abdullah's picture
Add files using upload-large-folder tool
02a43a2 verified
raw
history blame
39.9 kB
1
00:00:21,290 --> 00:00:25,850
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ุณุชูƒู…ู„ ุงู„ู…ูˆุถูˆุน ุงู„ู„ู‰ ุจุฏุฃู†ุงู‡
2
00:00:25,850 --> 00:00:31,590
ุงู„ุตุจุญ ูˆู‡ูˆ ู…ูˆุถูˆุน ุงู„ external direct product ุจุนุฏ ู…ุง
3
00:00:31,590 --> 00:00:35,770
ุฃุฎุฏู†ุง ุฃู…ุซู„ุฉ ู…ู† ุฎู„ุงู„ู‡ุง ุจู†ุนูŠู† ุงู„ order ู„ู„ element
4
00:00:35,770 --> 00:00:42,070
ูˆูƒุฐู„ูƒ ุนุฏุฏ ุงู„ู„ู‰ ู‡ูˆ ุงู„ elements ุจ order ู…ุนูŠู† ูˆุนุฏุฏ ุงู„
5
00:00:42,070 --> 00:00:46,830
cyclic groups ุจ order ู…ุนูŠู† ู†ู†ุชู‚ู„ ุงู„ุขู† ุงู„ู‰ ู‡ุฐู‡
6
00:00:46,830 --> 00:00:51,500
ุงู„ู†ุธุฑูŠุฉุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ูŠูุชุฑุถ ุงู† ุฌูŠ ูˆ ุงุชุด ุจูŠู‡ finite
7
00:00:51,500 --> 00:00:55,140
cyclic groups ูŠุจู‚ู‰ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ุง ุนุฏุฏ ู…ุญุฏูˆุฏ ู…ู†
8
00:00:55,140 --> 00:01:00,060
ุงู„ุนู†ุงุตุฑ ูˆุงู„ุชู†ุชูŠู† are cyclic groups ุจูŠู‚ูˆู„ ููŠ ู‡ุฐู‡
9
00:01:00,060 --> 00:01:05,080
ุงู„ุญู„ู‚ูŠู† ุงู„ ุฌูŠ eccentric product ู…ุน ุงุชุด is cyclic
10
00:01:05,080 --> 00:01:08,760
in fact ุชู‚ูˆู„ ูŠู ุงู„ order ุฌูŠ ูˆ ุงู„ order ุงุชุด are
11
00:01:08,760 --> 00:01:13,240
relatively prime ูŠุจู‚ู‰ ู…ู† ุงู„ุขู† ูุตุงุนุฏุง ู„ูˆ ุงู„ two
12
00:01:13,240 --> 00:01:17,080
groups ุฌูŠ ูˆ ุงุชุดุชู†ูŠู† ุงู„ order ุงู„ู„ูŠ ู‡ู… are
13
00:01:17,080 --> 00:01:19,840
relatively prime ุงู„ู„ูŠ ูŠุจู‚ู‰ ุงู„ external product
14
00:01:19,840 --> 00:01:25,960
ู…ุนู†ุงู‡ is a cyclic group ู…ุจุงุดุฑุฉ ูˆ ุงู„ุนูƒุณ ู„ูˆ ูƒุงู†ุช
15
00:01:25,960 --> 00:01:28,860
cyclic groups ูŠุจู‚ู‰ ุงู„ two orders are relatively
16
00:01:28,860 --> 00:01:35,620
prime ู‡ุฐุง ุงู„ู„ูŠ ุนุงูŠุฒูŠู† ู†ุซุจุชู‡ ุงู„ุขู† ูŠุจู‚ู‰ ู„ุฐู„ูƒ ู†ุซุจุชู‡
17
00:01:35,620 --> 00:01:41,040
ุงูุชุฑุถ ุงู† ุงู„ H ู„ู‡ุง order ู…ุนูŠู† ูˆ ุงู„ G ูƒุฐู„ูƒ ู„ู‡ุง order
18
00:01:41,040 --> 00:01:47,800
ู…ุนูŠู† ูˆ ู†ุดูˆู ูƒูŠู ุจุฏู†ุง ู†ุนู…ู„ูŠุจู‚ู‰ let ุงู„ order ู„ู„ G
19
00:01:47,800 --> 00:01:55,680
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ M and ุงู„ order ู„ู„ H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ N
20
00:01:55,680 --> 00:02:00,200
then
21
00:02:00,200 --> 00:02:11,180
ู„ูˆ ุจุฏู‡ ุงุฌูŠุจ ุงู„ order ู„ู„ G with H ูŠุจู‚ู‰ thenุงู„ุฃุฑุฏุฑ
22
00:02:11,180 --> 00:02:16,380
ู„ู„ู€ G External Hierarchical Product ู…ุน H ูƒุฏู‡ ูŠุณูˆู‰
23
00:02:16,380 --> 00:02:20,040
ู‡ุฐุง ูŠุง ุดุจุงุจ ู…ูƒุชูˆุจ ู…ุนุงูƒู… ู…ู† ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงู„ุฃุฑุฏุฑ
24
00:02:20,040 --> 00:02:26,400
ู„ู„ุฃูˆู„ู‰ ููŠ ุงู„ุฃุฑุฏุฑ ู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณูˆู‰ ุงู„ M
25
00:02:26,400 --> 00:02:33,020
ููŠ Nู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ุญุทูŠุชู‡ุง ู‚ุจู„ ุงู„ู…ุจุฏุฃ ูˆ ุงู„ุฃู† ุจุฏูŠ ุฃุจุฏุฃ
26
00:02:33,020 --> 00:02:38,360
ู„ุฅูŠุด ุญุทูŠุชู‡ุงุŸ ู„ุฃู† ูƒู„ ุดุบู„ ุจุงู„ุญุจ ู‡ูˆ ู„ุงุฒู…ุงู†ู‡ ุงู„ุฃู† ุจุฏู†ุง
27
00:02:38,360 --> 00:02:48,400
ู†ู‚ูˆู„ Assume that ุงู„ู€G external product ู…ุน ุงู„ู€H is
28
00:02:48,400 --> 00:02:54,540
cyclicู…ุงุฐุง ุฃุฑูŠุฏ ุฃู† ุฃุซุจุชุŸ ุฃู† ุงู„ู€ order ุงู„ู„ูŠ ุฌูŠ ูˆ ุงู„
29
00:02:54,540 --> 00:02:58,560
order ุงู„ู„ูŠ ุงุชุด ุงุชู†ูŠู† are relatively prime ูŠุนู†ูŠ
30
00:02:58,560 --> 00:03:01,520
ุฃุฑูŠุฏ ุฃู† ุฃุซุจุช ุฃู† ุงู„ Euclides common divisor ู…ุง ุจูŠู†
31
00:03:01,520 --> 00:03:05,920
ุงู„ุงุชู†ูŠู† ุณูŠูƒูˆู† ูƒู…ุŸ ุณูŠูƒูˆู† ูˆุงุญุฏุŒ ุตุญูŠุญ ุทุจ ุงูุชุฑุถู†ุง ู‡ุฐู‡
32
00:03:05,920 --> 00:03:10,040
Cyclic ู…ุฏุงู… ุงู„ู€ Cyclic ูŠุจู‚ู‰ ู„ู‡ุง generator ุตุญ ูˆู„ุง
33
00:03:10,040 --> 00:03:14,600
ู„ุงุŸ ูŠุจู‚ู‰ Cyclic assume
34
00:03:15,770 --> 00:03:25,370
ุฃูุชุฑุถ ูƒุฐู„ูƒ ุฅู† ุงู„ู€ G ูˆุงู„ู€ H is a generator is a
35
00:03:25,370 --> 00:03:33,870
generator for ุงู„ู„ูŠ ู‡ูˆ external product ู„ู„ู€ H ู…ุน G
36
00:03:34,700 --> 00:03:38,460
ู…ุง ุฏุงู… ู‡ุฐุง generator ูŠุจู‚ู‰ ุงู„ order ุงู„ู„ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ
37
00:03:38,460 --> 00:03:43,860
ู…ู†ูŠู† ุงู„ order ู„ู„ G ู…ูˆุฏูŠู„ ู„ู„ G external direct
38
00:03:43,860 --> 00:03:50,920
product ู…ุน H ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ order ู„ู„ G ูˆุงู„H ุจุฏู‡
39
00:03:50,920 --> 00:03:56,600
ูŠุณุงูˆูŠ ุงู„ order ู„ู„ G external direct product ู…ุน ู…ู†ุŸ
40
00:03:56,600 --> 00:04:05,990
ู…ุน ุงู„ H ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ ุทูŠุจ ุงู„ order ู„ู„ Gูˆุงู„ู€ H ุจุฏูŠ
41
00:04:05,990 --> 00:04:11,410
ูŠุณุงูˆูŠ ุงู„ least common multiple ู„ู„ order ุชุจุน ุงู„ G
42
00:04:11,410 --> 00:04:18,870
ูˆุงู„ order ุชุจุน ุงู„ H ูŠุจู‚ู‰
43
00:04:18,870 --> 00:04:23,050
ุงู„ order ู„ู„ G ูˆุงู„ order ุชุจุน ุงู„ H ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
44
00:04:23,050 --> 00:04:28,730
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ order ู„ู‡ุฐู‡ ู‚ุฏุงุด ุงู„ู„ูŠ ู… ููŠ
45
00:04:28,730 --> 00:04:34,700
ู†ูŠุจู‚ู‰ ุฃู†ุง ุจู‚ูˆู„ ุงู„ order ู„ู„ element ู‡ุฐุง ุจูŠุณุงูˆูŠ ุงู„
46
00:04:34,700 --> 00:04:38,300
order ู„ู„ element ู‡ุฐู‡ ุจูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ order ู„ู„
47
00:04:38,300 --> 00:04:42,520
element g ูˆ h ุจูŠุณุงูˆูŠ ุงู„ least common multiple ู…ุง
48
00:04:42,520 --> 00:04:46,360
ุจูŠู† ุงู„ two orders ุทุจู‚ุง ู„ู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ุงู„ู„ูŠ
49
00:04:46,360 --> 00:04:51,340
ุจุฑู‡ู†ู†ุงู‡ุง ุทูŠุจ ู‡ุฐุง ุงู„ order ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนู† m ููŠ
50
00:04:51,340 --> 00:04:57,020
n ุฎู„ูŠ ู‡ุฐู‡ ุงู„ู…ุนู„ูˆู…ุฉ ููŠ ุฏู…ุงุบูƒ ูˆ ู‡ู†ุฑุฌุนู„ู‡ุง ุจุนุฏ ู‚ู„ูŠู„
51
00:04:57,020 --> 00:05:05,640
ุทูŠุจ ุงู„ุขู†ุงู„ู€ order ู„ู„ู€ G ุงู„ order ู„ู„ู€ G ูŠู‚ุณู… ุงู„
52
00:05:05,640 --> 00:05:11,840
order ู„ู„ู€ G ูƒุจุชุงุฑ ุตุญ ูˆู„ุง ู„ุง ูŠุจู‚ู‰ divide ุงู„ order
53
00:05:11,840 --> 00:05:19,250
ู„ู„ู€ G ุงู„ู„ูŠ ู‡ูˆ ุจุฏูŠ ุณุงูˆูŠ ู‚ุฏุงุดM ูŠุนู†ูŠ ุงู„ order ุงู„ู„ูŠ
54
00:05:19,250 --> 00:05:25,670
ุฌูŠู‡ ุจุฏู‡ ูŠู‚ุณู… ู…ู† ุงู„ M ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุงู„ order ู„ ุงู„ H
55
00:05:25,670 --> 00:05:33,390
ุจุฏู‡ ูŠู‚ุณู… ู…ู† ุจุฏู‡ ูŠู‚ุณู… ุงู„ order ู„ ู…ู† ู„ ุงู„ H ุงู„ู„ูŠ ู‡ูˆ
56
00:05:33,390 --> 00:05:38,870
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ N ุฅุฐุง
57
00:05:38,870 --> 00:05:44,710
ู…ุง ู‡ูˆ ุนู„ุงู‚ุฉ least common multiple ู„ู„ two orders ู…ุน
58
00:05:44,710 --> 00:05:45,970
M ูˆ N
59
00:05:48,440 --> 00:05:52,340
ุงู„ู„ูŠุฒ ูƒูˆู…ู„ ู…ู„ุชุจู„ ู„ู„ ุงูˆุถุฉ ู…ุน ุงู„ู„ูŠุฒ ูƒูˆู…ู„ ู…ู„ุชุจู„ ู„ู„ M
60
00:05:52,340 --> 00:05:55,360
ูˆ N ู…ูŠู† ุงู„ู„ูŠ ุงุตุบุฑ ูˆ ู…ูŠู† ุงู„ู„ูŠ ุงูƒุจุฑุŸ ู„ู„ูŠุฒ ูƒูˆู…ู„ ู…ู„ุชุจู„
61
00:05:55,360 --> 00:06:01,800
ู„ู…ู†ุŸ ู„ู„ H ูˆ G ู…ูŠุฉ ู„ู…ูŠุฉ ุงุตุบุฑ ู…ู† ู…ู†ุŸู…ู† ุงู„ least
62
00:06:01,800 --> 00:06:06,840
common multiple ู„ู„ M ูˆ N ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ุฐุง ูŠุทูŠุก
63
00:06:06,840 --> 00:06:12,840
ู„ูƒู…ูŠู†ุŸ ุงู† ุงู„ least common multiple ู„ู„ order ุชุจุน ุงู„
64
00:06:12,840 --> 00:06:24,040
G ูˆุงู„ order ุชุจุน ุงู„ H ู‡ุฐุง ูƒู„ู‡ ู…ุงู„ู‡ ุฃู‚ู„ ู…ู† ุฃูˆ ูŠุณุงูˆูŠ
65
00:06:24,040 --> 00:06:32,930
ุงู„ least common multiple ู„ู„ M ูˆ Nุชู…ุงู… ุทูŠุจ ุงู„ least
66
00:06:32,930 --> 00:06:40,450
common multiple ู„ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ู‚ุฏุงุด M ููŠ N ูŠุจู‚ู‰ ุจู†ุงุก
67
00:06:40,450 --> 00:06:47,950
ุนู„ูŠู‡ So ุงู„ M ููŠ N ุฃู‚ู„ ู…ู† ุฃูˆ ูŠุณูˆู‰ ุงู„ least common
68
00:06:47,950 --> 00:06:56,450
multiple ู„ู…ู†ุŸ ู„ู„ M ูˆ N ุงุนุชุจุฑ ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุฑู‚ู… Star
69
00:06:58,800 --> 00:07:06,940
ุงู„ุณุคุงู„ ู‡ูˆ ุงุญู†ุง ู„ุงู† ุฌูŠุจู†ุง ุงู„ M ูˆ ุงู„ N ุงู‚ู„ ู…ู† ุงู„
70
00:07:06,940 --> 00:07:12,720
least common multiple ู„ู…ู†ุŸ ู„ู„ M ูˆ N ุทุจ in general
71
00:07:12,720 --> 00:07:24,720
but ูˆ ู„ูƒู† we know that ุงู† ุงู„ least common multiple
72
00:07:24,720 --> 00:07:26,840
ู„ู„ M ูˆ N
73
00:07:30,950 --> 00:07:35,450
100% ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุงู„ least common ..
74
00:07:35,450 --> 00:07:39,430
ุฃู‚ุตู‰ ุญุงุฌุฉ ุญุตู„ ุถุฑุจู‡ู… ูˆ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุจูŠูƒูˆู† ุฃู‚ู„ ู…ู†
75
00:07:39,430 --> 00:07:44,870
ู‡ูŠูƒ ูŠุนู†ูŠ ุงู„ู…ุถุงุนู ุงู„ู…ุดุชุฑูƒ ุฃุญูŠุงู† ุจูŠูƒูˆู† ูƒุจูŠุฑู‡ ููŠ ุฃู‚ู„
76
00:07:44,870 --> 00:07:51,630
ู…ุง ูŠู…ูƒู† ูŠุจู‚ู‰ ู‡ุฐุง ุฃู‚ู„ ู…ู† ู…ูŠู†ุŸ ู…ู† M ููŠ N ูˆ ู‡ุฐู‡
77
00:07:51,630 --> 00:07:56,550
ุงู„ุนู„ุงู‚ุฉ ุงู„ุชุงู†ูŠุฉ ู‡ูŠ ุฑู‚ู… Star ุฅุฐุง ู…ู† ุงู„ุฅุชู†ูŠู† ู…ุน ุจุนุถ
78
00:07:56,550 --> 00:08:02,130
ุจู‚ูˆู„ ุฅู† ุฅุชู†ูŠู† ู‡ุฏูˆู„ ู…ุง ู„ู‡ู…ุงุฑูŠูƒู… ูŠุจู‚ู‰ ู‡ู†ุง ุณูˆุง ุงู„
79
00:08:02,130 --> 00:08:09,150
least common multiple ู„ู„ M ูˆ N ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ M ููŠ N
80
00:08:11,690 --> 00:08:17,290
ุทูŠุจ ู†ุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ ุงุตุจุฑ ุนู„ูŠู†ุง ุดูˆูŠุฉ ู†ุฑุฌุน ุจุงู„ุฐุงูƒุฑุฉ
81
00:08:17,290 --> 00:08:22,650
ู„ู„ูˆุฑุงุก ุฎู„ู ุงู„ุงูˆู„ chapter ุงุฐุง ุจุชุฐูƒุฑูˆุง ู‡ู†ุง ู‚ู„ู†ุง ู„
82
00:08:22,650 --> 00:08:26,290
grace is common divided between ุนุฏุฏูŠู† ููŠ least
83
00:08:26,290 --> 00:08:29,990
common multiple ุงู„ุนุฏูŠู† ุจูŠุนุทูŠู†ุง ู…ูŠู†ุŸ ู†ูุณ ุงู„ุนุฏุฏูŠู†
84
00:08:29,990 --> 00:08:40,950
ูŠุจู‚ู‰ ู‡ู†ุง ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุจุท ูˆู„ูƒู† ูˆ ู„ุงthat ู„ุงุจู†ุนุฑู ุงู†
85
00:08:40,950 --> 00:08:47,530
ุงู„ู€ greatest common divisor ู„ู„ M ูˆุงู„N ู…ุถุฑูˆุจ ููŠ
86
00:08:47,530 --> 00:08:55,510
least common multiple ู„ู„ M ูˆN ุจุฏู‡ ูŠุณุงูˆูŠ M ููŠ N ู‡ุฐุง
87
00:08:55,510 --> 00:09:01,790
ุจุฏู‡ ูŠุนุทูŠู†ุงุงู„ุงู† ุงู„ least common multiple ู‡ูˆ M ููŠ N
88
00:09:01,790 --> 00:09:07,570
ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ุงุนุทูŠูƒ ุงู†ู‡ ุงู„ greatest common divisor
89
00:09:07,570 --> 00:09:13,070
ู„ู„ M ูˆ N ููŠ ุงู„ least common multiple ุงู„ู„ูŠ ู‡ูˆ M ููŠ
90
00:09:13,070 --> 00:09:20,040
N ุจุฏู‡ ูŠุณูˆู‰ ุงู„ M ููŠ NูŠุจู‚ู‰ ู‡ุฐุง ูŠุนุทูŠู†ุง common divisor
91
00:09:20,040 --> 00:09:25,980
ู„ู„ M ูˆ N ูŠุจู‚ู‰ ูƒู…ูŠุฉ ุทุจ ุงู„ M ู…ุด ุงู„ order ุชุจุน ุงู„ G ูˆ
92
00:09:25,980 --> 00:09:32,260
ุงู„ N ู‡ูˆ ุงู„ order ุชุจุน ุงู„ H ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ M
93
00:09:32,260 --> 00:09:44,640
and ุงู„ N are relatively prime ู‡ุฐุง ูŠุนุทูŠู†ุงู‡ุฐุง ุจุฏูŠ
94
00:09:44,640 --> 00:09:51,120
ูŠุนุทูŠู†ุง ุงู† ุงู„ order ู„ capital G ู„ู„ group ูƒู„ู‡ุง and
95
00:09:51,120 --> 00:09:57,700
ุงู„ order ู„ ุงู„ H are relatively right
96
00:10:03,000 --> 00:10:07,320
ุฃุญู†ุง ุฎู„ุตู†ุง ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ููŠ ุงู„ู†ุธุฑูŠุฉุŒ ูˆู‡ูˆ ุฃู†ู‡ ู„ูˆ
97
00:10:07,320 --> 00:10:14,100
ูƒุงู† ุงู„ู€ G ุฅูƒุณูŠู†ุฏุฑุงูŠูƒุงู„ุจุฑูˆุฏูƒ ู…ุน H is cyclic ูŠุจู‚ู‰
98
00:10:14,100 --> 00:10:17,080
ุงู„ุฃูˆุฑุฏุฑ ู„ู€ G ูˆ ุงู„ุฃูˆุฑุฏุฑ ู„ู€ H are relatively
99
00:10:17,080 --> 00:10:22,010
primaryุŒ ู„ุฃู†ู†ุง ุจุฏุฃ ู†ู…ุดูŠ ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉุฃุซุจุช ูˆ ุงูุฑุถ
100
00:10:22,010 --> 00:10:27,250
ุงู† ุงุชู†ูŠู† ู‡ุฏูˆู„ are relatively prime ุฐุงุชุณ ูŠุนู†ูŠ ุงูŠุด
101
00:10:27,250 --> 00:10:32,030
ุฐุงุชุณุŸ ู„ุฌุฑูŠุณ ุงู„ common divisor ู„ู„ M ูˆ N ุจุฏู‡ ูŠุณุงูˆูŠ
102
00:10:32,030 --> 00:10:37,350
ูƒุฏู‡ ุงูŠุดุŸ ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญ ุทูŠุจ ููŠ ุญุงุฌุฉ ู…ูˆุฌูˆุฏุฉ ููŠ
103
00:10:37,350 --> 00:10:42,690
ุงู„ู†ุตุฑ ูˆุญุชู‰ ุงู„ุขู† ู„ู… ู†ุณุชุฎุฏู…ู‡ุง ุงุดูŠูˆ .. ุงู„ู„ูŠ ูƒู„ ูˆุงุญุฏุฉ
104
00:10:42,690 --> 00:10:47,350
ู…ู† ุงู„ two groups ุงุชู†ูŠู† ู‡ุฏูˆู„ cycling ู…ุฏุงู… ูƒู„ ูˆุงุญุฏุฉ
105
00:10:47,350 --> 00:10:56,270
cycling ุงุฐุง ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ุงgenerator ูŠุจู‚ู‰ since ุงู„ g
106
00:10:56,270 --> 00:10:59,350
since
107
00:10:59,350 --> 00:11:07,070
ุงู„ g is cyclic we have since ุงู„ .. ุฎู„ูŠ ุงู„ g ุจุงุชู†ูŠู†
108
00:11:07,070 --> 00:11:15,950
ู…ุฑุฉ ูˆุงุญุฏุฉ since ุงู„ g and ุงู„ h and ุงู„ h are cyclic
109
00:11:15,950 --> 00:11:24,510
we haveุฅู† ุงู„ู€ G ู‡ุฐู‡ ููŠ ุงู„ู‡ุง generator ูˆู„ูŠูƒู† small
110
00:11:24,510 --> 00:11:33,050
g and ุงู„ H ุงู„ู‡ุงู‡ุงู‡ุง ุงู„ู„ูŠ ู‡ูˆ generator ูˆู„ูŠูƒู† main
111
00:11:33,050 --> 00:11:38,110
ูˆู„ูŠูƒู† H ุทูŠุจ
112
00:11:38,110 --> 00:11:46,110
ุฅุฐุง ู‚ุฏุงุด ุงู„ order ู„ G small M ูˆ ุงู„ order ู„ H M
113
00:11:46,110 --> 00:11:52,630
ูŠูƒูˆูŠุณ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุงุฅู† ุงู„ order ู„ู„ู€ G ุจุฏู‡
114
00:11:52,630 --> 00:11:58,430
ูŠุณุงูˆูŠ ุงู„ M and ุงู„ order ู„ H ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ main ุจุฏู‡
115
00:11:58,430 --> 00:12:05,390
ูŠุณุงูˆูŠ ุงู„ N ุทูŠุจ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏู‡ ุฃุฌูŠ ู„ู„ order ุชุจุน
116
00:12:05,390 --> 00:12:11,630
ุงู„ G ูˆ ุงู„ H ู…ุฑุฉ ูˆุงุญุฏุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
117
00:12:11,630 --> 00:12:16,950
least common multiple ู„ู„ order ุจุชุจุน ุงู„ G ูˆ ุงู„
118
00:12:16,950 --> 00:12:23,120
order ุจุชุจุน ุงู„ HูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณูˆู‰ ุงู„ least
119
00:12:23,120 --> 00:12:30,180
common multiple ุงู„ least common multiple ู„ู…ูŠู†ุŸ ู„ู„
120
00:12:30,180 --> 00:12:39,940
M ูˆ ู„ู„ N ุฃู†ุง ุฃุฏุนูŠ ุงู† M ููŠ N ุทูŠุจ ู„ูŠุดุŸ ู„ุฃู† ุงู„ common
121
00:12:39,940 --> 00:12:47,400
divisor ูŠุณูˆู‰ 1 ูŠุจู‚ู‰ ู‡ุฐุง ู„ูŠุดุŸ ู„ุฃู†ุฅู† ุงู„ู€ common
122
00:12:47,400 --> 00:12:54,480
divisor ู„ู€ M ูˆ ู„ู€ N ูŠุจุฏูˆ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุตุญูŠุญ ุทุจ ู‡ุฐุง
123
00:12:54,480 --> 00:13:00,120
ุงู„ู€ M ููŠ ุงู„ู€ N ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ order ู„ู…ู†ุŸ ุงู„ order
124
00:13:00,120 --> 00:13:03,970
ู„ู„ group ุงู„ู„ูŠ ู‡ูˆ ู†ุณู…ูŠู‡ ู‡ุงูŠูˆู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู€ order
125
00:13:03,970 --> 00:13:09,850
ู„ู„ุฌุฑูˆุจ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุงู„ order ู„ู„ู€ G
126
00:13:09,850 --> 00:13:15,530
external direct product ู„ู…ู†ุŸ ู„ู„ H ูŠุจู‚ู‰ ุงู„ gate
127
00:13:15,530 --> 00:13:20,630
element ู…ูˆุฌูˆุฏ ููŠ ุงู„ external direct product ุงู„
128
00:13:20,630 --> 00:13:26,150
order ู„ู‡ ูŠุณุงูˆูŠ ุงู„ order ู„ู…ู†ุŸ ู„ู„ group ูŠุจู‚ู‰ ุงู„
129
00:13:26,150 --> 00:13:31,250
group ู‡ุฐุง ู…ุง ูŠุตูŠุฑุŸ Cyclic ูˆู‡ุฐุง generator ูŠุจู‚ู‰ ู‡ู†ุง
130
00:13:31,250 --> 00:13:43,780
ุณุงุงู„ู€ G ูˆุงู„ู€ H is a generator for ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ G
131
00:13:43,780 --> 00:13:50,320
external direct product ู…ุน ู…ูŠู† ู…ุน H ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู„ูƒ
132
00:13:50,320 --> 00:13:57,620
ุงู†ู‡ G external direct product ู…ุน H is cyclic ูˆู‡ูˆ
133
00:13:57,620 --> 00:14:05,720
ุงู„ู…ุทู„ูˆุจุฅุฐุง ู‚ู„ุช ู„ูƒ ุฅุซุจุช
134
00:14:05,720 --> 00:14:11,100
ุงู„ู€external ู‡ุฐุง direct product is cyclic ุชู…ุงู…ุŸ
135
00:14:11,100 --> 00:14:15,520
ุจุนุฏูŠู† ุจู‚ูˆู„ู‡ ุฅุฐุง ูˆุงู„ู„ู‡ ุงู„ุชู†ุชูŠู† ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… cyclic
136
00:14:15,520 --> 00:14:18,940
ูˆุงู„ order ุชุจุน ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู… ู…ุน ุงู„ุชุงู†ูŠ ุงุชู†ูŠู†
137
00:14:18,940 --> 00:14:22,570
relatively primeor than automatic ุนู„ู‰ ุทูˆู„ ุงู„ุฎุทุจ
138
00:14:22,570 --> 00:14:27,210
ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู„ external direct product is cyclic
139
00:14:27,210 --> 00:14:31,670
group ูŠุจู‚ู‰ ุงู„ุดุฑุท ุงู„ external direct product ุฃู†
140
00:14:31,670 --> 00:14:36,270
ูŠูƒูˆู† cyclic group ุฃู…ุฑูŠู† ุงู„ุฃู…ุฑ ุงู„ุฃูˆู„ ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…
141
00:14:36,270 --> 00:14:41,190
ุชุจู‚ู‰ cyclic ุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ ุงู„ order ู„ู„ group ุงู„ุฃูˆู„ู‰
142
00:14:41,190 --> 00:14:43,850
ูˆ ุงู„ order ู„ู„ group ุงู„ุชุงู†ูŠ ูŠูƒูˆู†ูˆุง ุงุชู†ูŠู† ู…ุนุงู‡ู…
143
00:15:00,200 --> 00:15:05,820
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุฃุซุจุชู†ุงู‡ุง ู„ู…ูŠู† ู„ุชูˆ group ุทุจ ู„ูˆ ุตุงุฑูˆุง
144
00:15:05,820 --> 00:15:11,810
ุชู„ุงุชุฉุชู„ุงุชุฉ groups ูˆุงู„ู„ู‡ ุฃุฑุจุนุฉ ูˆุงู„ู„ู‡ ุฎู…ุณุฉ ูˆุงู„ู„ู‡ in
145
00:15:11,810 --> 00:15:16,550
ู…ู† ุงู„ groups ูุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญุฉ ูˆู‡ุฐุง ุงู„ู…ูˆุถูˆุน ู„
146
00:15:16,550 --> 00:15:27,390
crawlery ุฑู‚ู… ูˆุงุญุฏ ูŠุจู‚ู‰ crawlery ุฑู‚ู… ูˆุงุญุฏ ุจุชู‚ูˆู„ ุงู†
147
00:15:27,390 --> 00:15:34,230
external direct product ุงู† external direct
148
00:15:35,820 --> 00:15:44,680
a product external direct product g one external
149
00:15:44,680 --> 00:15:50,520
direct product ู…ุน g two external direct product ู…ุน
150
00:15:50,520 --> 00:16:03,000
ู…ูŠู† ู…ุน g n of a finite of a finite number
151
00:16:04,660 --> 00:16:20,060
finite number of finite cyclic groups is
152
00:16:20,060 --> 00:16:33,660
cyclic if and only ifุงู„ู€ order ู„ู„ู€ G I and ุงู„
153
00:16:33,660 --> 00:16:46,100
order ู„ู„ู€ G J are relatively a prime are
154
00:16:46,100 --> 00:16:54,380
relatively a prime when ุงู„ I ู„ุง ุชุณุงูˆูŠ ู…ูŠู†ุŸ ู„ุง
155
00:16:54,380 --> 00:17:02,540
ุชุณุงูˆูŠ ุงู„ Gูƒู…ุงู† ูƒุฑูˆู„ุฑูŠ ุชุงู†ูŠุฉ ุจุชู‚ูˆู„
156
00:17:02,540 --> 00:17:10,240
let ุงู„ู„ูŠ ู‡ูˆ ุงู„ M ุนู…ู„ู†ุงู‡ุง ุชุญู„ูŠู„ ุตุงุฑุช N ูˆุงุญุฏ ููŠ N
157
00:17:10,240 --> 00:17:18,760
ุงุชู†ูŠู† ููŠ N K then ุงู„
158
00:17:18,760 --> 00:17:31,150
ZM ุงู„ ZM isomorphicู„ู…ู†ุŸ ู„ z n one external product
159
00:17:31,150 --> 00:17:43,350
ู…ุน z n two external product ู…ุน ู…ู†ุŸ ู…ุน z n k if and
160
00:17:43,350 --> 00:17:53,930
only if if and only if ุงู„ n i and ุงู„ n j are
161
00:17:53,930 --> 00:18:06,240
relatively primeare relatively prime when
162
00:18:06,240 --> 00:18:11,100
I ู„ุง ุชุณุงูˆูŠ ุงู„ุฌู‡ุฉ
163
00:18:38,860 --> 00:18:44,120
ุงู„ูƒุฑูˆู„ุฑูŠ ุงู„ุฃูˆู„ู‰ ู‡ูŠ ุชุนู…ูŠู… ู„ู„ู†ุธุฑูŠุฉ ุงู„ูƒุฑูˆู„ุฑูŠ ุงู„ุซุงู†ูŠุฉ
164
00:18:44,120 --> 00:18:48,760
ูƒุฃู†ู‡ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนุงู„ู…ูŠู† ุนู„ู‰ ุงู„ู†ุธุฑูŠุฉ ุชุนุงู„ู‰ ู†ุดูˆู
165
00:18:48,760 --> 00:18:53,640
ุงู„ุชุนู…ูŠู… ููŠ ุงู„ุฃูˆู„ ูˆู…ู† ุซู… ุจู†ุฑูˆุญ ู„ู„ูƒุฑูˆู„ุฑูŠ ุงู„ุชุงู†ูŠุฉ
166
00:18:53,640 --> 00:18:59,380
ุงู„ู„ู‰ ู‡ูŠ ุฑู‚ู… ุงุชู†ูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ูƒุฑูˆู„ุฑูŠ ุงู„ุฑู‚ู… ุงุชู†ูŠู†
167
00:19:00,650 --> 00:19:03,590
ุชุนุงู„ู‰ ุงูƒุฑุฑู„ู‰ ุฑู‚ู… ูˆุงุญุฏ ุจูŠู‚ูˆู„ ุงู† external direct
168
00:19:03,590 --> 00:19:08,770
product ู„ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ group of a finite number
169
00:19:08,770 --> 00:19:13,330
ูŠุจู‚ู‰ ุนุฏุฏ ู…ุญุฏูˆุฏ ู…ู† ุงู„ groups ูˆูƒู„ group has finite
170
00:19:13,330 --> 00:19:18,490
order ูƒู„ ูˆุงุญุฏุฉ ุงู„ู„ู‰ ุนุฏุฏ ุชุจุนู‡ุง ู…ุญุฏูˆุฏ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„
171
00:19:18,490 --> 00:19:21,710
external direct product ุจูŠูƒูˆู† cyclic if and only
172
00:19:21,710 --> 00:19:26,230
if ุงู„ order ู„ุฌูŠ ุงูŠ and ุงู„ order ู„ุฌูŠ ุฌูŠ are
173
00:19:26,230 --> 00:19:31,510
relatively primeูˆุงู† ุงู„ I ู„ุง ุชุณุงูˆูŠ ุงู„ ุฌูŠู‡ ูŠุนู†ูŠ ุจุฏูŠุด
174
00:19:31,510 --> 00:19:36,650
ุงู‚ูˆู„ ู„ุฌุฑูˆุจู‡ ู†ูุณู‡ ู‡ู‰ ุงู„ู…ู‚ุตูˆุฏ I ู„ุง ุชุณุงูˆูŠ ุงู„ุฌูŠู‡ ูŠุนู†ูŠ
175
00:19:36,650 --> 00:19:40,570
ู‡ุงุฏ ุงู„ุฌุฑูˆุจ ุชุฎุชู„ู ุชู…ุงู…ุง ู…ุน ู…ู† ู…ุน ู‡ุงุฏ ุงู„ุฌุฑูˆุจ ุทุจ ุงุญู†ุง
176
00:19:40,570 --> 00:19:47,290
ุนู†ุฏู†ุง ูƒุงู… ุฌุฑูˆุจุฃูŠ ูˆุงุญุฏุฉ ู…ุน ุงู„ุชุงู†ูŠุฉ ุจูŠูƒูˆู† relatively
177
00:19:47,290 --> 00:19:50,270
prime ูŠุนู†ูŠ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุชุงู†ูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุชุงู„ุชุฉ
178
00:19:50,270 --> 00:19:54,350
ุงู„ุฃูˆู„ู‰ ู…ุน ุงู„ุนุงุดุฑุฉ ุงู„ุชุงู†ูŠุฉ ู…ุน ุงู„ุชุงู„ุชุฉ ุงู„ุชุงู†ูŠุฉ ู…ุน ..
179
00:19:54,350 --> 00:19:58,950
ูƒู„ู‡ are relatively prime ุชู…ุงู… ุงู„ order ุชุจุน ูƒู„
180
00:19:58,950 --> 00:20:01,550
ูˆุงุญุฏุฉ ู…ู†ู‡ู… ู…ุน ุงู„ order ู…ุน ุงู„ุชุงู†ูŠุฉ ุจูŠูƒูˆู† are
181
00:20:01,550 --> 00:20:05,420
relatively primeูˆู‡ูˆ ุชุนู…ูŠู… ู„ู„ู†ุธุฑูŠุฉ ุงู„ู†ุธุฑูŠุฉ ูƒุงู†ุช
182
00:20:05,420 --> 00:20:08,620
ุนุงู„ู…ูŠุง ุนู„ู‰ two groups ุงู„ู„ูŠ ู‡ูŠ GUH ุนู…ู‘ู…ู†ุงู‡ุง
183
00:20:08,620 --> 00:20:11,800
ุฎู„ู‘ูŠู†ุงู‡ู… ุชู„ุงุชุฉ ุฎู„ู‘ูŠู†ุงู‡ู… ุฃุฑุจุนุฉ ุฎู„ู‘ูŠู†ุงู‡ู… ุฎู…ุณุฉ ู…ุด
184
00:20:11,800 --> 00:20:16,900
ู…ุดูƒู„ุฉ ู‚ุฏ ู…ุง ูŠูƒูˆู† ุงู„ุนุฏุฏ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุตุญูŠุญ ุนู„ูŠู‡ู…
185
00:20:16,900 --> 00:20:21,700
ูˆู‡ูŠ ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ุฑู‚ู… ูˆุงุญุฏ ุงู„ุง ู„ู„ู†ุชูŠุฌุฉ ุฑู‚ู… ุงุชู†ูŠู†
186
00:20:21,700 --> 00:20:27,780
ุจูŠู‚ูˆู„ ู„ูˆ ุนู†ุฏูƒ ุฑู‚ู… M ุญู„ู„ุชู‡ ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ ุฃุนุฏุงุฏ ุฒูŠ
187
00:20:27,780 --> 00:20:33,700
ุงูŠุด ู…ุซู„ุง ุฒูŠ ุชู„ุงุชูŠู†ุชู„ุงุชูŠู† ุจู‚ุฏุฑ ุงู‚ูˆู„ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ
188
00:20:33,700 --> 00:20:38,780
ููŠ ุฎู…ุณุฉ ูŠุจู‚ู‰ ู‡ุงูŠ ุญู„ุชู‡ ู„ุญุงุตู„ ุถุฑุจ ุซู„ุงุซุฉ ุงุนุฏุงุฏ
189
00:20:38,780 --> 00:20:43,480
ูˆุงู„ุซู„ุงุซุฉ ุงุนุฏุงุฏ ู…ุง ู„ู‡ู…ุŸ Primes ุงุชู†ูŠู† ูˆุงู„ุชู„ุงุชุฉ
190
00:20:43,480 --> 00:20:48,500
ูˆุงู„ุฎู…ุณุฉ are primes ุงูŠุด ุจู‚ูˆู„ ู‡ู†ุงุŸู„ูˆ ุญู„ู„ุช ุงู„ M ู„ุญุงุตู„
191
00:20:48,500 --> 00:20:58,140
ุถุฑุจ ุฃุนุฏุงุฏ ูŠุจู‚ู‰ ZM isomorphic ู„ ZN1, ZN2, ZN3, ZNK,
192
00:20:58,400 --> 00:21:04,080
F and only F ูƒู„ ุนุฏุฏ ู…ู† ู‡ุฐู‡ ุงู„ุฃุนุฏุงุฏ are relatively
193
00:21:04,080 --> 00:21:10,580
prime ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถ ูŠุนู†ูŠ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฃู† ูŠูƒูˆู†ูˆุง
194
00:21:10,580 --> 00:21:15,240
primes ูˆุฅู†ู…ุง ูŠูƒูˆู†ูˆุง relatively primesูŠุนู†ูŠ ู…ู…ูƒู† ุงุฎุฏ
195
00:21:15,240 --> 00:21:21,360
ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนุฏุฏ ุงุชู†ูŠู† ู…ุน ุงู„ุนุฏุฏ ุณุจุนุฉ ู…ู…ูƒู† ุงุฎุฏ ุณุชุฉ ูˆ
196
00:21:21,360 --> 00:21:24,800
ุฎู…ุณุฉ ุณุชุฉ ูˆ ุฎู…ุณุฉ ุงุชู†ูŠู† relatively primes ุฑุบู… ุงู†ู‡
197
00:21:24,800 --> 00:21:29,980
ุฎู…ุณุฉ primes ุณุชุฉ ู„ุฃ ุชู…ุงู… ูŠุจู‚ู‰ ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุงู† ุชูƒูˆู†
198
00:21:29,980 --> 00:21:35,420
ู‡ุฐู‡ ุงู„ุงุนุฏุงุฏ primes ู…ุซู„ ู…ุง ุญู„ู„ู†ุง ุงุด ุงู„ุชู„ุงุชูŠู† ูŠุจู‚ู‰
199
00:21:35,420 --> 00:21:40,310
ู…ู…ูƒู† ูŠูƒูˆู† ุงุฑุจุนุฉ ูˆ ุนุดุฑูŠู†ุฃุฑุจุนุฉ ูˆ ุนุดุฑูŠู† ู‡ูˆ ุชู„ุงุชุฉ ููŠ
200
00:21:40,310 --> 00:21:45,110
ุชู…ุงู† ูŠุนู†ูŠ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ููŠ ุงุฑุจุน ู…ุธุจูˆุท ูŠุจู‚ู‰ ุงู„ุงุฑุจุน
201
00:21:45,110 --> 00:21:47,730
ูˆ ุนุดุฑูŠู† ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ููŠ ุณุชุฉ ููŠ ุงุฑุจุน ูˆ ุงุฑุจุน ูˆ
202
00:21:47,730 --> 00:21:53,010
ุนุดุฑูŠู† ุงู„ุงู† ูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงุชู†ูŠู† ููŠ ุชู„ุงุชุฉ ููŠ ุณุชุฉ ุงุชู†ูŠู† ูˆ
203
00:21:53,010 --> 00:21:57,810
ุชู„ุงุชุฉ ู‡ุฐูˆู„ ุงู„ู€primes ุจุณ ุฅูŠุด ุจูŠุตูŠุฑ ุงุชู†ูŠู† ู…ุน ุงู„ุฃุฑุจุน
204
00:21:57,810 --> 00:22:01,880
are not relatively primeูŠุจู‚ู‰ ุจุตูŠุฑ ูƒู„ ุงุจู† ู‡ุฐุง ุตุญูŠุญ
205
00:22:01,880 --> 00:22:06,600
ูˆู„ุง ู…ุด ุตุญูŠุญุŸ ู…ุด ุตุญูŠุญ ู„ุงุฒู… ุชุงุฎุฏ ุฃูŠ ุฑู‚ู…ูŠู† ู…ู†ู‡ู…
206
00:22:06,600 --> 00:22:10,640
ูˆุฏู…ูƒูˆู†ูˆุง ู…ุน ุจุนุถ ุงุชู†ูŠู† ู…ุนุงู‡ู… relatively a primes
207
00:22:10,640 --> 00:22:16,220
ูˆู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุงู† ูŠูƒูˆู†ูˆุง a primes ูŠุจู‚ู‰ ู…ุฑุฉ ุชุงู†ูŠุฉ
208
00:22:16,220 --> 00:22:22,740
ุจู‚ูˆู„ ุญู„ู„ุช ุงู„ M ุงู„ู‰ ุญุงุตู„ ุถุฑุจ ุงุนุฏุงุฏู…ุฏุงู… ุญู„ู„ุช ูŠุฌุฒุฏ ุงู…
209
00:22:22,740 --> 00:22:30,040
ุงู„ุฃุตู„ูŠุฉ isomorphic ู„ู…ุงู… ู„ู„ external direct product
210
00:22:30,040 --> 00:22:35,340
ุงู„ู„ูŠ ู‡ู… ูƒู„ู‡ู… ู‡ุฏูˆู„ if and only if ุฃูŠ ุงุชู†ูŠู† ู…ู†ู‡ู…
211
00:22:35,340 --> 00:22:39,640
ุจุฏู‡ู… ูŠูƒูˆู†ูˆุง relatively prime ู…ุน ุจุนุถู‡ู… ุงู„ุจุนุถ ุงู„ุงู†
212
00:22:39,640 --> 00:22:46,020
ู†ุนุทูŠูƒ ุชู…ุซูŠู„ ุนุฏุฏูŠ ุดุบู„ ุนุฏุฏูŠ ูƒูŠู ู‡ุฐุง ุงู„ูƒู„ุงู… example
213
00:22:53,570 --> 00:22:58,310
ู‡ุฐุง ู‡ูˆ ุงู„ุชูˆุถูŠุญ ุงู„ู„ูŠ ู‚ุงู„ ู„ูˆ ุฌูŠุช ู„ z ุฏูŠ ุงุชู†ูŠู†
214
00:22:58,310 --> 00:23:04,670
external like product ู…ุน z ุฏูŠ ุงุชู†ูŠู† external like
215
00:23:04,670 --> 00:23:11,390
product ู…ุน z ุชู„ุงุชุฉ external like product ู…ุน ู…ูŠู†ุŸ
216
00:23:11,390 --> 00:23:14,590
ู…ุน z ุฎู…ุณุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
217
00:23:17,820 --> 00:23:21,800
ุจุฏูŠ ุฃูƒูˆู‘ู† ู…ู† ู‡ุฐู‡ ู…ุฌู…ูˆุนุฉ milligroups ุจูŠูƒูˆู†ูˆุง
218
00:23:21,800 --> 00:23:27,260
isomorphic ู„ู‡ุง ุจุงุฌูŠ ุจู‚ูˆู„ ูˆุงู„ู„ู‡ ูƒูˆูŠุณ ุดุฑุงูŠูƒ ุงู„ุชู†ุชูŠู†
219
00:23:27,260 --> 00:23:31,200
ู‡ุฐูˆู„ are relatively prime ุงุชู†ูŠู† ูˆุงู„ุชู„ุงุชุฉ ูˆู„ุง ู„ุฃ
220
00:23:31,200 --> 00:23:38,460
ุงุฐุง ู‡ุฐู‡ isomorphic ู„ู…ูŠู† ุฒุฏ ุณุชุฉ ุฒุฏ ุณุชุฉ ู„ุฃู† ุงู†ุง ู‚ูˆู„ูƒ
221
00:23:38,460 --> 00:23:44,580
M ูˆ ู‡ุฐุง M ููŠู† ุจุณ ุฃุตุบุฑ ุดูˆูŠุฉ ูˆุงุญุฏุฉ ูˆุงุญุฏุฉูŠุจู‚ู‰ ู‡ุฐู‡
222
00:23:44,580 --> 00:23:53,600
isomorphic ู„ู…ูŠู†ุŸ ู„ุฒุฏ ุงุชู†ูŠู† ูƒู…ุง ู‡ูŠ ู„ุฒุฏ ุงุชู†ูŠู†
223
00:23:53,600 --> 00:24:00,340
ุงูƒุณุชูŠุฑู†ุง ุงู„ product ู„ุฒุฏ ุณุชุฉ ุงูƒุณุชูŠุฑู†ุง ุงู„ product
224
00:24:00,340 --> 00:24:11,060
ู„ู…ู†ุŸ ู„ุฒุฏ ุฎู…ุณุฉ ู„ูŠุดุŸ since ุงุชู†ูŠู† and ุงู„ุชู„ุงุชุฉ are
225
00:24:11,430 --> 00:24:21,670
relatively prime ุทูŠุจ ..ุงู„ุงู† ู‡ุฐู‰ ุจุฏูŠ ุงุฌูŠุจ ูƒู…ุงู†
226
00:24:21,670 --> 00:24:28,630
group ุงุฎุฑู‰ isomorphic ู„ู‡ุงูˆู‡ุฐู‡ ูƒู…ุงู† isomorphic ู„ุฒุฏ
227
00:24:28,630 --> 00:24:32,750
ุงุชู†ูŠู† external by product ู‡ุฏูˆู„ ุงุชู†ูŠู† are
228
00:24:32,750 --> 00:24:39,110
relatively prime ูŠุจู‚ู‰ ุฒุฏ ู…ูŠู†ุŸ ุฒุฏ ุชู„ุงุชูŠู† ุญุงุตู„ุฉ ุถุฑุจ
229
00:24:39,110 --> 00:24:49,230
ูŠุจู‚ู‰ ู‡ุฐู‡ ู„ุฒุฏ ุชู„ุงุชูŠู† ูŠุจู‚ู‰ ู„ูŠุดุŸ since ุงู„ุณุชุฉ and
230
00:24:49,230 --> 00:24:53,650
ุงู„ุฎู…ุณุฉ are relatively
231
00:24:57,660 --> 00:25:04,940
ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู‡ุฐุง ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ุฒุฏ ุณุชูŠู† ู„ุฃ ู„ูŠุด ู„ุฃู†
232
00:25:04,940 --> 00:25:12,080
ู‡ุฐุง ู„ูŠุณ ุนุดุงู† ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ุฒุฏ ุณุชูŠู† ูˆุณุชูŠู† ูˆู‡ูŠ ู‡ุฐุง ู„ูŠุณ
233
00:25:12,080 --> 00:25:24,880
ุนุดุงู† ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ุฒุฏ ุณุชูŠู† ู„ุฃู† ุงู„ุณุจุจ ุงู† ุงู„ุงุชู†ูŠู† and
234
00:25:25,300 --> 00:25:30,240
ุงู„ุซู„ุงุซูŠู† ู„ูŠุณูˆุง
235
00:25:30,240 --> 00:25:41,180
ู…ุฑุชูุนูŠู† ุจุดูƒู„ ุนุงู… ุทูŠุจ
236
00:25:41,180 --> 00:25:47,640
ุงูŠุด ุฑุงูŠูƒุŸ ุจุฏูŠ ุงุฎู„ู‚ ูƒู…ุงู† groups ุงุฎุฑู‰ ุงูŠุฒูˆ ู…ูˆุฑูุฉ
237
00:25:47,640 --> 00:25:57,570
ู„ู‡ุฐู‡ ุงู„ group also ู„ูˆ ุฌูŠุช ุงุฎุฏุชุงู„ู„ูŠ ู‡ูˆ Z ุงุชู†ูŠู†
238
00:25:57,570 --> 00:26:03,490
external by-product ู„ุฒุฏ ุงุชู†ูŠู† external by-product
239
00:26:03,490 --> 00:26:10,010
ู„ุฒุฏ ุชู„ุงุชุฉ external by-product ู„ุฒุฏ ุฎู…ุณุฉ is
240
00:26:10,010 --> 00:26:15,910
isomorphic ู‚ู„ู†ุง ู‚ุจู„ ู‚ู„ูŠู„ ุฒุฏ ุงุชู†ูŠู† external by
241
00:26:15,910 --> 00:26:21,850
-product is ุณุชุฉ external by-product ู„ู…ู† ู„ุฒุฏ ุฎู…ุณุฉ
242
00:26:23,460 --> 00:26:27,620
ู‡ุฐุง ุงู„ู„ูŠ ู‚ู„ู†ุงู‡ุง ู‚ุจู„ ู‚ู„ูŠู„ ู…ู† ู‡ุฐู‡ ุจุฏูŠ ุฃุฎู„ู‚ groups
243
00:26:27,620 --> 00:26:32,320
ุฃุฎุฑู‰ ุชุจู‚ู‰ isomorphic ู„ู†ูุณ ุงู„ group ูƒูŠู ูƒุงู†ุช ุชุงู„ูŠุฉ
244
00:26:32,320 --> 00:26:39,840
ุฃุทู„ุน ู„ูŠ ู‡ู†ุง ุจู‚ุฏุฑ ุฃูƒุชุจ ู‡ุฐู‡ Z2 ุฒูŠ ู…ุง ู‡ูŠ ู‡ุฐู‡ Z6 ุงู†ู‚ูˆู„
245
00:26:39,840 --> 00:26:45,980
Z2 external dichromate ู…ุน Z3 ูˆู„ุง Z3 external ู…ุน Z2
246
00:26:45,980 --> 00:26:50,160
ู†ูุณ ุงู„ุดูŠุก ู„ุฃู†ู‡ ุญุตู„ ุถุฑุจู‡ู… ูŠุณูˆุก 6 ูˆ 2 are relatively
247
00:26:50,160 --> 00:26:54,690
prime ุจู†ูุณ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ู‡ูŠ ู‚ุจู„ ู‚ู„ูŠู„ูŠุจู‚ู‰ ุจู†ุงุกู‹ ุนู„ูŠู‡
248
00:26:54,690 --> 00:27:00,210
ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุจุฏู„ ู…ุง ู‡ูŠ z6 ุจุฏูŠ ุฃู‚ูˆู„ ุนู„ูŠู‡ุง z3
249
00:27:00,210 --> 00:27:05,690
external by-product ู…ุน z2 external by-product ู…ุน
250
00:27:05,690 --> 00:27:16,790
z5 ุทูŠุจ ู‡ุฐู‡ isomorphic ู„ู…ู†ุŸ ุทู„ุนู„ูŠ ู„ู‡ุฐู‡ relatively
251
00:27:16,790 --> 00:27:24,330
primeูŠุจู‚ู‰ ู‡ุฐูˆู„ ุงู„ู€ Z6 External Direct Product ู…ุน
252
00:27:24,330 --> 00:27:30,610
Z2 External Direct Product ู…ุน Z5 ูŠุจู‚ู‰ ู‡ุฐู‡ ุฌุฑูˆุจ
253
00:27:30,610 --> 00:27:37,130
ุฌุฏูŠุฏุฉ ุจุฏูŠ ุฃุทู„ุน ูƒู…ุงู† ุฌุฑูˆุจ ุชุงู†ูŠ ูŠุจู‚ู‰ ู‡ุฐู‡ isomorphic
254
00:27:37,130 --> 00:27:45,770
ูƒู…ุงู† ู„ู…ูŠู†ุŸ ู„ู€ Z6 External Direct Product 2 5 ูŠุจู‚ู‰
255
00:27:45,770 --> 00:27:54,900
ู…ุน Z10ู„ูŠุดุŸ ู„ุฃู†ู‡ ุงู„ุณุชุฉ ูˆุงู„ุฎู…ุณุฉ are .. ู„ุฃู†ู‡ ุงู„ุงุชู†ูŠู†
256
00:27:54,900 --> 00:28:00,140
ูˆุงู„ุฎู…ุณุฉ are relatively prime ูŠุจู‚ู‰ ู‡ุฐุง sense ุงุชู†ูŠู†
257
00:28:00,140 --> 00:28:10,160
and ุฎู…ุณุฉ are relatively primeูˆุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู„ู„ู‰
258
00:28:10,160 --> 00:28:13,380
ุนู†ุฏู†ุง ุฒุฏ ุณุชุฉ ู„ุฅู†ู‡ ุงุชู†ูŠู† ูˆ ุชู„ุงุชุฉ relatively prime
259
00:28:13,380 --> 00:28:20,600
ู‡ุฐุง ูƒุชุจู†ุงู‡ ู‚ุจู„ ู‚ู„ูŠู„ ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ู‡ุฐู‡ isomorphic
260
00:28:20,600 --> 00:28:28,340
ู„ุฒุฏ ุณุชูŠู† ู…ุง ูŠููŠู‡ุง ุณุชูŠู† ุนู†ุตุฑ ุทุจุนุง ู„ุฃ ุงู„ุณุจุจ because
261
00:28:29,790 --> 00:28:40,350
ุฅู† ุงู„ุณุชุฉ ูˆ ุงู„ุนุดุฑุฉ ู„ูŠุณูˆุง ู…ุฑุชุจุทูŠู† ุจุดูƒู„
262
00:28:40,350 --> 00:28:40,370
ุนุงู…
263
00:28:47,410 --> 00:28:53,090
ุจู‚ูˆู„ isomorphic ูˆูŠู† ู‡ูŠุŸ ู„ุฃ ู„ุฃ ูƒู„ู‡ isomorphic ูŠุง
264
00:28:53,090 --> 00:28:57,310
ุดุจุงุจ ู…ุงุนู†ุฏูŠุด ู…ุงู‚ู„ุชุด ูŠุณุงูˆูŠ ูŠุจู‚ู‰ ู„ูˆ ู‚ู„ุช ูŠุณุงูˆูŠ ู…ุนู†ุงุชู‡
265
00:28:57,310 --> 00:29:03,170
ูƒู„ ุนู†ุตุฑ ูŠุณุงูˆูŠ ู†ุธูŠุฑู‡ ู„ูƒู† ู‡ุฐู‡ group ุชุฎุชู„ู ุนู† ู‡ุฐู‡
266
00:29:03,170 --> 00:29:08,050
ูŠุนู†ูŠ ู…ุซู„ุง ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ู†ุง ู„ูˆ ุจุฏู‡ ุฃุฎุฏ ุงู„ูˆุงุญุฏ ูˆ ู…ู† ู‡ู†ุง
267
00:29:08,050 --> 00:29:12,010
ุจุฏู‡ ุฃุฎุฏ ุงุชู†ูŠู† ูˆ ู…ู† ู‡ู†ุง ุจุฏู‡ ุฃุฎุฏ ุงู„ zero ูˆ ู…ู† ู‡ู†ุง
268
00:29:12,010 --> 00:29:16,350
ุจุฏู‡ ุฃุฎุฏ ุงู„ุฃุฑุจุนุฉ ู…ุซู„ุงุจูŠุฎุชู„ู ุนู† ู‡ุฐุง ุงู„ู„ูŠ ู‡ู†ุง ูˆู‡ูƒุฐุง
269
00:29:16,350 --> 00:29:20,810
ุฅุฐุง ุฃูŠ ุฒู…ุงุฑ ููŠูƒ ูŠุนู†ูŠ ู„ุฌุฑูˆุจ ุงู„ุฃูˆู„ู‰ ูˆ ู„ุฌุฑูˆุจ ุงู„ุชุงู†ูŠุฉ
270
00:29:20,810 --> 00:29:27,730
ู„ู‡ุง ู†ูุณ ุงู„ุฎูˆุงุต ุงู„ุฑูŠุงุถูŠุฉ ูŠุจู‚ู‰ ู‡ุงูŠ ูƒู„ ุงู„ู„ูŠ ุจู†ู‚ูˆู„ู‡
271
00:29:27,730 --> 00:29:33,530
ุจู†ุงุณู…ุฉ ูŠุนู†ูŠ ู‡ุฐุง ู…ุซุงู„ ุนู…ู„ูŠ ุนู„ู‰ ุงู„ุดุบู„ุงู†ุฉ ุทูŠุจ ู†ู†ุชู‚ู„
272
00:29:33,530 --> 00:29:39,110
ุงู„ุขู† ู„ู†ู‚ุทุฉ ุจุฑุถู‡ ู„ู‡ุง ุนู„ุงู‚ุฉ ุจู‡ุฐุง ุงู„ู…ูˆุถูˆุน
273
00:29:58,550 --> 00:30:02,970
ููŠ ู‡ู†ุง ุชุนุฑูŠู ุฃุฎุฏู†ุงู‡ ุณุงุจู‚ุง ููŠ chapter of subgroup
274
00:30:02,970 --> 00:30:11,090
ู†ุฐูƒุฑู‡ ู„ุฃู†ู‡ ุจุฏู†ุง ู†ุจู†ูŠ ุงู„ุดุบู„ ุนู„ูŠู‡ definition ุชุนุฑูŠู
275
00:30:11,090 --> 00:30:17,810
ูŠู‚ูˆู„ if ุงู„ K is a divisor of N if ุงู„ K is a
276
00:30:17,810 --> 00:30:30,020
divisor of N ู„ูˆ ูƒุงู† ุงู„ K ู‚ุงุณู… ู„ู„ N ูˆdefine ุจุฏู†ุง
277
00:30:30,020 --> 00:30:40,800
ู†ุฑูˆุญ ุงู†ุนุฑู ุงู„ U K of N ู‡ูˆ ูƒู„ ุงู„ุนู†ุงุตุฑ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
278
00:30:40,800 --> 00:30:48,740
ููŠ U M X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ U N such that X modulo K
279
00:30:48,740 --> 00:30:57,410
ุจุฏู‡ ุณุงูˆูŠ ู…ูŠู† ุจุฏู‡ ุณุงูˆูŠ ุงู„ูˆุงุญุฏูˆู‡ุฐุง ุดุจุงุจ sub group ู…ู†
280
00:30:57,410 --> 00:30:58,850
ุงู„ UN
281
00:31:20,410 --> 00:31:23,750
ุทู„ุนู„ูŠ ููŠ ุงู„ูƒู„ุงู… ุงู„ู„ู‰ ุงุญู†ุง ูƒุชุจูŠู†ู‡ ู…ู† ุฃูˆู„ ูˆ ุฌุฏูŠุฏ
282
00:31:23,750 --> 00:31:29,610
ุจุฏู†ุง ู†ุนุทูŠ ุชุนุฑูŠู ูˆ ู‡ุฐุง ุงู„ุชุนุฑูŠู ู…ุฑ ุนู„ูŠู†ุง ู‚ุจู„ ู‡ูŠูƒ
283
00:31:29,610 --> 00:31:35,150
ูŠุจู‚ู‰ ุงุญู†ุง ุจุณ ุจู†ุฐูƒุฑ ุจุงู„ุฐูƒุฑ ุจู‚ูˆู„ ู„ูˆ ูƒุงู† ุนู†ุฏูŠ K ู‡ูˆ
284
00:31:35,150 --> 00:31:40,010
divisor ู„ู„ N ูŠุจู‚ู‰ ุงู„ุดุฑุท ุฃุณุงุณูŠ ุงู† ุงู„ K ู„ุงุฒู… ูŠู‚ุณู…ูŠู†
285
00:31:42,860 --> 00:31:49,420
ุจู†ุนุฑู ุณุชุฉ ุฌุฏูŠุฏุฉ ุณู…ูŠุชู‡ุง U K of N U N ู†ุนุฑููŠู†ู‡ุง ูƒู„
286
00:31:49,420 --> 00:31:53,220
ุงู„ุฅุนุฏุงุฏ ุงู„ู„ูŠ ู‡ูŠ relatively prime ู…ุน M ุจุณ U K ุฏุฎู„ุช
287
00:31:53,220 --> 00:31:59,960
ุนู„ู‰ ุฎุท ุจูŠู‚ูˆู„ ู„ู…ูŠู†ูƒู„ ุงู„ X's ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ UN ูŠุจู‚ู‰
288
00:31:59,960 --> 00:32:04,720
ุนู†ุงุตุฑ ู…ู† UN ุจุญูŠุซ ุงู„ X modulo K ุจูŠุณูˆูŠ ุฌุฏุงุด ูˆุงุญุฏ
289
00:32:04,720 --> 00:32:09,800
ูŠุนู†ูŠ ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ุงู„ูุฑู‚ ุจูŠู†ู‡ุง ูˆุจูŠู† ุงู„ูˆุงุญุฏ ูŠุณูˆูŠ
290
00:32:09,800 --> 00:32:15,880
ู…ุถุงุนูุงุช ุงู„ K ูƒู„ ุงู„ุฃุนุฏุงุฏ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ UN ุงู„ู„ูŠ
291
00:32:15,880 --> 00:32:19,740
ุงู„ูุฑู‚ ุจูŠู†ู‡ุง ูˆุจูŠู† ุงู„ูˆุงุญุฏ ู‡ูŠ ู…ุถุงุนูุงุช ุงู„ K ูŠุนู†ูŠ Zero
292
00:32:20,270 --> 00:32:26,410
ุทุจุนุง ูŠุนู†ูŠ ู„ูˆ ุทุฑุญุช ู‡ุฐุง ุงู„ุนุฏุฏ ู…ู† ุงู„ูˆุงุญุฏ ุจุฏูŠ ูŠุทู„ุนู„ูŠ
293
00:32:26,410 --> 00:32:32,030
ู…ุถุงุนูุงุช ุงู„ K ูŠุทู„ุนู„ูŠ K ูŠุทู„ุนู„ูŠ 2K ู…ุถุงุนูุงุช ูŠุนู†ูŠ ูƒุฃู†ู‡
294
00:32:32,030 --> 00:32:35,130
ุงู„ู…ุถุงุนูุงุช ุงู„ K ุฒุงุฆุฏ ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰ ุงู„ูุฑู‚ ุจูŠู†ู‡ู…
295
00:32:35,130 --> 00:32:43,210
ุจูŠุณุงูˆูŠ Zero ู†ุนุทูŠ ู…ุซุงู„ let ุงู„
296
00:32:43,210 --> 00:32:50,020
G ุจุฏู‡ุง ุชุณุงูˆูŠ U ุฃุฑุจุนูŠู†U ุงุฑุจุนูŠู† ู…ูŠู† ุนู†ุงุตุฑู‡ุง ุดุจุงุจ ุทูŠุจ
297
00:32:50,020 --> 00:32:57,220
find ุจุฏู†ุง ุชู…ุงู†ูŠุฉ ุจุฏู†ุง ุนุฏุฏ ูŠู‚ุณู… ุงู„ุงุฑุจุนูŠู† ูˆู„ูŠูƒู†
298
00:32:57,220 --> 00:33:05,100
ุชู…ุงู†ูŠุฉ ู…ุซู„ุง find U ุชู…ุงู†ูŠุฉ of ุงุฑุจุนูŠู† ู‡ูŠ ุงู„ู„ูŠ ุจุฏู†ุง
299
00:33:05,100 --> 00:33:06,440
solution
300
00:33:12,160 --> 00:33:16,040
ุงู„ุฃูˆู„ ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนุฑูู‡ ู‡ูˆ ุนู†ุงุตุฑ ุงู„ู€U40 ูˆู…ู†ู‡ู… ุจุฏู†ุง
301
00:33:16,040 --> 00:33:22,480
ู†ุจุฏุฃ ู†ุฌู‘ู‡ ูŠุจู‚ู‰ ุจุฏุงุฌุฉ ุฃู‚ูˆู„ ู„ู‡ ุงู„ู€U40 ุนู†ุงุตุฑู‡ุง ุงู„ู„ูŠ
302
00:33:22,480 --> 00:33:31,680
ู‡ูŠ ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุน ุฎู…ุณุฉ ุณุชุฉ ุงู†ุณุฉ ุณุจุนุฉ ุชู…ุงู†ูŠุฉ
303
00:33:31,680 --> 00:33:44,690
ุชุณุนุฉ11 .. 13 .. 14 .. 15 .. 16 .. 17 .. 19 .. 21
304
00:33:44,690 --> 00:33:47,710
..
305
00:33:47,710 --> 00:33:59,490
23 .. 24 .. 25 .. 26 .. 27 ..ูˆูƒู…ุงู† ุชุณุนุฉ ูˆ ุนุดุฑูŠู†
306
00:33:59,490 --> 00:34:07,490
ุชู„ุงุชูŠู† ุงู†ุณู‰ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู† ุงุชู†ูŠู† ูˆ ุชู„ุงุชูŠู† ุชู„ุงุชุฉ ูˆ
307
00:34:07,490 --> 00:34:12,670
ุชู„ุงุชูŠู† ุงุฑุจุนุฉ ูˆ ุชู„ุงุชูŠู† ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ุณุชุฉ ูˆ ุชู„ุงุชูŠู†
308
00:34:12,670 --> 00:34:18,910
ุณุจุนุฉ ูˆ ุชู„ุงุชูŠู† ุชุณุนุฉ ูˆ ุชู„ุงุชูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ุนู†ุงุตุฑ ู…ู†
309
00:34:18,910 --> 00:34:21,050
ุนู†ุงุตุฑ ุงู„ U ุงุฑุจุนูŠู†
310
00:34:27,390 --> 00:34:33,650
ุฃุญู†ุง ุจู†ุดุฑุญ ู„ู„ูƒู„ ู…ุด ู„ูˆุญุฏุŒ ูƒู†ุง ุจู†ุดุฑุญ ู„ู„ูƒู„ุŒ ุงู„ุถุนูŠู
311
00:34:33,650 --> 00:34:37,190
ูˆุงู„ูˆุณุท ูˆุงู„ู‚ูˆูŠ ูƒู„ู‡ ู…ูˆุฌูˆุฏุŒ ุจุฏูƒ ุชุญูƒูŠ ูƒู„ุงู… ูŠุชู†ุงุณุจ ู…ุน
312
00:34:37,190 --> 00:34:41,010
ุงู„ุฌู…ูŠุนู…ุงุดูŠ ูŠุนู†ูŠ ุงู†ุง ูƒุงู† ุจูŠุจู‚ู‰ ู…ูƒุงู† ูŠู‚ูˆู„ูƒ ุฏู‡ ู‡ูŠ
313
00:34:41,010 --> 00:34:44,270
ุฏุบุฑูŠ ุฎุฏ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฑู‚ู…ูŠู† ุชู„ุงุชุฉ ูˆ ุงู‚ูˆู„ูƒ ุฏู‡ ู‡ู… ู„ูƒู†ู‡ุง
314
00:34:44,270 --> 00:34:49,790
ุจู†ุงุดูƒ ุจู†ู†ูู… ูƒู„ ุฎุทูˆุฉ ุจู†ุนู…ู„ู‡ุง ูƒูŠู ุฌุช ู‡ุงู„ูŠ ุทูŠุจ ู‚ุงู„ู„ูŠ
315
00:34:49,790 --> 00:34:54,410
ุงุญุณุจู„ูŠ ู‚ุฏุงุด ุงู„ U ุชู…ุงู†ูŠุฉ ูˆ ุฃุฑุจุนูŠู† ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ U
316
00:34:54,410 --> 00:35:05,110
ุชู…ุงู†ูŠุฉ ูˆ ุฃุฑุจุนูŠู† ุจุฏู‡ ุชุณุงูˆูŠ U ุณุงูˆูŠ ู‡ู„ ุงู„ูˆุงุญุฏ ู…ู†ู‡ู…ู„ูˆ
317
00:35:05,110 --> 00:35:11,130
ู‚ู„ุช ู„ูŠ ู„ุฃ ู‡ู‚ูˆู„ู‡ุง ุบู„ุท ู„ุฃู† ู‚ุจู„ ู‚ู„ูŠู„ ุฌุงู„ูƒ ู‡ุฐู‡ ุงู„
318
00:35:11,130 --> 00:35:16,510
group ุชุญุชูˆูŠ ุนู„ู‰ ุงู„ identity ุงุชู†ูŠู† ูˆุงุญุฏ ู†ุงู‚ุต ูˆุงุญุฏ
319
00:35:16,510 --> 00:35:22,090
ูŠุณูˆู‰ ุฌุฏุงุด ุงู„ zero ู„ู‡ ู…ุถุงุนูุงุช ุงู„ุฃุฑุจุนูŠู† ุฃูˆ ู…ุถุงุนูุงุช
320
00:35:22,090 --> 00:35:26,310
ุงู„ K ู…ุถุงุนูุงุช ุงู„ุชู…ุงู†ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ุงู„ูˆุงุญุฏ ู…ู†ู‡ู…
321
00:35:27,330 --> 00:35:33,470
ูŠุงู„ุง ุชุณุนุฉ ู„ูˆ ุดูŠู„ุช ู…ู† ุฃูˆุงู‡ุง ุจุตูŠุฑ ุชู…ุงู†ูŠุฉ ุชู…ุงู… ูŠุจู‚ู‰
322
00:35:33,470 --> 00:35:39,190
ู‡ุฐู‡ ุงู„ุชุณุนุฉ ุฃุญุฏุงุดุฑ ุชู„ุชุงุดุฑ ุณุจุนุชุงุดุฑ ุดูŠู„ุช ู…ู† ุฃูˆุงู‡ุง ุจุถู„
323
00:35:39,190 --> 00:35:44,600
ูƒุฏู‡ ุณุชุงุดุฑ ู‡ูŠ ู…ุถุงุนูุงุช ุงู„ุชู…ุงู†ูŠุฉูŠุจู‚ู‰ ุงูŠู‡ ุณุจุนุชุงุดุฑ
324
00:35:44,600 --> 00:35:52,080
ุชุณุนุชุงุดุฑ ู„ุฃ ูˆุงุญุฏ ูˆ ุนุดุฑูŠู† ุชู„ุงุชุฉ ูˆ ุนุดุฑูŠู† ุณุจุนุฉ ูˆ ุนุดุฑูŠู†
325
00:35:52,080 --> 00:36:00,260
ุชุณุนุฉ ูˆ ุนุดุฑูŠู† ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู† ุชู„ุงุชุฉ ูˆ ุชู„ุงุชูŠู† ุงู‡ ุชู„ุงุชุฉ
326
00:36:00,260 --> 00:36:06,160
ูˆ ุชู„ุงุชูŠู† ู…ู†ู‡ู…ุชู„ุงุชุฉ ูˆ ุชู„ุงุชูŠู† ู„ุฅู† ู„ูˆ ุฃู‚ู„ ู…ู†ู‡ุง ูˆุงุญุฏ
327
00:36:06,160 --> 00:36:10,780
ูุชุจู‚ู‰ ุงุชู†ูŠู† ูˆ ุชู„ุงุชูŠู† ุชุณู…ุน ุชู…ุงู†ูŠุฉ ุณุชุฉ ูˆ ุชู„ุงุชูŠู† ู„ุฃ
328
00:36:10,780 --> 00:36:16,160
ุชู…ุงู†ูŠุฉ ูˆ ุชู„ุงุชูŠู† ู„ุฃ ูŠุจู‚ู‰ ู…ุงุนู†ุฏูŠุด ุฅู„ุง ุงู„ุฃุฑุจุนุฉ ุนู†ุงุตุฑ
329
00:36:16,160 --> 00:36:19,820
ุงู„ู„ูŠ ู‚ุฏุงู…ูŠ ูŠุนู†ูŠ ูŠุจู‚ู‰ ุฅุฐู† ุงู„ U ุชู…ุงู†ูŠุฉ ูˆ ุฃุฑุจุนูŠู† ู‡ูŠ
330
00:36:19,820 --> 00:36:23,860
ูˆุงุญุฏ ูˆ ุชุณุนุฉ ูˆ ุณุจุชุงุดุฑ ูˆ ุชู„ุงุชุฉ ูˆ ุชู„ุงุชูŠู† ูˆ ูƒู„ ู…ู†ู‡ุง
331
00:36:23,860 --> 00:36:29,490
ูŠุญู‚ู‚ ู…ู†ุงู„ู…ุนุงุฏู„ุฉ ุงูˆ ุญุณุจู†ุงู‡ู… ุจู†ุงุก ุนู„ู‰ ุงู„ุชุนุฑูŠู ุงู„ู„ู‰
332
00:36:29,490 --> 00:36:37,550
ุงุนุทู†ุงู‡ ู„ UKM ู‡ุฐุง ูƒู„ุงู… ู…ู‡ู… ู„ุงู† ุจุฏู†ุง ู†ุจู†ูŠ ุนู„ูŠู‡ ุดุบู„
333
00:36:37,550 --> 00:36:42,230
ุชุงู†ูŠ ุจุนุฏ ู‚ู„ูŠู„ ุงู„ุงู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู†ุธุฑูŠุฉ ุงุฎุฑู‰ ููŠ ู‡ุฐุง
334
00:36:42,230 --> 00:36:47,350
ุงู„ุดุจุชุฑ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ IRM
335
00:36:52,330 --> 00:37:06,230
theorem suppose that suppose that ุงู† ุงู„ S and T ุงู„
336
00:37:06,230 --> 00:37:18,490
S and T are relatively prime are relatively prime
337
00:37:20,290 --> 00:37:31,510
are relatively prime then then
338
00:37:31,510 --> 00:37:40,830
ุงู„ U S T ุงู„ U S T isomorphic
339
00:37:40,830 --> 00:37:50,770
ู„ู„ U S external product ู…ุน ู…ูŠู† ู…ุน U Tmoreover
340
00:37:50,770 --> 00:37:54,230
ูˆุฃูƒุซุฑ
341
00:37:54,230 --> 00:37:59,050
ู…ู† ุฐู„ูƒ ุงู„
342
00:37:59,050 --> 00:38:12,930
subgroup U S of ST isomorphic ู„ U T and ุงู„ U Tู„ู…ู†
343
00:38:12,930 --> 00:38:22,170
ู„ู„ ST isomorphic ู„ู…ู† ู„ US ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู†ุง
344
00:38:22,170 --> 00:38:32,050
isomorphic ู„ US ูˆููŠ ู†ุชูŠุฌุฉ ุนู„ูŠู‡ุง ูƒ ุฑูˆู„ุฑูŠ ุจุชู‚ูˆู„
345
00:38:32,050 --> 00:38:44,170
ู…ุง ูŠุฃุชูŠ let ุงู„ M ุจุฏุฃ ุชุณุงูˆูŠ N ูˆุงุญุฏ N ุงุชู†ูŠู†ูˆู„ุบุงูŠุฉ NK
346
00:38:44,170 --> 00:38:55,190
ุงู† ูˆุงุญุฏ ุงู† ุงุชู†ูŠู† ู„ุบุงูŠุฉ NK where ุญูŠุซ ู„ุฌู„ุณ ุงู„ common
347
00:38:55,190 --> 00:39:08,010
divisor ู„ู„ N I ูˆ N J ุจุฏู‡ุง ุชุณุงูˆูŠ ูˆุงุญุฏ for I ู„ุงุชุณุงูˆูŠ
348
00:39:08,010 --> 00:39:09,810
ุฌูŠ then
349
00:39:11,580 --> 00:39:19,920
ุงู„ู€ UM ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ู…ู†ุŸ ู„ู„ U N 1 ุงูƒุณุชุงู†ุงุถุงูŠูƒ ุจุฑูˆุฏูƒ
350
00:39:19,920 --> 00:39:28,200
ู…ุน U N 2 ุงูƒุณุชุงู†ุงุถุงูŠูƒ ุจุฑูˆุฏูƒ ู…ุน ู…ูŠู†ุŸ ู…ุน U N K ุจุงู„ุดูƒู„
351
00:39:28,200 --> 00:39:28,860
ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง
352
00:39:42,060 --> 00:39:48,760
ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ุจู‚ูˆู„ ู„ูˆ ุนู†ุฏูƒ ุฑู‚ู…ูŠู† S ูˆT are
353
00:39:48,760 --> 00:39:57,880
relatively prime then ุงู„ U S T ูŠุจู‚ู‰ ุงู„ group ุงู„ู„ูŠ
354
00:39:57,880 --> 00:40:03,080
ุนู†ุฏู†ุง ุงู„ U S T isomorphic ู„ู„ externa ุชุงูƒุฑูˆุฏูƒ ุชุจู‚ู‰
355
00:40:03,080 --> 00:40:09,120
ุญุงุตู„ ุงู„ุถุฑุจ ุฒูŠ ุงูŠุด ู…ุซู„ุง ู„ูˆ ู‚ู„ุชู„ูƒ U ุฎู…ุณุชุงุดุฑุจู‚ุฏุฑ
356
00:40:09,120 --> 00:40:15,260
ุงูƒุชุจู‡ุง U ุชู„ุงุชุฉ ููŠ ุฎู…ุณุฉ ู…ุธุจูˆุท ุงุฐุง ู‡ุฐู‡ ุงู„ U ุฎู…ุณุงุด
357
00:40:15,260 --> 00:40:19,820
ุงูŠุฒูˆ ู…ูˆุฑููƒ ู„ U ุชู„ุงุชู‡ ุงูƒุณุชุฑู†ู‡ ุถุงูŠู‚ุฉ ุถุนููƒ ู…ุน ู…ูŠู† ู…ุน
358
00:40:19,820 --> 00:40:24,740
U ุฎู…ุณู‡ ู‡ุชู‚ูˆู„ูŠ ุชู„ุงุชู‡ ูˆ ุฎู…ุณู‡ relatively prime ุจู‚ูˆู„ูƒ
359
00:40:24,740 --> 00:40:33,900
ู…ุงุดูŠ ุงุด ุฑุงูŠูƒ U ุชู„ุงุชูŠู† ุชุณุงูˆูŠ U ุฎู…ุณู‡ ููŠ ุณุชุฉ ุตุญ ุฎู…ุณู‡
360
00:40:33,900 --> 00:40:39,070
ููŠ ุณุชุฉ ุงูˆ ุนุดุฑุฉ ููŠ ุชู„ุงุชู‡ู‡ุฐู‡ ูˆู‡ุฐู‡ ุงูˆ ุงุชู†ูŠู† ููŠ
361
00:40:39,070 --> 00:40:43,410
ุฎู…ุณุชุงุดุฑ ูƒู„ู‡ุง ุฃุฑู‚ุงู… are relatively prime ุงุฐุง ุงู„ U
362
00:40:43,410 --> 00:40:47,930
ุชู„ุงุชูŠู† isomorphic ุงู„ู‰ U ุนุดุฑุฉ ููŠ ุชู„ุงุชุฉ ุงูˆ
363
00:40:47,930 --> 00:40:53,830
isomorphic ู„ U ุฎู…ุณุฉ ููŠ ุณุชุฉ ุงูˆ isomorphic ู„ู„ุงุชู†ูŠู†
364
00:40:53,830 --> 00:40:58,390
ููŠ U ุงุชู†ูŠู† external like product ู…ุน U ุฎู…ุณุชุงุดุฑ ูˆ
365
00:40:58,390 --> 00:41:03,670
ู‡ูƒุฐุงู…ุฏุงู… ุงู„ุฑู‚ุงู…ูŠู† ุงูˆ ุงู„ุชู„ุงุชุฉ ุงู„ู„ู‰ ุนู†ุฏูƒ ุชู„ุงุชุฉ ู…ู†
366
00:41:03,670 --> 00:41:08,790
ุงูŠู† ุฌุจุชู‡ุง ุฏู‰ุŸ ุฌุจุชู‡ุง ู…ู† ุงู„ูƒุฑูˆู„ุฑูŠ ุงู„ูƒุฑูˆู„ุฑูŠ ุจุชู‚ูˆู„ ุงุฐุง
367
00:41:08,790 --> 00:41:11,490
ู…ุง ุนู†ุฏูƒ ู„ูŠุณ ุจุถุฑุฑ ุฑู‚ุงู…ูŠู† ู…ู…ูƒู† ุงู„ุฑู‚ุงู… ุงู„ู„ู‰ ุนู†ุฏูƒ
368
00:41:11,490 --> 00:41:16,090
ุชุญู„ู„ู‡ ุงู„ู‰ ุญุตู„ ุถุฑุจ ุซู„ุงุซุฉ ุฑู‚ุงู… ุงูˆ ุงุฑุจุนุฉ ุงุฑู‚ุงู… ุงูˆ
369
00:41:16,090 --> 00:41:21,690
ุฎู…ุณุฉ ุงูˆ ุนุดุฑุฉ ุงูˆ ูƒู… ู…ู† ุงู„ุฃุฑู‚ุงู… ุญู„ู„ ู‚ุฏ ู…ุง ุจุฏูƒูŠุจู‚ู‰ ู„ูˆ
370
00:41:21,690 --> 00:41:27,990
ุนู†ุฏูŠ ุงู„ู€ M ู‡ุฐุง ุญู„ู„ู†ุงู‡ ุฅู„ู‰ ุญุงุตู„ ุถุฑุจ N ู…ู† ุงู„ุฃุฑู‚ุงู… N1
371
00:41:27,990 --> 00:41:32,450
N2 ู„ุบุงูŠุฉ NK ุจุญูŠุซ ุงู„ู€ greatest common divisor ุจูŠู†
372
00:41:32,450 --> 00:41:37,250
ุฃูŠ ุงุชู†ูŠู† ุจุฏูŠ ูŠูƒูˆู† relatively prime ุจุฏูŠ ูŠูƒูˆู† ูˆุงุญุฏ
373
00:41:37,250 --> 00:41:41,690
ุตุญูŠุญ ูŠุนู†ูŠ ุงู„ุงุชู†ูŠู† ู‡ุฐูˆู„ are relatively prime ูŠุจู‚ู‰
374
00:41:41,690 --> 00:41:46,830
ุงู„ U M isomorphic ู„ U of ุงู„ุฑู‚ู… ุงู„ุฃูˆู„ ูƒุณุชุงู†ุงุฏุงูŠูƒูˆ
375
00:41:46,830 --> 00:41:51,030
ุจุฑูˆุฏูƒ U ู…ุน ุงู„ุฑู‚ู… ุงู„ุชุงู†ูŠ ูƒุณุชุงู†ุงุฏุงูŠูƒูˆ ุจุฑูˆุฏูƒู…ุน ุงู„ุฑู‚ู…
376
00:41:51,030 --> 00:41:55,250
ูƒูŠ ูˆ ู‡ูƒุฐุง ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ุงู† ุดุงุก ุงู„ู„ู‡ ุจู†ุงุฎุฏ ุฃู…ุซู„ุฉ
377
00:41:55,250 --> 00:41:59,890
ุชูˆุถุญูŠุฉ ุนู„ู‰ ูƒูŠููŠุฉ ุงุณุชุฎุฏุงู… ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง