|
1 |
|
00:00:22,730 --> 00:00:27,590 |
|
ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ุฃุฎุฏูุง ูุธุฑูุฉ ุนูู ุงู subgroups |
|
|
|
2 |
|
00:00:27,590 --> 00:00:33,590 |
|
ูู
ุฎุชุตุฑูุง ุฅู ุงู H ูู ูุงูุช non-empty ูุงู condition |
|
|
|
3 |
|
00:00:33,590 --> 00:00:37,470 |
|
ุงูุฃูู ู ุงู condition ุงูุชุงูููู ุฃุฎุฏุช two elements ูู |
|
|
|
4 |
|
00:00:37,470 --> 00:00:42,090 |
|
ุงู group ุฃู ูู ุงู subgroup ู ุฃุซุจุช ุงูู ุญุตู ุถุฑุจ |
|
|
|
5 |
|
00:00:42,090 --> 00:00:45,770 |
|
ุงูุฃูู ูู ู
ุนูุณ ุงูุซุงูู ู
ูุฌูุฏ ูู ูุฐู ุงู subset ุงููู |
|
|
|
6 |
|
00:00:45,770 --> 00:00:50,010 |
|
ูู ุงู H ูุจูู ุงู H ุจุชููู is a subgroup ู ุฃุฎุฏูุง ุนูู |
|
|
|
7 |
|
00:00:50,010 --> 00:00:55,500 |
|
ุฐูู ุฃุฑุจุนุฉ ุฃู
ุซูุฉ ููุฐุง ูู ุงูู
ุซุงู ุฑูู
ุฎู
ุณุฉุงูู
ุซุงู ุฑูู
|
|
|
|
8 |
|
00:00:55,500 --> 00:00:59,800 |
|
ุฎู
ุณุฉ ุฌูุฆ ุจู ูู ุฅุญุฏู ุงูุงู
ุชุญุงูุงุช ูู ุฅุญุฏู ุงูุณููุงุช |
|
|
|
9 |
|
00:00:59,800 --> 00:01:04,180 |
|
ุงูุณุงุจูุฉ ุงููู ูู ูู ุงูุฌุงู
ุนุฉ ุงูุฅุณูุงู
ูุฉ ุนูุฏูุง ููุง |
|
|
|
10 |
|
00:01:04,180 --> 00:01:10,580 |
|
ููุฐูู ุฃุญุจุจุช ุฃู ุฃุญู ูุฐุง ุงูุณุคุงู ูู
ุซุงู ุนูู ู
ูุถูุน ูุฐู |
|
|
|
11 |
|
00:01:10,580 --> 00:01:15,050 |
|
ุงููุธุฑูุฉุงูุณุคุงู ุจูููู little h ุจูุจูู subset of a |
|
|
|
12 |
|
00:01:15,050 --> 00:01:19,610 |
|
group g ุจูุจูู ุงุญูุง ุงุฎุฏูุง h subset ู
ู ุงู group g |
|
|
|
13 |
|
00:01:19,610 --> 00:01:25,310 |
|
ุงุฎุฏูุง ุงู element ุงู ุงู set a ูู ูู ุงูุนูุงุตุฑ a ุงููู |
|
|
|
14 |
|
00:01:25,310 --> 00:01:31,630 |
|
ู
ูุฌูุฏุฉ ูู g ุจุญูุซ ุงู ุงู a h ุชุณุงูู h a ูุนูู ูู |
|
|
|
15 |
|
00:01:31,630 --> 00:01:37,190 |
|
ุงูุนูุงุตุฑ ุงููู ุจุชุจูู commutative ู
ุน ุนูุงุตุฑ h ููุท |
|
|
|
16 |
|
00:01:52,630 --> 00:01:56,840 |
|
ุงูุฎุทูุฉ ุงูุฃููู ุจุฏู ุฃุซุจุช ุงู ุงูู H is non-emptyุจุนุฏูู |
|
|
|
17 |
|
00:01:56,840 --> 00:02:04,440 |
|
ุจุงุฎุฏ ุงุดูุงุก ู
ูุฌูุฏุฉ ูู a ู ุงุซุจุช ุงู ุงูุงูู ูู ู
ุนูุณ |
|
|
|
18 |
|
00:02:04,440 --> 00:02:09,280 |
|
ุงูุซุงูู ู
ูุฌูุฏ ูู a ููุฌุฑ ุจุนุฏูู ุจููู ูู solution |
|
|
|
19 |
|
00:02:09,280 --> 00:02:19,400 |
|
ุงูุฎุทูุฉ ุงูุฃููู ุงู ุงู a is non empty ุงูุณุจุจ because |
|
|
|
20 |
|
00:02:22,540 --> 00:02:28,180 |
|
ุทุจุนุง ุงู identity elements ู
ุน ูุงุณุฑ g ูููุง ูุจุงูุชุงูู |
|
|
|
21 |
|
00:02:28,180 --> 00:02:37,440 |
|
ู
ุน ูุงุณุฑ h because ุงู E ู
ูุฌูุฏ ูู ุงู A since ุงูุณุจุจ |
|
|
|
22 |
|
00:02:37,440 --> 00:02:43,740 |
|
ูู ุฐูู ุงู ุงู E ูู ุงู H ูู ุงู H ูู ุงู E ุทุจ ุงู H ูู |
|
|
|
23 |
|
00:02:43,740 --> 00:02:44,940 |
|
E ุงูุด ุจูุนุทููุง |
|
|
|
24 |
|
00:02:53,110 --> 00:02:58,350 |
|
ูุฐู ุงูููุทุฉ ุงูุฃููู ูู a non empty ุงูููุทุฉ ุงูุซุงููุฉ |
|
|
|
25 |
|
00:02:58,350 --> 00:03:05,530 |
|
ุจุฏู ุงุฎุฏ ุนูุตุฑูู ู
ูุฌูุฏูู ูู ุงู set a ูุจูู ุจุฏุงุฌู ุงููู |
|
|
|
26 |
|
00:03:05,530 --> 00:03:12,070 |
|
ุงูุชุฑุถ ุงู ุงู a ู ุงู b ู
ูุฌูุฏุงุช ูู ุงู aุทูุจ ูุฐุง ู
ุนูุงู |
|
|
|
27 |
|
00:03:12,070 --> 00:03:21,110 |
|
then ุงู a h ุจุฏู ูุณุงูู ุงู h a and ุงู b h ุจุฏู ูุณุงูู |
|
|
|
28 |
|
00:03:21,110 --> 00:03:27,530 |
|
ุงู h b ูุฐุง ู
ุนูุงู ุจุฏุงูู ุงู
ุณู ูุฐุง ุงู element ุงููู |
|
|
|
29 |
|
00:03:27,530 --> 00:03:32,410 |
|
ุนูุฏูุง ูุฐุงูู ุฐูุจุช ู ุถุฑุจุช ู
ู ุฌูุฉ ุงูุดู
ุงู ูู ุงู B |
|
|
|
30 |
|
00:03:32,410 --> 00:03:37,670 |
|
inverse ู ุถุฑุจุช ู
ู ุฌูุฉ ุงููู
ูู ูู ุงู B inverse ุจุฏู |
|
|
|
31 |
|
00:03:37,670 --> 00:03:42,010 |
|
ุฃุดูู ุงูุฏูุตู ููู ุทุจ ุงูุช ุจูุชุฑู ูู ุงู B inverse ููุดุ |
|
|
|
32 |
|
00:03:42,010 --> 00:03:46,930 |
|
ุจูููู ุงู ุงูุง ูุฑุถ ุงู A ู B ู
ูุฌูุฏุฉ ูู A ุฅุฐุง ูู |
|
|
|
33 |
|
00:03:46,930 --> 00:03:52,220 |
|
ู
ูุฌูุฏุฉ ูููุูุชุด ู
ูุฌูุฏุฉ ูู a ูุนูู ู
ูุฌูุฏุฉ ูู g |
|
|
|
34 |
|
00:03:52,220 --> 00:03:58,080 |
|
ุงูุฃุตููุฉ ูุฃู ูู ุนูุงุตุฑ a ู
ูุฌูุฏุฉ ูู g ุงุฐุง ูุฐู ู
ูุฌูุฏุฉ |
|
|
|
35 |
|
00:03:58,080 --> 00:04:04,960 |
|
ูู g ูุจูู ุงู b inverse ู
ูุฌูุฏ ูู g ููู ุงูุง ุจุฏู ุงุซุจุช |
|
|
|
36 |
|
00:04:04,960 --> 00:04:10,680 |
|
ุงู ุงู a b inverse ู
ูุฌูุฏ ูู a ุจู
ุนูู ุงุฎุฑ ุงู ุงู a b |
|
|
|
37 |
|
00:04:10,680 --> 00:04:15,240 |
|
inverse ูู ุงู set a ุจุฏู ุณุงูู ุงู a ูู ุงู a b |
|
|
|
38 |
|
00:04:15,240 --> 00:04:20,810 |
|
inverseุฅู ุฃุซุจุช ูุฐุง ุงูููุงู
ุจูุชู
ุงูู
ุทููุจ ูุจูู ุจุฏู |
|
|
|
39 |
|
00:04:20,810 --> 00:04:25,050 |
|
ุฃุฌุนู ูุฐู ู ุฃุถุฑุจ ู
ู ุฌูุฉ ุงููู
ูู ูู ุงู B inverse ู ู
ู |
|
|
|
40 |
|
00:04:25,050 --> 00:04:29,510 |
|
ุฌูุฉ ุงูุดู
ุงู ูู
ุงู ููู ูู ุงู B inverse ูุจูู ูุฐุง ู
ุนูุงู |
|
|
|
41 |
|
00:04:29,510 --> 00:04:36,350 |
|
ุงูู B inverse ูู BH ุจุฏู ูุณุงูู ูุงู ุถุฑุจูุง ู
ู ุฌูุฉ |
|
|
|
42 |
|
00:04:36,350 --> 00:04:43,730 |
|
ุงูุดู
ุงู ูุจูู ุจูุชุฌููุง B inverse H BH ูุจูู ุถุฑุจูุง ุฎููุง |
|
|
|
43 |
|
00:04:43,730 --> 00:04:47,830 |
|
ู
ู ุฌูุฉ ุงูุดู
ุงูู
ุฑุฉ ุฌูุจ ูุถุฑุจ ู
ู ุฌูุฉ ุงููู
ูู ููุง ูู
ู |
|
|
|
44 |
|
00:04:47,830 --> 00:04:53,530 |
|
ููุง ูุถุฑุจูู
ู
ุฑุฉ ูุงุญุฏุฉ ุฑูุงุญุฉ ุงููุง ุงุถุฑุจ ู
ู ุฌูุฉ ุงูุดู
ุงู |
|
|
|
45 |
|
00:04:53,530 --> 00:04:58,990 |
|
ูู
ู ุฌูุฉ ุงููู
ูู ูู ุงู B inverse ูุจูู ุจุฏู ุฌููุง ูู
ุงู |
|
|
|
46 |
|
00:04:58,990 --> 00:05:05,290 |
|
ููุง B inverse ุจุฏู ุณุงูู ุงู B inverse ูู ุงู BH ุจุฏู |
|
|
|
47 |
|
00:05:05,290 --> 00:05:12,010 |
|
ุณุงูู ุงู B inverse H ูู ุงู BB inverse ุจุงูุดูู ุงููู |
|
|
|
48 |
|
00:05:12,010 --> 00:05:18,260 |
|
ุนูุฏูุงุจุงูุฏุฑุงุฌุฉ ูุฐุง ุงู element ููู ู
ุนููุณ ููุด ุจูุนุทููุง |
|
|
|
49 |
|
00:05:18,260 --> 00:05:24,500 |
|
ุงู identity ูุจูู ูุฐุง ุจุฏุฑู ูุนุทููุง ุงู ุงู E H B |
|
|
|
50 |
|
00:05:24,500 --> 00:05:26,640 |
|
inverse ุจุฏุฑู ุณุงูู |
|
|
|
51 |
|
00:05:38,550 --> 00:05:44,150 |
|
ุจุฅููุฑุณ ูุฐู ู
ุจุงุดุฑุฉ ูุฐู ุถุฑุจุช ู
ู ุฌูุฉ ุงูุดู
ุงู ู ู
ู ุฌูุฉ |
|
|
|
52 |
|
00:05:44,150 --> 00:05:48,790 |
|
ุงููู
ูู ููุง ุถุฑุจุช ู
ู ุฌูุฉ ุงูุดู
ุงู ู ู
ู ุฌูุฉ ุงููู
ูู ุทูุจ |
|
|
|
53 |
|
00:05:48,790 --> 00:05:53,050 |
|
ูุฐู ุงูุงู ุงู ุจู ุจู ุงููุฑุณ ุจุชุนุทููุง ุงู identity ูุจูู |
|
|
|
54 |
|
00:05:53,050 --> 00:05:59,630 |
|
ูุฏู ุงูุณูู ุจู ุงููุฑุณ heุจูุงุกู ุนููู ุงูู identity ูู ุฃู |
|
|
|
55 |
|
00:05:59,630 --> 00:06:03,250 |
|
element ู ุงููู ูู ุฃู set ุจูุนุทููุง ููุณ ุงู element ุฃู |
|
|
|
56 |
|
00:06:03,250 --> 00:06:09,750 |
|
ููุณ ุงู set ูุจูู ูุฐุง ู
ุนูุงู ุงู ุงู H P inverse ุจุฏู |
|
|
|
57 |
|
00:06:09,750 --> 00:06:12,250 |
|
ูุณุงูู P inverse H |
|
|
|
58 |
|
00:06:21,020 --> 00:06:26,020 |
|
ุฃูุง ุจุฏู ุฃุซุจุช ุฃู ุงูู A B inverse ู
ูุฌูุฏ ูู ุงูู A |
|
|
|
59 |
|
00:06:26,020 --> 00:06:30,560 |
|
ุจู
ุนูู ุฃู ุงูู A B inverse ู
ุถุฑูุจ ูู ุงูู H ุจูุณุงูู ุงูู |
|
|
|
60 |
|
00:06:30,560 --> 00:06:35,440 |
|
H ูู ุงูู A B inverse ุงูู
ุนุงุฏูุฉ ูุฐู ู
ุงููุด ูููุง Aููู |
|
|
|
61 |
|
00:06:35,440 --> 00:06:40,420 |
|
ูู ุถุฑุจุช ุงูุทุฑููู ูู A ุจูุตู ูู
ูุ ููู
ุทููุจ ุงุฐุง ุญุงุฌุฉ |
|
|
|
62 |
|
00:06:40,420 --> 00:06:45,980 |
|
ููุฐู ู ุงุฑูุญ ุงุถุฑุจ ุงูุทุฑููู ู
ู ุฌูุฉ ุงูุดู
ุงู ูู ู
ูุ ูู |
|
|
|
63 |
|
00:06:45,980 --> 00:06:52,900 |
|
ุงู A ูุจูู ูุฐุง ุจุฏู ุงุนุทูู ุงูู A H B inverse ุจุฏู ุณุงูู |
|
|
|
64 |
|
00:06:52,900 --> 00:07:00,430 |
|
A B inverse H ุจุงูุดูู ุงููู ุนูุฏูุงุทุจ ุงุญูุง ูููุง ู
ุนููู
ุฉ |
|
|
|
65 |
|
00:07:00,430 --> 00:07:08,070 |
|
ุญุชู ุงูุขู ูู
ูุณุชุฎุฏู
ูุง ููู
ูู ุงู a h ุจุฏู ูุณูู h a ุฅุฐุง |
|
|
|
66 |
|
00:07:08,070 --> 00:07:15,460 |
|
ุจูุฏุฑ ุฃุดูู ูุฐู ุงู a h ู ุฃูุชุจ ุจุฏุงููุง ุงู h aูุจูู ูุฐุง |
|
|
|
67 |
|
00:07:15,460 --> 00:07:23,360 |
|
ู
ุนูุงู ุงู ุงู a h ุจุฏู ุงูุชุจูุง h a ูู ุงู b inverse ุจุฏู |
|
|
|
68 |
|
00:07:23,360 --> 00:07:28,840 |
|
ูุณุงูู ู
ู ุฎุงุตูุฉ ุงู associativity ุจูุฏุฑ ุงููู ูุฐู a b |
|
|
|
69 |
|
00:07:28,840 --> 00:07:33,420 |
|
inverse ู
ุถุฑูุจ ูู ุงู h ูุจูู ูุฐู ุจุฏู ูุณุงูู a b |
|
|
|
70 |
|
00:07:33,420 --> 00:07:39,140 |
|
inverse ู
ุถุฑูุจุฉ ูู ู
ูู ูู ุงู hูุจูู ุจูุงุก ุนููู ูู
ุงู |
|
|
|
71 |
|
00:07:39,140 --> 00:07:44,300 |
|
ู
ุฑุฉ ู
ู ุฎุงุตูุฉ ุงู associativity ุจุตูุฑ ุนูุฏูุง ุงู H ูู |
|
|
|
72 |
|
00:07:44,300 --> 00:07:51,140 |
|
ุงู A B inverse ุจุฏู ูุณุงูู ุงู A B inverse ูู ุงู H |
|
|
|
73 |
|
00:07:51,140 --> 00:07:55,720 |
|
ุงูุด ุชูุณูุฑ ูู ุฐููุ ู
ุนูุงู ุงู ุงู A B inverse ู
ูุฌูุฏ |
|
|
|
74 |
|
00:07:55,720 --> 00:08:04,310 |
|
ูููุูู a ูุจูู ุณุง ุงู a ุจู ุงููุฑุณ ู
ูุฌูุฏ ูู ุงู a ูุฐุง |
|
|
|
75 |
|
00:08:04,310 --> 00:08:10,710 |
|
ุจุฏู ูุนุทููุง ุงู ุงู a is a sub group ู
ู g ุฃุซุจุชูุง ูู |
|
|
|
76 |
|
00:08:10,710 --> 00:08:14,450 |
|
ุงูุฃูู ุงู ุงู a is non empty ูุฌุฏูุง ูููุง ุงู identity |
|
|
|
77 |
|
00:08:14,450 --> 00:08:18,970 |
|
element ุฃุฎุฏูุง two elements ู
ูุฌูุฏุฉ ูู a ุฃุซุจุชูุง ุงู |
|
|
|
78 |
|
00:08:18,970 --> 00:08:23,390 |
|
ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ ูู ุงููู ูู ุงู a |
|
|
|
79 |
|
00:08:23,630 --> 00:08:28,690 |
|
ูุจุงูุชุงูู ุงู ASA subgroup ู
ู ู
ููุ ู
ู G ู ู
ุฑุฉ ุชุงููุฉ |
|
|
|
80 |
|
00:08:28,690 --> 00:08:34,570 |
|
ุจููู ูุฐุง ุงูุณุคุงู ุฌุฆูุง ุจู ูู ุฅุญุฏู ุงูุงู
ุชุญุงูุงุช ุงูุณุงุจูุฉ |
|
|
|
81 |
|
00:08:34,570 --> 00:08:40,470 |
|
ุนูู ุฃู ุญุงู ุงุญูุง ุญุชู ุงูุขู ุฃุซุจุชูุง ูุธุฑูุฉ ูุงุญุฏุฉุจูุงุณุทุฉ |
|
|
|
82 |
|
00:08:40,470 --> 00:08:45,030 |
|
ุชุญุงููุฉ ุจุฏู ุงูู
ุซุงู ุฎู
ุณุฉ ุนูู ุฅุซุจุงุช ุฅู ุงูู subset |
|
|
|
83 |
|
00:08:45,030 --> 00:08:47,850 |
|
ุงููู ุจุงุฎุฏูุง ููู ูู ุงู subgroup ู
ู ุงู group |
|
|
|
84 |
|
00:08:47,850 --> 00:08:52,290 |
|
ุงูุฃุณุงุณูุฉ ุนู ุทุฑูู ุฅุซุจุงุช ููุทุชูู ุงูููุทุฉ ุงูุฃููู ุฅู ุงู |
|
|
|
85 |
|
00:08:52,290 --> 00:08:55,930 |
|
subset ุงููู ุจุงุฎุฏูุง non empty ูุงูููุทุฉ ุงูุซุงููุฉ ูู |
|
|
|
86 |
|
00:08:55,930 --> 00:08:59,430 |
|
ุฃุฎุฏุช elements ูู ูุฐู ุงู set ุจุฏู ุฃุซุจุช ุฅู ุงูุฃูู ูู |
|
|
|
87 |
|
00:08:59,430 --> 00:09:05,750 |
|
ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ ูู ูุฐู ุงู set ุทูุจ ูุฌู ุงูุขู |
|
|
|
88 |
|
00:09:05,750 --> 00:09:12,590 |
|
ููุธุฑูุฉ ุซุงููุฉูุจูู ุงู theorem ุงููุธุฑูุฉ |
|
|
|
89 |
|
00:09:12,590 --> 00:09:25,190 |
|
ุงูุชุงููุฉ ุจุชููู ู
ุงุช let ุงู H be a non empty subset |
|
|
|
90 |
|
00:09:25,190 --> 00:09:28,630 |
|
of |
|
|
|
91 |
|
00:09:28,630 --> 00:09:31,990 |
|
a group G |
|
|
|
92 |
|
00:09:38,050 --> 00:09:47,510 |
|
ุงูู H is a subgroup ู
ู G if and only if ุงู A ู ุงู |
|
|
|
93 |
|
00:09:47,510 --> 00:09:54,450 |
|
B ู
ูุฌูุฏุฉ ูู H whenever ุนูุฏู
ุง |
|
|
|
94 |
|
00:09:54,450 --> 00:10:04,690 |
|
ุงู A ู ุงู B ู
ูุฌูุฏ ูู H and ุงู A inverse belongs to |
|
|
|
95 |
|
00:10:04,690 --> 00:10:07,230 |
|
H whenever |
|
|
|
96 |
|
00:10:10,270 --> 00:10:16,730 |
|
ุงูู A ู
ูุฌูุฏุฉ |
|
|
|
97 |
|
00:10:16,730 --> 00:10:17,450 |
|
ูู ุฅุชุด |
|
|
|
98 |
|
00:10:32,050 --> 00:10:34,830 |
|
ุงููุธุฑูุฉ ุงูุซุงููุฉ ุงููู ุนูุฏูุง ุจุงููุณุจุฉ ููู subgroups |
|
|
|
99 |
|
00:10:34,830 --> 00:10:40,430 |
|
ุจุชููู ู
ุง ูุฃุชู H non-empty subset of A group G ูุจูู |
|
|
|
100 |
|
00:10:40,430 --> 00:10:44,690 |
|
ููุณ ุงู condition ุงูุฃูู ุชุจุน ู
ูุ ุชุจุน ุงููุธุฑูุฉ ุงูุณุงุจูุฉ |
|
|
|
101 |
|
00:10:44,690 --> 00:10:48,670 |
|
ุงูุขู ูุงู ุนูุฏู condition ูุงุญุฏ ูู ุงููุธุฑูุฉ ุงูุณุงุจูุฉ |
|
|
|
102 |
|
00:10:48,670 --> 00:10:52,790 |
|
ุญุงุตู ุถุฑุจ ุงูุฃูู ูู ู
ุนููุณ ุงูุซุงูู ู
ูุฌูุฏ ูู H ุฅุฐุง two |
|
|
|
103 |
|
00:10:52,790 --> 00:10:56,870 |
|
elements ู
ูุฌูุฏุงุช ูู H ููุง ูุฐุง ุงู condition ูุตู ุนูู |
|
|
|
104 |
|
00:10:56,870 --> 00:11:03,060 |
|
ุดูู two conditionsH Subgroup ู
ู G F and only F |
|
|
|
105 |
|
00:11:03,060 --> 00:11:09,660 |
|
ุญุงุตู ุถุฑุจ A ูู B ูู H ูุฃู ุนูุตุฑูู A ูB ู
ูุฌูุฏุฉ ูู H |
|
|
|
106 |
|
00:11:09,660 --> 00:11:14,280 |
|
ูุงูู
ุนููุณ ูุฃู element ู
ูุฌูุฏ ูู H ุฅุฐุง ูุงู ูุฐุง ุงู |
|
|
|
107 |
|
00:11:14,280 --> 00:11:19,560 |
|
element ู
ูุฌูุฏ ูู H ุจุชุทูุน ูููุธุฑูุฉ ุจุชููู F and only |
|
|
|
108 |
|
00:11:19,560 --> 00:11:24,840 |
|
F ูุจูู ุงูุจุฑูุงู ุจูุตูุฑ ูู ุงุชุฌุงููููุจูู ุจุฏู ุฃุฎุฏ |
|
|
|
109 |
|
00:11:24,840 --> 00:11:31,100 |
|
ุงูุงุชุฌุงู ุงูุฃูู ุจุฏู ุฃููู ูู assume ุงูุชุฑุถ ุงู ุงู H is |
|
|
|
110 |
|
00:11:31,100 --> 00:11:38,380 |
|
a subgroup ู
ู G ู
ุฏุงู
subgroup ู
ู G ูู ุฃุฎุฏุช ุฃู two |
|
|
|
111 |
|
00:11:38,380 --> 00:11:42,820 |
|
elements ู
ูุฌูุฏุฉ ูู H ุญุตู ุถุฑุจู ูู H ููุง ูุง ูุฃู |
|
|
|
112 |
|
00:11:42,820 --> 00:11:50,550 |
|
ุนูููุง binary operation ุจุฏู ูุทูุน ูู H ูุจูู thenุงูู |
|
|
|
113 |
|
00:11:50,550 --> 00:11:58,570 |
|
A B ู
ูุฌูุฏ ูู H ุงูู for all A ู B ุงููู ู
ูุฌูุฏุฉ ูู H |
|
|
|
114 |
|
00:11:58,570 --> 00:12:06,230 |
|
and ุงูู B inverse ู
ูุฌูุฏ ูู H ููู ุงูู B ุงููู ู
ูุฌูุฏุฉ |
|
|
|
115 |
|
00:12:06,230 --> 00:12:12,310 |
|
ูู H ูุจูู ุงูุงุชุฌุงู ุงูุฃูู ู
ุงููุด ููู ู
ุดููุฉุฅุฐุง ูุฐู ุงูู |
|
|
|
116 |
|
00:12:12,310 --> 00:12:16,010 |
|
subgroup ูุจูู ูู ุฃุฎุฏุช any two elements ู
ูุฌูุฏุงุช ูู |
|
|
|
117 |
|
00:12:16,010 --> 00:12:21,070 |
|
H ุจุฏู ูููู A star B ู
ูุฌูุฏ ูู H ูุงูุฃู
ุฑ ุงูุซุงูู ู
ุงุฏุงู
|
|
|
|
118 |
|
00:12:21,070 --> 00:12:25,950 |
|
subgroup ูุนูู ูู group ุชุญุช ููุณ ุงู operation ูุจูู |
|
|
|
119 |
|
00:12:25,950 --> 00:12:30,330 |
|
ุฃู ุนูุตุฑ ูููุง ูู ู
ุนููุณ ุฅุฐุง ุงู B inverse ู
ูุฌูุฏ ูููุด |
|
|
|
120 |
|
00:12:30,330 --> 00:12:35,690 |
|
ูุงู ุจุฏูุง ูู
ุดู ูุนู
ููุฉ ุงูุนูุณูุฉ ูุจูู conversely |
|
|
|
121 |
|
00:12:35,690 --> 00:12:38,870 |
|
assume |
|
|
|
122 |
|
00:12:38,870 --> 00:12:47,710 |
|
ุฃูุชุฑุถุฅู ุงู A B ู
ูุฌูุฏ ูู H ููู ุงู A ู ุงู B ุงููู |
|
|
|
123 |
|
00:12:47,710 --> 00:12:55,230 |
|
belong to H and ุงู B inverse ู
ูุฌูุฏ ูู H ููู ุงู B |
|
|
|
124 |
|
00:12:55,230 --> 00:12:56,730 |
|
ุงููู ู
ูุฌูุฏุฉ ูู H |
|
|
|
125 |
|
00:13:01,210 --> 00:13:07,290 |
|
ู
ุงุฐุง ุจุฏูุง ูุซุจุชุ ุงูู H Subgroup ู
ู
ุชุงุฒ ุฌุฏุง ุทูุจ ุจุฏุฃุฌู |
|
|
|
126 |
|
00:13:07,290 --> 00:13:12,090 |
|
ุฃูููู ุงูุฃููุงูู ุจุฏู ุฃุญุงูู ุฃุณุชููุฏ ู
ู ูู ู
ุนุทูุฉ ู
ุนุทูุฉ |
|
|
|
127 |
|
00:13:12,090 --> 00:13:16,390 |
|
ุนูุฏูุง ููุง ุฃูุง ุนูุฏู ุฃุฎุฏุช elements ุถุฑุจุชูู
ูุฌุฏุชูู
ูู |
|
|
|
128 |
|
00:13:16,390 --> 00:13:20,910 |
|
H ุฃุฎุฏุช element ูู ุงูู H ูุฌุฏุชู ุจุนููุณ ูู H ุจูููู ุชุญุช |
|
|
|
129 |
|
00:13:20,910 --> 00:13:25,150 |
|
ุงู two conditions ุงูุงุชููู ูุฐูู ุจุฏู ุฃุซุจุช ุงู ุงูู H |
|
|
|
130 |
|
00:13:25,150 --> 00:13:32,730 |
|
is a subgroup ู
ู ู
ู ุฌู ุงูุฃุตููุฉุจูููู ูููุณ ุงูุงู |
|
|
|
131 |
|
00:13:32,730 --> 00:13:41,810 |
|
since ุงู B ู
ูุฌูุฏ ูู H ุจู
ุง ุงู B ู
ูุฌูุฏ ูู H we have |
|
|
|
132 |
|
00:13:41,810 --> 00:13:49,810 |
|
ุงู B ุงููุฑุณ ู
ูุฌูุฏ ูู H ุทุจ ู
ู ููู ุฌุจุช ุงูููุงู
ูุฐุง ู
ู |
|
|
|
133 |
|
00:13:49,810 --> 00:13:53,530 |
|
ุงู second condition ู
ู ุงู condition ุงูุซุงูู ูุจูู |
|
|
|
134 |
|
00:13:53,530 --> 00:13:59,510 |
|
ูุฐุง from the second condition |
|
|
|
135 |
|
00:14:02,590 --> 00:14:08,590 |
|
ุทูุจ ุงุญูุง ู
ุงุฎุฏูู ููุง ุงู a ู ุงู b ู
ูุฌูุฏุฉ ูู h ุงูุขู |
|
|
|
136 |
|
00:14:08,590 --> 00:14:20,190 |
|
ุงู a ู
ูุฌูุฏุฉ ูู h ูููุณุ and ุงู a ูู b belongs to h |
|
|
|
137 |
|
00:14:20,190 --> 00:14:25,850 |
|
ููู ุงููู ูู ุงู a ู ุงู b ุงููู ู
ูุฌูุฏุฉ ูู h implies |
|
|
|
138 |
|
00:14:25,850 --> 00:14:33,430 |
|
ูุฐุง ุงูุขู ู
ูุฌูุฏ ูู h ุตุญุู ูุฐุง ู
ูุฌูุฏ ูู H ู ุงู |
|
|
|
139 |
|
00:14:33,430 --> 00:14:38,030 |
|
condition ูุฐุง ุญุงุตู ุถุฑุจ ุงู ุนูุตุฑ ู
ู H ู
ูุฌูุฏ ูู H ุฅุฐุง |
|
|
|
140 |
|
00:14:38,030 --> 00:14:43,930 |
|
ุจุฏู ุฃุถุฑุจ ุงูุงุชููู ูุฏูู ูู ุจุนุถ ู ุจุฌุง ุจุฏู ุฃุตูุฑ A B |
|
|
|
141 |
|
00:14:43,930 --> 00:14:51,740 |
|
inverse ู
ูุฌูุฏ ูู Hุงูุงู ุงูู H non-empty ู
ูุนุทูู ุฃุฎุฏุช |
|
|
|
142 |
|
00:14:51,740 --> 00:14:56,400 |
|
ุงูู two elements ู
ูุฌูุฏุงุช ูู H ูุฌุฏุช ุญุตู ุถุฑุจ ุงูุฃูู |
|
|
|
143 |
|
00:14:56,400 --> 00:14:59,480 |
|
ูู ุงูุชุงูู ู
ูุฌูุฏุฉ ูู H ูุจูู ุงูู H is a subgroup |
|
|
|
144 |
|
00:14:59,480 --> 00:15:05,680 |
|
ุจุงููุธุฑูุฉ ุงูุณุงุจูุฉ ูุจูู ูุฐุง ุจุฏูู ูุนุทููุง ุฃู ุงูู H is |
|
|
|
145 |
|
00:15:05,680 --> 00:15:11,660 |
|
a subgroup ู
ู G from the previous |
|
|
|
146 |
|
00:15:13,190 --> 00:15:17,590 |
|
ุงูุซููุฑูู
ูุจูู ุจุงููุธุฑูุฉ ุงูุณุงุจูุฉ ูุฐู ุณุงุฑุฉ subgroup |
|
|
|
147 |
|
00:15:17,590 --> 00:15:28,470 |
|
ููู ุงูู
ุทููุจ ูุนุทู ู
ุซุงู ุชูุถูุญู example let |
|
|
|
148 |
|
00:15:28,470 --> 00:15:39,110 |
|
ุงู g ุจุฏูุง ุชุณุงูู r star ุงููู ุจุฏูุง ุชุณุงูู ุงู r ูุงูุต |
|
|
|
149 |
|
00:15:39,110 --> 00:15:41,370 |
|
ุงู zero under |
|
|
|
150 |
|
00:15:46,570 --> 00:15:56,170 |
|
multiplication ุชุญุช ุนู
ููุฉ ุงูุถุฑุจ little h ุจุฏูุง ุชุณุงูู |
|
|
|
151 |
|
00:15:56,170 --> 00:16:03,510 |
|
ูู ุงูุนูุงุตุฑ x ุงููู ู
ูุฌูุฏุฉ ูู g ุจุญูุซ ุงู ุงู x ุจุฏูุง |
|
|
|
152 |
|
00:16:03,510 --> 00:16:08,070 |
|
ุชุณุงูู ูุงุญุฏ or ุงู x is irrational |
|
|
|
153 |
|
00:16:11,120 --> 00:16:21,100 |
|
ุนุฏุฏ ุบูุฑ ูุณุจู and ุงู k ุจุฏุฃุช ุณุงูู ูู ุงู x ุงููู |
|
|
|
154 |
|
00:16:21,100 --> 00:16:26,280 |
|
ู
ูุฌูุฏุฉ ููู ุจุญูุซ ุงู ุงู x greater than or equal to |
|
|
|
155 |
|
00:16:26,280 --> 00:16:34,160 |
|
oneุงูุณุคุงู ูู ูุฏูู subgroups ุงู
ูุง R |
|
|
|
156 |
|
00:16:34,160 --> 00:16:44,840 |
|
H N K subgroups of |
|
|
|
157 |
|
00:16:44,840 --> 00:16:50,240 |
|
G ูู ูุฏูู subgroups ู
ู G ููุง ูุฃ solution |
|
|
|
158 |
|
00:17:10,540 --> 00:17:14,980 |
|
ุฎููููู ุฃููู ููู
ููุง ุงูุณุช ุงููู ุงูุง ููุง ุฃุณุทุงุฑ ุงููู |
|
|
|
159 |
|
00:17:14,980 --> 00:17:19,540 |
|
ู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ ุงูุญููููุฉ ุจุฏู ุฃุดูู ู
ููุง ู
ู ุงู zero ู |
|
|
|
160 |
|
00:17:19,540 --> 00:17:22,940 |
|
ุงู binary operation ุงููู ูู ุนู
ููุฉ ุงูุถุฑุจ ุงูุนุงุฏูุฉ |
|
|
|
161 |
|
00:17:22,940 --> 00:17:26,500 |
|
ุจุฏู ุฃุนู
ููุฉ ุงูุถุฑุจ ุนูู ู
ุฌู
ูุนุฉ ุงูุฃุนุฏุงุฏ ุงูุญููููุฉ ุจุนุฏ |
|
|
|
162 |
|
00:17:26,500 --> 00:17:31,280 |
|
ู
ุง ุฃุดูู ู
ููุง ุงู zero ุฃุฎุฏุช ู
ููุง subset ู
ุฌู
ูุนุฉ ุฌุฒูุฉ |
|
|
|
163 |
|
00:17:31,280 --> 00:17:35,750 |
|
submitted ู
ูู ูู ูุฐูุูู ูู ุงูุนูุงุตุฑ ุงููู ู
ูุฌูุฏุฉ ูู |
|
|
|
164 |
|
00:17:35,750 --> 00:17:39,650 |
|
ูุฐู ุงู element ููุนุจู ุฅููุ ุงู X ุจุฏู ูุณุงูู ูุงุญุฏ ุงููู |
|
|
|
165 |
|
00:17:39,650 --> 00:17:43,870 |
|
ูู ุงู identity element ุชุจุน ุนู
ููุฉ ุงูุถุฑุจ ุฃู ุงู X |
|
|
|
166 |
|
00:17:43,870 --> 00:17:50,470 |
|
ูููู irrational ุทูุจ ุงูุชุงููุฉ ุงู K ูู ุงู X ุงููู |
|
|
|
167 |
|
00:17:50,470 --> 00:17:55,390 |
|
ู
ูุฌูุฏุฉ ูู G ุจุญูุซ ุงู X greater than or equal to 1 |
|
|
|
168 |
|
00:17:55,390 --> 00:18:01,390 |
|
ุจูุณุฃู ูู ูุฏูู subgroups ุฃู
ูุงุ ุจููููู ูููุณ ุงูู
ุซุงู |
|
|
|
169 |
|
00:18:01,390 --> 00:18:05,790 |
|
ูุฐุง ุฌุงู ุจุนุฏ ู
ููุุจุนุฏ ุงููุธุฑูุฉ ุงุฐุง ุงูุง ุจุฏู ุงุญุงูู ุงุทุจู |
|
|
|
170 |
|
00:18:05,790 --> 00:18:09,730 |
|
ุงููุธุฑูุฉ ูุฐู ูุงุดูู ุดู ุงููู ุจูุตูุฑ ุงุฐุง ุชุทุจูุช ุงููุธุฑูุฉ |
|
|
|
171 |
|
00:18:09,730 --> 00:18:13,270 |
|
ุจูุจูู ูู
ุงู seven groups ุงุฎุชู ุงู ุดุฑุท ู
ู ุงูุดุฑูุท |
|
|
|
172 |
|
00:18:13,270 --> 00:18:17,590 |
|
ุงููู ู
ูุฌูุฏุฉ ูููุง ูุจูู ู
ุงููุงุด seven groups ุทูุจ ูุฃ |
|
|
|
173 |
|
00:18:17,590 --> 00:18:21,310 |
|
ูู ุฌูุช ููุง ุนูู ุงู H ุจูููู ูู ุงู
ุง ุงู X ุจุฏู ุงุณูู |
|
|
|
174 |
|
00:18:21,310 --> 00:18:25,830 |
|
ูุงุญุฏ ููู ุงู identity elementูุฐุง ูู ูุถุน ุงูุทุจูุนู or |
|
|
|
175 |
|
00:18:25,830 --> 00:18:29,290 |
|
ุงูู x ูุฌุจ ุฃู ูููู irrational ูุนูู ูุฐุง ุนูุฏู
ุง ูุญุจ |
|
|
|
176 |
|
00:18:29,290 --> 00:18:34,410 |
|
ุงูู or ุชุนูู ุงู union ูุจูู ุงูุนูุงุตุฑ ูู
ุงููุงุญุฏ ุงูุตุญูุญ |
|
|
|
177 |
|
00:18:34,410 --> 00:18:39,570 |
|
ูุงู irrational number ุชู
ุงู
ุ ุฃุฑูุฏ ุฃู ุฃุดูู ูู ูุฐู |
|
|
|
178 |
|
00:18:39,570 --> 00:18:44,570 |
|
closed under multiplication ุจู
ุนูู ุฃูู ูู ุฃุฎุฐุช two |
|
|
|
179 |
|
00:18:44,570 --> 00:18:50,730 |
|
elements ู
ูุฌูุฏุงุช ูู ุงู group ูู ุญุงุตู ุถุฑุจู ู
ุง ูููู |
|
|
|
180 |
|
00:18:50,730 --> 00:18:54,500 |
|
ูู ุงู group ููุง ูุฃุุงูุณุคุงู ููุ ุถุฑูุฑู ุงูู two |
|
|
|
181 |
|
00:18:54,500 --> 00:18:58,560 |
|
elements ุงููู ุฃุฎุฏูู
ูููููุง ู
ุฎุชููุงุช ุนู ุจุนุถุ ููุณ |
|
|
|
182 |
|
00:18:58,560 --> 00:19:03,600 |
|
ุจุงูุถุฑูุฑุฉุ ู
ู
ูู ุงู element ู ููุณูุ ุชู
ุงู
ุ ู
ู
ูู ู
ุดุงู |
|
|
|
183 |
|
00:19:03,600 --> 00:19:06,320 |
|
ุชุจูู closeุ ุณูุงุก ุถุฑุจุชู ูู ููุณู ุฅู ุดุงุก ุงููู ุชุถุฑุจู |
|
|
|
184 |
|
00:19:06,320 --> 00:19:09,860 |
|
ูู ููุณู ุนุดุฑูู ู
ุฑุฉ ููุง ุชุถุฑุจู ูู ุฃู element ุขุฎุฑุ ุจุฏู |
|
|
|
185 |
|
00:19:09,860 --> 00:19:15,160 |
|
ูููู ู
ูุฌูุฏ ูู H ุฅู ูุงูุช subgroup ุทูุจุ ุงูุขู ุฃูุง |
|
|
|
186 |
|
00:19:15,160 --> 00:19:22,590 |
|
ุฃุฏุนู ุฅู ุงููH ูุฐู is not a subgroup ู
ู ููุงุงูุง ุงุฏุนู |
|
|
|
187 |
|
00:19:22,590 --> 00:19:29,570 |
|
ุทูุจ ุดู ุงูุณุจุจ because ุฌุฐุฑ |
|
|
|
188 |
|
00:19:29,570 --> 00:19:34,390 |
|
ุชูุงุชุฉ ู
ูุฌูุฏ ูู itch ููุง ูุง ูุง ุดุจุงุจ ู
ุด ุฌุฐุฑ ุชูุงุชุฉ |
|
|
|
189 |
|
00:19:34,390 --> 00:19:42,930 |
|
irrational number and ุฌุฐุฑ ุชูุงุชุฉ ู
ุถุฑูุจ ูู ุฌุฐุฑ ุชูุงุชุฉ |
|
|
|
190 |
|
00:19:42,930 --> 00:19:49,110 |
|
ุจุฏู ูุณุงูู ูุฏุฑ ูู ุงูุชูุงุชุฉ irrational number ูุฃ ู
ุด |
|
|
|
191 |
|
00:19:49,110 --> 00:19:57,470 |
|
ู
ูุฌูุฏ ูู itchูุจูู ุฃูุง ุฃุฎุฏุช ุนูุตุฑูู ู
ู H ูุฌุฃุช ุญุงุตู |
|
|
|
192 |
|
00:19:57,470 --> 00:20:03,030 |
|
ุถุฑุจูู
ุง ู
ุด ู
ูุฌูุฏ ูู H ู
ุนูุงุชู ุงูู H ูุฐู ู
ุง ููุงุด |
|
|
|
193 |
|
00:20:03,030 --> 00:20:06,750 |
|
subgroup ูุฎุชู ุงู condition ุงูุฃูู ูู ุงููุธุฑูุฉ ุงููู |
|
|
|
194 |
|
00:20:06,750 --> 00:20:13,070 |
|
ุฐูุฑูุงูุง ูุจู ูููู ุงูุฃู ุฃูุง ุฏู ุฃุฏุนู ูุฐูู ุฃู ุงูู H is |
|
|
|
195 |
|
00:20:13,070 --> 00:20:15,410 |
|
not a subgroup ู
ู G |
|
|
|
196 |
|
00:20:19,030 --> 00:20:27,950 |
|
ุงูุณุคุงู ูู
ุงุฐุงุ ูุฃู ุงู |
|
|
|
197 |
|
00:20:27,950 --> 00:20:37,690 |
|
element ูุฃุชู ูู ุจุงูู ู
ูุฌูุฏ ูู ููู ูุฃู ุงูุณุช ูุฐู |
|
|
|
198 |
|
00:20:37,690 --> 00:20:43,930 |
|
ู
ูุฌูุฏุฉ ูู ููู ูุฃู ุนูุงุตุฑ ููู ู
ู ูุงุญุฏ ูุงุทูุน |
|
|
|
199 |
|
00:20:46,730 --> 00:20:53,790 |
|
ุฃูุง ุฑูุญุช ุฃุฎุฏุช ุงูุณุชุฉ ู
ูุฌูุฏุฉ ูุงุฏุฆุฉ ูู ูุชุฑ ุดู ู
ุนููุณ |
|
|
|
200 |
|
00:20:53,790 --> 00:21:00,660 |
|
ุงูุณุชุฉุ ุณูุฏุณุงูู ุถุฑุจ ุนู
ููุฉ ุงูุถุฑุจ ุงูุนุงุฏูุฉ ูุจูู ูุฐุง |
|
|
|
201 |
|
00:21:00,660 --> 00:21:06,680 |
|
ุจุฏู ูุนุทููุง ุงูู ู
ุนููุณ ุงูุณุชุฉ ููู ุณุชุฉ inverse ูุณุงูู |
|
|
|
202 |
|
00:21:06,680 --> 00:21:10,320 |
|
ูุงุญุฏ ุนูู ุณุชุฉ ูุฅูู ุณุชุฉ ูู ุณูุฏุณ ูู ุงููู ุจุงูุณุงููุฉ |
|
|
|
203 |
|
00:21:10,320 --> 00:21:16,680 |
|
ูุงุญุฏุฉ ุตุญูุญ ุงูุณุคุงู ูู ูู ุงูุณูุฏุณ ูุฐุง ู
ูุฌูุฏ ูู ูุ ูุฃ |
|
|
|
204 |
|
00:21:16,680 --> 00:21:22,540 |
|
ูุฅูู ูุงุญุฏ ูุงุทูุนูุฐุง ุฃูู ู
ู ุงููุงุญุฏ ูุจูู ูุฐุง does not |
|
|
|
205 |
|
00:21:22,540 --> 00:21:27,540 |
|
belong to K ู
ุนูุงุชู ุงุฎุชูุช ุงูุดุฑุท ุงูุซุงูู ุงุฐุง ุงุฎุฏุช |
|
|
|
206 |
|
00:21:27,540 --> 00:21:32,540 |
|
element ุงู H ูููุชู ู
ุนููุณู ู
ุง ููุด ูู H ุงุฐุง ูุง ูู
ูู |
|
|
|
207 |
|
00:21:32,540 --> 00:21:38,220 |
|
ููุฐู ุงูุณุช ุงู ูุฐู ุงู ุชููู subgroup ู
ูู ุฌุฑูุจ ุงููู |
|
|
|
208 |
|
00:21:38,220 --> 00:21:42,940 |
|
ู
ูุฌูุฏุฉ ููุฌู ูุงุฎุฏ ุงููุธุฑูุฉ ุฑูู
ุชูุงุชุฉ ุนูู ุงู |
|
|
|
209 |
|
00:21:42,940 --> 00:21:53,460 |
|
subgroups ุจูููู ุงู Hุจุง non-empty ููุณ ุงู condition |
|
|
|
210 |
|
00:21:53,460 --> 00:22:00,900 |
|
ูู ูู ูู ุงููุธุฑูุงุช ุงูุซูุงุซ non-empty ุจุณ ุฃุถุงููุง ุนูููุง |
|
|
|
211 |
|
00:22:00,900 --> 00:22:06,180 |
|
finite subset |
|
|
|
212 |
|
00:22:06,180 --> 00:22:09,320 |
|
of |
|
|
|
213 |
|
00:22:09,320 --> 00:22:11,480 |
|
a group G |
|
|
|
214 |
|
00:22:18,370 --> 00:22:32,950 |
|
ุซู
ุงูู H ูู ู
ุฌูุฏ ู
ู G ุฅุฐุง ูุงู ุงูู H ู
ููู |
|
|
|
215 |
|
00:22:32,950 --> 00:22:40,370 |
|
ุชุญุช ุนู
ู |
|
|
|
216 |
|
00:22:40,370 --> 00:22:43,650 |
|
G |
|
|
|
217 |
|
00:23:02,130 --> 00:23:09,910 |
|
ู
ุฑุฉ ุชุงููุฉ ุจููู ุฌุงูู H non-empty ุฒุงุฏ ุนูู ูุธุฑูุชูู |
|
|
|
218 |
|
00:23:09,910 --> 00:23:16,190 |
|
ุงูุฌุงูู finite subset ูุจูู ุนุฏุฏ ุงูู
ุญุฏูุฏ ูู ูุฐู ุงูุณุช |
|
|
|
219 |
|
00:23:16,190 --> 00:23:21,470 |
|
ุนุฏุฏ ุงู subset ุงููู ุฃุฎุฏุชู ู
ุญุฏูุฏ ุชู
ุงู
ุจูููู ูุฐู ุงู H |
|
|
|
220 |
|
00:23:21,470 --> 00:23:26,010 |
|
is a subgroup ุฅุฐุง ูุงูุช ุงู H closed under the |
|
|
|
221 |
|
00:23:26,010 --> 00:23:29,510 |
|
operation ุดู ูุนูู closed under the operation ูุนูู |
|
|
|
222 |
|
00:23:29,510 --> 00:23:35,110 |
|
ุงู condition ูุฐุงูุฐุง ูุนูู ุฃู ุงูู H ู
ููู ุชุญุช ุงูู |
|
|
|
223 |
|
00:23:35,110 --> 00:23:40,570 |
|
operation ูุนูู A*)B ูููู ู
ูุฌูุฏ ูู H ููู ุงูู A ูุงูู |
|
|
|
224 |
|
00:23:40,570 --> 00:23:45,630 |
|
B ุงูู
ูุฌูุฏุฉ ูู H ูุจูู ูู ุงูู
ูุงุจู ุดุงู ุงู condition |
|
|
|
225 |
|
00:23:45,630 --> 00:23:51,130 |
|
ุงูุชุงูู ูุฐุง ูุงุณุชุนุงุฏ ุนูู ุจู
ูู ุจุฃู ุงูู H is finite |
|
|
|
226 |
|
00:23:51,130 --> 00:23:56,290 |
|
ุฅุฐู ูู ูุงูุช ุงู group finite ูุง ุดุจุงุจ ู ุงู subsidy |
|
|
|
227 |
|
00:23:56,290 --> 00:24:00,530 |
|
ุงููู ุฃุฎุฏุชู ู
ู ุงู group ูุงู ุฅุฌุจุงุฑู ููุตูุฑ finite |
|
|
|
228 |
|
00:24:01,220 --> 00:24:06,040 |
|
ู
ุธุจูุท ูุจูู ูุงู ุงู subgroup non-empty ููู ููุณ ุงูููุช |
|
|
|
229 |
|
00:24:06,040 --> 00:24:12,060 |
|
ููููู finite ูุนูู ุนุฏุฏ ุงูุนูุงุตุฑ ููู ุนุฏุฏุง ู
ุญุฏูุฏุง ุจุฏู |
|
|
|
230 |
|
00:24:12,060 --> 00:24:16,580 |
|
ุงุซุจุช ุงู ูุฐุง ุงู subgroup ูููู ุงูู ุชุงุฎุฏ two elements |
|
|
|
231 |
|
00:24:16,580 --> 00:24:22,920 |
|
ู
ูุฌูุฏุงุช ูู H ู ุชุซุจุช ุงู ุญุงุตู ุถุฑุจูู
ุง ู
ูุฌูุฏ ูู H ุทุจูุง |
|
|
|
232 |
|
00:24:22,920 --> 00:24:28,800 |
|
ููุฐู ุงููุธุฑูุฉ ุงู ุชู
ุฐูู ูุจูู ุงู H is a subgroupูุจูู |
|
|
|
233 |
|
00:24:28,800 --> 00:24:34,380 |
|
ุงูุขู ุงุญูุง ุจุฏุงูุฉ ุงูููู ุงูุชุฑุถ ุงู ุงู a ู ุงู b ู
ูุฌูุฏ |
|
|
|
234 |
|
00:24:34,380 --> 00:24:45,220 |
|
ูู h and ุงู a ู ุงู b ู
ูุฌูุฏ ูู h ุชู
ุงู
ูุจูู ุงูุง ุงุฎุฏ |
|
|
|
235 |
|
00:24:45,220 --> 00:24:53,580 |
|
ุงู ุนูุตุฑูู ูู ุฌู ู ุงูุฑุถ ุงูู ุญุงุตู ุถุงุฑุจูู
ูุนูู ูุฐุง |
|
|
|
236 |
|
00:24:53,580 --> 00:24:58,840 |
|
ุงููู ู
ุนูุงู ุงู ุงู H is closed under the operation |
|
|
|
237 |
|
00:24:58,840 --> 00:25:05,320 |
|
ุชู
ุงู
ุ ูุจูู ูู ุงูู
ุนูู ุชุจุนูุง ุทูุจ ุจูููููู ุงุซุจุช ุงู ูุฐู |
|
|
|
238 |
|
00:25:05,320 --> 00:25:10,780 |
|
ุนุจุงุฑุฉ ุนู ุงููุ ุนู ุงู subgroup ุจูููู ูููุณ ูุจูู ุงูุขู |
|
|
|
239 |
|
00:25:10,780 --> 00:25:17,340 |
|
ุงูุง ุจุฏู ุงุญุงูู ุงุทุจู ุงููุธุฑูุฉ ุงูุฃููู ู
ุซูุง ููู ุงููุธุฑูุฉ |
|
|
|
240 |
|
00:25:17,340 --> 00:25:17,880 |
|
ุงูุฃูููุ |
|
|
|
241 |
|
00:25:22,290 --> 00:25:28,350 |
|
ุฃู ุญุงุตู ุถุฑุจ ุงูุฃูู ูู ุงูุซุงูู ู
ูุฌูุฏ ูู H ุฃู ุญุงุตู |
|
|
|
242 |
|
00:25:28,350 --> 00:25:35,170 |
|
ุงูุถุฑุจ ู
ูุฌูุฏ ูู H ูููููู ุฃู ุฃุซุจุช ุฃู ู
ุนููุณ ุฃู ุนูุตุฑ |
|
|
|
243 |
|
00:25:35,170 --> 00:25:39,030 |
|
ู
ูุฌูุฏ ูู H ุฅุฐุง ุทุจููุง ููุฐู ุงููุธุฑูุฉ ุชุตุจุญ ูุฐู |
|
|
|
244 |
|
00:25:39,030 --> 00:25:41,390 |
|
subgroup ู
ูุฌูุฏุฉ |
|
|
|
245 |
|
00:25:44,750 --> 00:25:49,710 |
|
ูุจูู ุงูู condition ุงูุฃูู ู
ุชุญูู ุถุงูู ุนููู ุฃุซุจุช ู
ูู |
|
|
|
246 |
|
00:25:49,710 --> 00:25:54,690 |
|
ุงู condition ุงูุชุงูู ุจูููู ุฎูุตู ูุนูู ูู ุฃุฎุฏ ุฃู ุนูุตุฑ |
|
|
|
247 |
|
00:25:54,690 --> 00:25:59,350 |
|
ู
ูุฌูุฏ ูู itch ุฃุซุจุช ุฃูู ู
ุนููุณ ู
ูุฌูุฏ ูู itch ุจูุฏุฑ |
|
|
|
248 |
|
00:25:59,350 --> 00:26:05,430 |
|
ุฃุทุจู ุงููุธุฑูุฉ ูุฐู ู
ุจุงุดุฑุฉ ูุฐูู ูุฑูุญุถ ุฃู ุนูุตุฑ ู
ูุฌูุฏ |
|
|
|
249 |
|
00:26:05,430 --> 00:26:10,630 |
|
ููู ูู itch ูุดูู ููู ุจุชูุฌู ุงูุฏููุงูุจูู ุจุงุฌู ุจูููู |
|
|
|
250 |
|
00:26:10,630 --> 00:26:17,070 |
|
little a ู
ูุฌูุฏ ูู itch ู
ู ุงู a ุฃูุง ู
ุด ุนุงุฑู ูุจูู |
|
|
|
251 |
|
00:26:17,070 --> 00:26:23,590 |
|
ุจุงุฌู ุจูููู if ุงู a ุจุฏุฑุณุงู ุงู identity ูู ุทูุน |
|
|
|
252 |
|
00:26:23,590 --> 00:26:34,150 |
|
ูุฃุฎุฏุชู ุนุดูุงุฆูุง ูุฐุง ูู ุงู identity then ุฃุฎุฏุชู |
|
|
|
253 |
|
00:26:34,150 --> 00:26:41,590 |
|
ูู itch ุทูุน ู
ู ุงู identity ูุจูู thenุงูู A Inverse |
|
|
|
254 |
|
00:26:41,590 --> 00:26:46,570 |
|
ู
ูุฌูุฏ |
|
|
|
255 |
|
00:26:46,570 --> 00:26:51,450 |
|
ูู H ูุนูู ุงูู ุงุชุทุจู ู
ู ุงู condition ุงูุชุงูู |
|
|
|
256 |
|
00:26:51,450 --> 00:26:58,680 |
|
ูุจุงูุชุงูู ุตุงุฑุช ุงูู H is Aูุจูู ูุฐุง ุจุฏู ูุนุทููุง ุงู ุงู |
|
|
|
257 |
|
00:26:58,680 --> 00:27:03,600 |
|
h sub group ู
ู ุฌูู ูุฐุง ูู ุทูุน ุงู element ุงููู ูู |
|
|
|
258 |
|
00:27:03,600 --> 00:27:11,280 |
|
ุงู identity ุทูุจ ูู ู
ุง ุทูุนุด ูุจูู f ุงู a ูุง ุชุณุงูู ุงู |
|
|
|
259 |
|
00:27:11,280 --> 00:27:18,120 |
|
a ุจู
ุนูู ุงุฎุฑ ูุง ูู
ูู ูููู ุงู order ูู a ูุงุญุฏ ุตุญูุญ |
|
|
|
260 |
|
00:27:18,120 --> 00:27:22,330 |
|
ูุงู ูู ูุงู ูุงุญุฏ ุตุญูุญ ุจุทูุน ูุนูุงุทูุจ ุงุญูุง ูู ุนูุฏูุง |
|
|
|
261 |
|
00:27:22,330 --> 00:27:28,470 |
|
ู
ุนููู
ุฉ ุญุชู ุงูุขู ูู
ูุณุชุฎุฏู
ูุง ุงููู ูู ู
ููุ finite |
|
|
|
262 |
|
00:27:28,470 --> 00:27:34,170 |
|
ูุนูู ุนุฏุฏ ุงูุนูุงุตุฑ ูู H ู
ุญุฏูุฏ ุทุจ ุงุณุชูู ุดููุฉ ุงูุด |
|
|
|
263 |
|
00:27:34,170 --> 00:27:39,610 |
|
ุจูููู ููุง ุงูู ุญุงุตู ุถุฑุจ ุงู ุนุฏุฏูู ู
ู H ู
ูุฌูุฏ ูู H |
|
|
|
264 |
|
00:27:39,610 --> 00:27:46,870 |
|
ุงูุณุคุงู ูู ูู A ุชุฑุจูุน ู
ูุฌูุฏ ูู Hุ ูุฃูู ุงูู ูููุ ุทุจ |
|
|
|
265 |
|
00:27:46,870 --> 00:27:52,680 |
|
ูู A ุชูููุจ ู
ูุฌูุฏ ูู Hุูุฃู a ุชุฑุจูุฉ ูู h ู a ูู h |
|
|
|
266 |
|
00:27:52,680 --> 00:27:57,940 |
|
ูุจูู a ุชุฑุจูุฉ ูู a ุฃุณ ุฃุฑุจุนุฉ ู
ูุฌูุฏ ูู a ูู a ุฃุฑุจุนุฉ |
|
|
|
267 |
|
00:27:57,940 --> 00:28:04,500 |
|
ุฃู ุฃู ุฃุณ ูุทูุน ู
ูุฌูุฏ ูู h ูุจูู f ูู a ูุง ุชุณุงูู ุงู a |
|
|
|
268 |
|
00:28:04,500 --> 00:28:16,000 |
|
then according ุทุจูุง to the condition |
|
|
|
269 |
|
00:28:17,640 --> 00:28:24,480 |
|
ุทุจูุง ููุดุฑุท ุงู ุงู a ุจู ู
ูุฌูุฏ ูู h ููู ุงู a ู ุงู b |
|
|
|
270 |
|
00:28:24,480 --> 00:28:32,040 |
|
ุงููู ู
ูุฌูุฏุฉ ูู h ุจููู we have ุงู ุงู a ู ุงู a ุชุฑุจูุน |
|
|
|
271 |
|
00:28:32,040 --> 00:28:40,960 |
|
ู ุงู a ุชููุจ ูู
ุดู ูุฌุฏ ู
ุง ุจุฏู are all in h ูููู
ูุฐูู |
|
|
|
272 |
|
00:28:40,960 --> 00:28:48,250 |
|
ู
ูุฌูุฏุงุช ูู ุงููุ ู
ูุฌูุฏุงุช ูู h ู
ู
ุชุงุฒ ุฌุฏุงุทูุจ ุงูุงู ุงู |
|
|
|
273 |
|
00:28:48,250 --> 00:28:53,990 |
|
H finite ุงูุชุฑุถ ูููุง ุฎู
ุณูู ุนูุตุฑ ูุงูุง ุญุงุทูุช ุง |
|
|
|
274 |
|
00:28:53,990 --> 00:29:02,030 |
|
ูุงูุณุจุนูู ุจุฏู ูููู ู
ูุฌูุฏ ูููุง ููุง ูุงุ ููุดุ ู
ุด ุงู H |
|
|
|
275 |
|
00:29:02,030 --> 00:29:07,870 |
|
ุนุฏุฏ ุงูุนูุงุตุฑ ุฎู
ุณูู ูุจูู ุนูุตุฑ ุญุงุทูุช ูููุณ ุนุดุฑุฉ ู ุงููู |
|
|
|
276 |
|
00:29:07,870 --> 00:29:12,130 |
|
ุนุดุฑูู ู ุงููู ุฎู
ุณู
ูุฉ ุจุฏู ูููู ูููุงู
ุธุจูุท ููุง ูุฃ ุจุณ |
|
|
|
277 |
|
00:29:12,130 --> 00:29:17,170 |
|
ู
ุงูู ุงููู ุจุฏู ูุญุตู ุงู ุงู a ุณุจุนูู ูุฐู ู
ุชุณุงูู ุงุนุดุฑูู |
|
|
|
278 |
|
00:29:17,170 --> 00:29:22,090 |
|
ู
ุธุจูุท ููุง ูุฃ ุฒู ุงูู ุฒู ุนู
ููุฉ ุงูู
ููุงุณ a modulo n |
|
|
|
279 |
|
00:29:22,090 --> 00:29:26,210 |
|
ุจุนุฏ ู
ุง ุฒูุช ุงู n ููู ุจุฑุฌุน ุจุตูุฑ ูููุง ู
ุธุจูุท ููุง ูุฃ |
|
|
|
280 |
|
00:29:26,210 --> 00:29:31,240 |
|
ุทูุจ ุงูู ุงููู ุญูู
ูุง ูุง ุนุฒูุฒู ูุฃู ูุฐู finiteูุงูููุช |
|
|
|
281 |
|
00:29:31,240 --> 00:29:36,980 |
|
ูุจูู a ู
ุฑููุนุฉ ูุฃู ุฃุณ ุนูุฏู ุจุฏู ูููู ู
ู ุถู
ู ูุฏูู ุจุฏู |
|
|
|
282 |
|
00:29:36,980 --> 00:29:42,520 |
|
ูููู ู
ูุฌูุฏ ูููุ ู
ูุฌูุฏ ูู ุฅุชุด ุดุฆูุง ุฃู
ุฃุจููุง ุชู
ุงู
|
|
|
|
283 |
|
00:29:42,520 --> 00:29:50,640 |
|
ูุจูู ููุง ูุฐุง ู
ุนูุงุชู these elements |
|
|
|
284 |
|
00:29:50,640 --> 00:29:54,020 |
|
are |
|
|
|
285 |
|
00:29:54,020 --> 00:29:59,420 |
|
not all disjoint |
|
|
|
286 |
|
00:30:00,850 --> 00:30:04,530 |
|
ู
ุด ูู ูุฏูู ุจุฏูู
ูููููุง ูู ูุงุญุฏ ู
ุฎุชูู ุนู ุงูุชุงูู |
|
|
|
287 |
|
00:30:04,530 --> 00:30:10,110 |
|
ูุงุฒู
ุฃูุงุฌู ุจุนุถูู
ุงูุฃุณ ุชุจุนู ู
ุฎุชูู ุนู ุงูุชุงูู ููู |
|
|
|
288 |
|
00:30:10,110 --> 00:30:14,710 |
|
ู
ูุฌูุฏ ูู H ู
ุด |
|
|
|
289 |
|
00:30:14,710 --> 00:30:23,630 |
|
ูููู
ูุจูู let ุงู A I ุจุฏู ูุณุงูู A J ู
ุซูุง ุงูุชุฑุถ ุงู |
|
|
|
290 |
|
00:30:23,630 --> 00:30:30,540 |
|
ุงู I ุจูุณุงูู ุงู J ู ุงู I ูุฐู ุฃูุจุฑ ู
ู Jูู ุงููุจูุฑุฉ |
|
|
|
291 |
|
00:30:30,540 --> 00:30:39,920 |
|
ูููู
ุทูุจ ูุฐุง ูุนูู ูู ุถุฑุจุช ุงูุทุฑููู ู
ู ุฌูุฉ ุงููู
ูู ูู |
|
|
|
292 |
|
00:30:39,920 --> 00:30:50,320 |
|
ู
ุนููุณ ูุฐู ูุจูุงุด ุจุฏุฑุณู ูุนูู AI AJ inverse ุจุฏุฑุณุงูู |
|
|
|
293 |
|
00:30:50,320 --> 00:30:54,380 |
|
AJ AJ inverse |
|
|
|
294 |
|
00:30:56,640 --> 00:31:03,440 |
|
ูุฐุง ู
ุนูุงู a i ูู a ุณุงูุจ j ูุณุงูู ุงู element ูู |
|
|
|
295 |
|
00:31:03,440 --> 00:31:10,980 |
|
ู
ุนููุณู ูู
ูุนุทููุง ุงู identity ูุจูู ูุฐุง ูุนุทููุง a i |
|
|
|
296 |
|
00:31:10,980 --> 00:31:18,760 |
|
minus j ูุณุงูู ุงู identity element ุทุจ ุงูุณุคุงู ูู ูู
ุง |
|
|
|
297 |
|
00:31:18,760 --> 00:31:24,880 |
|
ุฃููู i ูุงูุต j ู
ุนููู ูููู ุงููุฑู ุจูููู
ูุงุญุฏ ูุง ุดุจุงุจ |
|
|
|
298 |
|
00:31:28,780 --> 00:31:36,160 |
|
ูู ูุงู ุงููุฑู ุจูููู
ูุงุญุฏ ูุฃุตุจุญ |
|
|
|
299 |
|
00:31:36,160 --> 00:31:42,500 |
|
A ุฃุณ ูุงุญุฏ ูุณูู ุงู identity ุจูุทูุน ู
ู ุฃู ุงู A ูู ุจุงู |
|
|
|
300 |
|
00:31:42,500 --> 00:31:48,130 |
|
E ููู ุฃูุง ุดุฑูุฅู ุงูู A ูุง ูู
ูู ุฃู ูููู ุงูู E ุฅุฐุง ูุง |
|
|
|
301 |
|
00:31:48,130 --> 00:31:53,270 |
|
ูู
ูู ุฃู ูููู ุงููุฑู ููู
ุง ุจูููู
ุง ูุงุญุฏ ุตุญูุญ ูุจูู |
|
|
|
302 |
|
00:31:53,270 --> 00:31:59,330 |
|
ุงููุฑู ููู
ุง ุจูููู
ู
ุงูู ุฃูุจุฑ ู
ู ูุงุญุฏ ูุจูู ุงู I ููุต |
|
|
|
303 |
|
00:31:59,330 --> 00:32:04,830 |
|
ุงู J ุฃูุจุฑ ู
ู ูุงุญุฏ ุนูู ุงูุฃูู ุจูููู ุงุชููู ุชูุงุชุฉ |
|
|
|
304 |
|
00:32:04,830 --> 00:32:12,660 |
|
ุฃุฑุจุนุฉ ุงูุงุฎุฑููุจู
ุง ุฃู ุงูู I ูุงูุต D ุฃูุจุฑ ู
ู 1 ูุจูู |
|
|
|
305 |
|
00:32:12,660 --> 00:32:19,580 |
|
ูุฐุง ุจุทู ูุตูุฑ ุงูู identity ุจุทู ุจูุงุด ูุฐุง ู
ุนูุงู ุงู |
|
|
|
306 |
|
00:32:19,580 --> 00:32:28,240 |
|
ุงูู A I minus G ูุณุงูู ุงูู A ูู ุงูู A I minus G |
|
|
|
307 |
|
00:32:28,240 --> 00:32:35,100 |
|
minus ุงูู 1 ุฎูุชู A ุฃุณ ูุงุญุฏ ูู ุงูู A ุฃุณ I ูุงูุต D |
|
|
|
308 |
|
00:32:35,100 --> 00:32:41,980 |
|
ูุงูุต ูุงุญุฏุชู
ุงู
ุ ู
ุธุจูุท ูููุ ุทูุนุช ู
ููู
ุงูู ููุท ู ูุง |
|
|
|
309 |
|
00:32:41,980 --> 00:32:48,860 |
|
ุบูุฑ ูุฐุง ุงูููุงู
ููู ุจุณูู ุฌุฏุงุด ุงู identity elementุ |
|
|
|
310 |
|
00:32:48,860 --> 00:32:55,050 |
|
ู
ุธุจูุทุุทูุจ ูู ุฑูุญุช ุถุฑุจุช ูู ุงู A inverse ุถุฑุจุช |
|
|
|
311 |
|
00:32:55,050 --> 00:33:01,330 |
|
ุงูู
ุนุงุฏูุฉ ูุฐู ูู ุงู A inverse ู
ู ุฌูุฉ ุงูุดู
ุงู ูุจูู |
|
|
|
312 |
|
00:33:01,330 --> 00:33:08,450 |
|
ุงูุด ุจูุตูุฑ ุนูุฏูุง A I ูุงูุต D ูุงูุต 1 ูุณูู ุงู A |
|
|
|
313 |
|
00:33:08,450 --> 00:33:17,530 |
|
inverse ุงูุณุคุงู ูู ูุฐุง ููู ูู ุนูุตุฑ ู
ู ูุฐูู ููุง ูุง |
|
|
|
314 |
|
00:33:20,970 --> 00:33:26,050 |
|
ูู ูุงุญุฏ ู
ููู
ุตุญูุญ ููุง ูุฃุ ูุฃู ุงููH finite ูุจูู ูุฐุง |
|
|
|
315 |
|
00:33:26,050 --> 00:33:33,150 |
|
ุงูุนูุตุฑ ูุงุฒู
ูููู ูุงุญุฏ ู
ู ูุฐูู ูุฐุง ู
ุนูุงู ุงู ุงููA I |
|
|
|
316 |
|
00:33:33,150 --> 00:33:40,130 |
|
minus D minus 1 belongs to H ู
ุฏุงู belongs to H |
|
|
|
317 |
|
00:33:40,130 --> 00:33:47,170 |
|
ูุจูู ุงููA inverse ู
ูุฌูุฏ ูู H ูุจูู ุชุญูู ุงู |
|
|
|
318 |
|
00:33:47,170 --> 00:33:51,130 |
|
condition ุงูุซุงูู ููุง ูุฃุูุจูู ุจุงุฌู ุจูููู by the |
|
|
|
319 |
|
00:33:51,130 --> 00:33:55,850 |
|
above theorem ูุฐู ุตุงุฑุช ุงู sub group ูุจูู ููุง ุจุงุฌู |
|
|
|
320 |
|
00:33:55,850 --> 00:34:04,250 |
|
ุจูููู by the above theorem ุงู |
|
|
|
321 |
|
00:34:04,250 --> 00:34:07,670 |
|
H is a sub group ู
ู ุฌู |
|
|
|
322 |
|
00:34:14,000 --> 00:34:18,700 |
|
ุนุดุงู ุงููู ูุงู ุณุงุฑุญ ูุงุฎุฏ ุจุงูู ูููุณ ุงููู ูุงุชุชู ุญุงุฌุฉ |
|
|
|
323 |
|
00:34:18,700 --> 00:34:25,150 |
|
ูููู
ูุง ุฎูู ุจุงูู ูุฏูุฃูุง ูู
ุฃุฌุฏ non-empty ู
ุซู |
|
|
|
324 |
|
00:34:25,150 --> 00:34:29,530 |
|
ุงููุธุฑูุชูู ุงููู ูุงุชูุง ุฒูุงุฏุฉ ุนูู ุฐูู ุงู subset ุงููู |
|
|
|
325 |
|
00:34:29,530 --> 00:34:35,410 |
|
ุฃุฎุฏุช ุนุฏุฏ ุนูุงุตุฑูุง finite ุนุฏุฏุง ู
ุญุฏูุฏุง ูู ุฃุฎุฏุช two |
|
|
|
326 |
|
00:34:35,410 --> 00:34:39,550 |
|
elements ู
ูุฌูุฏุฉ ูู ุงุชุด ููุง ุฌูุช ุญุงุตู ุถุฑุจูู
ุง ู
ูุฌูุฏุฉ |
|
|
|
327 |
|
00:34:39,550 --> 00:34:42,510 |
|
ูู ุงุชุด ุชุญุช ูุฐุง ุงู condition ุฃู ุชุญุช ุงู condition |
|
|
|
328 |
|
00:34:42,510 --> 00:34:46,290 |
|
finite ุงููู ุงุชุด ุจุชุจูู ุงู subgroup ู
ู G ูุฐุง ุงููู |
|
|
|
329 |
|
00:34:46,290 --> 00:34:51,850 |
|
ุนุงูุฒูู ูุซุจุชููุจูู ุงูุง ุนูุฏู ู
ุนุทูุงุช ุงุชููู H non-empty |
|
|
|
330 |
|
00:34:51,850 --> 00:34:55,950 |
|
ุฒู ุงููู ุฌุงุจ ุงููุฏุง ููู ุงู non-empty ูุฐุง finite |
|
|
|
331 |
|
00:34:55,950 --> 00:35:00,910 |
|
ูุญุงุตู ุถุฑุจ ุงู ุนูุตุฑ ู
ู H ุจูุง G ูู H ูุฐุง ุงู condition |
|
|
|
332 |
|
00:35:00,910 --> 00:35:05,250 |
|
ุงูุซุงูู ุชุญุช ุงู two condition ุจุซุจุช ุงู ูุฐู ุงูุณุงุจุน |
|
|
|
333 |
|
00:35:05,250 --> 00:35:08,930 |
|
ุฌุฑูุณ ููุช ูู ู
ุงุดู ุงูุชุฑุถ ุงู ุงู A ู ุงู B ู
ูุฌูุฏุฉ ูู ุงู |
|
|
|
334 |
|
00:35:08,930 --> 00:35:11,750 |
|
H ู ุงู A ู ุงู B ู
ูุฌูุฏุฉ ูู ุงู H ูุฐู ูู ุงูู
ุนุทูุงุช |
|
|
|
335 |
|
00:35:16,010 --> 00:35:20,050 |
|
ุฎูุฏ element ู
ูุฌูุฏ ูู H |
|
|
|
336 |
|
00:35:23,260 --> 00:35:27,300 |
|
ูุจูู ุฅุฐุง ูุงู ุจุงู identity ูุจูู ุงู identity ูู |
|
|
|
337 |
|
00:35:27,300 --> 00:35:34,400 |
|
ู
ุนููุณ ูููุณู ุฅุฐุง ุงู A inverse ูู ุงู A ูุจุงูุชุงูู ุงู A |
|
|
|
338 |
|
00:35:34,400 --> 00:35:38,820 |
|
inverse ูู ุงู A inverse ู
ูุฌูุฏุฉ ูู H ูุจูู ุทุจู ุงู |
|
|
|
339 |
|
00:35:38,820 --> 00:35:43,260 |
|
condition ุงูุชุงูู ุงูุชุงุจุน ููุธุฑูุฉ H ุงูุตุญูุญุฉูุฐุง ูู ูุงู |
|
|
|
340 |
|
00:35:43,260 --> 00:35:48,880 |
|
ุจูู ุจุณุงุทุฉ ุฃู A ุชุณุงููุฉ ุทุจ ูู ูุงูุช ุงู A ูุง ุชุณุงูู ุงู |
|
|
|
341 |
|
00:35:48,880 --> 00:35:53,640 |
|
Eุ ุฅูุด ุจุฏู ุชุนู
ูุ ุจููู ุฃู ุทุจูุง ูู
ู ุงู condition |
|
|
|
342 |
|
00:35:53,640 --> 00:35:59,260 |
|
ูุฃูู ุญุงุตู ุถุฑุจ ูุฃู two elements ูู H ูู ู
ูุฌูุฏ ูู Hุ |
|
|
|
343 |
|
00:35:59,260 --> 00:36:02,720 |
|
ุจุฏู ุฃุฌู ูู A ู ุฃุถุฑุจู ูู ููุณู ูุนูู ุจุฏู ุฃุถุฑุจู ูู |
|
|
|
344 |
|
00:36:02,720 --> 00:36:06,260 |
|
ููุณูุ ุจูุทูุน A ุชุฑุจูุน ู
ูุฌูุฏ ูู H ุฃุถุฑุจู ูู
ุงู ูู Aุ |
|
|
|
345 |
|
00:36:06,260 --> 00:36:10,070 |
|
ุจูุทูุน A ุชูุนูุจ ู
ูุฌูุฏ ูู H ุฃุถุฑุจ ู ุฃุถุฑุจ ู ููุฐุงูุฐุง |
|
|
|
346 |
|
00:36:10,070 --> 00:36:15,310 |
|
ูุนูู ุฃู ุงููA ู ุงููAยณ ู ุงููAยณ ูููู
ูุฏูู ุฌุฏ ู
ุง ุชุญุท |
|
|
|
347 |
|
00:36:15,310 --> 00:36:20,070 |
|
ุฃุณุณ ููู ุฃูุง ู
ุงุฏุงู
ุงููH finite ุงูุชุฑุถ ูููุง ุฎู
ุณูู |
|
|
|
348 |
|
00:36:20,070 --> 00:36:24,350 |
|
ุนูุตุฑ ู
ุซู ู
ุง ููุช ููู ุฃูุง ุจุถูู
ุงุฌู ุฎู
ุณูู ู ูุงุญุฏ ู |
|
|
|
349 |
|
00:36:24,350 --> 00:36:29,570 |
|
ุฎู
ุณูู ู ุณุจุนูู ู ุชู
ุงููู ุฅูู ุขุฎุฑูู ุฅุฐุงู ููุทูุน ููู |
|
|
|
350 |
|
00:36:29,570 --> 00:36:35,530 |
|
ู
ูุฌูุฏ ูู H ูุจุงูุชุงูู ุจุนุถ ุงูุนูุงุตุฑ ูุงุฒู
ุชุชุณุงููุนูุตุฑ ู
ู |
|
|
|
351 |
|
00:36:35,530 --> 00:36:41,470 |
|
ุจุนุฏ ุงูุฎู
ุณูู ูุณุงูู ุนูุตุฑ ู
ู ูุจู ุงูุฎู
ุณูู |
|
|
|
352 |
|
00:36:50,940 --> 00:36:55,240 |
|
ุจูููููุง ู
ุด ูููู
disjoint are not all of them ู
ุด |
|
|
|
353 |
|
00:36:55,240 --> 00:37:01,340 |
|
ูููู
disjoint ูุฐูู ููุทูุน ุนูุฏู ูุชูุฑ ูููู
ุงุชููู ุจุณูุง |
|
|
|
354 |
|
00:37:01,340 --> 00:37:06,400 |
|
ุจุนุถ ุงุฎุชู ุงุชููู ุนุดูุงุฆูุง ุงุฎุชู ุงู ai ุจุฏู ูุณุงูู ุงู aj |
|
|
|
355 |
|
00:37:06,400 --> 00:37:11,380 |
|
ูุงุฎุชู ุงู i ุงูุจุฑ ู
ู ู
ูู ุงูุจุฑ ู
ู ุฌู ุงูุจุฑ ูุงุญุฏ ุจุงุชููู |
|
|
|
356 |
|
00:37:11,380 --> 00:37:15,900 |
|
ูุจุชูุงุช ุงููู ุฃุนูู
ุงููู ูู
ุงูู ุงูุจุฑ ู
ูู ุฏุงุฆู
ุง ูุงุจุฏุง |
|
|
|
357 |
|
00:37:16,340 --> 00:37:24,420 |
|
ุงูุงู ุงุฐุง ุฌูุช ููู
ุนุงุฏูุฉ ุฏุฑุจุชูุง ูู ู
ุนููุณ ุงููaj ุงูููู |
|
|
|
358 |
|
00:37:24,420 --> 00:37:28,900 |
|
ุตุบูุฑ ูุจูู ุฏุฑุจุชูุง ูู ู
ุนููุณ ุงูaj ูููุง ุฏุฑุจุชูุง ูุฐุง |
|
|
|
359 |
|
00:37:28,900 --> 00:37:34,220 |
|
ุจูุนุทููุง ุงู identity element ูุฐุง ุจูุนุทููุง ุงููู ูู ai |
|
|
|
360 |
|
00:37:34,220 --> 00:37:39,880 |
|
ูู a ูุงูุต g ุงููู ูู ai ูุงูุต g ุจุฏู ูุณูู ู
ู ุงู |
|
|
|
361 |
|
00:37:39,880 --> 00:37:44,800 |
|
identity element ูุงูi ูุงูุต g ุงูุจุฑ ู
ู ุงููุงุญุฏ ุงูุจุฑ |
|
|
|
362 |
|
00:37:44,800 --> 00:37:49,680 |
|
ู
ู ุงููุงุญุฏ ููุดุูุฃูู ูู ุทูุน ูุฐุง ุจูุงุญุฏ ู
ุนูุงุชู ุงููุ |
|
|
|
363 |
|
00:37:49,680 --> 00:37:52,680 |
|
ุงุฐุง ูุงุญุฏ ูุณุงูู ุงู identity ูุจูู ุงูู ูู ุงู |
|
|
|
364 |
|
00:37:52,680 --> 00:37:58,140 |
|
identityุ ููู ุงุญูุง ุดุฑุทูุง ุงูู ุงููุ ู
ุด ู
ู
ููุ ุงุฐุง ูุฐุง |
|
|
|
365 |
|
00:37:58,140 --> 00:38:02,530 |
|
ุงูููุงู
ุฏุงุฆู
ุง ูุฃุจุฏุงุฃูุจุฑ ู
ู ูุงุญุฏ ู
ู
ูู ูููู ุงุชููู |
|
|
|
366 |
|
00:38:02,530 --> 00:38:08,230 |
|
ุชูุงุชุฉ ุงุฑุจุนุฉ ุงูุงุฎุฑู ู
ุง ุนูููุง ุงูุจุฑ ู
ู ุงููุงุญุฏ ุงุฐุง ุงู |
|
|
|
367 |
|
00:38:08,230 --> 00:38:14,430 |
|
a ij ุทุจุนุง ูุชูุฏุฑ ุชูููู ูุฐุง ุงูุจุฑ ู
ู ูุงุญุฏ ู
ุดุงู ู
ุงุชูุด |
|
|
|
368 |
|
00:38:14,430 --> 00:38:21,450 |
|
ุชูููู because ุงูุณุจุจ ุงู ุงู a ุจุณููุด ุงู a |
|
|
|
|