|
1 |
|
00:00:05,030 --> 00:00:07,830 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู |
|
|
|
2 |
|
00:00:07,830 --> 00:00:12,110 |
|
ูุจุฑูุงุชู ูููู
ู ูู ู
ุงุฏุฉ ุชุตู
ูู
ุงูุขูุงุช ูุงุญุฏ ุจุฏุฃูุง ูู |
|
|
|
3 |
|
00:00:12,110 --> 00:00:15,290 |
|
ุงู chapter load and stress analysis ุงูู
ุญุงุถุฑุฉ |
|
|
|
4 |
|
00:00:15,290 --> 00:00:19,190 |
|
ุงูู
ุงุถูุฉ ุงุชุนูู
ูุง ููู ูุณุชุฎุฏู
ุงู singularity |
|
|
|
5 |
|
00:00:19,190 --> 00:00:23,310 |
|
functions ูู ุญุณุงุจ ุงู reactions ูุญุณุงุจ ุงู shear |
|
|
|
6 |
|
00:00:23,310 --> 00:00:26,990 |
|
diagram ู ุงู moment diagram ุญูููุง two examples |
|
|
|
7 |
|
00:00:26,990 --> 00:00:31,570 |
|
ุงูููู
ูููู
ู ูู ู
ุฑุงุฌุนุฉ ุงู stress analysis |
|
|
|
8 |
|
00:00:34,830 --> 00:00:38,770 |
|
ููุญูู ุนูู ุงู definition ูู stress element ู ููุญูู |
|
|
|
9 |
|
00:00:38,770 --> 00:00:45,130 |
|
ุนูู ุงู 2D state of stress ู ููู ูุทูุน ุงูู
ุนุงุฏูุฉ |
|
|
|
10 |
|
00:00:45,130 --> 00:00:51,130 |
|
ุจุชุงุนุฉ Mohr circle ููู ูุฑุณู
Mohr circle ููู ูุฌูุจ ุงู |
|
|
|
11 |
|
00:00:51,130 --> 00:00:57,190 |
|
state of stress ุนูุฏ ุฃู orientation ููุจุฏุฃ ูู ุฅุธูุงุฑ |
|
|
|
12 |
|
00:00:57,190 --> 00:01:01,370 |
|
ู
ุจูู general state of stress |
|
|
|
13 |
|
00:01:06,080 --> 00:01:12,300 |
|
ุนูุฏู ุงููู ูู ุนุจุงุฑุฉ ุนู cubic element ุนููู ุทุจุนุง ุฃููุฏ |
|
|
|
14 |
|
00:01:12,300 --> 00:01:18,580 |
|
ูุฐุง ุงู state of stress ูุชูุฌุฉ ุนู ุชุญู
ูู ุฃู loading ู
ุนูู |
|
|
|
15 |
|
00:01:20,420 --> 00:01:23,240 |
|
ู
ุด ููุฎุดู ุทุจุนุง ุฃูุง ูุตูุช ู stress element ุฃูุง ูุตูุช ู |
|
|
|
16 |
|
00:01:23,240 --> 00:01:28,200 |
|
stress element ูุชูุฌุฉ ุงู loading ู
ุนูู ุตุงุฑ ุฃุฎุฏุช |
|
|
|
17 |
|
00:01:28,200 --> 00:01:33,320 |
|
element ุฃุจุนุฏู delta x ู delta y ู delta z ูุฐุง ุงู x |
|
|
|
18 |
|
00:01:33,320 --> 00:01:37,560 |
|
axis ุงู y axis ู ุงู z axis ุนูููุง ููููู ูู stresses |
|
|
|
19 |
|
00:01:37,560 --> 00:01:43,840 |
|
sigma x sigma y ู sigma z ู shear stresses ุงู |
|
|
|
20 |
|
00:01:43,840 --> 00:01:48,530 |
|
shear stresses ุงูุชุณู
ูุฉ ุจุชุงุนุชูุง ูุทูุน ู
ุซูุง ุนูู ุงูู
ุณุชูู |
|
|
|
21 |
|
00:01:48,530 --> 00:01:55,290 |
|
ูุฐุง ุงูู
ุณุชูู ุนูู ูุฐุง ุงูุด ุงูููุฑู
ุงู ุนููู ุงู X Axis |
|
|
|
22 |
|
00:01:55,290 --> 00:01:59,130 |
|
ููููู ููู two components ููุดูุฑ ูุงุญุฏุฉ ุจูุฐุง ุงูุงุชุฌุงู |
|
|
|
23 |
|
00:01:59,130 --> 00:02:05,150 |
|
ูุงุญุฏุฉ ูู ุงูุงุชุฌุงู ุงูุซุงูู ุงูุขู ูู
ุง ูุฌู ุฃูุง ุนูุฏู ุชุงู |
|
|
|
24 |
|
00:02:05,150 --> 00:02:09,490 |
|
XY ุงู X ูู ุจุชู
ุซู ุงูููุฑู
ุงู ููุจูุงูู ุงููู ุนููู ุงูุดูุฑ |
|
|
|
25 |
|
00:02:09,490 --> 00:02:14,500 |
|
ุงู X ุงูููุฑู
ุงู ุงููู ุนููู ุงูุดูุฑ ู ุงู Y ูู ุงู |
|
|
|
26 |
|
00:02:14,500 --> 00:02:18,920 |
|
direction ุจุชุงุน ุงู shear stress ูุนูู tau xy ูู ุงู |
|
|
|
27 |
|
00:02:18,920 --> 00:02:26,320 |
|
shear stress ุนูู ุงูู
ุณุชูู ุงูุนู
ูุฏู ุนูู ุงู x axis ูู |
|
|
|
28 |
|
00:02:26,320 --> 00:02:34,120 |
|
ุงุชุฌุงู ุงู y ุงู tau xz ูู ุงู shear stress component |
|
|
|
29 |
|
00:02:34,120 --> 00:02:40,300 |
|
ูู ุงูู
ุณุชูู ุงูุนู
ูุฏู ุนูู ุงู x axis ูู ุงุชุฌุงู ุงู z ูู |
|
|
|
30 |
|
00:02:40,300 --> 00:02:46,540 |
|
ุญูููุง ุนูุฏู ููุง ุชุงู zy ูู shear stress component ูู |
|
|
|
31 |
|
00:02:46,540 --> 00:02:50,500 |
|
ุงูู
ุณุชูู ุงูุนู
ูุฏู ุงููู ู
ุชุนุงู
ุฏ ุนููู ูู ุงู z axis ูู |
|
|
|
32 |
|
00:02:50,500 --> 00:02:54,940 |
|
ุงุชุฌุงู ุงู y ููุณ ุงูุดูุก ุชุงู zx ูู shear stress |
|
|
|
33 |
|
00:02:54,940 --> 00:02:59,020 |
|
component ูู ุงูู
ุณุชูู ุงููู ู
ุชุนุงู
ุฏ ุนููู ุงู z axis ูู |
|
|
|
34 |
|
00:02:59,020 --> 00:03:07,620 |
|
ุงุชุฌุงู ุงู x axis ุทูุจ |
|
|
|
35 |
|
00:03:09,770 --> 00:03:13,350 |
|
ููุงุฎุฏ ุงููู ูู 2D state of stress ูุนูู plane stress |
|
|
|
36 |
|
00:03:13,350 --> 00:03:16,410 |
|
ูุนูู ุงู stress ูู ุงู dimension ุงูุซุงูุซ ุจุชููู |
|
|
|
37 |
|
00:03:16,410 --> 00:03:22,950 |
|
ุชุณุงูู ุตูุฑ ูุนูู ุนูุฏูุง ููุง ุณูุฌู
ุง X ุนูุฏ ูุงู ุงู X axis |
|
|
|
38 |
|
00:03:22,950 --> 00:03:33,380 |
|
ุณูุฌู
ุง X ุณูุฌู
ุง Y ูุนูุฏู ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY |
|
|
|
39 |
|
00:03:33,380 --> 00:03:37,400 |
|
ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY |
|
|
|
40 |
|
00:03:37,400 --> 00:03:41,600 |
|
ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY |
|
|
|
41 |
|
00:03:41,600 --> 00:03:41,740 |
|
ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY |
|
|
|
42 |
|
00:03:41,740 --> 00:03:44,480 |
|
ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY |
|
|
|
43 |
|
00:03:44,480 --> 00:03:47,540 |
|
ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY |
|
|
|
44 |
|
00:03:47,540 --> 00:03:53,830 |
|
ุชุงู XY ุชุงู XY ุชุงู XY ุชุงู XY ู
ุธุจูุท ูุนูู ููุง sigma x |
|
|
|
45 |
|
00:03:53,830 --> 00:03:57,710 |
|
ููุง sigma x ููุง sigma y ููุง sigma y ุนูุฏ ุงู tau xy |
|
|
|
46 |
|
00:03:57,710 --> 00:04:02,910 |
|
ุนูุณ ุงู tau xy ููุง ู ุจูุนู
ู moment ุงู tau xy ููุง ุงู |
|
|
|
47 |
|
00:04:02,910 --> 00:04:05,850 |
|
tau xy ุจุชุนู
ู moment ู
ุนุงูุณู ูู
ุชูุฒุงู ูุฃูู ู
ูุฉ ูู ุงูู
ูุฉ |
|
|
|
48 |
|
00:04:05,850 --> 00:04:11,840 |
|
ุงููู ุฃูุง ุจุฏู ุฃุฌูุจ ุงููู ูู ุงูู state of stress at |
|
|
|
49 |
|
00:04:11,840 --> 00:04:17,980 |
|
any plane other than ุงู X ู ุงู Y ุนูุฏ ุฃู ู
ุณุชูู ุบูุฑ |
|
|
|
50 |
|
00:04:17,980 --> 00:04:27,300 |
|
ุงู X ู ุงู Y ูุนูู ุฃูุง ุนูุฏู ููุง ูุนูู ูุงุฎุฏ ูุงุฎุฏ |
|
|
|
51 |
|
00:04:27,300 --> 00:04:34,060 |
|
stress element ุฒู ููู ููุฐู ุงูุฒุงููุฉ ุฃู ุงูุฒุงููุฉ ูู |
|
|
|
52 |
|
00:04:34,060 --> 00:04:41,540 |
|
ูุฐุง ุงูู
ุณุชูู ุจูุนู
ู ูู ู
ุน ุงู Y axis ูุงุฎุฏ ุงู element |
|
|
|
53 |
|
00:04:41,540 --> 00:04:49,040 |
|
ูุฐุง ูุฐู ุทุจุนุง ูุชููู ุฏู |
|
|
|
54 |
|
00:04:49,040 --> 00:04:55,360 |
|
X ููุฐู ุฏู |
|
|
|
55 |
|
00:04:55,360 --> 00:05:01,520 |
|
Y ูุทูุน ุจุฑุง and |
|
|
|
56 |
|
00:05:01,520 --> 00:05:02,140 |
|
ูุฐุง ุงู element |
|
|
|
57 |
|
00:05:13,640 --> 00:05:29,000 |
|
ู ูุฐุง ุงู X Axis ู ูุฐุง ุงู Y Axis ุงูุทูู ูุฐุง DX |
|
|
|
58 |
|
00:05:29,000 --> 00:05:34,960 |
|
ูุงูุทูู ูุฐุง DY |
|
|
|
59 |
|
00:05:45,330 --> 00:05:54,690 |
|
ูุงููุชุฑ ุฏู ุงุณ ูุงูุฒุงููุฉ ูุฐู ูุงู ุทุจุนุง ุฌุงู ู
ู ุงูุฌูุฉ |
|
|
|
60 |
|
00:05:54,690 --> 00:06:01,390 |
|
ูุฐู ูููุง ุณูุฌู
ุง X ููู ูุนูุฏู |
|
|
|
61 |
|
00:06:01,390 --> 00:06:03,310 |
|
ุชุงู |
|
|
|
62 |
|
00:06:05,870 --> 00:06:17,910 |
|
xy ูุนูุฏู ููุง sigma y tau xy ูู
ุง ููุชูุท ุญุงูููุง ุชุญููุง |
|
|
|
63 |
|
00:06:17,910 --> 00:06:20,490 |
|
ุนูู ุงู plane ุฅู ููุง ููู stresses ูู ุนูุฏู ููุฑู
ุงู ู
ู ุงู |
|
|
|
64 |
|
00:06:20,490 --> 00:06:27,650 |
|
stress sigma ูู |
|
|
|
65 |
|
00:06:27,650 --> 00:06:31,390 |
|
ุนูุฏู ุดูุฑ stress tau |
|
|
|
66 |
|
00:06:39,330 --> 00:06:44,310 |
|
ุงูุฎุทูุฉ ุงูุฃููู ูู ูุฌูุฏ ุนูุงูุฉ ุจูู ุงูู Delta X ูุงูู DS |
|
|
|
67 |
|
00:06:44,310 --> 00:06:50,850 |
|
ูุงูู Delta Y ูุงูู DS ูุฐุง ู
ุซุงู ูููุงุฆู
ุงูุฒุงููุฉ ุตุญุ |
|
|
|
68 |
|
00:06:50,850 --> 00:06:56,050 |
|
ู
ุนูุงู ุชู
ูู ุฃุฑุจุท ุงู DX ู
ุน ุงู DS ู
ู ุฎูุงู ุงู sin ู |
|
|
|
69 |
|
00:06:56,050 --> 00:07:00,270 |
|
ุฃุฑุจุท ุงู DY ู
ุน ุงู DS ู
ู ุฎูุงู ุงู cos ุตุญูุญุ ุงู DX ุดู |
|
|
|
70 |
|
00:07:00,270 --> 00:07:00,850 |
|
ุจูุณุชููุ |
|
|
|
71 |
|
00:07:05,860 --> 00:07:15,940 |
|
ุงููู ูู DS ูู sin ูู ุงูู Phi ุตุญุ ูุงูู DY ุจูุณุชูู DS |
|
|
|
72 |
|
00:07:15,940 --> 00:07:24,280 |
|
cos ูู ุงูู Phi ุงูุจุนุฏ ุงูุซุงูุซ ููููู ุงูุจุนุฏ ุงูุซุงูุซ |
|
|
|
73 |
|
00:07:24,280 --> 00:07:29,160 |
|
ููุญูู |
|
|
|
74 |
|
00:07:29,160 --> 00:07:32,180 |
|
ุฅูุด ูุฐุง ุงูุจุนุฏ ุงูู DZ |
|
|
|
75 |
|
00:07:35,250 --> 00:07:39,930 |
|
ุงููู ูู ุนู
ูุฏู ุนูู ุงูุตูุญุฉ ูุฃู ูุฐุง ุงู element is |
|
|
|
76 |
|
00:07:39,930 --> 00:07:45,630 |
|
balanced ู
ุชูุงุฒู ุงู element ูุฐุง ู
ุชูุงุฒู ู
ุง ูุทุญุฌ ูุญูู |
|
|
|
77 |
|
00:07:45,630 --> 00:07:55,310 |
|
summation ูู forces ุจุงุชุฌุงู ุงู X ุจูุณุงูู ุตูุฑ ูุจุฏู |
|
|
|
78 |
|
00:07:55,310 --> 00:07:59,910 |
|
ู
ู ููุง ุนูุฏู ุจุงุชุฌุงู ุงู X ุนูุฏู ุณูุฌู
ุง X ู
ู ูุฌุงุชู ุตุญุ |
|
|
|
79 |
|
00:08:00,680 --> 00:08:06,000 |
|
ุงูู
ุณุงุญุฉ ุณุฃุญูููุง ู ูุฑุตุฉ stress ูู area ุณูุฌู
ุง ุงูุณ ูู |
|
|
|
80 |
|
00:08:06,000 --> 00:08:20,340 |
|
ุฏู ูุงู ูู ุฏู ุฒุฏ ุณุชููู minus sigma x dy dz ุนูู |
|
|
|
81 |
|
00:08:20,340 --> 00:08:24,160 |
|
ุงูุณุทุญ ุฏู ุฃูุง ุนูุฏู ุงูุด minus tau xy |
|
|
|
82 |
|
00:08:25,780 --> 00:08:37,380 |
|
ู
ูููุณ ุชุงู ุงูุณ ูุงู ุฏู ุงูุณ ุฏู ุฒุฏ ุนูุฏู ููุง ุงู sigma |
|
|
|
83 |
|
00:08:37,380 --> 00:08:43,240 |
|
ุฒู ุงู ุงู ฮฆ ุตุญุ ููููู ููุง component ุงุชุฌุงู ุงู X |
|
|
|
84 |
|
00:08:43,240 --> 00:08:51,040 |
|
ุฒุงุฏ sigma cosูู |
|
|
|
85 |
|
00:08:51,040 --> 00:08:54,580 |
|
ุงููุงูุฉ ูู |
|
|
|
86 |
|
00:08:56,120 --> 00:09:03,420 |
|
ds dz ุงูุชุงู |
|
|
|
87 |
|
00:09:03,420 --> 00:09:08,180 |
|
ุงู component ู
ุงุนุฑูู minus tau minus |
|
|
|
88 |
|
00:09:08,180 --> 00:09:14,080 |
|
tau x y sin |
|
|
|
89 |
|
00:09:14,080 --> 00:09:31,860 |
|
ูู ุฏู ุงุณ ุฏู ุฒู ุตุญ ูุนูู ู
ู
ูู ุงุฎุชุตุฑ ุญุงููุง ุงู ุฏู ุฒุฏ ู |
|
|
|
90 |
|
00:09:31,860 --> 00:09:41,080 |
|
ุฃุนูุถ ุนู ุฏู ูุงู ู ุฏู ุงูุณ ุญุณูุง ุฏู ุฒูุฑู |
|
|
|
91 |
|
00:09:41,080 --> 00:09:49,420 |
|
ุจูุณุงูู minus ุณูุฌู
ุง ุงูุณ ุฏู ูุงู ุงููู ูู ุนุจุงุฑุฉ ุนู |
|
|
|
92 |
|
00:09:49,420 --> 00:10:06,040 |
|
ุฏู ุงุณ cos ฯ minus tau xy ุงู dx ุงููู ูู ูู ds sin ฯ |
|
|
|
93 |
|
00:10:06,040 --> 00:10:09,340 |
|
ุฒุงุฆุฏ |
|
|
|
94 |
|
00:10:09,340 --> 00:10:16,260 |
|
sigma cos ฯ minus tau xy |
|
|
|
95 |
|
00:10:25,200 --> 00:10:30,860 |
|
ูุฏู ุงุณ ู
ุงููุณ ุชุงู ุงูุณ ูุงู ูุฐู ุชุงู ุฏุจู ู
ุด ุงูุณ ูุงู |
|
|
|
96 |
|
00:10:30,860 --> 00:10:37,740 |
|
ูุฐู ุชุงู ุตุญูุญ ุฃูุง ูุฐุจุช ุชุงู ู
ุด ุชุงู ุงูุณ ูุงู ู
ุด ุงูุณ |
|
|
|
97 |
|
00:10:37,740 --> 00:10:44,480 |
|
ูุงู ุชุงู ูุง ุฃุณุงุชุฑ ูุฐู ุชุงู ูุง ุฃุณุงุชุฑ ุนูู ุงููุงุณ ุงู ุงู |
|
|
|
98 |
|
00:10:44,480 --> 00:10:52,200 |
|
ุงู ุตุญูุญ ูุฐู ุชุงู ู
ุงููุณ ุชุงู sin ฯ |
|
|
|
99 |
|
00:10:56,610 --> 00:11:03,830 |
|
DS ุณุฃููู
ุจูุณู
ุฉ ุฏู ุงุณ ู |
|
|
|
100 |
|
00:11:03,830 --> 00:11:15,870 |
|
ุฏู ุงุณ ุงู |
|
|
|
101 |
|
00:11:15,870 --> 00:11:21,810 |
|
ุชุงู ุนู
ูุฏู |
|
|
|
102 |
|
00:11:21,810 --> 00:11:26,350 |
|
ุนูู ุณูุฌู
ุง ููุณููุ ุฅุฐุง ูุฐู ูุงูุช cosine ุฃูุชูู
ุงุชูู ูุฐู |
|
|
|
103 |
|
00:11:26,350 --> 00:11:33,090 |
|
ูุชููู sin ู
ุธุจูุทุ |
|
|
|
104 |
|
00:11:33,090 --> 00:11:37,390 |
|
ูุตู ุนูุฏู ููุง sigma |
|
|
|
105 |
|
00:11:37,390 --> 00:11:41,430 |
|
cosine |
|
|
|
106 |
|
00:11:41,430 --> 00:11:49,530 |
|
ุงููุงูุฉ minus tau sin ุงููุงู ุจุชุณุงูู ูุฌูุจ ูุฐุง ุงูุฌูุฉ |
|
|
|
107 |
|
00:11:49,530 --> 00:11:56,800 |
|
ุงูุซุงููุฉ sigma x cos ฯ ู
ุงูููุณ |
|
|
|
108 |
|
00:11:56,800 --> 00:12:08,820 |
|
ุฒุงุฆุฏ tau XY sin ููุฐุง ู
ุนุงุฏูุฉ ูุงุญุฏ ุฅุฐุง ุฃุฎุฏุช summation ุงู |
|
|
|
109 |
|
00:12:08,820 --> 00:12:13,620 |
|
forces ุจุงุชุฌุงู ุงู Y summation ุงู forces ุจุงุชุฌุงู ุงู Y |
|
|
|
110 |
|
00:12:13,620 --> 00:12:20,640 |
|
ุจูุณุงูู Zero ูุชููู |
|
|
|
111 |
|
00:12:20,640 --> 00:12:32,240 |
|
ุงู minus ููุง tau xy minus |
|
|
|
112 |
|
00:12:32,240 --> 00:12:39,940 |
|
sigma y minus |
|
|
|
113 |
|
00:12:39,940 --> 00:12:48,660 |
|
sigma y ุฒุงุฆุฏ |
|
|
|
114 |
|
00:13:01,730 --> 00:13:09,390 |
|
ุณูุฌู
ุง ุงุญูุง ุงูู
ูุฑูุถ ุนูู ุจุนุถูุง ูุง ุดูุฎ ูุงูู ุฃูุง minus tau |
|
|
|
115 |
|
00:13:09,390 --> 00:13:24,250 |
|
xy ุฃูู ูุงุญุฏุฉ dy dz minus sigma y dx dz |
|
|
|
116 |
|
00:13:28,410 --> 00:13:46,470 |
|
ุฒุงุฆุฏ ุณูุฌู
ุง sin ุงููุงู ุฏู ุงุณ ุตุญ ุฏู ุฒุฏ ุฒุงุฆุฏ ุชุงู cosูู |
|
|
|
117 |
|
00:13:46,470 --> 00:13:56,430 |
|
ุงููุงู ุฏู ุงุณ ุฏู ุฒุฏ ูุดูู |
|
|
|
118 |
|
00:13:56,430 --> 00:14:05,590 |
|
ุงู ุฏู ุฒุฏ ูุฎุชุตุฑ ููุนูุถ |
|
|
|
119 |
|
00:14:05,590 --> 00:14:17,510 |
|
ุนู DX ู DY ุญุณูุจ ุนูุฏู minus TAO XY DY ุงููู ูู DS |
|
|
|
120 |
|
00:14:17,510 --> 00:14:31,940 |
|
cosูู ุงููุงู minus sigma YDX ุฏู ุงูุณ ุงููู ูู DS SIN |
|
|
|
121 |
|
00:14:31,940 --> 00:14:37,620 |
|
ุงููุงู ุฒุงุฆุฏ |
|
|
|
122 |
|
00:14:37,620 --> 00:14:48,500 |
|
ุณูุฌู
ุง SIN ุงููุงู ูู DS ุฒุงุฆุฏ ุชุงู COSูู ุงููุงู ูู DS |
|
|
|
123 |
|
00:14:48,500 --> 00:14:49,580 |
|
ุณุงูู Zero |
|
|
|
124 |
|
00:14:53,550 --> 00:14:55,930 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS |
|
|
|
125 |
|
00:14:55,930 --> 00:15:01,230 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS |
|
|
|
126 |
|
00:15:01,230 --> 00:15:06,830 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS |
|
|
|
127 |
|
00:15:06,830 --> 00:15:08,790 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS |
|
|
|
128 |
|
00:15:08,790 --> 00:15:08,810 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS |
|
|
|
129 |
|
00:15:08,810 --> 00:15:13,310 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS |
|
|
|
130 |
|
00:15:13,310 --> 00:15:19,310 |
|
ูุฎุชุตุฑ ุงู DS ูุฎุชุตุฑ ุงู DS ูุฎุช |
|
|
|
131 |
|
00:15:21,390 --> 00:15:30,010 |
|
ูุฑุญู ูุฏูู ุนูู ุฌูุชูู ูุชููู ุชุณุงูู ุชุงู ุณูุฌู
ุง ูุงู sin |
|
|
|
132 |
|
00:15:30,010 --> 00:15:33,530 |
|
ูู ฯ ุฒุงุฆุฏ |
|
|
|
133 |
|
00:15:33,530 --> 00:15:45,530 |
|
ุชุงู ุงูุณ ูุงู cosูู ุงููู ูุฐู ู
ุนุงุฏูุฉ ุฑูู
ุงุซููู ูุญู |
|
|
|
134 |
|
00:15:45,530 --> 00:15:47,310 |
|
ุงูู
ูุถูุน ุฅุฐุง ุถุฑุจุช ุงูู
ุนุงุฏูุฉ ุงูุฃููู |
|
|
|
135 |
|
00:15:49,960 --> 00:15:53,580 |
|
ุจ cosูู phi ู ุงูู
ุนุงุฏูุฉ ุงูุซุงููุฉ ุจ sin phi ู ุฌู
ุนุชูู
|
|
|
|
136 |
|
00:15:53,580 --> 00:16:03,240 |
|
ูุนูู ูุญูู cosูู phi ูู ุงูู
ุนุงุฏูุฉ ุฑูู
ูุงุญุฏ ุฒุงุฆุฏ sin |
|
|
|
137 |
|
00:16:03,240 --> 00:16:10,280 |
|
phi ูู ุงูู
ุนุงุฏูุฉ ุฑูู
ุงุซููู ูุฐู ุงูุฎุทูุฉ ุงููู ูุณูููุง |
|
|
|
138 |
|
00:16:10,280 --> 00:16:16,260 |
|
ููุฒูู ุงูุฏู ุงุซููู sin ุงุซููู ูุญุธุฉ ุทุจุนุง ูุฐุง ุงู term |
|
|
|
139 |
|
00:16:16,260 --> 00:16:25,580 |
|
ููุฑูุญ ู
ุน ูุฐุง ุตุญ ุตูุญุฉ ููุง sigma cos ุชุฑุจูุน ุฒุงุฆุฏ |
|
|
|
140 |
|
00:16:25,580 --> 00:16:31,640 |
|
sigma sin ุชุฑุจูุน ุณูุฌู
ุง ูุนูู ุณุชููู ุนูู ุงููู
ูู ุนูุฏู |
|
|
|
141 |
|
00:16:31,640 --> 00:16:39,000 |
|
ุณูุฌู
ุง ุณุชุณุงูู ุนูุฏู |
|
|
|
142 |
|
00:16:39,000 --> 00:16:43,620 |
|
ููุง sigma X cos ุชุฑุจูุน ูู I |
|
|
|
143 |
|
00:16:47,720 --> 00:16:53,020 |
|
ุณูุฌู
ุง ุงูุณ ุฃูุช ุจุชููููุง ูู ููุณุงูู ุตุญ ูู ููุณูู ุชุฑุจูุน |
|
|
|
144 |
|
00:16:53,020 --> 00:16:58,480 |
|
ูู ุฒุงุฆุฏ |
|
|
|
145 |
|
00:16:58,480 --> 00:17:13,420 |
|
ุชุงู ุงูุณ ูุงู sin ุงููู ููุณูู ุงููู ุฒุงุฆุฏ ุณูุฌู
ุง ูุงู sin |
|
|
|
146 |
|
00:17:13,420 --> 00:17:16,280 |
|
ุชุฑุจูุน ุงููู |
|
|
|
147 |
|
00:17:18,860 --> 00:17:30,660 |
|
ุฒุงุฆุฏ ุชุงู ุงูุณ ูุงู sin ูุงู ููุณูู ูุงู ุทุจุนุง |
|
|
|
148 |
|
00:17:30,660 --> 00:17:41,900 |
|
ูุฐู ููุฐู ุณูุฌู
ุนูุง ู
ุน ุจุนุถ ูู ุนูุงูุฉ ูุฐูุฑูู
ูููุง ุงูุขู |
|
|
|
149 |
|
00:17:41,900 --> 00:17:48,780 |
|
ุงู cosine ูุงู ุฑุฌุนู ููุญูู ูุงูุฑูู cosine 2 ุซูุชุง |
|
|
|
150 |
|
00:17:48,780 --> 00:17:53,220 |
|
ุจูุณุงูู cos ุชุฑุจูุน ุซูุชุง - sin ุชุฑุจูุน ุซูุชุง ุตุญ |
|
|
|
151 |
|
00:17:53,220 --> 00:17:59,280 |
|
ุงู cos ุชุฑุจูุน ุงููู ูู ูุชููู 1 - sin ุชุฑุจูุน |
|
|
|
152 |
|
00:17:59,280 --> 00:18:05,860 |
|
ูุนูู ูุฐุง ูุชููู 1 - 2 sin ุชุฑุจูุน ุซูุชุง ุฎููุง |
|
|
|
153 |
|
00:18:05,860 --> 00:18:11,580 |
|
ุฏู minus minus plus ูุนูู ููููู ุนูุฏู 2 sin |
|
|
|
154 |
|
00:18:11,580 --> 00:18:21,040 |
|
ุชุฑุจูุน ุซูุชุง = 1 - cos 2 ุซูุชุง ูุนูู |
|
|
|
155 |
|
00:18:21,040 --> 00:18:27,960 |
|
sin ุชุฑุจูุน ุซูุชุง = ยฝ ูู 1 - cos 2 |
|
|
|
156 |
|
00:18:27,960 --> 00:18:31,580 |
|
ุซูุชุง ูุจููุณ ุงูุฃุดูุงุก ูุชุทูุน ูู cos ุชุฑุจูุน ุซูุชุง ูุชููู |
|
|
|
157 |
|
00:18:31,580 --> 00:18:38,960 |
|
= ยฝ ูู 1 + cos 2 ุซูุชุง ูุนูู ูุนูุฏ ุนู |
|
|
|
158 |
|
00:18:38,960 --> 00:18:43,060 |
|
cos ุชุฑุจูุน ุงููุงู ููู
ุณุญ |
|
|
|
159 |
|
00:18:43,060 --> 00:18:43,360 |
|
ูุฐู |
|
|
|
160 |
|
00:18:50,100 --> 00:18:59,340 |
|
ุณูุนูุฏ ููุณูุฌู
ุง ุจุงูุณุงูู ุณูุฌู
ุง X ุนุงู
ุนูู 2 ูู |
|
|
|
161 |
|
00:18:59,340 --> 00:19:07,560 |
|
1 + cos 2 ูู 1 + cos 2 |
|
|
|
162 |
|
00:19:07,560 --> 00:19:12,320 |
|
ูู 1 + |
|
|
|
163 |
|
00:19:12,320 --> 00:19:17,700 |
|
cos 2 ูู 1 + cos 2 ูู 1 |
|
|
|
164 |
|
00:19:17,700 --> 00:19:17,740 |
|
ุฒุงุฆุฏ cos 2 ูู 1 + cos 2 ูู |
|
|
|
165 |
|
00:19:17,740 --> 00:19:21,650 |
|
1 + cos 2 ูู 1 ุฒุงุฆุฏ 2 ุชุงู ุงูุณ |
|
|
|
166 |
|
00:19:21,650 --> 00:19:36,130 |
|
ูุงู sin ูุงู cos ูุงู ูุฃู ูุงุฎุฏ ุญุณููุง ุฏู ููุง ุณูุฌู
ุง |
|
|
|
167 |
|
00:19:36,130 --> 00:19:42,230 |
|
ุงูุณ ูุฐุง ุงู term ุฒุงุฆุฏ ุณูุฌู
ุง ูุงู ุนูู 2 |
|
|
|
168 |
|
00:19:45,790 --> 00:19:54,170 |
|
ุฒุงุฆุฏ ุณูุฌู
ุง ุงูุณ + ุณูุฌู
ุง ุงูุณ - sigma y ุนูู |
|
|
|
169 |
|
00:19:54,170 --> 00:20:00,230 |
|
2 cos 2 ููู ูุฃู 2 sin ููู ู cos |
|
|
|
170 |
|
00:20:00,230 --> 00:20:07,730 |
|
ููู ุนุจุงุฑุฉ ุนู ุงููุ sin 2 ููู + ุชุงู ุงูุณ y sin |
|
|
|
171 |
|
00:20:07,730 --> 00:20:13,690 |
|
2 ููู ุงููู ูู ุงูู
ุนุงุฏูุฉ ุฏู ุงููู ูู sigma ุนูุฏ ุงู |
|
|
|
172 |
|
00:20:13,690 --> 00:20:17,120 |
|
plane ุจู
ูู ูู ุฒุงููุฉ ูู ุนูู ุงู y axis ุงู sigma x |
|
|
|
173 |
|
00:20:17,120 --> 00:20:20,260 |
|
ุณุชููู ุณูุงุก sigma x ุฒู sigma y ุนูู 2 ุฒู sigma x |
|
|
|
174 |
|
00:20:20,260 --> 00:20:22,600 |
|
ุชุงููู sigma y ุนูู 2 cos 2 five ุฒู ุงู tau |
|
|
|
175 |
|
00:20:22,600 --> 00:20:27,420 |
|
xy sin 2 five ุงูุขู |
|
|
|
176 |
|
00:20:27,420 --> 00:20:39,660 |
|
ูุงูุฏู ู
ุนุงุฏูุฉ 1 ูุงู ู
ุนุงุฏูุฉ 2 ูุนูู ุถุฑุจุช ุญููุช |
|
|
|
177 |
|
00:20:39,660 --> 00:20:41,460 |
|
ุงููู ูู ุถุฑุจุชูุง ุฏู cos ูู |
|
|
|
178 |
|
00:20:45,710 --> 00:20:53,370 |
|
ูู ุงูู
ุนุงุฏูุฉ 2 - sin phi ูู ุงูู
ุนุงุฏูุฉ 1 |
|
|
|
179 |
|
00:20:53,370 --> 00:21:01,190 |
|
ููุนุทููุง ุนูุฏู ูุฐุง ุญุงุถุฑ ู
ุงูููุงุด ูู cos ู ูุฐุง ุงู |
|
|
|
180 |
|
00:21:01,190 --> 00:21:06,130 |
|
sin ุฃุทูุนูู
ู
ุน ุจุนุถ ูู ุงูุณูุฑ ุจุฑูุญ ู
ุน ุจุนุถ ูุฏูู ุตุญุ |
|
|
|
181 |
|
00:21:06,130 --> 00:21:13,010 |
|
ุจุนุฏูู ุนูุฏู ููุง ููุง tau cos ุชุฑุจูุน + tau sin |
|
|
|
182 |
|
00:21:13,010 --> 00:21:20,070 |
|
ุชูุจูู ุชุทูููู tau ุชุทูููู tau ุจุงูุณุงูู |
|
|
|
183 |
|
00:21:20,070 --> 00:21:27,470 |
|
ุนูุฏู ููุง ุณูุฌู
ุง ูุงู sin |
|
|
|
184 |
|
00:21:27,470 --> 00:21:35,530 |
|
ูู cos ูู ูุชููู ุณูุฌู
ุง ูุงู sin |
|
|
|
185 |
|
00:21:35,530 --> 00:21:38,610 |
|
ูู cos ูู |
|
|
|
186 |
|
00:21:41,330 --> 00:21:46,150 |
|
- ุณูุฌูุง ุงูุณ sin |
|
|
|
187 |
|
00:21:46,150 --> 00:21:51,610 |
|
ูุงู cos ูุงู |
|
|
|
188 |
|
00:21:51,610 --> 00:21:55,970 |
|
ุนูุฏููู |
|
|
|
189 |
|
00:21:55,970 --> 00:21:59,910 |
|
ุฃูุง |
|
|
|
190 |
|
00:21:59,910 --> 00:22:05,430 |
|
ุถุงุฑุจ ุงูุชุงููุฉ ุจ cos ุฒู ุงู tau ุงูุณ ูุงู |
|
|
|
191 |
|
00:22:11,130 --> 00:22:26,290 |
|
cosยฒ ฯ - tau xy sinยฒ ฯ ุงูุขู |
|
|
|
192 |
|
00:22:26,290 --> 00:22:32,070 |
|
sin ูู cos ูู ุนุจุงุฑุฉ ุนู ูุตู ูุตู sin ูู 2 ูู |
|
|
|
193 |
|
00:22:32,070 --> 00:22:36,290 |
|
2 ูู ุฃูุง ูููู ุนูุฏู ููู ูุชุตูู ูุฐู ุณูุฌู
ุง - |
|
|
|
194 |
|
00:22:36,290 --> 00:22:38,990 |
|
ุณูููู ุณูุฌู
ุง ูููุงูุณ ุณูุฌู
ุง ุงูุณ ุนูู 2 ูุฎูููุง |
|
|
|
195 |
|
00:22:38,990 --> 00:22:46,350 |
|
- ุฃูุง ุณูุฌูุง ุงูุณ - ุณูุฌูุง ูุงู ุนูู 2 sin |
|
|
|
196 |
|
00:22:46,350 --> 00:22:51,330 |
|
ุงู 2 ูู ูุฐู |
|
|
|
197 |
|
00:22:51,330 --> 00:22:54,730 |
|
ุชุงู ุงูุณ ูุงูู ูุงุฎุฏู ู
ุดุชุฑู cos ุชุฑุจูุน - sin |
|
|
|
198 |
|
00:22:54,730 --> 00:23:02,110 |
|
ุชุฑุจูุน cos 2 ูู ูุชููู + ุชุงู ุงูุณ ูุงูู cos |
|
|
|
199 |
|
00:23:02,110 --> 00:23:06,470 |
|
2 ูู ุงููู ูู ุงูู
ุนุงุฏูุฉ ุงูุชุงููุฉ |
|
|
|
200 |
|
00:23:12,270 --> 00:23:20,430 |
|
ูู ุงูุขู ุงูู
ุนุงุฏูุชูู |
|
|
|
201 |
|
00:23:20,430 --> 00:23:28,450 |
|
ูุฏูู ุงููู ูู ุงู sigma ู tau ู
ุซู |
|
|
|
202 |
|
00:23:28,450 --> 00:23:34,630 |
|
ู
ุนุงุฏูุฉ ุฏุงุฆุฑุฉ ู
ุซู ู
ุนุงุฏูุฉ ุฏุงุฆุฑุฉ ุฎูููู ุงุณู
ู |
|
|
|
203 |
|
00:23:37,990 --> 00:23:50,930 |
|
ุฎูู ุชุณู
ู C = Sigma X ุฒู Sigma Y ุนูู 2 ู |
|
|
|
204 |
|
00:23:50,930 --> 00:23:58,770 |
|
ุฌูุจ ุงูู C ูู ุฏู ุนูู ุฌูุจูุง ุงูุชุงููุฉ ูุณู
ูู Sigma Sigma |
|
|
|
205 |
|
00:23:58,770 --> 00:24:04,850 |
|
- C = Sigma X |
|
|
|
206 |
|
00:24:08,460 --> 00:24:16,180 |
|
ุณูุฌู
ุง X ุฎูููู ุฃุณู
ู ุจุฑุถู ุฎูููู ุฃุณู
ู ุจุฑุถู ุฎูููู |
|
|
|
207 |
|
00:24:16,180 --> 00:24:21,300 |
|
ุฃุณู
ู ู D = |
|
|
|
208 |
|
00:24:21,300 --> 00:24:28,040 |
|
ุณูุฌู
ุง X - ุณูุฌู
ุง Y ุนูู 2 ุจุตูุฑ ุงูู
ุนุงุฏูุฉ ุงูุฃููู |
|
|
|
209 |
|
00:24:28,040 --> 00:24:35,360 |
|
ุจุฏู ุฃุฌูุจ ุงู C ุนูู ุฌูุฉ ุงูุชุงููุฉ ุณูุฌู
ุง - C = |
|
|
|
210 |
|
00:24:35,360 --> 00:24:37,480 |
|
D |
|
|
|
211 |
|
00:24:39,670 --> 00:24:53,150 |
|
cos 2 phi + tau xy + tau xy ู ุงูู
ุนุงุฏูุฉ |
|
|
|
212 |
|
00:24:53,150 --> 00:25:06,070 |
|
ุงูุชุงููุฉ ูุชููู tau ุจุตูุฑุฉ - d sin 2 phi + |
|
|
|
213 |
|
00:25:06,070 --> 00:25:07,030 |
|
tau xy |
|
|
|
214 |
|
00:25:11,840 --> 00:25:21,840 |
|
cos 2ฯ ูุฐู ูุณู
ููุง 3 ููุฐู |
|
|
|
215 |
|
00:25:21,840 --> 00:25:29,040 |
|
4 ุฅุฐุง ุฃุฎุฐุช ู
ุฑุจุน 3 ู ุฌู
ุนุชู ู
ุฑุจุน 4 ูุนูู |
|
|
|
216 |
|
00:25:29,040 --> 00:25:34,600 |
|
ูุชููู ุฏู sigma - c ููู ุชุฑุจูุน ูุฐุง ุนูู ุงูุฌูุฉ |
|
|
|
217 |
|
00:25:34,600 --> 00:25:42,200 |
|
ุงููุณุฑู + tau ุชุฑุจูุน ูุชููู ุชุณุงูู ู
ุฑุจุน D ุชุฑุจูุน cos |
|
|
|
218 |
|
00:25:42,200 --> 00:25:48,520 |
|
ุชุฑุจูุน 2 |
|
|
|
219 |
|
00:25:48,520 --> 00:25:59,340 |
|
ูู + D ุชุฑุจูุน sin ุชุฑุจูุน 2 ูู + ุชู XY |
|
|
|
220 |
|
00:25:59,340 --> 00:26:02,920 |
|
ุชุฑุจูุน |
|
|
|
221 |
|
00:26:02,920 --> 00:26:04,580 |
|
sin ุชุฑุจูุน |
|
|
|
222 |
|
00:26:09,700 --> 00:26:25,000 |
|
ุชุฑุจูุน ุชุฑุจูุน ุชุฑุจูุน ุชุฑุจูุน ุชุฑุจูุน |
|
|
|
223 |
|
00:26:25,000 --> 00:26:30,240 |
|
ุชุฑุจูุน |
|
|
|
224 |
|
00:26:30,240 --> 00:26:37,550 |
|
ุชุฑุจูุน tau ุงูุณ ูุงู cos 2 ูู sin 2 ูู |
|
|
|
225 |
|
00:26:37,550 --> 00:26:48,150 |
|
- 2 ุฏู tau ุงูุณ ูุงู cos 2 ูู sin |
|
|
|
226 |
|
00:26:48,150 --> 00:26:55,530 |
|
2 ูู ุฃูู ุงูุดู ูุฏูู ูุฏ ุจุชุฑูุญ ู
ุน ูุฏ ุตุญ |
|
|
|
227 |
|
00:26:58,450 --> 00:27:03,750 |
|
ููุฐู ุฏู ุชุฑุจูุน cos ุชุฑุจูุน ุฒู ุฏู ุชุฑุจูุน sin ุชุฑุจูุน ุฏู |
|
|
|
228 |
|
00:27:03,750 --> 00:27:12,970 |
|
ุชุฑุจูุน ูุชุตูู ุนูุฏู sigma - c ููู ุชุฑุจูุน ุฒู tau |
|
|
|
229 |
|
00:27:12,970 --> 00:27:23,310 |
|
ุชุฑุจูุน ุชุณุงูู ุฏู ุชุฑุจูุน ุฒู tau XY ุชุฑุจูุน |
|
|
|
230 |
|
00:27:23,310 --> 00:27:34,490 |
|
ูุฐู ู
ุนุงุฏูุฉ ุงููุ ุฏุงุฆุฑุฉ ู
ุนุงุฏูุฉ ุฏุงุฆุฑุฉ ุฃู ุฏุงุฆุฑุฉ ู
ุฑูุฒูุง |
|
|
|
231 |
|
00:27:34,490 --> 00:27:48,730 |
|
ุฌุงูุฉ ุนูู ุจุนุฏ H ูู ุงู Y ุนูู ุจุนุฏ K ู
ุต ุงููุทุฑ ุจุชุงุนูุง R |
|
|
|
232 |
|
00:27:48,730 --> 00:27:57,910 |
|
ุงูู
ุนุงุฏูุฉ ุจุชุงุนูุง ููุฐุง X ููุฐุง Y ูุชููู X - H ุงููู ุชุฑุจูุน |
|
|
|
233 |
|
00:27:57,910 --> 00:28:07,210 |
|
+ Y - K ุงููู ุชุฑุจูุน = R ุชุฑุจูุน ุตุญุ ู
ุนูุงุชู |
|
|
|
234 |
|
00:28:07,210 --> 00:28:14,630 |
|
ูุฐู ู
ุนุงุฏูุฉ ุงูุฏุงุฆุฑุฉ ูุฐู circle ูุฐู equation of a |
|
|
|
235 |
|
00:28:14,630 --> 00:28:21,350 |
|
circle ุงููู ูู ู
ุฑูุฒูุง ูู ุงู center |
|
|
|
236 |
|
00:28:24,280 --> 00:28:35,940 |
|
is at c ู 0 ู ุงู radius ุจุชุงุนูุง ุงููู ูู D ุชุฑุจูุน |
|
|
|
237 |
|
00:28:35,940 --> 00:28:46,580 |
|
ุงู radius ุชุฑุจูุน + tau xy ุชุฑุจูุน ุงููู |
|
|
|
238 |
|
00:28:46,580 --> 00:28:48,900 |
|
ูู ุงู radius ูุนูู ุงู R ููููู = ุงูุฌุฒุฑ |
|
|
|
239 |
|
00:28:48,900 --> 00:28:55,070 |
|
ุงูุชุฑุจูุน ูุฏู ุชุฑุจูุน ุงููู ุฏู ุงุญูุง ุญูููุง sigma x - |
|
|
|
240 |
|
00:28:55,070 --> 00:29:04,890 |
|
sigma y ุนูู 2 ููู ุชุฑุจูุน + tau xy ุชุฑุจูุน ู
ู |
|
|
|
241 |
|
00:29:04,890 --> 00:29:13,390 |
|
ููุง ุฌุช Mohr circle Mohr circle Mohr circle |
|
|
|
242 |
|
00:29:19,280 --> 00:29:23,380 |
|
ุทูุจ ุจุณ you are Mohr circle ุฎูููู ุฃูู
ู ุฃู Mohr circle |
|
|
|
243 |
|
00:29:23,380 --> 00:29:31,480 |
|
ู
ุด ู
ุดููุฉ ุฃู ูุฃ ู
ุงุดู ุฎูููู |
|
|
|
244 |
|
00:29:31,480 --> 00:29:41,240 |
|
ุฃูุฌุฏ ุงู principal stresses ุงู normal stress is |
|
|
|
245 |
|
00:29:41,240 --> 00:29:45,820 |
|
maximum normal stress ุจูููู maximum ุงููู ูู ุณูุฌู
ุง |
|
|
|
246 |
|
00:29:48,480 --> 00:29:57,720 |
|
is maximum ูู
ุง ุงู d sigma ูุนูู ู
ู ุงูุฌูุจ ุงููู ูู ุงู |
|
|
|
247 |
|
00:29:57,720 --> 00:30:01,560 |
|
stress ุนูุฏ ุฃููุงุช ู
ุณุชูู ุจูููู maximum ู
ุงุฑุงุฏู ูุดุทู |
|
|
|
248 |
|
00:30:01,560 --> 00:30:05,940 |
|
ุจุงููุณุจุฉ ููุด ููุงู ูู
ุง ุชููู ุงู d sigma by d ูุงู |
|
|
|
249 |
|
00:30:05,940 --> 00:30:11,560 |
|
ุจุงูุณุงูู 0 ูุดุทู ุงูู
ุนุงุฏูุฉ ุงูุฑูู
3 ูุชุตูุฑ ุนูุฏู |
|
|
|
250 |
|
00:30:11,560 --> 00:30:18,630 |
|
d sigma by d phi ุทุจุนุง ูุงู ุฏู ูุชุณูุฑ ูุชููู ูู = |
|
|
|
251 |
|
00:30:18,630 --> 00:30:26,350 |
|
- 2 d sin |
|
|
|
252 |
|
00:30:26,350 --> 00:30:34,270 |
|
2 phi ุตุญุ + |
|
|
|
253 |
|
00:30:34,270 --> 00:30:36,390 |
|
2 |
|
|
|
254 |
|
00:30:38,900 --> 00:30:45,960 |
|
ุชุงู ุงูุณ ูุงู cos 2 ูุงู ูุฐู ุจุชุณุงูู ุงููุ 0 |
|
|
|
255 |
|
00:30:45,960 --> 00:30:56,580 |
|
ูุนูู ูู ูููู ุนูุฏู d sin 2 ูุงู = tau ุงูุณ |
|
|
|
256 |
|
00:30:56,580 --> 00:31:06,650 |
|
ูุงู cos 2 ูุงู ูุนูู ูุณู
ุช ุงูุทุฑููู ุนูู ุนูู |
|
|
|
257 |
|
00:31:06,650 --> 00:31:15,230 |
|
cos ูู ูุนูู ุจุงูุตุฑุงุญุฉ ุฏู tan 2 ูู ุจุณ ูู tau |
|
|
|
258 |
|
00:31:15,230 --> 00:31:25,670 |
|
xy ุนูู d ูู ุนูุถูุง ุนู d tau xy ุฏู ุนุจุงุฑุฉ ุนู ุงูุด ุชุตูุฑ |
|
|
|
259 |
|
00:31:25,670 --> 00:31:31,490 |
|
2 ุนูู sigma x - sigma y ุงูู
ุนูู ูู ุงู |
|
|
|
260 |
|
00:31:31,490 --> 00:31:35,250 |
|
stress ุงููู ุจูุฑุณู
is maximum ูู
ุง ุชุงู |
|
|
|
261 |
|
00:31:43,090 --> 00:31:48,530 |
|
ุจุชุณุงูู ูู
ุง ุชุงู = 2 ุชุงู ุงูุณ ูุงู ุนูู ุณูุฌู |
|
|
|
262 |
|
00:31:48,530 --> 00:31:55,090 |
|
ุงูุณ - ุณูุฌู ูุงู ุฅุฐุง ุจูุนูุถ ุนุดุงู ุจุงูู
ุนุงุฏูุฉ ูุฐู |
|
|
|
263 |
|
00:31:55,090 --> 00:32:02,430 |
|
ุญุณููุง ุนูุฏููู ููุนูุถ ุนู tan ูู ูุนูู ูุงู ุงู 2 ูู |
|
|
|
264 |
|
00:32:05,180 --> 00:32:11,320 |
|
ูุฐู ุงูุฒุงููุฉ ูุฐู 2 five ุงู tan ูุฐู 2 ุชุงู ุงูุณ |
|
|
|
265 |
|
00:32:11,320 --> 00:32:19,420 |
|
ููุง ุชุงู ุงูุณ ูุงู ูุนูุฏู ุชุญุช ุณูุฌู
ุง ุงูุณ - ุณูุฌู
ุง |
|
|
|
266 |
|
00:32:19,420 --> 00:32:24,300 |
|
ูุงู ููู ู
ู
ูู ุชููู ู
ุซููุง ู
ุซูุซูุง ุฒู ููู ุตุญุ ู
ุนูุงุชู |
|
|
|
267 |
|
00:32:24,300 --> 00:32:31,680 |
|
ุงููุชุฑ ูุชููู ุฌุฒุฑ ุงูุชุฑุจูุนู ุฎูููุง |
|
|
|
268 |
|
00:32:31,680 --> 00:32:33,260 |
|
ููุณู
ุนูู ูุฐู ุนูู 2 |
|
|
|
269 |
|
00:32:36,920 --> 00:32:44,560 |
|
ูุฐุง ูุชููู F ุนูู 2 ู
ุนูุงุชู |
|
|
|
270 |
|
00:32:44,560 --> 00:32:51,620 |
|
ูุฐุง ุงููุชุฑ ูุชููู ุฌุฒุฑ ุชุฑุจูู ู Sigma X ููุณู
ู ุนูู 2 |
|
|
|
271 |
|
00:32:51,620 --> 00:32:55,160 |
|
+ ุชุฑุจูู + ุชูุณุน ุชุฑุจูู ุงููู ูู ุงู radius ุงููู |
|
|
|
272 |
|
00:32:55,160 --> 00:33:01,240 |
|
ุญุณุจูุงูุง ุตุญ ูุฐุง ูุชููู ุงู R ุงูุนูุถ |
|
|
|
273 |
|
00:33:01,240 --> 00:33:08,060 |
|
ูู ุงูู
ุนุงุฏูุฉ ุงููู ูู ูุชููู ุนูุฏู Sigma - C = |
|
|
|
274 |
|
00:33:08,060 --> 00:33:24,700 |
|
D ูู cos 2 ูู cos 2 ูู ุฎูููู |
|
|
|
275 |
|
00:33:24,700 --> 00:33:35,430 |
|
ูุงุฏ ุงุณู
ููุง ุจุฑุถู ุงูุด ุฏู ุตุญ ูู ูู ุฏู ุจูุญุณูุง ุจ cos |
|
|
|
276 |
|
00:33:35,430 --> 00:33:47,390 |
|
2 ูุงู ุนุจุงุฑุฉ ุนู ุงูู ุงูู ุนุจุงุฑุฉ ุนู D ุนูู R + |
|
|
|
277 |
|
00:33:47,390 --> 00:33:59,170 |
|
ุชุงู XY ูู ุงู sign 2 ูุงู ุงููู ูู tau XY ุนูู R |
|
|
|
278 |
|
00:33:59,170 --> 00:34:03,730 |
|
ูุนูู ุงู sigma principal ูุชููู = |
|
|
|
279 |
|
00:34:12,640 --> 00:34:29,320 |
|
C + 1 D ุชุฑุจูุน ุนูู R + tau XY ุชุฑุจูุน ุนูู R ุฎุฏ |
|
|
|
280 |
|
00:34:29,320 --> 00:34:36,700 |
|
ูุชููู C + 1 ุนูู R ุนุงู
ู ู
ุดุชุฑู ูู D ุชุฑุจูุน + |
|
|
|
281 |
|
00:34:36,700 --> 00:34:41,380 |
|
ุชุงุจุน ู
ุง ุงุญูุง ุทุจ ูุญูููุง ู
ู ุดููุฉ ุฏู square ุฒู |
|
|
|
282 |
|
00:34:41,380 --> 00:34:48,520 |
|
ุงูุชุงู ุชุฑุจูุน R ุชุฑุจูุน ูุนูู ูุชููู ุงู sigma ุณูุงุก C |
|
|
|
283 |
|
00:34:48,520 --> 00:35:04,460 |
|
ุฒุงุฆุฏ R ุทุจ ูุชููู ุฏู ุฒุงุฆุฏ ุฃู ูุงูุต ุฒุงุฆุฏ ุฒุงุฆุฏ |
|
|
|
284 |
|
00:35:04,460 --> 00:35:12,830 |
|
ุฃู ูุงูุต ูุฃู ู
ู
ูู ุฃูุง ุนูุฏู ุงูุชุงู ุจุชููู ู
ูุฌุจุฉ ูู |
|
|
|
285 |
|
00:35:12,830 --> 00:35:21,370 |
|
ุงูุฑุจุน ุงูุฃูู ูุงูุฑุจุน ุงูุฑุงุจุน ุงูุฑุงุจุน ุงูุซุงูุซ ุฑุจุน |
|
|
|
286 |
|
00:35:21,370 --> 00:35:31,190 |
|
ุงูุซุงูุซ ุฑุจุน |
|
|
|
287 |
|
00:35:31,190 --> 00:35:34,230 |
|
ุงูุซุงูุซ ุฑุจุน ุงูุซุงูุซ |
|
|
|
288 |
|
00:35:37,150 --> 00:35:42,150 |
|
ู
ุนูุงุชู ูุชููู C plus or minus R ูุนูู ุงู sigma ูุชููู |
|
|
|
289 |
|
00:35:42,150 --> 00:35:47,410 |
|
ุงูู normal C ุงููู ูู ุงุญูุง ุญุงูููุง ูุนุฑููุง sigma X ุฒู |
|
|
|
290 |
|
00:35:47,410 --> 00:35:51,930 |
|
sigma Y ุนูู 2 ุฒู ุฃู ูุงูุต ุงูู R ุงููู ูู ุฌุฐุฑ ุงูุชุฑุจูุนู |
|
|
|
291 |
|
00:35:51,930 --> 00:35:57,030 |
|
ุงููู ูู sigma X minus sigma Y ุนูู 2 ููู ุชุฑุจูุน ุฒู |
|
|
|
292 |
|
00:35:57,030 --> 00:36:04,800 |
|
ุชุงู XY ูู ุชุฑุจูุน ุฅุฐุง ุจูุนูุถ ุนู ูู ุฅุฐุง ุงูุนูุถ ุนู ูุงูุฉ |
|
|
|
293 |
|
00:36:04,800 --> 00:36:17,880 |
|
ุจู
ุนุงุฏูุฉ ุงูู tau ูุชุทูุน ุงูู tau ุชุณุงูู ุตูุฑ ูุฅูุนูุถ ุงูุนูุถ |
|
|
|
294 |
|
00:36:17,880 --> 00:36:18,580 |
|
ุนู ุงูู tau |
|
|
|
295 |
|
00:36:21,400 --> 00:36:25,860 |
|
ุงูุชุงู and ุงูู principle ุงูุชุงู ูุชููู ุชุณุงูู ุชููู |
|
|
|
296 |
|
00:36:25,860 --> 00:36:37,600 |
|
minus D ุงูู sign ูุชููู ุชุงู XY ุนูู R ุฒุงุฆุฏ ุชุงู XY ุงูู |
|
|
|
297 |
|
00:36:37,600 --> 00:36:48,660 |
|
cosine ุงูุด D ุนูู R ูุชููู ููุณ ุงูุดูุก ุตุญุ ุตูุฑ ุตูุฑ |
|
|
|
298 |
|
00:36:48,660 --> 00:36:53,460 |
|
ู
ุนูุงุชู ุนูุฏ ุงูู principle planes ูุนูู ูู
ุง ุงูู normal |
|
|
|
299 |
|
00:36:53,460 --> 00:36:57,280 |
|
stress is maximum ุจููููุด ููู ุดูุฑุ ุจูููู ุงูุดูุฑ |
|
|
|
300 |
|
00:36:57,280 --> 00:37:06,820 |
|
ููู
ุชู zero ุทูุจ |
|
|
|
301 |
|
00:37:06,820 --> 00:37:10,200 |
|
ู
ุชู ุจูููู ุงูุดูุฑ stress is maximumุ |
|
|
|
302 |
|
00:37:13,560 --> 00:37:15,940 |
|
ูุดุชู ู
ุนุงุฏูุฉ ุงูู shear ู
ู ูุตู ุฅูู ูุงูุฉ ุนุดุงู ูู ุฌุฏูุฏ |
|
|
|
303 |
|
00:37:15,940 --> 00:37:23,640 |
|
ุงูู
ุฌุฒู
ุตุญ ุญุงุฌุฉ ูุญุณุจ ุฏู ุชู ุฏู ุชุงู by ุฏู ูุงูุฉ ุตูุฑ |
|
|
|
304 |
|
00:37:23,640 --> 00:37:30,360 |
|
ุตูุฑ ุจุตูุฑ ุจุตูุฑ minus D ุงุชููู |
|
|
|
305 |
|
00:37:30,360 --> 00:37:41,200 |
|
D cosine ุงุชููู ูุงูุฉ minus ุงุชููู ุชุงู XY sine ุงูู two |
|
|
|
306 |
|
00:37:41,200 --> 00:37:41,580 |
|
ูุงูุฉ |
|
|
|
307 |
|
00:37:44,370 --> 00:37:53,690 |
|
ูุนูู ุชููู ุชุงู ุงูุณ ูุงู ุณูู ุงูู two-fi ุจุชุณุงูู |
|
|
|
308 |
|
00:37:53,690 --> 00:38:05,450 |
|
minus D cosine two-fi ูุนูู ุชุงู ุงูู two-fi ูุชููู |
|
|
|
309 |
|
00:38:05,450 --> 00:38:13,770 |
|
ุณูุงุก minus D ุนูู ุชุงู ุงูุณ ูุงู ุทูุจ ู
ุชู ูุงูุช ุงูู |
|
|
|
310 |
|
00:38:13,770 --> 00:38:22,130 |
|
pressure stress maximumุ zero ูู
ุง ูุงูุช .. ูู
ุง ูุงูุช |
|
|
|
311 |
|
00:38:22,130 --> 00:38:31,650 |
|
tan ุงูู two five ุจุชุณุงูู ุงูุดุ tau xy |
|
|
|
312 |
|
00:38:35,650 --> 00:38:38,790 |
|
ุนูู ุฏู ููุฒูู ุงูุชู ูุฏู ุจุชุงุนุฉ ุงูู .. ุจุชุงุนุฉ ุงูุณูุฌู
ุง ูุฏู |
|
|
|
313 |
|
00:38:38,790 --> 00:38:41,710 |
|
ู ูุฏู ุจุชุงุนุฉ ุงูุด ุงูุชู ุงุถุฑุจ ุงูุงุซููู ุงุถุฑุจูู
ุง ุจุนุถ ุงูุง |
|
|
|
314 |
|
00:38:41,710 --> 00:38:47,070 |
|
ูุฐู slow ูู ุงูุฃููุงู
ุงูู two fives ู
ุชุนุงู
ููู ู
ุน ุจุนุถ |
|
|
|
315 |
|
00:38:47,070 --> 00:38:50,370 |
|
ูุนูู ุงูุฒุฑู ุจูู ุงูู two five ู ุงูู two five ุชุณุนูู |
|
|
|
316 |
|
00:38:50,370 --> 00:38:57,030 |
|
ุฏุฑุฌุฉ ุจูู ุงูู five ู ุงูู ูุงูุฉ ูู
ุ ุฎู
ุณุฉ ู ุฃุฑุจุนูู ูุงู .. |
|
|
|
317 |
|
00:38:57,030 --> 00:39:00,870 |
|
ุงู .. ุงู .. ุงู maximum shear stress ุจูุนู
ู plus or |
|
|
|
318 |
|
00:39:00,870 --> 00:39:06,530 |
|
minus ุฎู
ุณุฉ ู ุฃุฑุจุนูู ุฏุฑุฌุฉ ู
ู ุงูู principle directions |
|
|
|
319 |
|
00:39:06,530 --> 00:39:11,890 |
|
ููููู ู
ุณุชููุงู ุนูู ุฒุงููุฉ ุฎู
ุณุฉ ู ุฃุฑุจุนูู ุงูุขู ุนูุฏู ุงูู |
|
|
|
320 |
|
00:39:11,890 --> 00:39:14,010 |
|
maximum shear stress ูู ุงูู principle stress ุจูููู |
|
|
|
321 |
|
00:39:14,010 --> 00:39:21,630 |
|
zero ูุฃ ูุฃ ู
ุนูุงุชู ูู
ุง ูููู ุงูู stress ุงูู principle |
|
|
|
322 |
|
00:39:21,630 --> 00:39:23,630 |
|
ูุนูู ุงูู stress ุงูู minimum stress is the principle |
|
|
|
323 |
|
00:39:23,630 --> 00:39:27,630 |
|
ูุนูู ุงูู maximum ุจูููู ุงูู shear zero ูู
ุง ูููู ุงูู |
|
|
|
324 |
|
00:39:27,630 --> 00:39:36,890 |
|
shear maximum ุจููููุด ุงูู normal stress zero ูู |
|
|
|
325 |
|
00:39:36,890 --> 00:39:42,970 |
|
ุงูุขุฎุฑ ุชุงู ุจูุณุชูู plus ู minus ูู
ุง ุงุชุนูุฏ ุงูู radius |
|
|
|
326 |
|
00:39:42,970 --> 00:39:49,490 |
|
ุงูู radius ุชุงู more circle ูุฃู ู
ุนูุงุชู more circle |
|
|
|
327 |
|
00:39:49,490 --> 00:39:56,110 |
|
ุงูุญุฑู ูุญู ุงูู more circle ุนุจุงุฑุฉ |
|
|
|
328 |
|
00:39:56,110 --> 00:39:56,830 |
|
ุนู ุฏุงุฆุฑุฉ |
|
|
|
329 |
|
00:40:00,510 --> 00:40:04,590 |
|
ู
ุฑูุฒูุง ููู ุฌุงู ูุนูู sigma x ุฒู sigma one ุนูู ุงูุงุซููู |
|
|
|
330 |
|
00:40:04,590 --> 00:40:12,430 |
|
ุทุจุนุง ุนูุฏู ูุฐู ุงูู
ุญุงูุฑ ุงูุง ุนูุฏู ููุง ุงูู sigma ู |
|
|
|
331 |
|
00:40:12,430 --> 00:40:20,470 |
|
ููุง ุงูู tau clockwise ู ุชุญุช ุงูู tau counter |
|
|
|
332 |
|
00:40:20,470 --> 00:40:25,970 |
|
clockwise ูุงูุฏู |
|
|
|
333 |
|
00:40:25,970 --> 00:40:26,650 |
|
ูุฐู ุงูู element |
|
|
|
334 |
|
00:40:29,460 --> 00:40:35,260 |
|
ูุฐู sigma x ููุฐู |
|
|
|
335 |
|
00:40:35,260 --> 00:40:41,780 |
|
tau xy counter clockwise ููุฐู |
|
|
|
336 |
|
00:40:41,780 --> 00:40:51,120 |
|
sigma y sigma y clockwise ุฌุงู ู
ุนุงูุง ุตุญุ ุจูุนู
ู ูู
ุช |
|
|
|
337 |
|
00:40:51,120 --> 00:40:55,940 |
|
ููููุงุฏุงุด clockwise ูุงููู ุนูุฏ ุงูู sigma x ุงูุด ุจูุนู
ู |
|
|
|
338 |
|
00:40:55,940 --> 00:41:03,770 |
|
counter clockwise ูู ูุชููู ุนูุฏู ุงูู ูู
ุซู ูุงู ุงูู X |
|
|
|
339 |
|
00:41:03,770 --> 00:41:10,590 |
|
Axis ููู ุงูู Y Axis ูุชููู ุนูุฏู ููุทุชูู ููุทุฉ ูุงุฏู |
|
|
|
340 |
|
00:41:10,590 --> 00:41:13,750 |
|
ุงููู |
|
|
|
341 |
|
00:41:13,750 --> 00:41:20,370 |
|
ูุชููู ูุชู
ุซู |
|
|
|
342 |
|
00:41:20,370 --> 00:41:24,290 |
|
Sigma |
|
|
|
343 |
|
00:41:24,290 --> 00:41:24,770 |
|
X |
|
|
|
344 |
|
00:41:30,140 --> 00:41:39,480 |
|
ููุฐู tau xy ููุฃู ูู counter clockwise ุงุฌุช ุชุญุช ุตุญ |
|
|
|
345 |
|
00:41:39,480 --> 00:41:49,300 |
|
ูุฐู ุงูููุทุฉ ุงูููุทุฉ ุงูุซุงููุฉ ุงุญูุง ููุง ุงูุฒุงููุฉ ูู ุจูู |
|
|
|
346 |
|
00:41:49,300 --> 00:41:53,560 |
|
ุงูู x axis ู y axis ุชุณุนูู ุฏุฑุฌุฉ ูุงุญูุง ุงูู
ุนุงุฏูุฉ ุฃุณุงุณุง |
|
|
|
347 |
|
00:41:53,560 --> 00:41:56,240 |
|
ูู ู
ู ูุงู |
|
|
|
348 |
|
00:42:02,850 --> 00:42:10,730 |
|
ูุงูููุทุฉ ุงูุซุงููุฉ ูู ูุฐู ุงูููุทุฉ ุงูุซุงููุฉ ุฅุญุฏุงุซูุงุชูุง |
|
|
|
349 |
|
00:42:10,730 --> 00:42:20,970 |
|
ูุฐุง sigma y ููุฐุง tau |
|
|
|
350 |
|
00:42:20,970 --> 00:42:23,450 |
|
xy |
|
|
|
351 |
|
00:42:27,010 --> 00:42:30,990 |
|
ู
ุนูู ุงู ูุฐู sigma x ูู sigma y ููุฐู sigma x ูู |
|
|
|
352 |
|
00:42:30,990 --> 00:42:35,150 |
|
sigma y ุณูููู sigma x ูุงูุต sigma y ูุฐู ุงูู
ุณุงูุฉ |
|
|
|
353 |
|
00:42:35,150 --> 00:42:52,750 |
|
ุณุชููู sigma x minus sigma y ุงูุขู |
|
|
|
354 |
|
00:42:52,750 --> 00:42:58,420 |
|
ูุฐู ูุชููู ูู ุงูู x axis ุงูู y axis ูุชููู ุนูู ุงูุฌูุฉ |
|
|
|
355 |
|
00:42:58,420 --> 00:43:03,980 |
|
ุงูุซุงููุฉ ูุงู |
|
|
|
356 |
|
00:43:03,980 --> 00:43:08,520 |
|
ุงูู x axis ููู ุงูู y axis ุฃูุง ุจุชุนุงู
ู ู
ุน ุงูุฒุฑุน ูุนูู |
|
|
|
357 |
|
00:43:08,520 --> 00:43:11,040 |
|
ุงูุฒุฑุน ุจูู ุงูู x ุงูุณ ู ุงูุณ ู ุงูุณ ูุฐุง ุงูุฒุฑุน ุงูู two |
|
|
|
358 |
|
00:43:11,040 --> 00:43:14,680 |
|
file ุงูู two file ูู ู
ุงุฆุฉ ู ุซู
ุงููู ูุนูู ุงูุฒุฑุน ุจูู ุงูู |
|
|
|
359 |
|
00:43:14,680 --> 00:43:24,420 |
|
x ู ุงูู y axis ุชุณุนูู ุฏุฑุฌุฉ ุงูู ูุฐู ุงูู
ุณุงูุฉ ูุชููู ูุตู |
|
|
|
360 |
|
00:43:24,420 --> 00:43:34,600 |
|
ูุฐู ูุฃู ุฅุฐุง ูุตูุช ูุฏูู ู
ุน ุจุนุถ ุชูุงุทุน |
|
|
|
361 |
|
00:43:34,600 --> 00:43:41,120 |
|
ุญุงุฏ ุนุดุฑ ูุนุทููุง ุงูู
ุฑูุฒ ุงูู center ูุฐู ุงูู
ุณุงูุฉ ูููุง ูู
|
|
|
|
362 |
|
00:43:41,120 --> 00:43:47,880 |
|
ูุฐู |
|
|
|
363 |
|
00:43:47,880 --> 00:43:53,020 |
|
ูููุง sigma x minus sigma y ุนูู ุงุซููู |
|
|
|
364 |
|
00:43:56,040 --> 00:43:59,300 |
|
ููุฐู ููุณ ุงูุงุดูุงุก sigma x ููุต sigma y ุนูู ุงุซููู ูุฐู |
|
|
|
365 |
|
00:43:59,300 --> 00:44:05,240 |
|
ุฃุถูู ุนูููุง sigma y sigma |
|
|
|
366 |
|
00:44:05,240 --> 00:44:11,320 |
|
x minus sigma y ุนูู ุงุซููู ุฒุงุฆุฏ sigma y ุงููู ุนุจุงุฑุฉ |
|
|
|
367 |
|
00:44:11,320 --> 00:44:16,020 |
|
ุงุซููู sigma y ุนูู ุงุซููู ุฒุงุฆุฏ ุงุซููู sigma y ุนูู |
|
|
|
368 |
|
00:44:16,020 --> 00:44:21,440 |
|
ุงุซููู ุขุฎุฏ ุงุซููู ูุชููู sigma x ุฒุงุฆุฏ sigma y ุนูู |
|
|
|
369 |
|
00:44:21,440 --> 00:44:27,060 |
|
ุงุซููู ุงูู
ุนูู ูู ูุฐุง ุงูู
ุฑูุฒ ุฌุงูุฒู ู
ุง ุนุฑููุง ุณุงุจูุง |
|
|
|
370 |
|
00:44:27,060 --> 00:44:36,460 |
|
ุนูู ุจุนุฏ sigma x ุฒู sigma y ุนูู ุงุซููู ู
ุนูุงู ุณูุช |
|
|
|
371 |
|
00:44:36,460 --> 00:44:44,900 |
|
ุงูู
ุนุงุฏูุฉ ุตุญูุญุฉ ุจุงูุทุฑููุฉ ูุฐู ุงูู radius ูู |
|
|
|
372 |
|
00:44:44,900 --> 00:44:49,360 |
|
ุฃุฎุฏูุง ุงูู
ุซูุซ ูุฐุง ุงูู
ุซูุซ |
|
|
|
373 |
|
00:44:49,360 --> 00:44:53,490 |
|
ุงูุทูู ูุฐุง ูู
ุ ุณูุฌู
ุง ุงูุณ ูุงูุต ุณูุฌู
ุง ูุงู ุนูู ุงุซููู |
|
|
|
374 |
|
00:44:53,490 --> 00:44:56,310 |
|
ูุฐุง ุงูุถูุน ุงูุถูุน ุงูุซุงูู ุชุงู ุงูุณ ูุงู ู
ุงูุชูุง ุงูู |
|
|
|
375 |
|
00:44:56,310 --> 00:45:00,250 |
|
radius ู
ุด ุญุงุฌุฉ ุชุณุงูู ุฌุฐุฑ ุงูุชุฑุจูุน ููุฐู ุชุฑุจูุน ุฒู ูุฐู |
|
|
|
376 |
|
00:45:00,250 --> 00:45:07,690 |
|
ุงูุชุฑุจูุน ุฃูุง ูููู ูุฐู ุงูู
ุณุงูุฉ ุฌุฐุฑ |
|
|
|
377 |
|
00:45:07,690 --> 00:45:13,470 |
|
ุงูุชุฑุจูุน ูุณูุฌู
ุง ุงูุณ minus ุณูุฌู
ุง ูุงู ุนูู ุงุซููู ููู |
|
|
|
378 |
|
00:45:13,470 --> 00:45:20,370 |
|
ุชุฑุจูุน ุฒู ุชุงู ุงูุณ ูุงู ุชุฑุจูุน ุงููู ูู ุงูู radius |
|
|
|
379 |
|
00:45:28,840 --> 00:45:33,900 |
|
ุทูุจ ุงูู principle stresses ุนูุฏ ุงูู principle plane |
|
|
|
380 |
|
00:45:33,900 --> 00:45:40,640 |
|
ุนูุฏ ุงูู principle plane ุจุชููู shear stress ุจูููู |
|
|
|
381 |
|
00:45:40,640 --> 00:45:46,820 |
|
ุณุงููุฉ zero ูุนูู ุทุจุนุง ุฃูุง ูุฑุณู
ุฏุงุฆุฑุฉ ุจูู ููุทุฉ ูุฐู ู |
|
|
|
382 |
|
00:45:46,820 --> 00:45:48,020 |
|
ููุทุฉ ูุฐู ุฏุงุฆุฑุฉ |
|
|
|
383 |
|
00:46:11,010 --> 00:46:16,730 |
|
ูุฃู ุงูุฏุงุฆุฑุฉ ุจุชูุทุน ุงูู
ุญูุฑ sigma ูู ุงูููุทุฉ ูุฐู ุนูุฏ |
|
|
|
384 |
|
00:46:16,730 --> 00:46:20,910 |
|
ุงูููุทุฉ ูุฐู shear stress ุงูู ูู
ุจูุณุงููุ |
|
|
|
385 |
|
00:46:20,910 --> 00:46:28,670 |
|
Zero ู
ุนูุงู ุงู ูุฐู sigma ูุงุญุฏ ุนูุฏ ุงูููุทุฉ ูุฐู ุจุฑุถู |
|
|
|
386 |
|
00:46:28,670 --> 00:46:32,130 |
|
shear stress ุงูู ุจูุณุงููุ Zero ู
ุนูุงู ุงู ูุฐู sigma |
|
|
|
387 |
|
00:46:32,130 --> 00:46:38,970 |
|
ุงุซููู ุทูุจ |
|
|
|
388 |
|
00:46:40,910 --> 00:46:51,090 |
|
ุงุญูุง ุญูููุง ุณูุฌู
ุง ูุงุญุฏ ุจูุณุงูู C ุฒู ุงูู radius ุตุญุ ูุงู |
|
|
|
389 |
|
00:46:51,090 --> 00:46:59,810 |
|
ุงูู C ููู ุงูู radius ุตุญุ ู
ุนูุงู ุงููุง ุณูุฌู
ุง ูุงุญุฏ ูู ุงูู |
|
|
|
390 |
|
00:46:59,810 --> 00:47:03,830 |
|
plus ุงู ุงูู minus ุงู ุณูุฌู
ุง ูุงุญุฏ ูุงุซููู ูุฐู ุณูุฌู
ุง ูุงุญุฏ |
|
|
|
391 |
|
00:47:03,830 --> 00:47:11,190 |
|
ุจูุญูู
C ูุงู ุงูู C ูุงูุต ุงูู radius ูููุง ุฏูุงุด ุณูุฌู
ุง |
|
|
|
392 |
|
00:47:11,190 --> 00:47:17,370 |
|
ุงุซููู ุงูุขู |
|
|
|
393 |
|
00:47:17,370 --> 00:47:20,530 |
|
ุงูุฒุงููุฉ ุฃู ุงูู
ุณุชูู |
|
|
|
394 |
|
00:47:41,210 --> 00:47:50,090 |
|
ูุฐุง ุงูู stress ุงูุฒุงููุฉ ูุฐุง ูุฐุง ุงูุฒุงููุฉ ูุฐุง |
|
|
|
395 |
|
00:47:50,090 --> 00:48:02,890 |
|
two five P two five P ูุนูู ุงูุฒุงููุฉ ุงูู
ุณุชูู ุงููู |
|
|
|
396 |
|
00:48:02,890 --> 00:48:05,650 |
|
ุจูููู ุงูู stress ุนูุฏู normal ุจุชุนู
ู ุฒุงููุฉ ุงููู ูู ุฏู |
|
|
|
397 |
|
00:48:05,650 --> 00:48:09,310 |
|
ุงุซููู five P ุงููุญุธุฉ ุชุงู ุงุซููู five P |
|
|
|
398 |
|
00:48:28,410 --> 00:48:34,470 |
|
ุนุดุงู ุฃูุง ูุฌุฏุช ุงูู principle stress ุงูู shear is |
|
|
|
399 |
|
00:48:34,470 --> 00:48:35,190 |
|
maximum ููุง |
|
|
|
400 |
|
00:48:38,390 --> 00:48:42,190 |
|
ุงูู normal ุจูููู zero ูุฃ ุงูู normal ุจูู ุญุงูุฉ ุจูููู ุงูุด ูุณุงูู |
|
|
|
401 |
|
00:48:42,190 --> 00:48:53,390 |
|
C ุจูููู ูุณุงูู ุงูุด C ูุญุธุฉ |
|
|
|
402 |
|
00:48:53,390 --> 00:48:55,830 |
|
ุงูู max shear stress ุจูุณุงูู ุงูู radius ูู ุงูู radius |
|
|
|
403 |
|
00:48:55,830 --> 00:49:03,420 |
|
ุจูุณุงูู ูู ูุทุฑ ุงูุฏุงุฆุฑุฉ ููููู ุณูุฌู
ุง ูุงุญุฏ ูุงูุต ุณูุฌู
ุง ุงุซููู |
|
|
|
404 |
|
00:49:03,420 --> 00:49:06,220 |
|
ุนูู ุงุซููู ูุงู ุณูุฌู
ุง ูุงุญุฏ ูุงูุต ุณูุฌู
ุง ุงุซููู ุงููุทุฑ |
|
|
|
405 |
|
00:49:06,220 --> 00:49:14,720 |
|
ุงูู
ุนูู ุชุณู
ู ุชุงู ูุงุญุฏ ุจูู ูุงุญุฏ ุงุซููู ููููู ูุณุงูู |
|
|
|
406 |
|
00:49:14,720 --> 00:49:21,280 |
|
ุณูุฌู
ุง ูุงุญุฏ minus ุณูุฌู
ุง ุงุซููู ุนูู ุงุซููู ุณูุฌู
ุง ูุงุญุฏ ููุต |
|
|
|
407 |
|
00:49:21,280 --> 00:49:22,360 |
|
ุณูุฌู
ุง ุงุซููู ุนูู ุงุซููู |
|
|