abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
raw
history blame
39.4 kB
1
00:00:22,730 --> 00:00:27,590
ุงู„ู…ุฑุฉ ุงู„ู…ุงุถูŠุฉ ุฃุฎุฏู†ุง ู†ุธุฑูŠุฉ ุนู„ู‰ ุงู„ subgroups
2
00:00:27,590 --> 00:00:33,590
ูˆู…ุฎุชุตุฑู‡ุง ุฅู† ุงู„ H ู„ูˆ ูƒุงู†ุช non-empty ู‡ุงู„ condition
3
00:00:33,590 --> 00:00:37,470
ุงู„ุฃูˆู„ ูˆ ุงู„ condition ุงู„ุชุงู†ูŠู„ูˆ ุฃุฎุฏุช two elements ููŠ
4
00:00:37,470 --> 00:00:42,090
ุงู„ group ุฃูˆ ููŠ ุงู„ subgroup ูˆ ุฃุซุจุช ุงู†ู‡ ุญุตู„ ุถุฑุจ
5
00:00:42,090 --> 00:00:45,770
ุงู„ุฃูˆู„ ููŠ ู…ุนูƒุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐู‡ ุงู„ subset ุงู„ู„ูŠ
6
00:00:45,770 --> 00:00:50,010
ู‡ูŠ ุงู„ H ูŠุจู‚ู‰ ุงู„ H ุจุชูƒูˆู† is a subgroup ูˆ ุฃุฎุฏู†ุง ุนู„ู‰
7
00:00:50,010 --> 00:00:55,500
ุฐู„ูƒ ุฃุฑุจุนุฉ ุฃู…ุซู„ุฉ ูˆู‡ุฐุง ู‡ูˆ ุงู„ู…ุซุงู„ ุฑู‚ู… ุฎู…ุณุฉุงู„ู…ุซุงู„ ุฑู‚ู…
8
00:00:55,500 --> 00:00:59,800
ุฎู…ุณุฉ ุฌูŠุฆ ุจู‡ ููŠ ุฅุญุฏู‰ ุงู„ุงู…ุชุญุงู†ุงุช ููŠ ุฅุญุฏู‰ ุงู„ุณู†ูˆุงุช
9
00:00:59,800 --> 00:01:04,180
ุงู„ุณุงุจู‚ุฉ ุงู„ู„ูŠ ู‡ูˆ ููŠ ุงู„ุฌุงู…ุนุฉ ุงู„ุฅุณู„ุงู…ูŠุฉ ุนู†ุฏู†ุง ู‡ู†ุง
10
00:01:04,180 --> 00:01:10,580
ูˆู„ุฐู„ูƒ ุฃุญุจุจุช ุฃู† ุฃุญู„ ู‡ุฐุง ุงู„ุณุคุงู„ ูƒู…ุซุงู„ ุนู„ู‰ ู…ูˆุถูˆุน ู‡ุฐู‡
11
00:01:10,580 --> 00:01:15,050
ุงู„ู†ุธุฑูŠุฉุงู„ุณุคุงู„ ุจูŠู‚ูˆู„ little h ุจูŠุจู‚ู‰ subset of a
12
00:01:15,050 --> 00:01:19,610
group g ุจูŠุจู‚ู‰ ุงุญู†ุง ุงุฎุฏู†ุง h subset ู…ู† ุงู„ group g
13
00:01:19,610 --> 00:01:25,310
ุงุฎุฏู†ุง ุงู„ element ุงูˆ ุงู„ set a ู‡ูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ a ุงู„ู„ูŠ
14
00:01:25,310 --> 00:01:31,630
ู…ูˆุฌูˆุฏุฉ ููŠ g ุจุญูŠุซ ุงู† ุงู„ a h ุชุณุงูˆูŠ h a ูŠุนู†ูŠ ูƒู„
15
00:01:31,630 --> 00:01:37,190
ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุจุชุจู‚ู‰ commutative ู…ุน ุนู†ุงุตุฑ h ูู‚ุท
16
00:01:52,630 --> 00:01:56,840
ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ ุฃุซุจุช ุงู† ุงู„ู€ H is non-emptyุจุนุฏูŠู†
17
00:01:56,840 --> 00:02:04,440
ุจุงุฎุฏ ุงุดูŠุงุก ู…ูˆุฌูˆุฏุฉ ููŠ a ูˆ ุงุซุจุช ุงู† ุงู„ุงูˆู„ ููŠ ู…ุนูƒุณ
18
00:02:04,440 --> 00:02:09,280
ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ a ูŠูุฌุฑ ุจุนุฏูŠู† ุจู‚ูˆู„ ู„ู‡ solution
19
00:02:09,280 --> 00:02:19,400
ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุงู† ุงู„ a is non empty ุงู„ุณุจุจ because
20
00:02:22,540 --> 00:02:28,180
ุทุจุนุง ุงู„ identity elements ู…ุน ู†ุงุณุฑ g ูƒู„ู‡ุง ูˆุจุงู„ุชุงู„ูŠ
21
00:02:28,180 --> 00:02:37,440
ู…ุน ู†ุงุณุฑ h because ุงู„ E ู…ูˆุฌูˆุฏ ููŠ ุงู„ A since ุงู„ุณุจุจ
22
00:02:37,440 --> 00:02:43,740
ููŠ ุฐู„ูƒ ุงู† ุงู„ E ููŠ ุงู„ H ู‡ูˆ ุงู„ H ููŠ ุงู„ E ุทุจ ุงู„ H ููŠ
23
00:02:43,740 --> 00:02:44,940
E ุงูŠุด ุจูŠุนุทูŠู†ุง
24
00:02:53,110 --> 00:02:58,350
ู‡ุฐู‡ ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู‡ูŠ a non empty ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ
25
00:02:58,350 --> 00:03:05,530
ุจุฏูŠ ุงุฎุฏ ุนู†ุตุฑูŠู† ู…ูˆุฌูˆุฏูŠู† ููŠ ุงู„ set a ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„
26
00:03:05,530 --> 00:03:12,070
ุงูุชุฑุถ ุงู† ุงู„ a ูˆ ุงู„ b ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ aุทูŠุจ ู‡ุฐุง ู…ุนู†ุงู‡
27
00:03:12,070 --> 00:03:21,110
then ุงู„ a h ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ h a and ุงู„ b h ุจุฏู‡ ูŠุณุงูˆูŠ
28
00:03:21,110 --> 00:03:27,530
ุงู„ h b ู‡ุฐุง ู…ุนู†ุงู‡ ุจุฏุงู„ูŠ ุงู…ุณูƒ ู‡ุฐุง ุงู„ element ุงู„ู„ูŠ
29
00:03:27,530 --> 00:03:32,410
ุนู†ุฏู†ุง ู‡ุฐุงู„ูˆ ุฐู‡ุจุช ูˆ ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ ุงู„ B
30
00:03:32,410 --> 00:03:37,670
inverse ูˆ ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ุงู„ B inverse ุจุฏูŠ
31
00:03:37,670 --> 00:03:42,010
ุฃุดูˆู ุงู„ุฏูˆุตู„ ู„ูŠู‡ ุทุจ ุงู†ุช ุจูƒุชุฑู‡ ููŠ ุงู„ B inverse ู„ูŠุดุŸ
32
00:03:42,010 --> 00:03:46,930
ุจู‚ูˆู„ู‡ ุงู‡ ุงู†ุง ูุฑุถ ุงู† A ูˆ B ู…ูˆุฌูˆุฏุฉ ููŠ A ุฅุฐุง ู‡ูŠ
33
00:03:46,930 --> 00:03:52,220
ู…ูˆุฌูˆุฏุฉ ูˆูŠู†ุŸูุชุด ู…ูˆุฌูˆุฏุฉ ููŠ a ูŠุนู†ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ g
34
00:03:52,220 --> 00:03:58,080
ุงู„ุฃุตู„ูŠุฉ ู„ุฃู† ูƒู„ ุนู†ุงุตุฑ a ู…ูˆุฌูˆุฏุฉ ููŠ g ุงุฐุง ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ
35
00:03:58,080 --> 00:04:04,960
ููŠ g ูŠุจู‚ู‰ ุงู„ b inverse ู…ูˆุฌูˆุฏ ููŠ g ู„ูƒู† ุงู†ุง ุจุฏูŠ ุงุซุจุช
36
00:04:04,960 --> 00:04:10,680
ุงู† ุงู„ a b inverse ู…ูˆุฌูˆุฏ ููŠ a ุจู…ุนู†ู‰ ุงุฎุฑ ุงู† ุงู„ a b
37
00:04:10,680 --> 00:04:15,240
inverse ููŠ ุงู„ set a ุจุฏูŠ ุณุงูˆูŠ ุงู„ a ููŠ ุงู„ a b
38
00:04:15,240 --> 00:04:20,810
inverseุฅู† ุฃุซุจุช ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุชู… ุงู„ู…ุทู„ูˆุจ ูŠุจู‚ู‰ ุจุฏู‡
39
00:04:20,810 --> 00:04:25,050
ุฃุฌุนู„ ู‡ุฐู‡ ูˆ ุฃุถุฑุจ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ุงู„ B inverse ูˆ ู…ู†
40
00:04:25,050 --> 00:04:29,510
ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูƒู…ุงู† ูˆูŠู† ููŠ ุงู„ B inverse ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡
41
00:04:29,510 --> 00:04:36,350
ุงู†ู‡ B inverse ููŠ BH ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุงูŠ ุถุฑุจู†ุง ู…ู† ุฌู‡ุฉ
42
00:04:36,350 --> 00:04:43,730
ุงู„ุดู…ุงู„ ูŠุจู‚ู‰ ุจู†ุชุฌูŠู†ุง B inverse H BH ูŠุจู‚ู‰ ุถุฑุจู†ุง ุฎู„ูŠุง
43
00:04:43,730 --> 00:04:47,830
ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ู…ุฑุฉ ุฌูŠุจ ู†ุถุฑุจ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ูˆู„ุง ูŠู…ูƒ
44
00:04:47,830 --> 00:04:53,530
ูˆู„ุง ู†ุถุฑุจู‡ู… ู…ุฑุฉ ูˆุงุญุฏุฉ ุฑูŠุงุญุฉ ุงู†ู‡ุง ุงุถุฑุจ ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„
45
00:04:53,530 --> 00:04:58,990
ูˆู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ ุงู„ B inverse ูŠุจู‚ู‰ ุจุฏูŠ ุฌูŠู†ุง ูƒู…ุงู†
46
00:04:58,990 --> 00:05:05,290
ู‡ู†ุง B inverse ุจุฏูŠ ุณุงูˆูŠ ุงู„ B inverse ููŠ ุงู„ BH ุจุฏูŠ
47
00:05:05,290 --> 00:05:12,010
ุณุงูˆูŠ ุงู„ B inverse H ููŠ ุงู„ BB inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ
48
00:05:12,010 --> 00:05:18,260
ุนู†ุฏู†ุงุจุงู„ุฏุฑุงุฌุฉ ู‡ุฐุง ุงู„ element ููŠู‡ ู…ุนูƒูˆุณ ูˆูŠุด ุจูŠุนุทูŠู†ุง
49
00:05:18,260 --> 00:05:24,500
ุงู„ identity ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏุฑูŠ ูŠุนุทูŠู†ุง ุงู† ุงู„ E H B
50
00:05:24,500 --> 00:05:26,640
inverse ุจุฏุฑูŠ ุณุงูˆูŠ
51
00:05:38,550 --> 00:05:44,150
ุจุฅู†ูุฑุณ ู‡ุฐูŠ ู…ุจุงุดุฑุฉ ู‡ุฐู‡ ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูˆ ู…ู† ุฌู‡ุฉ
52
00:05:44,150 --> 00:05:48,790
ุงู„ูŠู…ูŠู† ู‡ู†ุง ุถุฑุจุช ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูˆ ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ุทูŠุจ
53
00:05:48,790 --> 00:05:53,050
ู‡ุฐู‡ ุงู„ุงู† ุงู„ ุจูŠ ุจูŠ ุงู†ูุฑุณ ุจุชุนุทูŠู†ุง ุงู„ identity ูŠุจู‚ู‰
54
00:05:53,050 --> 00:05:59,630
ู‡ุฏู ุงู„ุณูˆู‰ ุจูŠ ุงู†ูุฑุณ heุจู†ุงุกู‹ ุนู„ูŠู‡ ุงู„ู€ identity ููŠ ุฃูŠ
55
00:05:59,630 --> 00:06:03,250
element ูˆ ุงู„ู„ู‡ ููŠ ุฃูŠ set ุจูŠุนุทูŠู†ุง ู†ูุณ ุงู„ element ุฃูˆ
56
00:06:03,250 --> 00:06:09,750
ู†ูุณ ุงู„ set ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ H P inverse ุจุฏู‡
57
00:06:09,750 --> 00:06:12,250
ูŠุณุงูˆูŠ P inverse H
58
00:06:21,020 --> 00:06:26,020
ุฃู†ุง ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ู€ A B inverse ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ A
59
00:06:26,020 --> 00:06:30,560
ุจู…ุนู†ู‰ ุฃู† ุงู„ู€ A B inverse ู…ุถุฑูˆุจ ููŠ ุงู„ู€ H ุจูŠุณุงูˆูŠ ุงู„ู€
60
00:06:30,560 --> 00:06:35,440
H ููŠ ุงู„ู€ A B inverse ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ู…ุงููŠุด ููŠู‡ุง Aู„ูƒู†
61
00:06:35,440 --> 00:06:40,420
ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ A ุจูˆุตู„ ู„ู…ู†ุŸ ู„ู„ู…ุทู„ูˆุจ ุงุฐุง ุญุงุฌุฉ
62
00:06:40,420 --> 00:06:45,980
ู„ู‡ุฐู‡ ูˆ ุงุฑูˆุญ ุงุถุฑุจ ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ ู…ู†ุŸ ููŠ
63
00:06:45,980 --> 00:06:52,900
ุงู„ A ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ุงุนุทูŠูƒ ุงู†ู‡ A H B inverse ุจุฏูŠ ุณุงูˆูŠ
64
00:06:52,900 --> 00:07:00,430
A B inverse H ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุงุทุจ ุงุญู†ุง ููŠู‡ุง ู…ุนู„ูˆู…ุฉ
65
00:07:00,430 --> 00:07:08,070
ุญุชู‰ ุงู„ุขู† ู„ู… ู†ุณุชุฎุฏู…ู‡ุง ู„ูŠู…ูŠู† ุงู„ a h ุจุฏู‡ ูŠุณูˆูŠ h a ุฅุฐุง
66
00:07:08,070 --> 00:07:15,460
ุจู‚ุฏุฑ ุฃุดูŠู„ ู‡ุฐู‡ ุงู„ a h ูˆ ุฃูƒุชุจ ุจุฏุงู„ู‡ุง ุงู„ h aูŠุจู‚ู‰ ู‡ุฐุง
67
00:07:15,460 --> 00:07:23,360
ู…ุนู†ุงู‡ ุงู† ุงู„ a h ุจุฏู‡ ุงูƒุชุจู‡ุง h a ููŠ ุงู„ b inverse ุจุฏู‡
68
00:07:23,360 --> 00:07:28,840
ูŠุณุงูˆูŠ ู…ู† ุฎุงุตูŠุฉ ุงู„ associativity ุจู‚ุฏุฑ ุงู‚ูˆู„ ู‡ุฐู‡ a b
69
00:07:28,840 --> 00:07:33,420
inverse ู…ุถุฑูˆุจ ููŠ ุงู„ h ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ ูŠุณุงูˆูŠ a b
70
00:07:33,420 --> 00:07:39,140
inverse ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู† ููŠ ุงู„ hูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ูƒู…ุงู†
71
00:07:39,140 --> 00:07:44,300
ู…ุฑุฉ ู…ู† ุฎุงุตูŠุฉ ุงู„ associativity ุจุตูŠุฑ ุนู†ุฏู†ุง ุงู„ H ููŠ
72
00:07:44,300 --> 00:07:51,140
ุงู„ A B inverse ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A B inverse ููŠ ุงู„ H
73
00:07:51,140 --> 00:07:55,720
ุงูŠุด ุชูุณูŠุฑ ูƒู„ ุฐู„ูƒุŸ ู…ุนู†ุงู‡ ุงู† ุงู„ A B inverse ู…ูˆุฌูˆุฏ
74
00:07:55,720 --> 00:08:04,310
ูˆูŠู†ุŸููŠ a ูŠุจู‚ู‰ ุณุง ุงู„ a ุจูŠ ุงู†ูุฑุณ ู…ูˆุฌูˆุฏ ููŠ ุงู„ a ู‡ุฐุง
75
00:08:04,310 --> 00:08:10,710
ุจุฏูŠ ูŠุนุทูŠู†ุง ุงู† ุงู„ a is a sub group ู…ู† g ุฃุซุจุชู†ุง ููŠ
76
00:08:10,710 --> 00:08:14,450
ุงู„ุฃูˆู„ ุงู† ุงู„ a is non empty ูˆุฌุฏู†ุง ููŠู‡ุง ุงู„ identity
77
00:08:14,450 --> 00:08:18,970
element ุฃุฎุฏู†ุง two elements ู…ูˆุฌูˆุฏุฉ ููŠ a ุฃุซุจุชู†ุง ุงู†
78
00:08:18,970 --> 00:08:23,390
ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ a
79
00:08:23,630 --> 00:08:28,690
ูˆุจุงู„ุชุงู„ูŠ ุงู„ ASA subgroup ู…ู† ู…ูŠู†ุŸ ู…ู† G ูˆ ู…ุฑุฉ ุชุงู†ูŠุฉ
80
00:08:28,690 --> 00:08:34,570
ุจู‚ูˆู„ ู‡ุฐุง ุงู„ุณุคุงู„ ุฌุฆู†ุง ุจู‡ ููŠ ุฅุญุฏู‰ ุงู„ุงู…ุชุญุงู†ุงุช ุงู„ุณุงุจู‚ุฉ
81
00:08:34,570 --> 00:08:40,470
ุนู„ู‰ ุฃูŠ ุญุงู„ ุงุญู†ุง ุญุชู‰ ุงู„ุขู† ุฃุซุจุชู†ุง ู†ุธุฑูŠุฉ ูˆุงุญุฏุฉุจูˆุงุณุทุฉ
82
00:08:40,470 --> 00:08:45,030
ุชุญุงู„ูŠุฉ ุจุฏู„ ุงู„ู…ุซุงู„ ุฎู…ุณุฉ ุนู„ู‰ ุฅุซุจุงุช ุฅู† ุงู„ู€ subset
83
00:08:45,030 --> 00:08:47,850
ุงู„ู„ูŠ ุจุงุฎุฏู‡ุง ูƒูŠู ู‡ูŠ ุงู„ subgroup ู…ู† ุงู„ group
84
00:08:47,850 --> 00:08:52,290
ุงู„ุฃุณุงุณูŠุฉ ุนู† ุทุฑูŠู‚ ุฅุซุจุงุช ู†ู‚ุทุชูŠู† ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ุฅู† ุงู„
85
00:08:52,290 --> 00:08:55,930
subset ุงู„ู„ูŠ ุจุงุฎุฏู‡ุง non empty ูˆุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู„ูˆ
86
00:08:55,930 --> 00:08:59,430
ุฃุฎุฏุช elements ููŠ ู‡ุฐู‡ ุงู„ set ุจุฏูŠ ุฃุซุจุช ุฅู† ุงู„ุฃูˆู„ ููŠ
87
00:08:59,430 --> 00:09:05,750
ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐู‡ ุงู„ set ุทูŠุจ ู†ุฌูŠ ุงู„ุขู†
88
00:09:05,750 --> 00:09:12,590
ู„ู†ุธุฑูŠุฉ ุซุงู†ูŠุฉูŠุจู‚ู‰ ุงู„ theorem ุงู„ู†ุธุฑูŠุฉ
89
00:09:12,590 --> 00:09:25,190
ุงู„ุชุงู†ูŠุฉ ุจุชู‚ูˆู„ ู…ุงุช let ุงู„ H be a non empty subset
90
00:09:25,190 --> 00:09:28,630
of
91
00:09:28,630 --> 00:09:31,990
a group G
92
00:09:38,050 --> 00:09:47,510
ุงู„ู€ H is a subgroup ู…ู† G if and only if ุงู„ A ูˆ ุงู„
93
00:09:47,510 --> 00:09:54,450
B ู…ูˆุฌูˆุฏุฉ ููŠ H whenever ุนู†ุฏู…ุง
94
00:09:54,450 --> 00:10:04,690
ุงู„ A ูˆ ุงู„ B ู…ูˆุฌูˆุฏ ููŠ H and ุงู„ A inverse belongs to
95
00:10:04,690 --> 00:10:07,230
H whenever
96
00:10:10,270 --> 00:10:16,730
ุงู„ู€ A ู…ูˆุฌูˆุฏุฉ
97
00:10:16,730 --> 00:10:17,450
ููŠ ุฅุชุด
98
00:10:32,050 --> 00:10:34,830
ุงู„ู†ุธุฑูŠุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุจุงู„ู†ุณุจุฉ ู„ู„ู€ subgroups
99
00:10:34,830 --> 00:10:40,430
ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ H non-empty subset of A group G ูŠุจู‚ู‰
100
00:10:40,430 --> 00:10:44,690
ู†ูุณ ุงู„ condition ุงู„ุฃูˆู„ ุชุจุน ู…ู†ุŸ ุชุจุน ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ
101
00:10:44,690 --> 00:10:48,670
ุงู„ุขู† ูƒุงู† ุนู†ุฏูŠ condition ูˆุงุญุฏ ููŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ
102
00:10:48,670 --> 00:10:52,790
ุญุงุตู„ ุถุฑุจ ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ H ุฅุฐุง two
103
00:10:52,790 --> 00:10:56,870
elements ู…ูˆุฌูˆุฏุงุช ููŠ H ู‡ู†ุง ู‡ุฐุง ุงู„ condition ูุตู„ ุนู„ู‰
104
00:10:56,870 --> 00:11:03,060
ุดูƒู„ two conditionsH Subgroup ู…ู† G F and only F
105
00:11:03,060 --> 00:11:09,660
ุญุงุตู„ ุถุฑุจ A ููŠ B ููŠ H ู„ุฃูŠ ุนู†ุตุฑูŠู† A ูˆB ู…ูˆุฌูˆุฏุฉ ููŠ H
106
00:11:09,660 --> 00:11:14,280
ูˆุงู„ู…ุนูƒูˆุณ ู„ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ H ุฅุฐุง ูƒุงู† ู‡ุฐุง ุงู„
107
00:11:14,280 --> 00:11:19,560
element ู…ูˆุฌูˆุฏ ููŠ H ุจุชุทู„ุน ู„ู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ F and only
108
00:11:19,560 --> 00:11:24,840
F ูŠุจู‚ู‰ ุงู„ุจุฑู‡ุงู† ุจูŠุตูŠุฑ ููŠ ุงุชุฌุงู‡ูŠู†ูŠุจู‚ู‰ ุจุฏูŠ ุฃุฎุฏ
109
00:11:24,840 --> 00:11:31,100
ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ assume ุงูุชุฑุถ ุงู† ุงู„ H is
110
00:11:31,100 --> 00:11:38,380
a subgroup ู…ู† G ู…ุฏุงู… subgroup ู…ู† G ู„ูˆ ุฃุฎุฏุช ุฃูŠ two
111
00:11:38,380 --> 00:11:42,820
elements ู…ูˆุฌูˆุฏุฉ ููŠ H ุญุตู„ ุถุฑุจู‡ ููŠ H ูˆู„ุง ู„ุง ู„ุฃู†
112
00:11:42,820 --> 00:11:50,550
ุนู„ูŠู‡ุง binary operation ุจุฏูŠ ูŠุทู„ุน ููŠ H ูŠุจู‚ู‰ thenุงู„ู€
113
00:11:50,550 --> 00:11:58,570
A B ู…ูˆุฌูˆุฏ ููŠ H ุงู„ู€ for all A ูˆ B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ H
114
00:11:58,570 --> 00:12:06,230
and ุงู„ู€ B inverse ู…ูˆุฌูˆุฏ ููŠ H ู„ูƒู„ ุงู„ู€ B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
115
00:12:06,230 --> 00:12:12,310
ููŠ H ูŠุจู‚ู‰ ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ู…ุงููŠุด ููŠู‡ ู…ุดูƒู„ุฉุฅุฐุง ู‡ุฐู‡ ุงู„ู€
116
00:12:12,310 --> 00:12:16,010
subgroup ูŠุจู‚ู‰ ู„ูˆ ุฃุฎุฏุช any two elements ู…ูˆุฌูˆุฏุงุช ููŠ
117
00:12:16,010 --> 00:12:21,070
H ุจุฏูŠ ูŠูƒูˆู† A star B ู…ูˆุฌูˆุฏ ููŠ H ูˆุงู„ุฃู…ุฑ ุงู„ุซุงู†ูŠ ู…ุงุฏุงู…
118
00:12:21,070 --> 00:12:25,950
subgroup ูŠุนู†ูŠ ู‡ูŠ group ุชุญุช ู†ูุณ ุงู„ operation ูŠุจู‚ู‰
119
00:12:25,950 --> 00:12:30,330
ุฃูŠ ุนู†ุตุฑ ููŠู‡ุง ู„ู‡ ู…ุนูƒูˆุณ ุฅุฐุง ุงู„ B inverse ู…ูˆุฌูˆุฏ ููŠู‡ุด
120
00:12:30,330 --> 00:12:35,690
ู„ุงู† ุจุฏู†ุง ู†ู…ุดูŠ ู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ูŠุจู‚ู‰ conversely
121
00:12:35,690 --> 00:12:38,870
assume
122
00:12:38,870 --> 00:12:47,710
ุฃูุชุฑุถุฅู† ุงู„ A B ู…ูˆุฌูˆุฏ ููŠ H ู„ูƒู„ ุงู„ A ูˆ ุงู„ B ุงู„ู„ูŠ
123
00:12:47,710 --> 00:12:55,230
belong to H and ุงู„ B inverse ู…ูˆุฌูˆุฏ ููŠ H ู„ูƒู„ ุงู„ B
124
00:12:55,230 --> 00:12:56,730
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ H
125
00:13:01,210 --> 00:13:07,290
ู…ุงุฐุง ุจุฏู†ุง ู†ุซุจุชุŸ ุงู„ู€ H Subgroup ู…ู…ุชุงุฒ ุฌุฏุง ุทูŠุจ ุจุฏุฃุฌูŠ
126
00:13:07,290 --> 00:13:12,090
ุฃู‚ูˆู„ู‡ ุงู„ุฃูˆู„ุงู†ูŠ ุจุฏูŠ ุฃุญุงูˆู„ ุฃุณุชููŠุฏ ู…ู† ูƒู„ ู…ุนุทูŠุฉ ู…ุนุทูŠุฉ
127
00:13:12,090 --> 00:13:16,390
ุนู†ุฏู†ุง ู‡ู†ุง ุฃู†ุง ุนู†ุฏูŠ ุฃุฎุฏุช elements ุถุฑุจุชู‡ู… ูˆุฌุฏุชู‡ู… ููŠ
128
00:13:16,390 --> 00:13:20,910
H ุฃุฎุฏุช element ููŠ ุงู„ู€ H ูˆุฌุฏุชู‡ ุจุนูƒูˆุณ ููŠ H ุจู‚ูˆู„ูŠ ุชุญุช
129
00:13:20,910 --> 00:13:25,150
ุงู„ two conditions ุงู„ุงุชู†ูŠู† ู‡ุฐูˆู„ ุจุฏูŠ ุฃุซุจุช ุงู† ุงู„ู€ H
130
00:13:25,150 --> 00:13:32,730
is a subgroup ู…ู† ู…ู† ุฌูŠ ุงู„ุฃุตู„ูŠุฉุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ุงู„ุงู†
131
00:13:32,730 --> 00:13:41,810
since ุงู„ B ู…ูˆุฌูˆุฏ ููŠ H ุจู…ุง ุงู† B ู…ูˆุฌูˆุฏ ููŠ H we have
132
00:13:41,810 --> 00:13:49,810
ุงู„ B ุงู†ูุฑุณ ู…ูˆุฌูˆุฏ ููŠ H ุทุจ ู…ู† ูˆูŠู† ุฌุจุช ุงู„ูƒู„ุงู… ู‡ุฐุง ู…ู†
133
00:13:49,810 --> 00:13:53,530
ุงู„ second condition ู…ู† ุงู„ condition ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰
134
00:13:53,530 --> 00:13:59,510
ู‡ุฐุง from the second condition
135
00:14:02,590 --> 00:14:08,590
ุทูŠุจ ุงุญู†ุง ู…ุงุฎุฏูŠู† ู‡ู†ุง ุงู„ a ูˆ ุงู„ b ู…ูˆุฌูˆุฏุฉ ููŠ h ุงู„ุขู†
136
00:14:08,590 --> 00:14:20,190
ุงู„ a ู…ูˆุฌูˆุฏุฉ ููŠ h ูƒูˆูŠุณุŸ and ุงู„ a ููŠ b belongs to h
137
00:14:20,190 --> 00:14:25,850
ู„ูƒู„ ุงู„ู„ูŠ ู‡ูˆ ุงู„ a ูˆ ุงู„ b ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ h implies
138
00:14:25,850 --> 00:14:33,430
ู‡ุฐุง ุงู„ุขู† ู…ูˆุฌูˆุฏ ููŠ h ุตุญุŸูˆ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ H ูˆ ุงู„
139
00:14:33,430 --> 00:14:38,030
condition ู‡ุฐุง ุญุงุตู„ ุถุฑุจ ุงูŠ ุนู†ุตุฑ ู…ู† H ู…ูˆุฌูˆุฏ ููŠ H ุฅุฐุง
140
00:14:38,030 --> 00:14:43,930
ุจุฏูŠ ุฃุถุฑุจ ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ููŠ ุจุนุถ ูŠ ุจุฌุง ุจุฏูŠ ุฃุตูŠุฑ A B
141
00:14:43,930 --> 00:14:51,740
inverse ู…ูˆุฌูˆุฏ ููŠ Hุงู„ุงู† ุงู„ู€ H non-empty ู…ูุนุทูŽู‰ ุฃุฎุฏุช
142
00:14:51,740 --> 00:14:56,400
ุงู„ู€ two elements ู…ูˆุฌูˆุฏุงุช ููŠ H ูˆุฌุฏุช ุญุตู„ ุถุฑุจ ุงู„ุฃูˆู„
143
00:14:56,400 --> 00:14:59,480
ููŠ ุงู„ุชุงู†ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ H ูŠุจู‚ู‰ ุงู„ู€ H is a subgroup
144
00:14:59,480 --> 00:15:05,680
ุจุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‘ูŠ ูŠุนุทูŠู†ุง ุฃู† ุงู„ู€ H is
145
00:15:05,680 --> 00:15:11,660
a subgroup ู…ู† G from the previous
146
00:15:13,190 --> 00:15:17,590
ุงู„ุซูŠูˆุฑูŠู… ูŠุจู‚ู‰ ุจุงู„ู†ุธุฑูŠุฉ ุงู„ุณุงุจู‚ุฉ ู‡ุฐู‡ ุณุงุฑุฉ subgroup
147
00:15:17,590 --> 00:15:28,470
ูˆู‡ูˆ ุงู„ู…ุทู„ูˆุจ ู†ุนุทูŠ ู…ุซุงู„ ุชูˆุถูŠุญูŠ example let
148
00:15:28,470 --> 00:15:39,110
ุงู„ g ุจุฏู‡ุง ุชุณุงูˆูŠ r star ุงู„ู„ูŠ ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ r ู†ุงู‚ุต
149
00:15:39,110 --> 00:15:41,370
ุงู„ zero under
150
00:15:46,570 --> 00:15:56,170
multiplication ุชุญุช ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ little h ุจุฏู‡ุง ุชุณุงูˆูŠ
151
00:15:56,170 --> 00:16:03,510
ูƒู„ ุงู„ุนู†ุงุตุฑ x ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ g ุจุญูŠุซ ุงู† ุงู„ x ุจุฏู‡ุง
152
00:16:03,510 --> 00:16:08,070
ุชุณุงูˆูŠ ูˆุงุญุฏ or ุงู„ x is irrational
153
00:16:11,120 --> 00:16:21,100
ุนุฏุฏ ุบูŠุฑ ู†ุณุจูŠ and ุงู„ k ุจุฏุฃุช ุณุงูˆูŠ ูƒู„ ุงู„ x ุงู„ู„ูŠ
154
00:16:21,100 --> 00:16:26,280
ู…ูˆุฌูˆุฏุฉ ููŠู‡ ุจุญูŠุซ ุงู† ุงู„ x greater than or equal to
155
00:16:26,280 --> 00:16:34,160
oneุงู„ุณุคุงู„ ู‡ู„ ู‡ุฏูˆู„ subgroups ุงู… ู„ุง R
156
00:16:34,160 --> 00:16:44,840
H N K subgroups of
157
00:16:44,840 --> 00:16:50,240
G ู‡ู„ ู‡ุฏูˆู„ subgroups ู…ู† G ูˆู„ุง ู„ุฃ solution
158
00:17:10,540 --> 00:17:14,980
ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„ ู„ูƒู… ู‡ู†ุง ุงู„ุณุช ุงู„ู„ูŠ ุงู†ุง ู„ู„ุง ุฃุณุทุงุฑ ุงู„ู„ูŠ
159
00:17:14,980 --> 00:17:19,540
ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ุจุฏูŠ ุฃุดูŠู„ ู…ู†ู‡ุง ู…ู† ุงู„ zero ูˆ
160
00:17:19,540 --> 00:17:22,940
ุงู„ binary operation ุงู„ู„ูŠ ู‡ูŠ ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุงู„ุนุงุฏูŠุฉ
161
00:17:22,940 --> 00:17:26,500
ุจุฏูŠ ุฃุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุนู„ู‰ ู…ุฌู…ูˆุนุฉ ุงู„ุฃุนุฏุงุฏ ุงู„ุญู‚ูŠู‚ูŠุฉ ุจุนุฏ
162
00:17:26,500 --> 00:17:31,280
ู…ุง ุฃุดูŠู„ ู…ู†ู‡ุง ุงู„ zero ุฃุฎุฏุช ู…ู†ู‡ุง subset ู…ุฌู…ูˆุนุฉ ุฌุฒูŠุฉ
163
00:17:31,280 --> 00:17:35,750
submitted ู…ูŠู† ู‡ูŠ ู‡ุฐู‡ุŸู‡ูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
164
00:17:35,750 --> 00:17:39,650
ู‡ุฐู‡ ุงู„ element ูŠูˆุนุจู‡ ุฅูŠู‡ุŸ ุงู„ X ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุงู„ู„ูŠ
165
00:17:39,650 --> 00:17:43,870
ู‡ูˆ ุงู„ identity element ุชุจุน ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุฃูˆ ุงู„ X
166
00:17:43,870 --> 00:17:50,470
ูŠูƒูˆู† irrational ุทูŠุจ ุงู„ุชุงู†ูŠุฉ ุงู„ K ูƒู„ ุงู„ X ุงู„ู„ูŠ
167
00:17:50,470 --> 00:17:55,390
ู…ูˆุฌูˆุฏุฉ ููŠ G ุจุญูŠุซ ุงู„ X greater than or equal to 1
168
00:17:55,390 --> 00:18:01,390
ุจูŠุณุฃู„ ู‡ู„ ู‡ุฏูˆู„ subgroups ุฃู… ู„ุงุŸ ุจู†ู‚ูˆู„ู‡ ูƒูˆูŠุณ ุงู„ู…ุซุงู„
169
00:18:01,390 --> 00:18:05,790
ู‡ุฐุง ุฌุงูŠ ุจุนุฏ ู…ูŠู†ุŸุจุนุฏ ุงู„ู†ุธุฑูŠุฉ ุงุฐุง ุงู†ุง ุจุฏูŠ ุงุญุงูˆู„ ุงุทุจู‚
170
00:18:05,790 --> 00:18:09,730
ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ูˆุงุดูˆู ุดูˆ ุงู„ู„ูŠ ุจูŠุตูŠุฑ ุงุฐุง ุชุทุจู‚ุช ุงู„ู†ุธุฑูŠุฉ
171
00:18:09,730 --> 00:18:13,270
ุจูŠุจู‚ู‰ ู‡ู… ุงู„ seven groups ุงุฎุชู„ ุงูŠ ุดุฑุท ู…ู† ุงู„ุดุฑูˆุท
172
00:18:13,270 --> 00:18:17,590
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง ูŠุจู‚ู‰ ู…ุงู‡ูŠุงุด seven groups ุทูŠุจ ู„ุฃ
173
00:18:17,590 --> 00:18:21,310
ู„ูˆ ุฌูŠุช ู‡ู†ุง ุนู„ู‰ ุงู„ H ุจูŠู‚ูˆู„ ู„ูŠ ุงู…ุง ุงู„ X ุจุฏูŠ ุงุณูŠู‡
174
00:18:21,310 --> 00:18:25,830
ูˆุงุญุฏ ูˆู‡ูˆ ุงู„ identity elementู‡ุฐุง ู‡ูˆ ูˆุถุน ุงู„ุทุจูŠุนูŠ or
175
00:18:25,830 --> 00:18:29,290
ุงู„ู€ x ูŠุฌุจ ุฃู† ูŠูƒูˆู† irrational ูŠุนู†ูŠ ู‡ุฐุง ุนู†ุฏู…ุง ู†ุญุจ
176
00:18:29,290 --> 00:18:34,410
ุงู„ู€ or ุชุนู†ูŠ ุงู„ union ูŠุจู‚ู‰ ุงู„ุนู†ุงุตุฑ ู‡ู… ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ
177
00:18:34,410 --> 00:18:39,570
ูˆุงู„ irrational number ุชู…ุงู…ุŸ ุฃุฑูŠุฏ ุฃู† ุฃุดูˆู ู‡ู„ ู‡ุฐู‡
178
00:18:39,570 --> 00:18:44,570
closed under multiplication ุจู…ุนู†ู‰ ุฃู†ู‡ ู„ูˆ ุฃุฎุฐุช two
179
00:18:44,570 --> 00:18:50,730
elements ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ group ู‡ู„ ุญุงุตู„ ุถุฑุจู‡ ู…ุง ูŠูƒูˆู†
180
00:18:50,730 --> 00:18:54,500
ููŠ ุงู„ group ูˆู„ุง ู„ุฃุŸุงู„ุณุคุงู„ ู‡ูˆุŒ ุถุฑูˆุฑูŠ ุงู„ู€ two
181
00:18:54,500 --> 00:18:58,560
elements ุงู„ู„ูŠ ุฃุฎุฏู‡ู… ูŠูƒูˆู†ูˆุง ู…ุฎุชู„ูุงุช ุนู† ุจุนุถุŸ ู„ูŠุณ
182
00:18:58,560 --> 00:19:03,600
ุจุงู„ุถุฑูˆุฑุฉุŒ ู…ู…ูƒู† ุงู„ element ูˆ ู†ูุณู‡ุŒ ุชู…ุงู…ุŸ ู…ู…ูƒู† ู…ุดุงู†
183
00:19:03,600 --> 00:19:06,320
ุชุจู‚ู‰ closeุŒ ุณูˆุงุก ุถุฑุจุชู‡ ููŠ ู†ูุณู‡ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุถุฑุจู‡
184
00:19:06,320 --> 00:19:09,860
ููŠ ู†ูุณู‡ ุนุดุฑูŠู† ู…ุฑุฉ ูˆู„ุง ุชุถุฑุจู‡ ููŠ ุฃูŠ element ุขุฎุฑุŒ ุจุฏูŠ
185
00:19:09,860 --> 00:19:15,160
ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ H ุฅู† ูƒุงู†ุช subgroup ุทูŠุจุŒ ุงู„ุขู† ุฃู†ุง
186
00:19:15,160 --> 00:19:22,590
ุฃุฏุนูŠ ุฅู† ุงู„ู€H ู‡ุฐู‡ is not a subgroup ู…ู† ู‡ู†ุงุงู†ุง ุงุฏุนู‰
187
00:19:22,590 --> 00:19:29,570
ุทูŠุจ ุดูˆ ุงู„ุณุจุจ because ุฌุฐุฑ
188
00:19:29,570 --> 00:19:34,390
ุชู„ุงุชุฉ ู…ูˆุฌูˆุฏ ููŠ itch ูˆู„ุง ู„ุง ูŠุง ุดุจุงุจ ู…ุด ุฌุฐุฑ ุชู„ุงุชุฉ
189
00:19:34,390 --> 00:19:42,930
irrational number and ุฌุฐุฑ ุชู„ุงุชุฉ ู…ุถุฑูˆุจ ููŠ ุฌุฐุฑ ุชู„ุงุชุฉ
190
00:19:42,930 --> 00:19:49,110
ุจุฏู‡ ูŠุณุงูˆูŠ ู‚ุฏุฑ ู‡ู„ ุงู„ุชู„ุงุชุฉ irrational number ู„ุฃ ู…ุด
191
00:19:49,110 --> 00:19:57,470
ู…ูˆุฌูˆุฏ ููŠ itchูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฏุช ุนู†ุตุฑูŠู† ู…ู† H ู„ุฌุฃุช ุญุงุตู„
192
00:19:57,470 --> 00:20:03,030
ุถุฑุจู‡ู…ุง ู…ุด ู…ูˆุฌูˆุฏ ููŠ H ู…ุนู†ุงุชู‡ ุงู„ู€ H ู‡ุฐู‡ ู…ุง ู‡ูŠุงุด
193
00:20:03,030 --> 00:20:06,750
subgroup ูŠุฎุชู„ ุงู„ condition ุงู„ุฃูˆู„ ููŠ ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ
194
00:20:06,750 --> 00:20:13,070
ุฐูƒุฑู†ุงู‡ุง ู‚ุจู„ ู‚ู„ูŠู„ ุงู„ุฃู† ุฃู†ุง ุฏู‡ ุฃุฏุนูŠ ูƒุฐู„ูƒ ุฃู† ุงู„ู€ H is
195
00:20:13,070 --> 00:20:15,410
not a subgroup ู…ู† G
196
00:20:19,030 --> 00:20:27,950
ุงู„ุณุคุงู„ ู„ู…ุงุฐุงุŸ ู„ุฃู† ุงูŠ
197
00:20:27,950 --> 00:20:37,690
element ูŠุฃุชูŠ ููŠ ุจุงู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ูƒูŠู‡ ู„ุฃู† ุงู„ุณุช ู‡ุฐู‡
198
00:20:37,690 --> 00:20:43,930
ู…ูˆุฌูˆุฏุฉ ููŠ ูƒูŠู‡ ู„ุฃู† ุนู†ุงุตุฑ ูƒูŠู‡ ู…ู† ูˆุงุญุฏ ูˆุงุทู„ุน
199
00:20:46,730 --> 00:20:53,790
ุฃู†ุง ุฑูˆุญุช ุฃุฎุฏุช ุงู„ุณุชุฉ ู…ูˆุฌูˆุฏุฉ ู‡ุงุฏุฆุฉ ููŠ ูƒุชุฑ ุดูˆ ู…ุนูƒูˆุณ
200
00:20:53,790 --> 00:21:00,660
ุงู„ุณุชุฉุŸ ุณูุฏุณุงู†ู‡ ุถุฑุจ ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุงู„ุนุงุฏูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง
201
00:21:00,660 --> 00:21:06,680
ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู†ู‡ ู…ุนูƒูˆุณ ุงู„ุณุชุฉ ู„ูŠู‡ ุณุชุฉ inverse ูŠุณุงูˆูŠ
202
00:21:06,680 --> 00:21:10,320
ูˆุงุญุฏ ุนู„ู‰ ุณุชุฉ ู„ุฅู†ู‡ ุณุชุฉ ููŠ ุณูุฏุณ ู‡ูˆ ุงู„ู„ูŠ ุจุงู„ุณุงูˆูŠุฉ
203
00:21:10,320 --> 00:21:16,680
ูˆุงุญุฏุฉ ุตุญูŠุญ ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ ุงู„ุณูุฏุณ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ูƒุŸ ู„ุฃ
204
00:21:16,680 --> 00:21:22,540
ู„ุฅู†ู‡ ูˆุงุญุฏ ูˆุงุทู„ุนู‡ุฐุง ุฃู‚ู„ ู…ู† ุงู„ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ุฐุง does not
205
00:21:22,540 --> 00:21:27,540
belong to K ู…ุนู†ุงุชู‡ ุงุฎุชู„ุช ุงู„ุดุฑุท ุงู„ุซุงู†ูŠ ุงุฐุง ุงุฎุฏุช
206
00:21:27,540 --> 00:21:32,540
element ุงู„ H ู„ู‚ูŠุชู‡ ู…ุนูƒูˆุณู‡ ู…ุง ู‡ูˆุด ููŠ H ุงุฐุง ู„ุง ูŠู…ูƒู†
207
00:21:32,540 --> 00:21:38,220
ู„ู‡ุฐู‡ ุงู„ุณุช ุงูˆ ู‡ุฐู‡ ุงู† ุชูƒูˆู† subgroup ู…ู„ูŠ ุฌุฑูˆุจ ุงู„ู„ูŠ
208
00:21:38,220 --> 00:21:42,940
ู…ูˆุฌูˆุฏุฉ ู†ูŠุฌูŠ ู†ุงุฎุฏ ุงู„ู†ุธุฑูŠุฉ ุฑู‚ู… ุชู„ุงุชุฉ ุนู„ู‰ ุงู„
209
00:21:42,940 --> 00:21:53,460
subgroups ุจูŠู‚ูˆู„ ุงู„ Hุจุง non-empty ู†ูุณ ุงู„ condition
210
00:21:53,460 --> 00:22:00,900
ู‡ูˆ ู‡ูˆ ููŠ ุงู„ู†ุธุฑูŠุงุช ุงู„ุซู„ุงุซ non-empty ุจุณ ุฃุถุงูู†ุง ุนู„ูŠู‡ุง
211
00:22:00,900 --> 00:22:06,180
finite subset
212
00:22:06,180 --> 00:22:09,320
of
213
00:22:09,320 --> 00:22:11,480
a group G
214
00:22:18,370 --> 00:22:32,950
ุซู… ุงู„ู€ H ู‡ูˆ ู…ุฌู„ุฏ ู…ู† G ุฅุฐุง ูƒุงู† ุงู„ู€ H ู…ู‚ูู„
215
00:22:32,950 --> 00:22:40,370
ุชุญุช ุนู…ู„
216
00:22:40,370 --> 00:22:43,650
G
217
00:23:02,130 --> 00:23:09,910
ู…ุฑุฉ ุชุงู†ูŠุฉ ุจู‚ูˆู„ ุฌุงู„ูŠ H non-empty ุฒุงุฏ ุนู„ู‰ ู†ุธุฑูŠุชูŠู†
218
00:23:09,910 --> 00:23:16,190
ุงู„ุฌุงู„ูŠ finite subset ูŠุจู‚ู‰ ุนุฏุฏ ุงู„ู…ุญุฏูˆุฏ ููŠ ู‡ุฐู‡ ุงู„ุณุช
219
00:23:16,190 --> 00:23:21,470
ุนุฏุฏ ุงู„ subset ุงู„ู„ูŠ ุฃุฎุฏุชู‡ ู…ุญุฏูˆุฏ ุชู…ุงู… ุจูŠู‚ูˆู„ ู„ุฐู† ุงู„ H
220
00:23:21,470 --> 00:23:26,010
is a subgroup ุฅุฐุง ูƒุงู†ุช ุงู„ H closed under the
221
00:23:26,010 --> 00:23:29,510
operation ุดูˆ ูŠุนู†ูŠ closed under the operation ูŠุนู†ูŠ
222
00:23:29,510 --> 00:23:35,110
ุงู„ condition ู‡ุฐุงู‡ุฐุง ูŠุนู†ูŠ ุฃู† ุงู„ู€ H ู…ู‚ูู„ ุชุญุช ุงู„ู€
223
00:23:35,110 --> 00:23:40,570
operation ูŠุนู†ูŠ A*)B ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ H ู„ูƒู„ ุงู„ู€ A ูˆุงู„ู€
224
00:23:40,570 --> 00:23:45,630
B ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ H ูŠุจู‚ู‰ ููŠ ุงู„ู…ู‚ุงุจู„ ุดุงู„ ุงู„ condition
225
00:23:45,630 --> 00:23:51,130
ุงู„ุชุงู†ูŠ ู‡ุฐุง ูˆุงุณุชุนุงุฏ ุนู†ู‡ ุจู…ูŠู† ุจุฃู† ุงู„ู€ H is finite
226
00:23:51,130 --> 00:23:56,290
ุฅุฐู† ู„ูˆ ูƒุงู†ุช ุงู„ group finite ูŠุง ุดุจุงุจ ูˆ ุงู„ subsidy
227
00:23:56,290 --> 00:24:00,530
ุงู„ู„ูŠ ุฃุฎุฏุชู‡ ู…ู† ุงู„ group ูƒุงู† ุฅุฌุจุงุฑูŠ ู‡ูŠุตูŠุฑ finite
228
00:24:01,220 --> 00:24:06,040
ู…ุธุจูˆุท ูŠุจู‚ู‰ ูƒุงู† ุงู„ subgroup non-empty ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช
229
00:24:06,040 --> 00:24:12,060
ู‡ูŠูƒูˆู† finite ูŠุนู†ูŠ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠู‡ ุนุฏุฏุง ู…ุญุฏูˆุฏุง ุจุฏูŠ
230
00:24:12,060 --> 00:24:16,580
ุงุซุจุช ุงู† ู‡ุฐุง ุงู„ subgroup ูŠูƒููŠ ุงู†ู‡ ุชุงุฎุฏ two elements
231
00:24:16,580 --> 00:24:22,920
ู…ูˆุฌูˆุฏุงุช ููŠ H ูˆ ุชุซุจุช ุงู† ุญุงุตู„ ุถุฑุจู‡ู…ุง ู…ูˆุฌูˆุฏ ููŠ H ุทุจู‚ุง
232
00:24:22,920 --> 00:24:28,800
ู„ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุงู† ุชู… ุฐู„ูƒ ูŠุจู‚ู‰ ุงู„ H is a subgroupูŠุจู‚ู‰
233
00:24:28,800 --> 00:24:34,380
ุงู„ุขู† ุงุญู†ุง ุจุฏุงูŠุฉ ุงู‚ูˆู„ู‡ ุงูุชุฑุถ ุงู† ุงู„ a ูˆ ุงู„ b ู…ูˆุฌูˆุฏ
234
00:24:34,380 --> 00:24:45,220
ููŠ h and ุงู„ a ูˆ ุงู„ b ู…ูˆุฌูˆุฏ ููŠ h ุชู…ุงู… ูŠุจู‚ู‰ ุงู†ุง ุงุฎุฏ
235
00:24:45,220 --> 00:24:53,580
ุงูŠ ุนู†ุตุฑูŠู† ููŠ ุฌูŠ ูˆ ุงูุฑุถ ุงู†ู‡ ุญุงุตู„ ุถุงุฑุจู‡ู…ูŠุนู†ูŠ ู‡ุฐุง
236
00:24:53,580 --> 00:24:58,840
ุงู„ู„ูŠ ู…ุนู†ุงู‡ ุงู† ุงู„ H is closed under the operation
237
00:24:58,840 --> 00:25:05,320
ุชู…ุงู…ุŸ ูŠุจู‚ู‰ ู‡ูŠ ุงู„ู…ุนู†ู‰ ุชุจุนู‡ุง ุทูŠุจ ุจูŠู‚ูˆู„ู„ูŠ ุงุซุจุช ุงู† ู‡ุฐู‡
238
00:25:05,320 --> 00:25:10,780
ุนุจุงุฑุฉ ุนู† ุงูŠู‡ุŸ ุนู† ุงู„ subgroup ุจู‚ูˆู„ู‡ ูƒูˆูŠุณ ูŠุจู‚ู‰ ุงู„ุขู†
239
00:25:10,780 --> 00:25:17,340
ุงู†ุง ุจุฏูŠ ุงุญุงูˆู„ ุงุทุจู‚ ุงู„ู†ุธุฑูŠุฉ ุงู„ุฃูˆู„ู‰ ู…ุซู„ุง ูƒูŠู ุงู„ู†ุธุฑูŠุฉ
240
00:25:17,340 --> 00:25:17,880
ุงู„ุฃูˆู„ู‰ุŸ
241
00:25:22,290 --> 00:25:28,350
ุฃูˆ ุญุงุตู„ ุถุฑุจ ุงู„ุฃูˆู„ ููŠ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ ููŠ H ุฃูˆ ุญุงุตู„
242
00:25:28,350 --> 00:25:35,170
ุงู„ุถุฑุจ ู…ูˆุฌูˆุฏ ููŠ H ูŠูƒููŠู†ูŠ ุฃู† ุฃุซุจุช ุฃู† ู…ุนูƒูˆุณ ุฃูŠ ุนู†ุตุฑ
243
00:25:35,170 --> 00:25:39,030
ู…ูˆุฌูˆุฏ ููŠ H ุฅุฐุง ุทุจู‚ู‹ุง ู„ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุชุตุจุญ ู‡ุฐู‡
244
00:25:39,030 --> 00:25:41,390
subgroup ู…ูˆุฌูˆุฏุฉ
245
00:25:44,750 --> 00:25:49,710
ูŠุจู‚ู‰ ุงู„ู€ condition ุงู„ุฃูˆู„ ู…ุชุญู‚ู‚ ุถุงูŠู„ ุนู„ูŠู‡ ุฃุซุจุช ู…ูŠู†
246
00:25:49,710 --> 00:25:54,690
ุงู„ condition ุงู„ุชุงู†ูŠ ุจู†ูƒูˆู† ุฎู„ุตู‡ ูŠุนู†ูŠ ู„ูˆ ุฃุฎุฏ ุฃูŠ ุนู†ุตุฑ
247
00:25:54,690 --> 00:25:59,350
ู…ูˆุฌูˆุฏ ููŠ itch ุฃุซุจุช ุฃู†ู‡ ู…ุนูƒูˆุณ ู…ูˆุฌูˆุฏ ููŠ itch ุจู‚ุฏุฑ
248
00:25:59,350 --> 00:26:05,430
ุฃุทุจู‚ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ู…ุจุงุดุฑุฉ ู„ุฐู„ูƒ ู‡ุฑูˆุญุถ ุฃูŠ ุนู†ุตุฑ ู…ูˆุฌูˆุฏ
249
00:26:05,430 --> 00:26:10,630
ูˆูŠู† ููŠ itch ูˆุดูˆู ูˆูŠู† ุจุชูˆุฌู‡ ุงู„ุฏู†ูŠุงูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡
250
00:26:10,630 --> 00:26:17,070
little a ู…ูˆุฌูˆุฏ ููŠ itch ู…ู† ุงู„ a ุฃู†ุง ู…ุด ุนุงุฑู ูŠุจู‚ู‰
251
00:26:17,070 --> 00:26:23,590
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ if ุงู„ a ุจุฏุฑุณุงู‡ ุงู„ identity ู„ูˆ ุทู„ุน
252
00:26:23,590 --> 00:26:34,150
ู„ุฃุฎุฏุชู‡ ุนุดูˆุงุฆูŠุง ู‡ุฐุง ู‡ูˆ ุงู„ identity then ุฃุฎุฏุชู‡
253
00:26:34,150 --> 00:26:41,590
ููŠ itch ุทู„ุน ู…ู† ุงู„ identity ูŠุจู‚ู‰ thenุงู„ู€ A Inverse
254
00:26:41,590 --> 00:26:46,570
ู…ูˆุฌูˆุฏ
255
00:26:46,570 --> 00:26:51,450
ููŠ H ูŠุนู†ูŠ ุงู†ู‡ ุงุชุทุจู‚ ู…ู† ุงู„ condition ุงู„ุชุงู†ูŠ
256
00:26:51,450 --> 00:26:58,680
ูˆุจุงู„ุชุงู„ูŠ ุตุงุฑุช ุงู„ู€ H is AูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู† ุงู„
257
00:26:58,680 --> 00:27:03,600
h sub group ู…ู† ุฌูŠู‡ ู‡ุฐุง ู„ูˆ ุทู„ุน ุงู„ element ุงู„ู„ูŠ ู‡ูˆ
258
00:27:03,600 --> 00:27:11,280
ุงู„ identity ุทูŠุจ ู„ูˆ ู…ุง ุทู„ุนุด ูŠุจู‚ู‰ f ุงู„ a ู„ุง ุชุณุงูˆูŠ ุงู„
259
00:27:11,280 --> 00:27:18,120
a ุจู…ุนู†ู‰ ุงุฎุฑ ู„ุง ูŠู…ูƒู† ูŠูƒูˆู† ุงู„ order ู„ู„ a ูˆุงุญุฏ ุตุญูŠุญ
260
00:27:18,120 --> 00:27:22,330
ู„ุงู† ู„ูˆ ูƒุงู† ูˆุงุญุฏ ุตุญูŠุญ ุจุทู„ุน ูุนู„ุงุทูŠุจ ุงุญู†ุง ููŠ ุนู†ุฏู†ุง
261
00:27:22,330 --> 00:27:28,470
ู…ุนู„ูˆู…ุฉ ุญุชู‰ ุงู„ุขู† ู„ู… ู†ุณุชุฎุฏู…ู‡ุง ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู†ุŸ finite
262
00:27:28,470 --> 00:27:34,170
ูŠุนู†ูŠ ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ููŠ H ู…ุญุฏูˆุฏ ุทุจ ุงุณุชู†ู‰ ุดูˆูŠุฉ ุงูŠุด
263
00:27:34,170 --> 00:27:39,610
ุจูŠู‚ูˆู„ ู‡ู†ุง ุงู†ู‡ ุญุงุตู„ ุถุฑุจ ุงูŠ ุนุฏุฏูŠู† ู…ู† H ู…ูˆุฌูˆุฏ ููŠ H
264
00:27:39,610 --> 00:27:46,870
ุงู„ุณุคุงู„ ู‡ูˆ ู‡ู„ A ุชุฑุจูŠุน ู…ูˆุฌูˆุฏ ููŠ HุŸ ู„ุฃู†ู‡ ุงูŠู‡ ููŠู‡ุŸ ุทุจ
265
00:27:46,870 --> 00:27:52,680
ู‡ู„ A ุชูƒูŠูŠุจ ู…ูˆุฌูˆุฏ ููŠ HุŸู„ุฃู† a ุชุฑุจูŠุฉ ููŠ h ูˆ a ููŠ h
266
00:27:52,680 --> 00:27:57,940
ูŠุจู‚ู‰ a ุชุฑุจูŠุฉ ู‡ู„ a ุฃุณ ุฃุฑุจุนุฉ ู…ูˆุฌูˆุฏ ููŠ a ูƒู„ a ุฃุฑุจุนุฉ
267
00:27:57,940 --> 00:28:04,500
ุฃูˆ ุฃูŠ ุฃุณ ูŠุทู„ุน ู…ูˆุฌูˆุฏ ููŠ h ูŠุจู‚ู‰ f ููŠ a ู„ุง ุชุณุงูˆูŠ ุงู„ a
268
00:28:04,500 --> 00:28:16,000
then according ุทุจู‚ุง to the condition
269
00:28:17,640 --> 00:28:24,480
ุทุจู‚ุง ู„ู„ุดุฑุท ุงู† ุงู„ a ุจูŠ ู…ูˆุฌูˆุฏ ููŠ h ู„ูƒู„ ุงู„ a ูˆ ุงู„ b
270
00:28:24,480 --> 00:28:32,040
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ h ุจู‚ูˆู„ we have ุงู† ุงู„ a ูˆ ุงู„ a ุชุฑุจูŠุน
271
00:28:32,040 --> 00:28:40,960
ูˆ ุงู„ a ุชูƒูŠุจ ูˆู…ุดูŠ ู„ุฌุฏ ู…ุง ุจุฏูƒ are all in h ูƒู„ู‡ู… ู‡ุฐูˆู„
272
00:28:40,960 --> 00:28:48,250
ู…ูˆุฌูˆุฏุงุช ููŠ ุงูŠู‡ุŸ ู…ูˆุฌูˆุฏุงุช ููŠ h ู…ู…ุชุงุฒ ุฌุฏุงุทูŠุจ ุงู„ุงู† ุงู„
273
00:28:48,250 --> 00:28:53,990
H finite ุงูุชุฑุถ ููŠู‡ุง ุฎู…ุณูŠู† ุนู†ุตุฑ ูˆุงู†ุง ุญุงุทูŠุช ุง
274
00:28:53,990 --> 00:29:02,030
ูˆุงู„ุณุจุนูŠู† ุจุฏูŠ ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠู‡ุง ูˆู„ุง ู„ุงุŸ ู„ูŠุดุŸ ู…ุด ุงู„ H
275
00:29:02,030 --> 00:29:07,870
ุนุฏุฏ ุงู„ุนู†ุงุตุฑ ุฎู…ุณูŠู† ูŠุจู‚ู‰ ุนู†ุตุฑ ุญุงุทูŠุช ูู„ูˆุณ ุนุดุฑุฉ ูˆ ุงู„ู„ู‡
276
00:29:07,870 --> 00:29:12,130
ุนุดุฑูŠู† ูˆ ุงู„ู„ู‡ ุฎู…ุณู…ูŠุฉ ุจุฏูŠ ูŠูƒูˆู† ููŠู‡ุงู…ุธุจูˆุท ูˆู„ุง ู„ุฃ ุจุณ
277
00:29:12,130 --> 00:29:17,170
ู…ุงู‡ูŠ ุงู„ู„ูŠ ุจุฏู‰ ูŠุญุตู„ ุงู† ุงู„ a ุณุจุนูŠู† ู‡ุฐู‡ ู…ุชุณุงูˆูŠ ุงุนุดุฑูŠู†
278
00:29:17,170 --> 00:29:22,090
ู…ุธุจูˆุท ูˆู„ุง ู„ุฃ ุฒู‰ ุงูŠู‡ ุฒู‰ ุนู…ู„ูŠุฉ ุงู„ู…ู‚ูŠุงุณ a modulo n
279
00:29:22,090 --> 00:29:26,210
ุจุนุฏ ู…ุง ุฒูŠุช ุงู„ n ูƒู„ู‡ ุจุฑุฌุน ุจุตูŠุฑ ููŠู‡ุง ู…ุธุจูˆุท ูˆู„ุง ู„ุฃ
280
00:29:26,210 --> 00:29:31,240
ุทูŠุจ ุงูŠู‡ ุงู„ู„ูŠ ุญูƒู…ู†ุง ูŠุง ุนุฒูŠุฒูŠ ู„ุฃู† ู‡ุฐู‡ finiteูุงูŠู†ูŠุช
281
00:29:31,240 --> 00:29:36,980
ูŠุจู‚ู‰ a ู…ุฑููˆุนุฉ ู„ุฃูŠ ุฃุณ ุนู†ุฏูƒ ุจุฏูŠ ูŠูƒูˆู† ู…ู† ุถู…ู† ู‡ุฏูˆู„ ุจุฏูŠ
282
00:29:36,980 --> 00:29:42,520
ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ู…ูˆุฌูˆุฏ ููŠ ุฅุชุด ุดุฆู†ุง ุฃู… ุฃุจูŠู†ุง ุชู…ุงู…
283
00:29:42,520 --> 00:29:50,640
ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฐุง ู…ุนู†ุงุชู‡ these elements
284
00:29:50,640 --> 00:29:54,020
are
285
00:29:54,020 --> 00:29:59,420
not all disjoint
286
00:30:00,850 --> 00:30:04,530
ู…ุด ูƒู„ ู‡ุฏูˆู„ ุจุฏู‡ู… ูŠูƒูˆู†ูˆุง ูƒู„ ูˆุงุญุฏ ู…ุฎุชู„ู ุนู† ุงู„ุชุงู†ูŠ
287
00:30:04,530 --> 00:30:10,110
ู„ุงุฒู… ุฃู„ุงุฌูŠ ุจุนุถู‡ู… ุงู„ุฃุณ ุชุจุนู‡ ู…ุฎุชู„ู ุนู† ุงู„ุชุงู†ูŠ ู„ูƒู†
288
00:30:10,110 --> 00:30:14,710
ู…ูˆุฌูˆุฏ ููŠ H ู…ุด
289
00:30:14,710 --> 00:30:23,630
ูƒู„ู‡ู… ูŠุจู‚ู‰ let ุงู„ A I ุจุฏู‡ ูŠุณุงูˆูŠ A J ู…ุซู„ุง ุงูุชุฑุถ ุงู†
290
00:30:23,630 --> 00:30:30,540
ุงู„ I ุจูŠุณุงูˆูŠ ุงู„ J ูˆ ุงู„ I ู‡ุฐูŠ ุฃูƒุจุฑ ู…ู† Jู‡ูŠ ุงู„ูƒุจูŠุฑุฉ
291
00:30:30,540 --> 00:30:39,920
ููŠู‡ู… ุทูŠุจ ู‡ุฐุง ูŠุนู†ูŠ ู„ูˆ ุถุฑุจุช ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ
292
00:30:39,920 --> 00:30:50,320
ู…ุนูƒูˆุณ ู‡ุฐู‡ ูŠุจู‚ุงุด ุจุฏุฑุณูŠ ูŠุนู†ูŠ AI AJ inverse ุจุฏุฑุณุงูˆูŠ
293
00:30:50,320 --> 00:30:54,380
AJ AJ inverse
294
00:30:56,640 --> 00:31:03,440
ู‡ุฐุง ู…ุนู†ุงู‡ a i ููŠ a ุณุงู„ุจ j ูŠุณุงูˆูŠ ุงู„ element ููŠ
295
00:31:03,440 --> 00:31:10,980
ู…ุนูƒูˆุณู‡ ูƒู… ูŠุนุทูŠู†ุง ุงู„ identity ูŠุจู‚ู‰ ู‡ุฐุง ูŠุนุทูŠู†ุง a i
296
00:31:10,980 --> 00:31:18,760
minus j ูŠุณุงูˆูŠ ุงู„ identity element ุทุจ ุงู„ุณุคุงู„ ู‡ูˆ ู„ู…ุง
297
00:31:18,760 --> 00:31:24,880
ุฃู‚ูˆู„ i ู†ุงู‚ุต j ู…ุนู‚ูˆู„ ูŠูƒูˆู† ุงู„ูุฑู‚ ุจูŠู†ู‡ู… ูˆุงุญุฏ ูŠุง ุดุจุงุจ
298
00:31:28,780 --> 00:31:36,160
ู„ูˆ ูƒุงู† ุงู„ูุฑู‚ ุจูŠู†ู‡ู… ูˆุงุญุฏ ู„ุฃุตุจุญ
299
00:31:36,160 --> 00:31:42,500
A ุฃุณ ูˆุงุญุฏ ูŠุณูˆู‰ ุงู„ identity ุจูŠุทู„ุน ู…ู† ุฃู† ุงู„ A ู‡ูˆ ุจุงู„
300
00:31:42,500 --> 00:31:48,130
E ู„ูƒู† ุฃู†ุง ุดุฑู‚ุฅู† ุงู„ู€ A ู„ุง ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ุงู„ู€ E ุฅุฐุง ู„ุง
301
00:31:48,130 --> 00:31:53,270
ูŠู…ูƒู† ุฃู† ูŠูƒูˆู† ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู…ุง ูˆุงุญุฏ ุตุญูŠุญ ูŠุจู‚ู‰
302
00:31:53,270 --> 00:31:59,330
ุงู„ูุฑู‚ ููŠู…ุง ุจูŠู†ู‡ู… ู…ุงู„ู‡ ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ูŠุจู‚ู‰ ุงู„ I ู†ู‚ุต
303
00:31:59,330 --> 00:32:04,830
ุงู„ J ุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ุนู„ู‰ ุงู„ุฃู‚ู„ ุจูŠูƒูˆู† ุงุชู†ูŠู† ุชู„ุงุชุฉ
304
00:32:04,830 --> 00:32:12,660
ุฃุฑุจุนุฉ ุงู„ุงุฎุฑูŠู†ุจู…ุง ุฃู† ุงู„ู€ I ู†ุงู‚ุต D ุฃูƒุจุฑ ู…ู† 1 ูŠุจู‚ู‰
305
00:32:12,660 --> 00:32:19,580
ู‡ุฐุง ุจุทู„ ูŠุตูŠุฑ ุงู„ู€ identity ุจุทู„ ุจู„ุงุด ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†
306
00:32:19,580 --> 00:32:28,240
ุงู„ู€ A I minus G ูŠุณุงูˆูŠ ุงู„ู€ A ููŠ ุงู„ู€ A I minus G
307
00:32:28,240 --> 00:32:35,100
minus ุงู„ู€ 1 ุฎู„ุชู‡ A ุฃุณ ูˆุงุญุฏ ููŠ ุงู„ู€ A ุฃุณ I ู†ุงู‚ุต D
308
00:32:35,100 --> 00:32:41,980
ู†ุงู‚ุต ูˆุงุญุฏุชู…ุงู…ุŸ ู…ุธุจูˆุท ู‡ูŠูƒุŸ ุทู„ุนุช ู…ู†ู‡ู… ุงูŠู‡ ูู‚ุท ูˆ ู„ุง
309
00:32:41,980 --> 00:32:48,860
ุบูŠุฑ ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ุจุณูˆู‰ ุฌุฏุงุด ุงู„ identity elementุŒ
310
00:32:48,860 --> 00:32:55,050
ู…ุธุจูˆุทุŸุทูŠุจ ู„ูˆ ุฑูˆุญุช ุถุฑุจุช ููŠ ุงู„ A inverse ุถุฑุจุช
311
00:32:55,050 --> 00:33:01,330
ุงู„ู…ุนุงุฏู„ุฉ ู‡ุฐู‡ ููŠ ุงู„ A inverse ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ูŠุจู‚ู‰
312
00:33:01,330 --> 00:33:08,450
ุงูŠุด ุจูŠุตูŠุฑ ุนู†ุฏู†ุง A I ู†ุงู‚ุต D ู†ุงู‚ุต 1 ูŠุณูˆู‰ ุงู„ A
313
00:33:08,450 --> 00:33:17,530
inverse ุงู„ุณุคุงู„ ู‡ูˆ ู‡ุฐุง ู‡ู‡ู‡ ู‡ูˆ ุนู†ุตุฑ ู…ู† ู‡ุฐูˆู„ ูˆู„ุง ู„ุง
314
00:33:20,970 --> 00:33:26,050
ู‡ูˆ ูˆุงุญุฏ ู…ู†ู‡ู… ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ู„ุฃู† ุงู„ู€H finite ูŠุจู‚ู‰ ู‡ุฐุง
315
00:33:26,050 --> 00:33:33,150
ุงู„ุนู†ุตุฑ ู„ุงุฒู… ูŠูƒูˆู† ูˆุงุญุฏ ู…ู† ู‡ุฐูˆู„ ู‡ุฐุง ู…ุนู†ุงู‡ ุงู† ุงู„ู€A I
316
00:33:33,150 --> 00:33:40,130
minus D minus 1 belongs to H ู…ุฏุงู† belongs to H
317
00:33:40,130 --> 00:33:47,170
ูŠุจู‚ู‰ ุงู„ู€A inverse ู…ูˆุฌูˆุฏ ููŠ H ูŠุจู‚ู‰ ุชุญู‚ู‚ ุงู„
318
00:33:47,170 --> 00:33:51,130
condition ุงู„ุซุงู†ูŠ ูˆู„ุง ู„ุฃุŸูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ by the
319
00:33:51,130 --> 00:33:55,850
above theorem ู‡ุฐูŠ ุตุงุฑุช ุงู„ sub group ูŠุจู‚ู‰ ู‡ู†ุง ุจุงุฌูŠ
320
00:33:55,850 --> 00:34:04,250
ุจู‚ูˆู„ู‡ by the above theorem ุงู„
321
00:34:04,250 --> 00:34:07,670
H is a sub group ู…ู† ุฌูŠ
322
00:34:14,000 --> 00:34:18,700
ุนุดุงู† ุงู„ู„ูŠ ูƒุงู† ุณุงุฑุญ ูŠุงุฎุฏ ุจุงู„ู‡ ูƒูˆูŠุณ ุงู„ู„ูŠ ูุงุชุชู‡ ุญุงุฌุฉ
323
00:34:18,700 --> 00:34:25,150
ูŠูู‡ู…ู‡ุง ุฎู„ูŠ ุจุงู„ูƒ ูƒุฏู‡ุฃู†ุง ู„ู… ุฃุฌุฏ non-empty ู…ุซู„
324
00:34:25,150 --> 00:34:29,530
ุงู„ู†ุธุฑูŠุชูŠู† ุงู„ู„ูŠ ูุงุชูˆุง ุฒูŠุงุฏุฉ ุนู„ู‰ ุฐู„ูƒ ุงู„ subset ุงู„ู„ูŠ
325
00:34:29,530 --> 00:34:35,410
ุฃุฎุฏุช ุนุฏุฏ ุนู†ุงุตุฑู‡ุง finite ุนุฏุฏุง ู…ุญุฏูˆุฏุง ู„ูˆ ุฃุฎุฏุช two
326
00:34:35,410 --> 00:34:39,550
elements ู…ูˆุฌูˆุฏุฉ ููŠ ุงุชุด ูˆู„ุง ุฌูŠุช ุญุงุตู„ ุถุฑุจู‡ู…ุง ู…ูˆุฌูˆุฏุฉ
327
00:34:39,550 --> 00:34:42,510
ููŠ ุงุชุด ุชุญุช ู‡ุฐุง ุงู„ condition ุฃูˆ ุชุญุช ุงู„ condition
328
00:34:42,510 --> 00:34:46,290
finite ุงู„ู„ูŠ ุงุชุด ุจุชุจู‚ู‰ ุงู„ subgroup ู…ู† G ู‡ุฐุง ุงู„ู„ูŠ
329
00:34:46,290 --> 00:34:51,850
ุนุงูŠุฒูŠู† ู†ุซุจุชู‡ูŠุจู‚ู‰ ุงู†ุง ุนู†ุฏูŠ ู…ุนุทูŠุงุช ุงุชู†ูŠู† H non-empty
330
00:34:51,850 --> 00:34:55,950
ุฒูŠ ุงู„ู„ูŠ ุฌุงุจ ุงู„ู‡ุฏุง ู„ูƒู† ุงู„ non-empty ู‡ุฐุง finite
331
00:34:55,950 --> 00:35:00,910
ูˆุญุงุตู„ ุถุฑุจ ุงูŠ ุนู†ุตุฑ ู…ู† H ุจู„ุง G ููŠ H ู‡ุฐุง ุงู„ condition
332
00:35:00,910 --> 00:35:05,250
ุงู„ุซุงู†ูŠ ุชุญุช ุงู„ two condition ุจุซุจุช ุงู† ู‡ุฐู‡ ุงู„ุณุงุจุน
333
00:35:05,250 --> 00:35:08,930
ุฌุฑูˆุณ ู‚ู„ุช ู„ู‡ ู…ุงุดูŠ ุงูุชุฑุถ ุงู† ุงู„ A ูˆ ุงู„ B ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„
334
00:35:08,930 --> 00:35:11,750
H ูˆ ุงู„ A ูˆ ุงู„ B ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ H ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุนุทูŠุงุช
335
00:35:16,010 --> 00:35:20,050
ุฎูุฏ element ู…ูˆุฌูˆุฏ ููŠ H
336
00:35:23,260 --> 00:35:27,300
ูŠุจู‚ู‰ ุฅุฐุง ูƒุงู† ุจุงู„ identity ูŠุจู‚ู‰ ุงู„ identity ู‡ูˆ
337
00:35:27,300 --> 00:35:34,400
ู…ุนูƒูˆุณ ู„ู†ูุณู‡ ุฅุฐุง ุงู„ A inverse ู‡ูˆ ุงู„ A ูˆุจุงู„ุชุงู„ูŠ ุงู„ A
338
00:35:34,400 --> 00:35:38,820
inverse ู‡ูŠ ุงู„ A inverse ู…ูˆุฌูˆุฏุฉ ููŠ H ูŠุจู‚ู‰ ุทุจู‚ ุงู„
339
00:35:38,820 --> 00:35:43,260
condition ุงู„ุชุงู†ูŠ ุงู„ุชุงุจุน ู„ู†ุธุฑูŠุฉ H ุงู„ุตุญูŠุญุฉู‡ุฐุง ู„ูˆ ูƒุงู†
340
00:35:43,260 --> 00:35:48,880
ุจูƒู„ ุจุณุงุทุฉ ุฃู† A ุชุณุงูˆูŠุฉ ุทุจ ู„ูˆ ูƒุงู†ุช ุงู„ A ู„ุง ุชุณุงูˆูŠ ุงู„
341
00:35:48,880 --> 00:35:53,640
EุŒ ุฅูŠุด ุจุฏูƒ ุชุนู…ู„ุŸ ุจู‚ูˆู„ ุฃู‡ ุทุจู‚ุง ู„ู…ู† ุงู„ condition
342
00:35:53,640 --> 00:35:59,260
ู„ุฃู†ู‡ ุญุงุตู„ ุถุฑุจ ู„ุฃูŠ two elements ููŠ H ู‡ูˆ ู…ูˆุฌูˆุฏ ููŠ HุŒ
343
00:35:59,260 --> 00:36:02,720
ุจุฏูŠ ุฃุฌูŠ ู„ู„ A ูˆ ุฃุถุฑุจู‡ ููŠ ู†ูุณู‡ ูŠุนู†ูŠ ุจุฏูŠ ุฃุถุฑุจู‡ ููŠ
344
00:36:02,720 --> 00:36:06,260
ู†ูุณู‡ุŒ ุจูŠุทู„ุน A ุชุฑุจูŠุน ู…ูˆุฌูˆุฏ ููŠ H ุฃุถุฑุจู‡ ูƒู…ุงู† ููŠ AุŒ
345
00:36:06,260 --> 00:36:10,070
ุจูŠุทู„ุน A ุชูƒุนูŠุจ ู…ูˆุฌูˆุฏ ููŠ H ุฃุถุฑุจ ูˆ ุฃุถุฑุจ ูˆ ู‡ูƒุฐุงู‡ุฐุง
346
00:36:10,070 --> 00:36:15,310
ูŠุนู†ูŠ ุฃู† ุงู„ู€A ูˆ ุงู„ู€Aยณ ูˆ ุงู„ู€Aยณ ูƒู„ู‡ู… ู‡ุฏูˆู„ ุฌุฏ ู…ุง ุชุญุท
347
00:36:15,310 --> 00:36:20,070
ุฃุณุณ ู„ูƒู† ุฃู†ุง ู…ุงุฏุงู… ุงู„ู€H finite ุงูุชุฑุถ ููŠู‡ุง ุฎู…ุณูŠู†
348
00:36:20,070 --> 00:36:24,350
ุนู†ุตุฑ ู…ุซู„ ู…ุง ู‚ู„ุช ู„ูƒู† ุฃู†ุง ุจุถู„ู…ุงุฌูŠ ุฎู…ุณูŠู† ูˆ ูˆุงุญุฏ ูˆ
349
00:36:24,350 --> 00:36:29,570
ุฎู…ุณูŠู† ูˆ ุณุจุนูŠู† ูˆ ุชู…ุงู†ูŠู† ุฅู„ู‰ ุขุฎุฑูŠู† ุฅุฐุงู‹ ู‡ูŠุทู„ุน ูƒู„ู‡
350
00:36:29,570 --> 00:36:35,530
ู…ูˆุฌูˆุฏ ููŠ H ูˆุจุงู„ุชุงู„ูŠ ุจุนุถ ุงู„ุนู†ุงุตุฑ ู„ุงุฒู… ุชุชุณุงูˆู‰ุนู†ุตุฑ ู…ู†
351
00:36:35,530 --> 00:36:41,470
ุจุนุฏ ุงู„ุฎู…ุณูŠู† ูŠุณุงูˆูŠ ุนู†ุตุฑ ู…ู† ู‚ุจู„ ุงู„ุฎู…ุณูŠู†
352
00:36:50,940 --> 00:36:55,240
ุจูŠูƒูˆู†ูˆุง ู…ุด ูƒู„ู‡ู… disjoint are not all of them ู…ุด
353
00:36:55,240 --> 00:37:01,340
ูƒู„ู‡ู… disjoint ู„ุฐู„ูƒ ู‡ูŠุทู„ุน ุนู†ุฏูŠ ูƒุชูŠุฑ ููŠู‡ู… ุงุชู†ูŠู† ุจุณูˆุง
354
00:37:01,340 --> 00:37:06,400
ุจุนุถ ุงุฎุชูŠ ุงุชู†ูŠู† ุนุดูˆุงุฆูŠุง ุงุฎุชูŠ ุงู„ ai ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ aj
355
00:37:06,400 --> 00:37:11,380
ูˆุงุฎุชูŠ ุงู„ i ุงูƒุจุฑ ู…ู† ู…ูŠู† ุงูƒุจุฑ ู…ู† ุฌูŠ ุงูƒุจุฑ ูˆุงุญุฏ ุจุงุชู†ูŠู†
356
00:37:11,380 --> 00:37:15,900
ูˆุจุชู„ุงุช ุงู„ู„ู‡ ุฃุนู„ู… ุงู„ู„ูŠ ู‡ู… ุงู†ู‡ ุงูƒุจุฑ ู…ู†ู‡ ุฏุงุฆู…ุง ูˆุงุจุฏุง
357
00:37:16,340 --> 00:37:24,420
ุงู„ุงู† ุงุฐุง ุฌูŠุช ู„ู„ู…ุนุงุฏู„ุฉ ุฏุฑุจุชู‡ุง ููŠ ู…ุนูƒูˆุณ ุงู„ู€aj ุงู„ูˆู„ู‰
358
00:37:24,420 --> 00:37:28,900
ุตุบูŠุฑ ูŠุจู‚ู‰ ุฏุฑุจุชู‡ุง ููŠ ู…ุนูƒูˆุณ ุงู„aj ูˆู‡ู†ุง ุฏุฑุจุชู‡ุง ู‡ุฐุง
359
00:37:28,900 --> 00:37:34,220
ุจูŠุนุทูŠู†ุง ุงู„ identity element ู‡ุฐุง ุจูŠุนุทูŠู†ุง ุงู„ู„ู‰ ู‡ูˆ ai
360
00:37:34,220 --> 00:37:39,880
ููŠ a ู†ุงู‚ุต g ุงู„ู„ู‰ ู‡ูˆ ai ู†ุงู‚ุต g ุจุฏู‡ ูŠุณูˆู‰ ู…ู† ุงู„
361
00:37:39,880 --> 00:37:44,800
identity element ูˆุงู„i ู†ุงู‚ุต g ุงูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏ ุงูƒุจุฑ
362
00:37:44,800 --> 00:37:49,680
ู…ู† ุงู„ูˆุงุญุฏ ู„ูŠุดุŸู„ุฃู†ู‡ ู„ูˆ ุทู„ุน ู‡ุฐุง ุจูˆุงุญุฏ ู…ุนู†ุงุชู‡ ุงูŠู‡ุŸ
363
00:37:49,680 --> 00:37:52,680
ุงุฐุง ูˆุงุญุฏ ูŠุณุงูˆูŠ ุงู„ identity ูŠุจู‚ู‰ ุงูŠู‡ ู‡ูˆ ุงู„
364
00:37:52,680 --> 00:37:58,140
identityุŸ ู„ูƒู† ุงุญู†ุง ุดุฑุทู†ุง ุงู†ู‡ ุงูŠู‡ุŸ ู…ุด ู…ู…ูƒู†ุŒ ุงุฐุง ู‡ุฐุง
365
00:37:58,140 --> 00:38:02,530
ุงู„ูƒู„ุงู… ุฏุงุฆู…ุง ูˆุฃุจุฏุงุฃูƒุจุฑ ู…ู† ูˆุงุญุฏ ู…ู…ูƒู† ูŠูƒูˆู† ุงุชู†ูŠู†
366
00:38:02,530 --> 00:38:08,230
ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุงู„ุงุฎุฑูŠ ู…ุง ุนู„ูŠู†ุง ุงูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏ ุงุฐุง ุงู„
367
00:38:08,230 --> 00:38:14,430
a ij ุทุจุนุง ู‡ุชู‚ุฏุฑ ุชู‚ูˆู„ูŠ ู‡ุฐุง ุงูƒุจุฑ ู…ู† ูˆุงุญุฏ ู…ุดุงู† ู…ุงุชูˆุด
368
00:38:14,430 --> 00:38:21,450
ุชู‚ูˆู„ูŠ because ุงู„ุณุจุจ ุงู† ุงู„ a ุจุณูˆูŠุด ุงู„ a