนู†ุฏูŠ ุงู„ู…ุซุงู„ ุงูŠู‡ ู‡ูˆ ู‡ูŠ ุนู†ุฏูŠ ุจู†ูˆุฌุฏ f inverse ู„ู‡
391
00:30:07,300 --> 00:30:12,240
example ูˆุงุญุฏ find a inverse ู‡ูŠ ุงู„ู€ matrix A ูˆู‡ูŠ ุฃูˆู„
392
00:30:12,240 --> 00:30:15,680
ุฎุทูˆุฉ ุจู†ุนู…ู„ู‡ุง ุงูŠุด ุจู†ูˆุฌุฏ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ determinant ู„ู‡
393
00:30:15,680 --> 00:30:19,420
ุงูˆุฌุฏู†ุง ุงู„ู€ determinant ุฒูŠ ู…ุง ุจู†ูˆุฌุฏ ุฏุงุฆู…ุง ุจูŠุทู„ุน ุนู†ุฏูŠ
394
00:30:19,420 --> 00:30:23,560
determinant ุนุจุงุฑุฉ ุนู† 32 ูŠุนู†ูŠ ู…ุด ุตูุฑ ูŠุนู†ูŠ ูุนู„ุง ููŠุด
395
00:30:23,560 --> 00:30:28,400
ุนู†ุฏู†ุง ุงูŠุด ุงู„ู„ูŠ ู‡ูˆ ููŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ inverse
396
00:30:28,400 --> 00:30:33,790
ู„ู„ู…ุตููˆูุฉ ุทูŠุจ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูŠ ุจุนุฏ ู…ุง ูˆุฌุฏู†ุง ู‡ุฐู‡
397
00:30:33,790 --> 00:30:37,430
ุทุจุนุง ุฎุทูˆุฉ ุฑุฆูŠุณูŠุฉ ู‡ู†ุงุฎุฏู‡ุง ู„ุงุญู‚ุง ุงู„ุงู† ุงู„ุฎุทูˆุงุช
398
00:30:37,430 --> 00:30:40,750
ุงู„ุฃุฑุจุนุฉ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ matrix of minors
399
00:30:40,750 --> 00:30:45,410
ู†ุฌุฏ ุงู„ู€ matrix of minors ู„ู„ูˆุงุญุฏ ุจู†ุดุทุจ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุทุฑ
400
00:30:45,410 --> 00:30:47,690
ูˆ ุงู„ุนู…ูˆุฏ ุจูŠุทู„ุน ุงู„ู€ determinant ู‡ุฐุง ู‡ูŠ ุงู„ู€ determinant
401
00:30:47,690 --> 00:30:52,210
ู„ู„ุตูุฑ ู‡ูŠ ุงู„ู€ determinant ู„ู„ุชู„ุงุชุฉ ุชุฏุฑุจ ู„ุญุงู„ูƒ ู‡ูŠ ุงู„
402
00:30:52,210 --> 00:30:54,910
determinant ุฃูˆู„ุงุฏ ุณุจุนุฉ ุฃูˆ ุฃูˆู„ุงุฏ ุชู„ุงุชุฉ ู‡ุงูŠ ูƒู„ู‡ุง
403
00:30:54,910 --> 00:30:59,370
ู‡ุฏูˆู„ ู…ูŠู† ู‡ู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ matrix of minors ุฃูˆ
404
00:30:59,370 --> 00:31:03,130
determinant ุงู„ู€ matrix of minor determinants
405
00:31:03,130 --> 00:31:10,950
ุงู„ู…ูู‡ูˆู… ุงู„ู„ูŠ ู‡ูˆ ู…ุตููˆูุฉ ู…ุตููˆูุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ุญุฏุฏุงุช
406
00:31:10,950 --> 00:31:17,090
ุงู„ุซุงู†ูˆูŠุฉ ู‡ูŠ ู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ
407
00:31:17,090 --> 00:31:17,730
ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆ ู‚ูŠู…ุฉ
408
00:31:17,730 --> 00:31:19,630
ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆ
409
00:31:19,630 --> 00:31:20,710
ู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง
410
00:31:20,710 --> 00:31:24,290
ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆ
411
00:31:24,290 --> 00:31:27,950
ู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง
412
00:31:27,950 --> 00:31:28,550
ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆ
413
00:31:28,550 --> 00:31:33,590
ู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง
414
00:31:33,590 --> 00:31:38,410
ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆ
415
00:31:38,410 --> 00:31:41,030
ู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง
416
00:31:41,030 --> 00:31:42,200
ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‚ูŠู…ุฉ ู‡ุฐุง ู‡ูŠ ูˆู‡ูŠุชุทู„ุน ุนู„ู‰ ุงู„ู„ูŠ
417
00:31:42,200 --> 00:31:45,280
ู‚ุจู„ ุนุดุงู† ู…ุง ุชู†ุณุงุด ุงู„ู†ุงู‚ุต ุชู…ุงู†ูŠุฉ ูˆ ุชู„ุงุชูŠู† ู‡ูŠ ุตุงุฑุช
418
00:31:45,280 --> 00:31:47,460
ู†ุงู‚ุต ุชู…ุงู†ูŠุฉ ูˆ ุชู„ุงุชูŠู† ู‡ุฐูŠ ุตุงุฑุช ุณุชุฉ ู‡ุฐูŠ ุตุงุฑุช ู†ุงู‚ุต
419
00:31:47,460 --> 00:31:51,980
ุงุชู†ูŠู† ู‡ุฐูŠ ุตุงุฑุช ุงุชู†ูŠู† ูˆ ุนุดุฑูŠู† ู…ุธุจูˆุท ุทูŠุจ ุงู„ุฎุทูˆุฉ
420
00:31:51,980 --> 00:31:55,600
ุงู„ุซุงู„ุซุฉ ุงูŠุด ู‡ุฐุง ุงู„ู„ูŠ ุทุจุนุง ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ cofactor
421
00:31:55,600 --> 00:31:59,380
matrix ูŠุนู†ูŠ ุงู„ู„ูŠ ุจู†ุบูŠุฑ ุฅุดุงุฑุงุช ู…ู† ุงู„ .. ุงู„ .. ุงู„ ..
422
00:31:59,380 --> 00:32:06,570
ุงู„ู€ matrix ู…ุนุฏุฉ ุฃู†ุตุฑ ุงู„ุฃู‚ุทุงุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุงู„ุฎุทูˆุฉ
423
00:32:06,570 --> 00:32:09,390
ุงู„ุซุงู„ุซุฉ ู‡ูŠ ุงู† ู†ุฌูŠุจ ุงู„ู€ Transpose ู†ุฌูŠุจ ุงู„ู„ูŠ ู‡ูˆ ู…ุฏูˆุฑ
424
00:32:09,390 --> 00:32:12,870
ุงู„ู…ุตููˆูุฉ ู„ู€ Transpose ุงู„ู„ูŠ ู‡ูˆ ุจูŠุตูŠุฑ ู‡ุฐุง ุงู„ุณุทุฑ ู‡ูŠ
425
00:32:12,870 --> 00:32:19,330
ุนู…ูˆุฏ ูˆู‡ุฐุง ุงู„ุณุทุฑ ู‡ูŠ ุนู…ูˆุฏ ูˆู‡ุฐุง ุงู„ุณุทุฑ ู‡ูŠ ุนู…ูˆุฏ ู‡ุฐุง
426
00:32:19,330 --> 00:32:24,210
ุงู„ู€ Transpose ู‡ูˆ ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ ุงู„ู€ Adjoint ู„ู€ ู…ูŠู„ุฉ A
427
00:32:24,210 --> 00:32:27,870
ุงู„ู„ูŠ ุญูƒูŠุชู‡ ู‚ุจู„ ุจุดูˆูŠุฉ ุจูŠุตูŠุฑ ุนู†ุฏูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูŠ
428
00:32:27,870 --> 00:32:31,890
ุงู„ุฎุทูˆุฉ ุงู„ุฃุฎูŠุฑุฉ ุงู„ุฑุงุจุนุฉ ุงู„ู€ A inverse ุจุณุงูˆูŠ 1 ุนู„ู‰ 32
429
00:32:31,890 --> 00:32:35,550
ุงู„ู„ูŠ ู‡ูŠ ู‚ูŠู…ุฉ ุงู„ู€ Determinant ู…ุถุฑูˆุจุฉ ููŠ ู‡ุฐุง ุงู„
430
00:32:35,550 --> 00:32:38,010
matrix ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ .. ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ CT
431
00:32:38,010 --> 00:32:42,610
ุณู…ูŠู†ุงู‡ุง ูˆุจูŠุทู„ุน ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุฃู…ุงู…ูŠ ู‡ุฐุง
432
00:32:42,610 --> 00:32:46,230
ุงู„ู„ูŠ ุจู†ุณู…ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ inverse ุฃูˆ ุงู„ู…ุนูƒูˆุณ ุงู„ู„ูŠ
433
00:32:46,230 --> 00:32:51,510
ุถุฑุจู†ุง ู…ูŠู† ูŠุง ุฌู…ุงุนุฉ ู„ู…ุง ู…ุตูˆูุฉ ู„ูˆ ู…ุซุงู„ ุขุฎุฑ ุฌุงู„ูŠ find
434
00:32:51,510 --> 00:32:55,050
A inverse ุงู„ุขู† ุจุฏุง ู†ูˆุฌุฏ ุงู„ู€ A inverse ุจุงู„ุตูˆุฑุฉ ุงู„ู„ูŠ
435
00:32:55,050 --> 00:32:59,170
ุญูƒูŠู†ุง ุนู†ู‡ุง ู‚ุจู„ ุจุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู‡ูŠ ุงู„ู€ A ูˆุงู„ู€ A
436
00:32:59,170 --> 00:33:01,790
inverse ุงูŠุด ุจุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€ determinant ููŠ ุงู„
437
00:33:01,790 --> 00:33:06,200
adjoint ุงูŠุด ุงู„ู€ adjoint ุจุฏู†ุง ู†ูˆุฌุฏู‡ ุงู„ู„ูŠ ู‚ู„ู†ุง ุนู†ู‡ ู‚ุจู„
438
00:33:06,200 --> 00:33:08,780
ุจุดูˆูŠุฉ ูˆุงูŠุด ุงู„ู€ determinant ุงู„ู„ูŠ ุฃู†ุชูˆ ุนุงุฑููŠู†ู‡ ุงู„
439
00:33:08,780 --> 00:33:13,740
determinant ู„ู‡ุฐุง ุจุณุงูˆูŠ ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ู‡ุฐุง ูˆู‡ูŠุทู„ุน ู„ู†ุง
440
00:33:13,740 --> 00:33:17,980
ุงู„ู‚ูŠู…ุฉ ุนุจุงุฑุฉ ุนู† ู‚ุฏุงุด ุฎู…ุณุฉ ู„ูˆ ุฌุฑุจุช ุฃู†ุช ุชูˆุฌุฏู‡ุง ู„ุญุงู„ูƒ
441
00:33:17,980 --> 00:33:22,100
ู†ูŠุฌูŠ ู„ู…ูŠู† ู„ุงูŠู‡ ู†ูˆุฌุฏ ุงู„ู€ adjoint ู„ุงูŠู‡ ุนุดุงู† ู†ูˆุฌุฏ ุงู„
442
00:33:22,100 --> 00:33:25,700
adjoint ุงูˆู„ ุดูŠ ุจุฏู†ุง ู†ูˆุฌุฏ ู…ูŠู† ุงู„ู€ minors ู‡ุฐุง ุงู„
443
00:33:25,700 --> 00:33:29,360
minors ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู‚ูŠู…ุฉ ุงู„ู€ determinant ู„ู„ุนู†ุตุฑ
444
00:33:29,360 --> 00:33:32,950
ุงู„ุฃูˆู„ determinant ุงู„ุซุงู†ูˆูŠ ูˆู‡ุฐุง ู„ู„ุนู†ุตุฑ ุงู„ุซุงู†ูŠ ูˆู‡ุฐุง
445
00:33:32,950 --> 00:33:36,650
ู„ู„ุนู†ุตุฑ ุงู„ุซุงู„ุซ ุฒูŠ ู…ุง ูˆุฌุฏู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ูˆุงู„ุชูุงุตูŠู„ ู„ูƒู…
446
00:33:36,650 --> 00:33:41,180
ุงู„ุญุณุงุจุงุช ูˆุฌุฏู†ุง ุงู„ู€ Minors ุจุนุฏ ู…ุง ู†ุฌุฏ ุงู„ู€ Minors
447
00:33:41,180 --> 00:33:45,680
ุจู†ุฌุฏ ุงู„ู€ Co-Factor ู…ุงู‡ูˆ ุงู„ู€ Co-FactorุŸ ุจู†ุญุฏุฏ ู‡ูŠ
448
00:33:45,680 --> 00:33:49,860
ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ูˆู‡ูŠ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูˆู…ู† ู‡ุฏูˆู„ ุจู†ุบูŠุฑ
449
00:33:49,860 --> 00:33:56,140
ุฅุดุงุฑุงุชูŠู† ู‡ุฐุง ุจูŠุตูŠุฑ 25 ู‡ุฐุง ุจูŠุตูŠุฑ 4 ู‡ุฐุง ุจูŠุตูŠุฑ 5 ูˆู‡ุฐุง
450
00:33:56,140 --> 00:34:01,180
ุจูŠุตูŠุฑ 18 ู‡ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ Co-Factor ุนู…ู„ูŠุฉ ุชุบูŠูŠุฑ
451
00:34:01,180 --> 00:34:06,020
ุงู„ุฅุดุงุฑุงุช ู„ู„ุนู†ุงุตุฑ ุบูŠุฑ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูŠ ูˆุงู„ู‚ุทุฑ
452
00:34:06,020 --> 00:34:11,100
ุงู„ุฑุฆูŠุณูŠ ุงู„ุงู† ุงู„ู€ Cofactor ุงู„ู„ูŠ ู‡ูˆ C ุฃูˆุฌุฏู†ุงู‡ ุถุงู„
453
00:34:11,100 --> 00:34:14,880
ุนู†ุฏู†ุง ู†ูˆุฌุฏ ู…ูŠู† ุงู„ู€ Adjoint ุงู„ู€ Adjoint ู…ูŠู† ู‡ูˆ ุงู„
454
00:34:14,880 --> 00:34:18,980
Transpose ู„ู‡ุฐุง ู‡ูŠ ุฃูˆุฌุฏู†ุงู‡ ุงู„ู€ Transpose ุณู‡ู„ ุงู„
455
00:34:18,980 --> 00:34:24,180
Transpose ูƒู„ูƒู… ุจุนุฑูู‡ุง ู‡ูŠ ุจูŠุตูŠุฑ ุนู…ูˆุฏ ุณุทุฑ ุจูŠุตูŠุฑ
456
00:34:24,180 --> 00:34:28,120
ุนู…ูˆุฏ ุณุทุฑ ุจูŠุตูŠุฑ ุนู…ูˆุฏ ุฎู„ุตู†ุง ุงู„ู€ Adjoint ุจุฏู†ุง ู†ูˆุฌุฏ ุงู„
457
00:34:28,120 --> 00:34:31,100
A-Inverse ุงู„ู€ A-Inverse ุงูŠุด ู‡ูŠุŸ ูˆุงุญุฏ ุนู„ู‰ ู‚ูŠู…ุฉ ุงู„
458
00:34:31,100 --> 00:34:34,570
determinant ุงู„ู„ูŠ ุฃูˆุฌุฏู†ุงู‡ ู‚ุจู„ ูˆ ุดูˆูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู…ุถุฑูˆุจ
459
00:34:34,570 --> 00:34:37,630
ููŠ ุงู„ู€ Adjoint ุงู„ู„ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰ ุฎู…ุณุฉ ุงู„ู„ูŠ
460
00:34:37,630 --> 00:34:41,530
ู‡ูˆ ุงู„ู€ determinant ุฎู…ุณุฉ ู…ุถุฑูˆุจ ููŠ ุงู„ู€ Adjoint ุงู„ู„ูŠ ู‡ูˆ
461
00:34:41,530 --> 00:34:46,810
ู‡ุงูŠ ุงู„ู€ Adjoint ู‡ูŠูƒ ูุจูƒูˆู† ุงุญู†ุง ุฃูˆุฌุฏู†ุง ุงู„ู€ A inverse
462
00:34:46,810 --> 00:34:52,070
ู„ู…ูŠู† ู„ ุงู„ู€ matrix ุงู„ู„ูŠ ุงู„ู€ determinant ู„ู‡ ู…ุด ุตูุฑ
463
00:34:52,070 --> 00:34:57,060
ุงู„ุงู† ุนู†ุฏูƒ ุงู„ุฌุฒุก ุงู„ุซุงู†ูŠ ู…ู† ุงู„ูˆุงุฌุจุงู„ู„ูŠ ู‡ูˆ ุงู„
464
00:34:57,060 --> 00:35:00,540
question ู‡ูˆ ุงู† ุงู†ุง ุงู„ู€ a ู‡ูŠูˆ ูˆู‡ูŠ ุงู„ู€ a inverse
465
00:35:00,540 --> 00:35:03,760
ุจุงู„ุณูˆูŠุฉ ูˆุงุญุฏุฉ ุงู„ู€ determinant ููŠ ุงู„ู€ adjoint ุงูˆ ุฌุฏู„
466
00:35:03,760 --> 00:35:07,820
ุงู„ู€ a inverse ุงูˆ ุฌุฏู„ูŠ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุงู„ุชูุตูŠู„ ุงูˆ ุฌุฏู„ ุงู„
467
00:35:07,820 --> 00:35:10,760
determinant ูˆุจุนุฏูŠู† ุงูˆ ุฌุฏู„ ุงู„ู€ adjoint ุฒูŠ ู…ุง ุงุญู†ุง
468
00:35:10,760 --> 00:35:14,600
ู‚ู„ู†ุง ุงู„ู„ูŠ ู‚ุจู„ ูˆู‡ูŠุทู„ุน ุนู†ุฏูƒ ุงู„ุฌูˆุงุจ a inverse
469
00:35:14,600 --> 00:35:19,990
ุจุงู„ุณูˆูŠุฉ ูƒุฏู‡ ุงู†ุง ุจุฏูŠ ู…ู†ูƒ ุงู„ุชูุงุตูŠู„ ููŠ ุงู„ูˆุงุฌุจุงู„ุงู†
470
00:35:19,990 --> 00:35:24,190
ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุจู†ูƒู…ู„ ูˆุจู†ุฏุฎู„ ุนู„ู‰ ุงู„ู€
471
00:35:24,190 --> 00:35:27,830
solving linear equations using inverse matrix
472
00:35:27,830 --> 00:35:32,330
ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡ ูˆุฅู„ู‰ ู„ู‚ุงุก ุขุฎุฑ