abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
raw
history blame
46.1 kB
1
00:00:00,930 --> 00:00:06,630
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู‡ุฐู‡ ู‡ูŠ ุงู„ู…ุญุงุถุฑุฉ ุฑู‚ู… ุนุดุฑุฉ
2
00:00:06,630 --> 00:00:12,170
ู„ู…ุณุงู‚ ุฑูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ู„ุทู„ุงุจ ูˆุทุงู„ุจุงุช ุงู„ุฌุงู…ุนุฉ
3
00:00:12,170 --> 00:00:17,470
ุงู„ุฅุณู„ุงู…ูŠุฉ ูƒู„ูŠุฉ ุชูƒู†ูˆู„ูˆุฌูŠุง ุงู„ู…ุนู„ูˆู…ุงุช ู‚ุณู… ุงู„ุญูˆุณุจุฉ
4
00:00:17,470 --> 00:00:22,690
ุงู„ู…ุชู†ู‚ู„ุฉ ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ู‡ู†ุจุฏุฃ ููŠ ุงู„ูุตู„ ุงู„ุฃุฎูŠุฑ
5
00:00:22,690 --> 00:00:28,290
ููŠ ุงู„ู…ุงุฏุฉ ุงู„ู„ูŠ ู‡ูˆ ูุตู„ ุนุดุฑุฉ ุชุญุช ุนู†ูˆุงู† Graphs
6
00:00:30,140 --> 00:00:36,120
ู‡ู†ุฌูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ุนุฑู ุฅูŠุด ู‡ูˆ ู…ุนู†ู‰ Graphs ุฅูŠุด ู…ุนู†ู‰
7
00:00:36,120 --> 00:00:42,500
ุงู„ู€ GraphุŸ a graph ู‡ูˆ ุจุงุฎุชุตุงุฑ is a pair of V ูˆ E of
8
00:00:42,500 --> 00:00:49,640
V ูŠุนู†ูŠ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฒูˆุฌ ู…ู† V ู…ุฌู…ูˆุนุฉ ูˆ E ู…ุฌู…ูˆุนุฉ ุงู„ุขู†
9
00:00:49,640 --> 00:00:54,820
V ุฅูŠุด ู‡ูŠ ูˆ E ุฅูŠุด ู‡ูŠุŸ ู‡ู†ุดูˆู ุฅูŠุด ุงู„ุขู† ุจุงู„ุชูุตูŠู„ ุฅูŠุด
10
00:00:54,820 --> 00:00:59,760
ู‡ูŠ ุงู„ู€ V ูˆ ุฅูŠุด ู‡ูŠ ุงู„ู€ EุŸ V non-empty set ุงู„ู„ูŠ ู‡ูŠ
11
00:00:59,760 --> 00:01:06,020
ู…ุฌู…ูˆุนุฉ ุบูŠุฑ ุฎุงู„ูŠุฉ and each element of the set E of E
12
00:01:06,020 --> 00:01:10,120
is a set ูŠุนู†ูŠ ูƒู„ element ููŠ ุงู„ู€ E ุนุจุงุฑุฉ ุนู† set ุงู„ู€
13
00:01:10,120 --> 00:01:14,420
set ู‡ุฐู‡ ุจุณ ู…ูƒูˆู†ุฉ ู…ู†ู‡ุง ู…ูƒูˆู†ุฉ ุจุณ ู…ู† ุนู†ุตุฑูŠู† ุงู„ู€ set E
14
00:01:14,420 --> 00:01:19,720
ู‡ุฐู‡ ุนู†ุงุตุฑู‡ุง ุนู†ุงุตุฑู‡ุง ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุงุช ูƒู„ ู…ุฌู…ูˆุนุฉ
15
00:01:19,720 --> 00:01:24,760
ู…ูƒูˆู†ุฉ ู…ู† ุนู†ุตุฑูŠู†ุŒ ู‡ุฐูˆู„ ุงู„ุนู†ุตุฑูŠู† ู…ู† ูˆูŠู† ุฌุงูŠูŠู†ุŸ ู…ู† ุงู„ู€ V
16
00:01:24,760 --> 00:01:31,480
ุงู„ู„ูŠ ู‡ูŠ ูƒู…ุง ู…ุฑุฉ and each element of E is a set ูŠุนู†ูŠ
17
00:01:31,480 --> 00:01:34,840
ูƒู„ element ููŠ ุงู„ู€ E ุนุจุงุฑุฉ ุนู† set of two distinct
18
00:01:34,840 --> 00:01:39,760
elements ู…ู† ุนู†ุตุฑูŠู† ู…ุฎุชู„ููŠู† ู…ู† ูˆูŠู†ุŸ ู…ู† ุงู„ู€ V of V
19
00:01:39,760 --> 00:01:46,040
ุงู„ุขู† ู‡ูŠ ุงู„ู€ E ู…ุซู„ุงู‹ V1 ูˆ V2 ู…ูˆุฌูˆุฏุงุช ุนู†ุงุตุฑ ููŠ ู…ูŠู†ุŸ ููŠ
20
00:01:46,040 --> 00:01:53,600
V ูุงู„ู€ and E ุนู†ุงุตุฑู‡ุง ุนุจุงุฑุฉ ุนู† ุงู„ู€ set ุงู„ู…ูƒูˆู†ุฉ ู…ู† V1
21
00:01:53,600 --> 00:02:02,340
ูˆ V2 ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุจู†ู‚ูˆู„ V1 join V2 ู‡ุฐุง ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ
22
00:02:02,340 --> 00:02:07,140
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ set E ู‡ู„ ุฌูŠุช ุชุถุญูŠ ุงู„ุตูˆุฑุฉ ุฃูƒุซุฑุŸ ุงุตุจุฑูˆุง
23
00:02:07,140 --> 00:02:13,240
ุนู„ูŠู‡ุงุŒ ุงู„ู€ elements of V called vertices ูŠุนู†ูŠ ุนู†ุงุตุฑ
24
00:02:13,240 --> 00:02:19,700
ุงู„ู€ V ู‡ุฐู‡ ุจู†ุณู…ูŠู‡ุง vertices ุฑุคูˆุณ ูŠุนู†ูŠ ุงู„ุขู† ูƒู„ ุนู†ุตุฑ ู…ู†
25
00:02:19,700 --> 00:02:24,960
ุนู†ุตุฑ ุงู„ู€ V ุจู†ุณู…ูŠู‡ ุฑุฃุณุŒ ุจุนุฏ ุดูˆูŠุฉ ูƒู„ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู€
26
00:02:24,960 --> 00:02:32,280
E ุงู„ู„ูŠ ู‡ูˆ ุจุชูƒูˆู† ู…ู† ุฑุฃุณูŠู† V1 ูˆ V2 ุจู†ุณู…ูŠู‡ Edge ุฃูˆ ุฎุท
27
00:02:32,280 --> 00:02:40,870
ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู€ EุŒ ุงู„ุขู† ุงู„ู€ elements of
28
00:02:40,870 --> 00:02:48,570
E ุนู†ุงุตุฑ ุงู„ู€ E is an unordered pairs ูŠุนู†ูŠ ุนู†ุงุตุฑ
29
00:02:48,570 --> 00:02:52,730
ุงู„ู€ E ุนุจุงุฑุฉ ุนู† ุฃุฒูˆุงุฌ ุบูŠุฑ ู…ุฑุชุจุฉ ู…ุง ุจู†ู‚ูˆู„ุด ุนู†ู‡ุง ุฃุฒูˆุงุฌ
30
00:02:52,730 --> 00:02:58,010
ู…ุฑุชุจุฉ ู„ุฃ of vertices ุฅุฐู† ุนู†ุงุตุฑ ุงู„ู€ E ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ
31
00:02:58,010 --> 00:03:06,080
ุนู† ูƒู„ ุนู†ุตุฑ ููŠ ุงู„ู€ E ุนุจุงุฑุฉ ุนู† ุฒูˆุฌ ู…ู† ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู‡ูŠ
32
00:03:06,080 --> 00:03:12,760
ู…ู† ุงู„ู€ vertices ุจู†ุณู…ูŠู‡ุง ุฅูŠุดุŸ Edge ูŠุนู†ูŠ ุนู†ุงุตุฑ ุงู„ู€ E ู‡ูˆ
33
00:03:12,760 --> 00:03:16,700
ุนุจุงุฑุฉ ุนู†ุตุฑ ุงู„ู€ E ุฒูŠ ูˆุงุญุฏ ู…ู† ุนู†ุงุตุฑ ุงู„ู€ E ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
34
00:03:16,700 --> 00:03:26,780
Edge V1 V2 ูŠุนู†ูŠ V1 ูˆ V2 ู‡ุฐุง ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู€ E ู‡ุฐุง
35
00:03:26,780 --> 00:03:32,160
ุงู„ุนู†ุตุฑ V1 ูˆ V2 ุจู†ุณู…ูŠู‡ Edge ูŠุนู†ูŠ ู‡ูŠูˆ ุฅูŠุด ุนุจุงุฑุฉ ุนู†
36
00:03:32,160 --> 00:03:37,970
ุญุฑูุŒ ู‡ุฐุง ุงู„ุญุฑู ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ู€ EุŒ ูˆู…ู† ุฃูŠู† ุฌุงุกุช ุงู„ู„ูŠ
37
00:03:37,970 --> 00:03:43,490
ู‡ูŠ ุงู„ู„ูŠ ุจูŠูƒูˆู† ุงู„ุญุฑู ุงู„ู€ V1 ูˆ V2 ู…ู† ุงู„ู€ V ุงู„ู„ูŠ ู‡ูŠ
38
00:03:43,490 --> 00:03:47,650
ุงู„ู€ V ุชุจุน ุงู„ุฑุคูˆุณ ุงู„ู„ูŠ ุนู†ุงุตุฑู‡ุง ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุฅูŠุดุŸ
39
00:03:47,650 --> 00:03:52,450
ุนู† vertices ู‡ุชุชุถุญ ุงู„ุตูˆุฑุฉ ุงุตุจุฑูˆุง ุดูˆูŠุฉุŒ ู†ูŠุฌูŠ ู„ุจุนุถ
40
00:03:52,450 --> 00:03:58,440
ุงู„ุชุณู…ูŠุงุชุŒ ุจู‚ูˆู„ ู„ูŠ ู„ูˆ ูƒุงู† E is an edgeุŒ E ู‡ุฐุง ุนู†ุตุฑ ู…ู†
41
00:03:58,440 --> 00:04:02,260
ุนู†ุงุตุฑ ุงู„ู€ EุŒ ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‚ุจู„ู‡ ุดูˆูŠุฉ ูƒูŠู E ุดูƒู„ู‡
42
00:04:02,260 --> 00:04:08,000
ุนุจุงุฑุฉ ุนู† V ูˆ W ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ ููŠู‡ุง V ูˆ W ู‡ุฐูˆู„ ุงู„ู€
43
00:04:08,000 --> 00:04:14,800
V ูˆ W ุงู„ุขู† V ุจูŠูƒูˆู† ูˆ ุงู„ู€ W are elements in V
44
00:04:14,800 --> 00:04:20,830
different elements in VุŒ ุงู„ุขู† E ุฌู…ุน ุงู„ู€ two vertices
45
00:04:20,830 --> 00:04:27,170
V ูˆ W ูŠุนู†ูŠ ุงู„ู€ E ุจุชุฑุจุท ุงู„ู€ V ู…ุน ุงู„ู€ W ูˆ ุจุชุฑุจุท ู‡ู†ุง
46
00:04:27,170 --> 00:04:34,590
ูˆ ุจุชูƒูˆู† ุฅูŠุดุŸ ุงู„ู€ edge ุงู„ู„ูŠ ุจุฏู†ุง ุฅูŠุงู‡ุง ุฃูˆ ุจู†ู‚ูˆู„ ุฃู†ู‡ Or the
47
00:04:34,590 --> 00:04:39,330
vertices v and w are said to be incident with the
48
00:04:39,330 --> 00:04:45,730
edge vw ูŠุนู†ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ vertices v ูˆ w ุจุญุฏุซู†
49
00:04:45,730 --> 00:04:52,410
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ edge ุงู„ู„ูŠ ู‡ูŠ vw ู…ุด ู‡ู†ุธู„ ู†ูƒุชุจ ู‡ูŠูƒ ุงู„ู„ูŠ
50
00:04:52,410 --> 00:04:59,290
ู‡ูˆ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ููŠ E ุจุนุฏ ุดูˆูŠุฉ ุฎู„ุงุต ู‡ู†ุณู…ูŠู‡ V or ุฃูˆ V
51
00:04:59,290 --> 00:05:03,950
joined W ุฃูˆ ุฒูŠ ู…ุง ุงุญู†ุง ุดุงูŠููŠู† ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุงู„ู„ูŠ ู‡ูˆ
52
00:05:03,950 --> 00:05:10,150
ุงู„ู€ edge ู‡ุฐุง ุทูŠุจ ู†ุดูˆู ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ู†ุฏุฎู„ ูƒู…ุงู† ู…ุฑุฉ
53
00:05:10,150 --> 00:05:15,350
ู†ุงุฎุฏ ุจุนุถ ุงู„ุชุณู…ูŠุงุชุŒ two vertices are adjacent ูŠุนู†ูŠ
54
00:05:15,350 --> 00:05:18,650
ุจู†ู‚ูˆู„ ุนู† two vertices ุฑุงุณูŠู† ุฅู†ู‡ู… ุฌุงู†ุจ ุจุนุถ
55
00:05:18,650 --> 00:05:23,930
ู…ุชุฌุงูˆุฑูŠู† ุฃูˆ ุฌุงูŠุงุช ูˆุฑุง ุจุนุถ or neighborhoods ูŠุนู†ูŠ
56
00:05:23,930 --> 00:05:29,990
ุฌูŠุฑุงู†ุŒ If they are the end vertices of an edge ูŠุนู†ูŠ
57
00:05:29,990 --> 00:05:32,630
ุจุชู‚ูˆู„ ุนู† two vertices in an adjacent ุฃูˆ
58
00:05:32,630 --> 00:05:38,110
neighborhood ุฅุฐุง ูƒุงู† ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุจูŠูƒูˆู†ูˆุง ู…ู† ุงู„ู€ edge
59
00:05:38,110 --> 00:05:43,460
ูŠุนู†ูŠ ุงู„ุงุชู†ูŠู† ุจูŠูƒูˆู†ูˆุง ู‡ุฐุง ุงู„ู€ edge ุจู†ุณู…ูŠู‡ู… adjacent ุงู„ู„ูŠ
60
00:05:43,460 --> 00:05:46,480
ู‡ูˆ ุจุชุณู…ูŠ ุงู„ู„ูŠ ู‡ูˆ ุงู„ุนู†ุตุฑูŠู† ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุฅุณู…ู‡ู…
61
00:05:46,480 --> 00:05:53,160
ุนุจุงุฑุฉ ุนู† adjacent ุงู„ู„ูŠ ู‡ูŠ ุงู„ู€ ุงู„ู€ two vertices ุงู„ู„ูŠ
62
00:05:53,160 --> 00:05:57,780
ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูŠ two edges ุงุชู†ูŠู† ุงู„ู„ูŠ ู‡ูˆ two edges ู‡ูŠ
63
00:05:57,780 --> 00:06:02,320
edge ูˆ ู‡ุฏู‚ ู‡ูŠ edge ุจู†ู‚ูˆู„ ุนู†ู‡ู… adjacent ู…ุชุฌุงูˆุฑุชูŠู†
64
00:06:02,320 --> 00:06:06,440
if they have a vertex in common ุฅุฐุง ูƒุงู† ููŠ ุนู†ุฏู‡ู…
65
00:06:06,440 --> 00:06:12,310
ุฑุฃุณ ู…ุดุชุฑูƒ ูŠุนู†ูŠ ุฅุฐุง ุงู„ุฑุงุณ ู‡ุฐุง ุทู„ุน edge ูˆู‡ูŠ edge ู…ุน
66
00:06:12,310 --> 00:06:15,390
ุงู„ุฑุฃุณ ู‡ุฐุง ูˆู‡ุฐุง ุงู„ุฑุฃุณ ู†ูุณู‡ ุทู„ุน ู…ุน ู‡ุฐุง ุงู„ุฑุฃุณ edge
67
00:06:15,390 --> 00:06:20,790
ุจู†ู‚ูˆู„ ุฅู† ู‡ุฐุง ุงู„ู€ edge ูˆู‡ุฐุง ุงู„ู€ edge adjacent ู‡ุฐุง ุงู„ู€
68
00:06:20,790 --> 00:06:24,490
edge ู‡ูˆ ุนู†ุงุตุฑ ุงู„ู€ E capital ูˆู‡ุฐุง ู‡ูˆ ุนู†ุงุตุฑ ุงู„ู€ E
69
00:06:24,490 --> 00:06:30,330
capital ูˆุงู„ุฑุคูˆุณ ู‡ูŠ ุนู†ุงุตุฑ ู…ู† ุงู„ู€ V ุงู„ู„ูŠ ุณู…ูŠู†ุงู‡ุง ุงู„ู„ูŠ
70
00:06:30,330 --> 00:06:36,780
ู‡ูŠ ุงู„ู€ setุŒ ุงู„ู€ graph ุนุจุงุฑุฉ ุนู† V ูˆ ุนู† EุŒ ุงู„ุขู† the
71
00:06:36,780 --> 00:06:40,840
number of the edges that incident with a vertex v
72
00:06:40,840 --> 00:06:43,580
is called the degree of the vertex ุฅูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡
73
00:06:43,580 --> 00:06:48,580
ู‡ุฐุงุŸ ุจู‚ูˆู„ ู„ูƒ ุงู„ุขู† ุจุฏู†ุง ู†ุนุฑู ุงู„ู€ degree ู„ู…ูŠู†ุŸ ู„ู„ู€ vertex
74
00:06:48,580 --> 00:06:51,840
ู‡ุฐุง ุฃุญุฏ ุงู„ุฃู‡ุฏุงู ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนุฑูู‡ุง ุงู„ูŠูˆู… ุฅูŠุด ุงู„ู€
75
00:06:51,840 --> 00:06:57,660
degree ู„ู„ู€ vertexุŸ ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุงู„ู€ edges ุงู„ู„ูŠ
76
00:06:57,660 --> 00:07:03,010
ุจูŠุทู„ุน ู…ู† ุงู„ู€ vertex ูŠุนู†ูŠ the number of edges that
77
00:07:03,010 --> 00:07:06,870
incident with a vertex V is called the degree of
78
00:07:06,870 --> 00:07:11,510
the vertex ุจุชุถุญ ู…ุนูŠ ุงู„ู…ุซุงู„ ุงู„ุขู† if ุฅุฐุง ูƒุงู† ุทู„ุน
79
00:07:11,510 --> 00:07:14,410
ุนู†ุฏูŠ ุงู„ู€ degree ู„ู„ู€ V ุจุนุฏ ุดูˆูŠุฉ ุจู†ุญุณุจ ูŠุง ุฌู…ุงุนุฉ ุจุณ
80
00:07:14,410 --> 00:07:18,430
ุฎู„ูŠู†ูŠ ู†ุณู…ูŠ ุจุนุถ ุงู„ุชุณู…ูŠุงุช if ุงู„ู€ degree ู„ู„ู€ V ุงู„ู„ูŠ ู‡ูˆ
81
00:07:18,430 --> 00:07:23,970
ุงู„ู€ degree ู„ู„ู€ vertex ุฏุฑุฌุฉ ุงู„ู€ vertex ูƒุงู†ุช odd ุฃูˆ even
82
00:07:23,970 --> 00:07:28,410
ุจู†ู‚ูˆู„ we say that V is an odd ุฃูˆ even vertex ุฅุฐุง
83
00:07:28,410 --> 00:07:32,070
ู„ู…ุง ู†ู‚ูˆู„ odd vertex ุฃูˆ even vertex ู…ุนู†ุงุชู‡ ุงู„ู€
84
00:07:32,070 --> 00:07:38,350
degree ู„ู„ู€ vertex even ุฃูˆ oddุŒ ุทูŠุจ ุงู„ุขู† a vertex of
85
00:07:38,350 --> 00:07:42,970
degree zero ูŠุนู†ูŠ ุงู„ู€ vertex ุงู„ู„ูŠ degree ู„ู‡ zero is
86
00:07:42,970 --> 00:07:47,470
called an isolated vertex ูŠุนู†ูŠ ุงู„ู€ degree ู„ู‡ zero
87
00:07:47,470 --> 00:07:53,510
ูŠุนู†ูŠ ู…ุง ููŠุด ุจุชุทู„ุนุด ู…ู†ู‡ ูˆู„ุง ุฎุทุŒ ู…ุง ููŠุด ูˆู„ุง ุฎุท ุจูŠุฑูˆุญ ู…ู†ู‡
88
00:07:53,510 --> 00:07:57,210
ุนุดุงู† ู‡ูŠูƒ ุจู†ู‚ูˆู„ ุนู†ู‡ุง ุงู„ู†ู‚ุทุฉ ุฅูŠู‡ุŸ ุงู„ู€ isolated
89
00:07:57,210 --> 00:08:02,490
vertex ูŠุนู†ูŠ ู…ุนุฒูˆู„ุฉ ู…ุง ููŠุด ููŠู‡ุง ูˆู„ุง ุฎุท ุทุงู„ุน ู…ู†ู‡ุง
90
00:08:02,490 --> 00:08:07,280
ุงู„ุขู† neighborhood of a vertex ูŠุนู†ูŠ ุงู„ุฌูˆุงุฑ ุชุจุน ุงู„ู€
91
00:08:07,280 --> 00:08:11,300
vertex ุจู†ุณู…ูŠู‡ ุงู„ู€ neighborhood ุฅูŠุด ุฌูˆุงุฑ ุงู„ู€ vertexุŸ ูƒู„ ุงู„ู„ูŠ
92
00:08:11,300 --> 00:08:16,020
ู‡ูŠ ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุจุชุตู†ุน ู…ุน ุงู„ู€ ุฅูŠู‡ุŸ ุงู„ู€ edges ุชุจุนุชู‡ุง
93
00:08:16,020 --> 00:08:20,180
ู‡ู†ุดูˆู ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ู‡ุชู„ุงู‚ูˆู‡ ุณู‡ู„ุŒ ุดูˆููˆุง ุงู„ุขู† ุตู„ูˆุง
94
00:08:20,180 --> 00:08:23,000
ุนู„ู‰ ุงู„ู†ุจูŠ ุนู„ูŠู‡ ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู…ุŒ ู†ุฌูŠ ุงู„ุขู† ู„ุญุงุฌุฉ ุงุณู…ู‡ุง
95
00:08:23,000 --> 00:08:26,460
pseudograph ุงู„ู€ graph ุจูŠุณู…ูˆู‡ pseudograph ุฃูˆ graph
96
00:08:26,460 --> 00:08:30,060
ุฒุงุฆูุŒ ุฅูŠุด ู‡ุฐุง ุงู„ู€ graphุŸ ู‡ุฐุง ู‡ูˆ graph like a graph
97
00:08:30,060 --> 00:08:34,960
ุจุดุจู‡ ู„ู€ graph ู‡ูˆ graph but it may contains loops ูŠุนู†ูŠ
98
00:08:34,960 --> 00:08:38,640
ู…ู…ูƒู† ุชุญุชูˆูŠ ุนู„ู‰ ุฅูŠุดุŸ ุนู„ู‰ loopุŒ ุฃูŠ loop ูŠุนู†ูŠ ุงู„ู€ loop
99
00:08:38,640 --> 00:08:43,920
ุจูŠุฌูŠ ู…ู† ุงู„ู†ู‚ุทุฉ ูˆ ุจุฑุฌุน ู„ู„ู†ู‚ุทุฉ ู†ูุณู‡ุง ุฃูˆ a multiple of
100
00:08:43,920 --> 00:08:47,040
edges ุฃูˆ ุจูŠุญุชูˆูŠ ุนู„ู‰ multiple edges ูŠุนู†ูŠ ู‡ูŠ ู…ู† ู‡ุฐุง
101
00:08:47,040 --> 00:08:53,160
ู„ู‡ู†ุง ู‡ูŠ ุฃูˆู„ ุฎุท ูˆ ุจุฑุถู‡ ู‡ูŠ ูƒู…ุงู† ุฎุท ู…ู† V2 ู„ุนู†ุฏ V1 ุงู„ู€
102
00:08:53,160 --> 00:08:57,760
graph ุงู„ู„ูŠ ุจูŠุญุชูˆูŠ ุนู„ู‰ ุงู„ู„ูŠ ู‡ูˆ multiple edges ูŠุนู†ูŠ
103
00:08:57,760 --> 00:09:04,000
ุฃูƒุซุฑ ู…ู† ุฎุท ุจูŠู† ุงู„ู†ู‚ุทุชูŠู† ุฃูˆ ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ ู‡ูŠ loop ุฎุท
104
00:09:04,000 --> 00:09:08,980
ุจูŠุฑูˆุญ ู„ู„ู†ู‚ุทุฉ ูˆ ุจุฑุฌุน ู„ู‡ุง ุจู†ุณู…ูŠู‡ ุงู„ู„ูŠ ู‡ูˆ pseudo graph
105
00:09:09,430 --> 00:09:13,650
ุฎู„ูŠู†ุง ู†ุงุฎุฏ ุงู„ู…ุซุงู„ ู‡ุฐุง ูˆ ู†ูŠุฌูŠ ู†ุญุณุจ ุงู„ู„ูŠ ุจุฏู†ุง ู†ุญุณุจู‡
106
00:09:13,650 --> 00:09:21,370
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ degree ู„ู„ู€ V3 ู…ุซู„ุงู‹ ู„ู„ู€ V3 ู…ุงุดูŠ ุงู„ุขู† ู‚ุจู„
107
00:09:21,370 --> 00:09:25,290
ู…ุง ู†ุญุณุจ ุงู„ู€ degree ู„ู„ู€ V3 ุฎู„ูŠู†ุง ู†ุญุณุจ ุงู„ู€ degree ู„ู„ู€
108
00:09:25,290 --> 00:09:32,230
V1 ุฅูŠุด ุงู„ู€ degree ู„ู„ู€ V1ุŸ ุฅูŠุด ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ุจุชุทู„ุน
109
00:09:32,230 --> 00:09:37,820
ู…ู†ู‡ุงุŸ ู‡ูŠ ุงุชู†ูŠู† ูุจูŠูƒูˆู† ุงู„ู€ degree ู„ู„ู€ V ูˆุงุญุฏ ุงุชู†ูŠู†ุŒ ุทุจ
110
00:09:37,820 --> 00:09:42,320
ู†ูŠุฌูŠ ู„ู„ู€ V ุชู„ุงุชุฉ ุงู„ู€ V ุชู„ุงุชุฉ ุจูŠุทู„ุน ู‡ุงูŠ ุฎุท ู‡ุงูŠ ุฎุทูŠู†
111
00:09:42,320 --> 00:09:49,520
ู…ุงุดูŠ ู„ูƒู† ุงู„ู€ V ุชู„ุงุชุฉ ุงู„ู„ูŠ ู‡ูˆ ุจูŠุทู„ุน ุฎุท ู…ู†ู‡ุง in ูˆ ุฎุท
112
00:09:49,520 --> 00:09:55,120
ู…ู†ู‡ุง outุŒ ุงู„ู€ Loop ุจู†ุญุณุจู‡ ุฏุงุฆู…ุงู‹ ุงุชู†ูŠู† ููŠ ุงู„ู€ degree
113
00:09:55,120 --> 00:10:00,980
ูŠุนู†ูŠ ุจู†ุญุณุจ ูˆุงุญุฏ in ูˆ ูˆุงุญุฏ out ูุจูŠุตูŠุฑ ุนู†ุฏู‡ ุงุชู†ูŠู† ูˆู‡ูŠ
114
00:10:00,980 --> 00:10:04,800
ูƒู…ุงู† ุฎุท ูˆู‡ูŠ ูƒู…ุงู† ุฎุท ูุจูŠุตูŠุฑ ุงู„ู€ degree ู„ู„ู€ V3 ุฅูŠุดุŸ
115
00:10:04,800 --> 00:10:09,000
ุจูŠุณุงูˆูŠ ุฃุฑุจุนุฉุŒ ุงู„ู€ degree ู„ู„ู€ V3 ุจูŠุณุงูˆูŠ ุฃุฑุจุนุฉ because
116
00:10:09,000 --> 00:10:17,120
it connected E3 ู„ุฃู†ู‡ุง ุจุชุนู…ู„ ุงู„ู€ edge E3 ูˆ ุจุชุนู…ู„ ุงู„ู€
117
00:10:17,120 --> 00:10:23,500
edge E4 ูˆ ุงู„ู€ edge E5 ุงู„ู„ูŠ ู‡ูˆ under the loop E5
118
00:10:23,500 --> 00:10:29,680
edge computed 2 ูˆุงุญุฏ as in ูˆ ูˆุงุญุฏ as outุŒ ุฏู‡ ุงู„ู€
119
00:10:29,680 --> 00:10:33,780
loop ุจุณ ุงู„ู„ูŠ ุจู†ุญุณุจู‡ ุงุชู†ูŠู† ูˆ ุงู„ุจุงู‚ูŠ ุจู†ุญุณุจู‡ ุฅูŠุดุŸ ูˆุงุญุฏ
120
00:10:33,780 --> 00:10:39,800
ูˆุงุญุฏ ูุจูŠุตูŠุฑ ุงู„ู€ degree ู„ู„ู€ V3 ุจุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ุทุงู„ุนุฉ
121
00:10:40,370 --> 00:10:45,650
ุงู„ู„ูŠ ู‡ูŠ ู…ู†ู‡ุง ุฃูˆ ุงู„ู„ูŠ ุฏุงุฎู„ุฉ ุฅู„ู‡ุง ูˆู‡ุฐุง ูŠู†ุญุณุจ ุงุชู†ูŠู† ููŠ
122
00:10:45,650 --> 00:10:50,190
ุญุงู„ุฉ ุงู„ู€ loopุŒ ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† undirected graphs ุญุงุฌุฉ
123
00:10:50,190 --> 00:10:52,790
ุงุณู…ู‡ุง undirected graphs ุฃูˆ ุงู„ู€ graphs ุงู„ู„ูŠ ุจุชูƒูˆู†
124
00:10:52,790 --> 00:10:57,600
ุฅูŠู‡ุŸ ุบูŠุฑ ู…ุชุฌู‡ุฉุŒ ุทูŠุจ ุบูŠุฑ ู…ุชุฌู‡ุฉ ุฌุฏู‹ุง ุจู†ุนุฑู ู„ุฃู†ู‡
125
00:10:57,600 --> 00:11:00,780
ู‡ู†ุฃุฎุฐ ุงู„ู€ Directed Graph ุจุนุฏ ุดูˆูŠุฉ ุจู†ุนุฑู ุดูˆ ู…ุนู†ุงู‡
126
00:11:00,780 --> 00:11:05,480
Undirected Undirected ูŠุนู†ูŠ ู…ุด ูุงุฑุบุฉ ู…ู† A ู„ B ุฃูˆ ู…ู†
127
00:11:05,480 --> 00:11:10,460
B ู„ A ู…ุด ู…ุฑุชุจุฉ What are the degree and what are
128
00:11:10,460 --> 00:11:13,640
the neighborhoods of the vertices in the graph
129
00:11:13,640 --> 00:11:18,560
UndirectedุŸ ุงู„ุขู† ุจุฏู†ุง ู†ุนุฑู ุฅูŠุด ุงู„ degree ูˆุฅูŠุด ุงู„
130
00:11:18,560 --> 00:11:21,440
neighborhoods ู„ู„ู†ู‚ุงุท ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ุฏูˆู„ ุงู„
131
00:11:21,440 --> 00:11:26,700
vertices ุงู„ู„ูŠ ุนู†ุฏูŠ ุงู„ degree ู„ู„ vertices ูˆุงู„ู„ูŠ ู‡ูŠ
132
00:11:26,700 --> 00:11:30,220
ุงู„ neighborhood ู„ู„ vertices ู†ูŠุฌูŠ ุฃูˆู„ ุญุงุฌุฉ ู„ู„
133
00:11:30,220 --> 00:11:33,920
degree ู„ู„ู€ ุฅูŠู‡ ุงู„ degree ู„ู„ู€ ุฅูŠู‡ ูŠุนู†ูŠ ู‚ุฏุงุด .. ุฅูŠุด
134
00:11:33,920 --> 00:11:38,000
ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ุทุงู„ุนุฉ ู…ู†ู‡ุง ู‡ุงูŠ ุฎุท ู‡ุงูŠ ุงุซู†ูŠู† ุฅุฐุง ู‡ุฐุง
135
00:11:38,000 --> 00:11:42,240
ุนู†ุฏู‡ุง ุงู„ degree ุฅูŠุด ุจุชุณุงูˆูŠ ุงุซู†ูŠู† ุทูŠุจ ุงู„ degree ู„ู„
136
00:11:42,240 --> 00:11:47,850
B ูƒู„ูƒู… ุญู‚ูˆู„ ู‡ุงูŠ ูˆุงุญุฏุฉ ู‡ูŠ ุงุซู†ูŠู† ู‡ูŠ ุซู„ุงุซุฉ ู‡ูŠ ุฃุฑุจุน
137
00:11:47,850 --> 00:11:52,070
ุฎุทูˆุท ุทุงู„ุนูŠู† ู…ู†ู‡ุง ุฅุฐุง ุงู„ degree ู„ู„ B ุฅูŠุด ุฃุฑุจุนุฉ ู„ูˆ
138
00:11:52,070 --> 00:11:56,230
ุญุฏ ุฌุงู„ูƒ ุงู„ degree ู„ู„ C ู„ู„ C ู‡ุชู‚ูˆู„ ู‡ูŠ ูˆุงุญุฏ ู‡ูŠ ุงุซู†ูŠู†
139
00:11:56,230 --> 00:12:01,030
ู‡ูŠ ุซู„ุงุซุฉ ู‡ูŠ ุฃุฑุจุนุฉ ู„ูˆ ุฌุงู„ูƒ ุงู„ degree ู„ู„ G ู‡ุชู‚ูˆู„ ู„ูŠ
140
00:12:01,030 --> 00:12:05,110
ุตูุฑ ุนุดุงู† ู‡ูŠูƒ ุจู†ุณู…ูŠู‡ุง isolated ู…ุนุฒูˆู„ุฉ ููŠ ุงู„ุดุงุดุฉ
141
00:12:05,110 --> 00:12:09,310
ุจุชุทู„ุน ู…ู†ู‡ุง ุทูŠุจ ุงู„ degree ุงู„ู„ูŠ ุงู„ุขู† ุงู„ neighbor ู‡ุฏ
142
00:12:09,310 --> 00:12:14,830
ูˆู„ู…ู†ุŸ ู„ู„ A ุฌูˆุงุฑ ุงู„ A ุฌูˆุงุฑ ุงู„ A ุงู„ู„ูŠ ุจูŠุนู…ู„ ุงู„ุฎุทูˆุท
143
00:12:14,830 --> 00:12:18,170
ู…ุนู‡ุง ุฌูˆุงุฑ ุงู„ A ุงู„ู„ูŠ ุจูŠุนู…ู„ ุงู„ุฎุทูˆุท ู…ุนู‡ุง ู…ูŠู† ุงู„ู„ูŠ
144
00:12:18,170 --> 00:12:22,470
ุจูŠุนู…ู„ ุงู„ุฎุท ู…ุน ุงู„ AุŸ ุงู„ B ูˆุงู„ F ุนุดุงู† ู‡ูŠูƒ ุจู†ู‚ูˆู„
145
00:12:22,470 --> 00:12:27,710
ุฌูˆุงุฑ ุงู„ A ู‡ูˆ ุงู„ B ูˆุงู„ F ู†ูŠุฌูŠ ุงู„ุขู† ูŠุง ุฌู…ุงุนุฉ ุฅูŠุด
146
00:12:27,710 --> 00:12:31,350
ุฌูˆุงุฑ ุงู„ B ุงู„ู„ูŠ ุจูŠุนู…ู„ ุงู„ุฎุทูˆุท ู…ุน ุงู„ BุŸ ุฅูŠุด ู…ูŠู† ุงู„ู„ูŠ
147
00:12:31,350 --> 00:12:38,820
ุจูŠุนู…ู„ ุงู„ุฎุทูˆุท ู…ุน ุงู„ BุŸ ุงู„ C ูˆุงู„ E ูˆุงู„ F ูˆุงู„ู€ A ู‡ูŠ
148
00:12:38,820 --> 00:12:44,980
A ูˆC ูˆE ูˆF ู‡ุฏูˆู„ ุฌูˆุงุฑ ู…ู† ุงู„ู€ B ุงู„ุขู† ุฌูˆุงุฑ ุงู„ู€ D
149
00:12:44,980 --> 00:12:47,540
ุงู„ู„ูŠ ุจูŠุนู…ู„ ุงู„ุฎุทูˆุท ู…ุน ุงู„ู€ D ู…ุง ููŠุด ุญุฏ ุจูŠุนู…ู„ ุงู„ุฎุทูˆุท
150
00:12:47,540 --> 00:12:51,340
ู…ุน ุงู„ู€ D ุงู„ุนุงู„ู…ูŠู† ุงู„ู€ C ู„ูƒู† ู„ูˆ ุฌูŠู†ุง ู„ุฌูˆุงุฑ ุงู„ู€ G
151
00:12:51,340 --> 00:12:59,660
ู‡ู†ู„ุงู‚ูŠ ู…ุง ููŠุด ุฅูŠุด ูุงูŠ ุนุดุงู† ู‡ูŠ ูƒุงู†ุช ุจู†ุณู…ูŠู‡ุง isolated ุฅูŠุด
152
00:12:59,660 --> 00:13:06,640
point ุงู„ู„ูŠ ุจูŠูƒูˆู†ุด ุฅู„ู‡ุง ูˆู„ุง ุฌูˆุงุฑ ุฃูˆ ุจุชูƒูˆู†ุด ุนุงู…ู„ุฉ ุฃูˆ
153
00:13:06,640 --> 00:13:10,240
ุงู„ degree ุฅู„ู‡ุง ุจุชุณุงูˆูŠ ุตูุฑ ู…ุด ูˆู„ุง ุฎุท ุทุงู„ุน ู…ู†ู‡ุง ุฃูˆ
154
00:13:10,240 --> 00:13:14,140
ุฌุงูŠ ู†ูŠุฌูŠ ุงู„ุขู† ู†ุงุฎุฏ ู…ุซุงู„ ุขุฎุฑ what are the degree
155
00:13:14,140 --> 00:13:17,820
and what are the neighborhoods of the vertices in
156
00:13:17,820 --> 00:13:20,980
the undirected graph ุฎู„ูŠู†ุง ู‡ุฐุง ุงู„ graph ุงู„
157
00:13:20,980 --> 00:13:24,870
undirected ุงู„ู„ูŠ ุบูŠุฑ ู…ุชุฌู‡ ุงู„ู„ูŠ ูŠุนู†ูŠ ุชูุฑุฌุด ู…ู† A ู„ุนู†ุฏ
158
00:13:24,870 --> 00:13:29,630
B ุฃูˆ ู…ู† B ู„ุนู†ุฏ A ู…ุง ููŠุด ุงุชุฌุงู‡ ุนู†ุฏู†ุง ุงู„ุขู† ู†ุดูˆู ุงู„ู„ูŠ ู‡ูˆ
159
00:13:29,630 --> 00:13:32,950
ูŠุณุฃู„ ุณุคุงู„ู‡ ุงู„ degree ู„ู„ A ุฅูŠุด ุงู„ degree ู„ู„ A ู‡ุงูŠ
160
00:13:32,950 --> 00:13:38,650
ูˆุงุญุฏ ู‡ุงูŠ ุงุซู†ูŠู† ู‡ุงูŠ ุซู„ุงุซุฉ ู‡ุงูŠ ุฃุฑุจุนุฉ ุงู„ degree ู„ู„ A
161
00:13:38,650 --> 00:13:43,090
ู†ูŠุฌูŠ ู„ู„ degree ู„ู…ูŠู† ู„ู„ B ุงู„ degree ู„ู„ B ู‡ุงูŠ ูˆุงุญุฏ
162
00:13:43,090 --> 00:13:50,590
ู‡ุงูŠ ุงุซู†ูŠู† ู‡ุงูŠ ุซู„ุงุซุฉ ู‡ุฐู‡ ุฃุฑุจุนุฉ ูˆู‚ู„ู†ุง ุงู„ loop ู†ุญุณุจ
163
00:13:50,590 --> 00:13:56,790
ูƒุฃู†ู‡ out ูˆin ุงุซู†ูŠู† ูŠุนู†ูŠ ุฅูŠุด ุจูŠุตูŠุฑ ุงู„ degree ู„ ุงู„
164
00:13:56,790 --> 00:14:02,910
B 6 ู†ูŠุฌูŠ ุงู„ neighborhood ู„ู„ A ุฌูˆุงุฑ ุงู„ A ุงู„ู„ูŠ ู‡ูŠ
165
00:14:02,910 --> 00:14:07,930
ุงู„ู†ู‚ุงุท ุงู„ู„ูŠ ุจูŠุตู†ุน ู…ุนู‡ุง ุฎุทูˆุท ู…ูŠู† ุจูŠุตู†ุน ู…ุนู‡ุง
166
00:14:07,930 --> 00:14:16,640
ุฎุทูˆุท ุจูŠู‡ุŸ O D O E B D E ู†ุนูˆุฏ ู„ู„ู€ neighborhood ู„ู„ู€ B
167
00:14:16,640 --> 00:14:20,020
ุงู„ neighborhood ู„ู„ู€ B ู…ู† ูŠุตู†ุน ุงู„ุฎุทูˆุท ู…ุนุงู‡ุง ุงู„ู€ A
168
00:14:20,020 --> 00:14:29,020
ูˆุงู„ู€ E ูˆุงู„ู€ A ุงู„ู€ D ุขุณู ูˆุงู„ู€ C ูˆู†ูุณู‡ ู„ุฃู† ู‡ูˆ ุจูŠุตู†ุน
169
00:14:29,020 --> 00:14:33,420
ุฎุท ู…ุน ู†ูุณู‡ ุฅุฐุง ุจุฏู‡ ูŠู†ุญุท ููŠ neighborhood ู„ู„ู€ B ุงู„ู€
170
00:14:33,420 --> 00:14:38,520
B ู„ุงุญุธ ุฅู†ู‡ ู„ู…ุง ูŠูƒูˆู† ููŠ ุฏุงุฎู„ ุงู„ neighborhood ู„ู„ู€ B
171
00:14:38,520 --> 00:14:43,470
ุงู„ู€ B ู…ุนู†ุงุชู‡ ุฅู†ู‡ ููŠ Loop ู‡ูŠ ุงู„ neighborhood ู„ู„ู€ A
172
00:14:43,470 --> 00:14:47,210
ููŠ ุงู„ุดูŠุก A ุฅุฐุง ู…ุง ููŠ Loop ุงู„ neighborhood ู„ู„ B ููŠู‡
173
00:14:47,210 --> 00:14:51,230
B ุฌูˆุงุชู‡ ุฅุฐุง ู…ุง ููŠ Loop ูŠุนู†ูŠ ููŠู‡ ุฎุท ุฌุงูŠ ู…ู†ู‡ ู„ู†ูุณู‡
174
00:14:51,230 --> 00:14:56,750
ุทูŠุจ ู†ูŠุฌูŠ ุงู„ุขู† ุงู„ู„ูŠ ู‡ูˆ ู†ุงุฎุฏ ู†ุญุงูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุฃู…ุซู„ุฉ
175
00:14:56,750 --> 00:15:00,330
ุจู‚ุฏุฑ ุงู„ุฅู…ูƒุงู† ูˆู…ูุงู‡ูŠู… ุฒูŠ ู…ุง ุจุฏู†ุง ุทูŠุจ ุงู„
176
00:15:00,330 --> 00:15:03,270
neighborhood ู„ู„ D neighborhood ู„ู„ D ู…ู† ู†ูุณ ุงู„ุฃุณู„ูˆุจ
177
00:15:03,270 --> 00:15:05,730
ุฅูŠุด ุงู„ neighborhood ู„ู„ D ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู…ุงู„
178
00:15:05,730 --> 00:15:12,100
ุงู„ุฎุทูˆุท ู…ุนุงู‡ ุงู„ู„ูŠ ู‡ูŠ ุงู„ B ูˆุงู„ A ูˆุงู„ E ุงู„ู€ B ูˆุงู„ู€ A
179
00:15:12,100 --> 00:15:15,720
ูˆุงู„ู€ E ู‡ูŠู‡ุง ุงู„ neighborhood ู„ู„ู€ A ุงู„ู€ A ู‡ูŠู‡ุง ุงู„ู€
180
00:15:15,720 --> 00:15:22,610
D ูˆู‡ูŠ ุงู„ู€ B ูˆู‡ูŠ ุงู„ู€ A ุงู„ุขู† ุจุชุตูˆุฑ ุงู„ุตูˆุฑุฉ ูˆุงุถุญุฉ ุฅู†ู‡ุง
181
00:15:22,610 --> 00:15:27,770
ูˆุตุงุฑุช ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฃู…ูˆุฑ ูˆุงุถุญุฉ ุชู…ุงู…ุง ู„ุชู†ุดูˆู ุงู„ุขู† graph
182
00:15:27,770 --> 00:15:31,530
example ุงู„ุขู† ู†ุฑุฌุน ู„ู„ graph ู„ุฃู† ุฒูŠ ู…ุง ุงุชูู‚ู†ุง ุงู„
183
00:15:31,530 --> 00:15:36,210
graph ู‡ูˆ ุนุจุงุฑุฉ ุนู† ุฅูŠุด ุนู† V ูˆ E ุงู„ V ู‡ูŠ ุฅูŠุด ุนุจุงุฑุฉ
184
00:15:36,210 --> 00:15:43,130
ุนู† vertices ู‡ุงูŠ V V1 V2 V3 V4 V5 V6 ุฅุฐุง ู…ุฌู…ูˆุนุฉ ู…ู†
185
00:15:43,130 --> 00:15:48,380
ุงู„ู†ู‚ุงุท ุชุณู…ู‰ vertices ุฃูˆ ุชุณู…ู‰ ุฑุคูˆุณ ู‡ุฐุง ุงู„ู€ Graph
186
00:15:48,380 --> 00:15:53,100
ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ V ูˆู…ุฌู…ูˆุนุฉ ุซุงู†ูŠุฉ E ุงู„ู€ E ู‡ูŠ ุฎุทูˆุท
187
00:15:53,100 --> 00:15:58,360
ูŠุนู†ูŠ ู‡ุฐู‡ ู†ู‚ุงุท ุฃูˆ ุฑุคูˆุณ ูˆู‡ุฐู‡ ุฎุทูˆุท ู‡ุฐุง ุงู„ู€ Graph ุงู„ู€
188
00:15:58,360 --> 00:16:03,780
Graph ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ vertices ุงู„ุฑุคูˆุณ
189
00:16:03,780 --> 00:16:10,850
ูˆู…ุฌู…ูˆุนุฉ ุฃุฎุฑู‰ ู…ู† ุงู„ edges ุงู„ู…ุตู…ูˆุนุฉ ู…ู† ุงู„ุฑุคูˆุณ V ุฅุฐุง
190
00:16:10,850 --> 00:16:14,890
ู†ูˆุถุญ ุฅูŠุด ู‡ูˆ ุงู„ graph ุนู„ู‰ ุจุนุถู‡ ุงู„ graph ู‡ูˆ ุนุจุงุฑุฉ ุนู†
191
00:16:14,890 --> 00:16:19,210
ู…ุฌู…ูˆุนุชูŠู† ูˆุงุญุฏุฉ ู…ุฌู…ูˆุนุฉ ุงู„ุฑุคูˆุณ ูˆุงู„ุซุงู†ูŠุฉ ู…ุฌู…ูˆุนุฉ
192
00:16:19,210 --> 00:16:25,290
ุงู„ุฎุทูˆุท ุงู„ุชูŠ ุชูƒูˆู† ู…ู† ู‡ุฐู‡ ุงู„ุฑุคูˆุณ ุจุทุฑูŠู‚ุฉ ู…ุง ุทูŠุจ ุงู„ NE
193
00:16:25,290 --> 00:16:30,890
ู‡ูŠู‡ุง V1 joined V4 ุงู„ู„ูŠ ูŠุนู†ูŠ ุจุงุฎุชุตุงุฑ V1 V4 ุงู„ุฎุท V1
194
00:16:30,890 --> 00:16:45,530
V4 V1 V6 V1 V6 V2 V5 V2 V5 V4 V5 V4 V5 V5 V6 ุฅุฐู† ู‡ูŠ
195
00:16:45,530 --> 00:16:50,310
ุชุนุจูŠุฑุง ุขุฎุฑ ุนู† ู…ูŠู† ุนู† ุงู„ุฎุทูˆุท ูŠุนู†ูŠ ู…ู…ูƒู† ูˆุงุญุฏ ูŠูƒุชุจ V1
196
00:16:50,310 --> 00:17:00,590
V4 ุฎู„ุงุต V1 V6 V2 V5 V4 V5 V5 V6 ู…ุด ูุงุฑู‚ ุงู„ุชุฑุชูŠุจ
197
00:17:00,590 --> 00:17:06,820
ู‡ู†ุง ุงู‡ ู‡ู†ุง ู…ุด ูุงุฑู‚ ุงู„ุชุฑุชูŠุจ ู„ูŠุดุŸ ู„ุฃู† ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
198
00:17:06,820 --> 00:17:13,160
ุงู„ ู‡ุฐุง ุจู†ุณู…ูŠ undirected graph ูŠุนู†ูŠ graph ุบูŠุฑ ู…ุชุฌู‡
199
00:17:13,160 --> 00:17:17,440
ูŠุนู†ูŠ ู…ุง ูุฑุฌุด ุนู†ุฏูŠ v1 ู„ v4 ูˆ v4 ู„ v1 ู…ุง ููŠุด ุงุชุฌุงู‡ุงุช
200
00:17:17,440 --> 00:17:22,940
ู…ุงุญุฏุด ุญุงุฌุฉ ุจู‡ ุทูŠุจ ุงู„ุขู† ู„ูˆ ุงู„ุขู† note that ุจู‚ูˆู„ v3
201
00:17:22,940 --> 00:17:27,860
is an isolated vertex ุฒูŠ ู…ุง ุนู…ู„ู†ุง ู‚ุจู„ ุดูˆูŠุฉ ู„ูŠุด ู„ุฃู†
202
00:17:27,860 --> 00:17:32,800
ุงู„ degree ู„ ุงู„ v3 ู…ุง ููŠุด ูˆู„ุง ุฅูŠุด ุจูŠุทู„ุน ู…ู†ู‡ ุงู„ู„ูŠ ู‡ูˆ ุฅูŠุด
203
00:17:32,800 --> 00:17:38,520
ุจูŠุณุงูˆูŠุŸ ุจูŠุณุงูˆูŠ ุตูุฑ ุทูŠุจุŒ ุงู„ุขู† ุงู„ vertexุŒ ุจุฏู†ุง ู†ุณู…ูŠู‡
204
00:17:38,520 --> 00:17:44,000
ุชุณู…ูŠู‡ ุงู„ุขู† a vertex is .. is .. ุงู„ู„ูŠ ู‡ูˆ ุจู†ุณู…ูŠู‡ a
205
00:17:44,000 --> 00:17:49,880
vertex ุจู†ุณู…ูŠู‡ is pendent if and only if it has
206
00:17:49,880 --> 00:17:54,240
degree one ูŠุนู†ูŠ ุงู„ vertex ุงู„ู„ูŠ ุจูŠูƒูˆู† degree ุชุจุนุชู‡
207
00:17:54,240 --> 00:18:00,260
ูˆุงุญุฏุŒ ุจู†ุณู…ูŠู‡ pendent ู…ุงุดูŠ V2 ู…ุซู„ุง V2 is a pendant
208
00:18:00,260 --> 00:18:05,420
ู„ูŠุด ู„ุฃู†ู‡ ู…ุง ููŠุด ู„ุบูŠุฑ ุงู„ู„ูŠ ู‡ูˆ ุฎุท ูˆุงุญุฏ ุทุงู„ุน ู…ู†ู‡ ู„ุนู†ุฏ V
209
00:18:05,420 --> 00:18:08,140
ุฎู…ุณุฉ ูŠุนู†ูŠ ุงู„ adjacent ู„ู‡ ุจุณ ุฎู…ุณุฉ ุฃูˆ ุงู„
210
00:18:08,140 --> 00:18:12,040
neighborhood ู„ู‡ ุงู„ V ุฎู…ุณุฉ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ ุงู„
211
00:18:12,040 --> 00:18:16,420
degree ู„ู‡ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ ู…ุฏุงู… ุงู„ degree ู„ู‡ ุจูŠุณุงูˆูŠ ูˆุงุญุฏ
212
00:18:16,420 --> 00:18:24,630
ุฅุฐุง ุนู„ู‰ ุทูˆู„ ุงู„ู„ูŠ ู‡ูˆ ุจู†ุณู…ูŠู‡ pendant ุทูŠุจ ู‡ู†ุง ููŠ ู†ุธุฑูŠุฉ
213
00:18:24,630 --> 00:18:29,310
hand shaking theorem ุจูŠู‚ูˆู„ ุงู„ sum of the degree
214
00:18:29,310 --> 00:18:34,150
of the vertices of an undirected graph ุจุณูŠุฏู‡ graph
215
00:18:34,150 --> 00:18:39,670
is even number or equal to twice the number of
216
00:18:39,670 --> 00:18:44,690
edges ุฅูŠุด ุงู„ู„ูŠ ุจูŠู‚ูˆู„ู‡ ุจู‚ูˆู„ ูŠุง ุฌู…ุงุนุฉ ู„ูˆ ุฃู†ุช ุฌูŠุช ุฃุฎุฏุช
217
00:18:44,690 --> 00:18:48,970
ุงู„ graph ุงู„ู„ูŠ ุนู†ุฏูƒ ูƒูŠ ุนู†ุฏูƒ ููŠู‡ graph graph V ูˆ V ูˆ
218
00:18:48,970 --> 00:18:53,570
ุฌูŠุช ู„ูƒ ูƒู„ ุงู„ vertices ุงู„ V ูˆุญุณุจุช ูƒู„ ุงู„ุฑุคูˆุณ ู‡ู†ุง
219
00:18:53,570 --> 00:18:58,770
ุญุณุจุช ุงู„ degree ู„ูƒู„ ุฑุฃุณ ูˆุฌู…ุนุช ูƒู„ ุงู„ degree ุชุจุนุงุช
220
00:18:58,770 --> 00:19:01,510
ุงู„ุฑุคูˆุณ ูŠุนู†ูŠ ุงู„ุฑุฃุณ ุงู„ุฃูˆู„ degree ู‚ุฏุงุด ุงู„ุฑุฃุณ ุงู„ุฃูˆู„
221
00:19:01,510 --> 00:19:04,910
ุซุงู†ูŠ degree ู‚ุฏุงุด ู„ู…ุง ุฎู„ุตุช ุนู„ู‰ ูƒู„ ุงู„ุฑุคูˆุณ ุนุฑูุช
222
00:19:04,910 --> 00:19:09,610
ุฏุฑุฌุงุชู‡ู… ุจุฌู…ุน ุฏุฑุฌุงุช ุงู„ุฑุคูˆุณ ุจุฌู…ุน ุฏุฑุฌุงุช ุงู„ุฑุคูˆุณ ุงู„ู„ูŠ
223
00:19:09,610 --> 00:19:14,770
ู‡ูŠ ุงู„ vertices ุจู„ุงู‚ูŠู‡ู… ุฏุงุฆู…ุง ุฏุงุฆู…ุง ุฏุงุฆู…ุง ุจูŠุณุงูˆูŠ
224
00:19:14,770 --> 00:19:21,230
ุงุซู†ูŠู† ููŠ ุนุฏุฏ ุงู„ edges ููŠ ุนุฏุฏ ุนู†ุงุตุฑ ู…ู† ุงู„ E ุนู†ุงุตุฑ
225
00:19:21,230 --> 00:19:26,970
ู…ู† ุงู„ E ุฅูŠุด ู‡ูŠ ุฎุทูˆุท ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ ุนุฏุฏ ู…ุฌู…ูˆุน
226
00:19:26,970 --> 00:19:34,550
ู…ุฌู…ูˆุน ู…ุฌู…ูˆุน ุฏุฑุฌุงุช ุงู„ vertices ุจูŠุณุงูˆูŠ ุถุนู ุนุฏุฏ ุงู„ุฎุทูˆุท
227
00:19:34,550 --> 00:19:38,870
ูŠุนู†ูŠ ู„ูˆ ุถุฑุจู†ุง ุงุซู†ูŠู† ููŠ ุนุฏุฏ ุงู„ุฎุทูˆุท ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ E
228
00:19:38,870 --> 00:19:46,830
ู‡ู„ุงู‚ูŠู‡ู… ุฏุงุฆู…ุง ุจูŠุณุงูˆูŠ ุฅูŠุด ู…ุฌู…ูˆุน ุฏุฑุฌุงุช ุงู„ vertices ุฃูˆ
229
00:19:46,830 --> 00:19:50,270
ุฃู†ุช ุงู…ุณูƒ ู…ุซุงู„ ูˆุฌุฑุจ ุนู„ู‰ ุงู„ู„ูŠ ุญูƒูŠู†ุงู‡ ูˆุฎู„ูŠู†ุง ู†ุฌุฑุจ
230
00:19:50,270 --> 00:19:54,470
ุนู„ู‰ ู‡ุฐุง ุงู„ู…ุซุงู„ ู…ุซู„ุง ู‡ุงูŠ ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ graph
231
00:19:54,470 --> 00:19:59,270
undirected graph ูˆู‡ูŠ ุงู„ vertices ุชุจุน ุนูŠูˆู†ู†ุง V1 V2
232
00:19:59,270 --> 00:20:05,110
V3 V4 ูˆู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ edges ุชุจุนุงุชู‡ ุฃูˆ ุงู„ุฎุทูˆุท ุฅูŠุด
233
00:20:05,110 --> 00:20:09,730
ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ูŠู‡ุง ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ
234
00:20:09,730 --> 00:20:14,410
ุณุช ุฎุทูˆุท V1 V2 ุทุจุนุง ู‡ุฐุง ููŠ ุงู„ degree ุจู†ุญุณุจ ุงุซู†ูŠู†
235
00:20:14,410 --> 00:20:22,230
ู„ูƒู† ู‡ูˆ E ุจุงู„ุณุงูˆูŠุฉ V1 V2 V2 V3 V1 V3 V3 V4 V4 V1 V3
236
00:20:22,230 --> 00:20:27,050
V3 ู‡ูŠ ุงู„ุฎุทูˆุท ู‚ุฏุงุด ูˆุงุญุฏ ุงุซู†ูŠู† ุขุณู ุนู†ุงุก ุงู„ edges
237
00:20:27,050 --> 00:20:32,470
ุชุจุนุงุช ุงู„ E ูˆุงุญุฏ ุงุซู†ูŠู† ุซู„ุงุซุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ ุณุชุฉ ุงู„ุขู† ุชุนุงู„ู‰
238
00:20:32,470 --> 00:20:38,250
ุงุญุณุจ ุงู„ degree ู„ูƒู„ ูˆุงุญุฏ ู…ู† ู‡ุฏูˆู„ ูˆุงุฌู…ุนู‡ู… ู‡ุชู„ุงู‚ูŠู‡ู…
239
00:20:38,250 --> 00:20:41,850
ุงุซู†ุง ุนุดุฑ ู‡ุงูŠ ูˆุงุญุฏุŒ ู‡ุงูŠ ุงุซู†ูŠู†ุŒ ู‡ุงูŠ ุซู„ุงุซุฉุŒ ู‡ุงูŠ ุฃุฑุจุนุฉุŒ
240
00:20:41,850 --> 00:20:46,850
ู‡ุงูŠ ุฎู…ุณุฉุŒ ู‡ุงูŠ ุณุชุฉ ู„ุงุฒู… ู„ูˆ ุฃุฎุฏุช ุงู„ degree ู„ู‡ุฐู‡ ุฒุงุฆุฏ
241
00:20:46,850 --> 00:20:49,250
ุงู„ degree ู„ู‡ุฐู‡ ุฒุงุฆุฏ ุงู„ degree ู„ู‡ุฐู‡ ุฒุงุฆุฏ ุงู„ degree
242
00:20:49,250 --> 00:20:54,710
ู„ู‡ุฐู‡ ูŠุทู„ุน ู…ุฌู…ูˆุน ุงู„ degrees ุงุซู†ูŠู† ููŠ ุณุชุฉ ุญุณุจ
243
00:20:54,710 --> 00:20:57,550
ุงู„ู‚ุงู†ูˆู† ุฃู†ุง ุงุซู†ุง ุนุดุฑ ูŠุนู†ูŠ ู‡ูŠุทู„ุน ู„ู†ุง ุงุซู†ุง ุนุดุฑ degree
244
00:20:57,550 --> 00:21:02,270
ู…ุฌู…ูˆุญูŠู† ุฏู‡ ู†ุดูˆู ู†ุฌุฑุจ ุงู„ degree ู„ู„ V ูˆุงุญุฏ ุฅูŠู‡ ูˆุงุญุฏ
245
00:21:02,270 --> 00:21:06,730
ู‡ูŠ ุงุซู†ูŠู† ู‡ูŠ ุซู„ุงุซุฉ ุทูŠุจ ุงู„ degree ู„ู„ V ุงุซู†ูŠู† ูˆุงุญุฏ
246
00:21:06,730 --> 00:21:11,630
ุงุซู†ูŠู† ุงู„ degree ู„ู„ V ุซู„ุงุซุฉ ู‡ูŠ ูˆุงุญุฏ ู‡ูŠ ุงุซู†ูŠู† ู‡ูŠ
247
00:21:11,630 --> 00:21:16,310
ุซู„ุงุซุฉ ูˆุงู„ loop ุจู†ุญุณุจ ุงุซู†ูŠู† ุฃูˆ two in ู‡ูŠ ุฎู…ุณุฉ ูˆุงู„
248
00:21:16,310 --> 00:21:20,770
degree ู„ู„ V4 ู‚ุฏุงุด ุงุซู†ูŠู† ู‡ูŠ ูˆุงุญุฏ ู‡ูŠ ุงุซู†ูŠู† ุงุฌู…ุน ู„ูŠู‡
249
00:21:20,770 --> 00:21:23,710
ู‡ู†ุง ุฏูˆู„ุฉ ุซู„ุงุซุฉ ูˆุงุซู†ูŠู† ุฎู…ุณุฉ ูˆุฎู…ุณุฉ ุนุดุฑ ูˆุงุซู†ูŠู†
250
00:21:23,710 --> 00:21:29,500
ุงุซู†ุง ุนุดุฑ ูุนู„ุง ุงุซู†ุง ุนุดุฑ ุจูŠุณุงูˆูŠ ุณุชุฉ ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ ุนู†ุงุตุฑ ู‡ุฏูˆู„
251
00:21:29,500 --> 00:21:32,920
ููŠ ุงุซู†ูŠู† ุจุทู„ุน ุงูŠุด ุงุซู†ูŠู† ุนุดุฑ ุงูŠู‡ ุฏู‡ ุงูŠู‡ ุฏู‡ ุงู†ู‡ุง ุฏูŠ
252
00:21:32,920 --> 00:21:37,160
hand shaking theorem ู‡ูŠ ูƒุฏู‡ ู‡ูŠ ุชู‚ูˆู„ ุฅุฐุง ุงู„
253
00:21:37,160 --> 00:21:40,980
summation ู„ู„ edge ู„ู„ V ู‡ูŠ ู‡ูŠ ู‡ูŠ ุจุณุงูˆุฉ ุงุซู†ูŠู† ููŠ
254
00:21:40,980 --> 00:21:46,020
ุงู„ู„ูŠ ุงุซู†ูŠู† ููŠ ุณุชุฉ ุจุณุงูˆุฉ ุงุซู†ูŠู† ุนุดุฑ ุงู„ุงู† sum of degree
255
00:21:46,020 --> 00:21:49,680
ุงู„ู„ูŠ ู‡ูˆ ู…ุซุงู„ ุนุงู„ูŠ ุฌุงูŠุจู‡ ุดูˆูŠุฉ ุจู‚ูˆู„ ู„ูŠ how many edges
256
00:21:50,490 --> 00:21:55,030
ูƒู… edges ูŠุนู†ูŠ ู‚ุฏ ุงูŠุด ุนู†ุงุตุฑ ุงู„ู€ E are there in a
257
00:21:55,030 --> 00:22:00,540
graph ููŠ ุงู„ู€ graph ุงู„ู„ูŠ ุงู„ vertices ู„ู‡ ุนุดุฑุฉ each of
258
00:22:00,540 --> 00:22:04,320
degree six ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ ุนู†ุฏูŠ .. ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ
259
00:22:04,320 --> 00:22:09,920
vertices ุนุดุฑ vertices ุนุดุฑ ุฑุคูˆุณ ูƒู„ ุฑุงุณ ู…ู†ู‡ู… ุงู„
260
00:22:09,920 --> 00:22:15,220
degree ู„ู‡ ุณุชุฉ ู…ุฏุงู… ุงู„ degree ู„ู‡ ุณุชุฉ ุงู„ุงู† ุจูŠุตูŠุฑ
261
00:22:15,220 --> 00:22:20,620
ุงู„ู„ูŠ ู‡ู… ู…ุฌู…ูˆุน ุงู„ู„ูŠ ู‡ูŠ ุงู„ vertices ู‡ุฏูˆู„ ู…ุฌู…ูˆุน ุงู„
262
00:22:20,620 --> 00:22:26,020
degrees ู„ู‡ ุนุดุฑุฉ ููŠ ุณุชุฉ ุจุณุชูŠู† ู…ุธุจูˆุท ุณุชูŠู† ุงู„ู„ูŠ ู‡ู…
263
00:22:26,020 --> 00:22:30,950
ุจูŠุณุงูˆูˆู† ุงุซู†ูŠู† ู…ุถุฑูˆุจุฉ ููŠ ู…ูŠู† ููŠ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ graph
264
00:22:30,950 --> 00:22:34,390
ุฅุฐุง ุงู„ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ edge ุฅุฐุง ุงู„ edge ู„ุงุฒู… ูŠุทู„ุน ุงูŠู‡ุŸ
265
00:22:34,390 --> 00:22:37,390
ุงู„ู„ูŠ ู‡ูŠ ุณุชูŠู† ุนู„ู‰ ุงุซู†ูŠู† ูˆู‡ูŠ ุซู„ุงุซูŠู† ุดูˆู ุงูŠุด
266
00:22:37,390 --> 00:22:40,770
ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ because the sum of the degrees of the
267
00:22:40,770 --> 00:22:44,630
vertices is ุณุชุฉ ููŠ ุนุดุฑุฉ ูŠุนู†ูŠ ุงู„ุงู† ุงู„ vertices ุนุดุฑุฉ
268
00:22:44,630 --> 00:22:48,650
ูˆ ูƒู„ ูˆุงุญุฏ ุงู„ degree ู„ู‡ ุณุชุฉ ุจูŠุตูŠุฑ ู…ุฌู…ูˆุนุฉ degrees ู„ู„
269
00:22:48,650 --> 00:22:53,740
vertices ุณุชูŠู† it follows that ุงุซู†ูŠู† ููŠ M M ุงูŠุด ู‡ูŠ
270
00:22:53,740 --> 00:22:58,580
ุนุจุงุฑุฉ ุนู† ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ E ูุฑุถู†ุงู‡ุง ุงู‡ ุงุซู†ูŠู† M ุจุณุงูˆูŠ
271
00:22:58,580 --> 00:23:03,400
ุณุชูŠู† ุงู„ู„ูŠ ู‡ูŠ where M is the number of edges ู…ุงุดูŠ
272
00:23:03,400 --> 00:23:06,220
ุงู„ู„ูŠ ุงู†ุง ู…ุด ุงู„ู„ูŠ ุงู†ุง ู…ุด ุงู„ E ู‡ุฐุง ู…ุด ู…ุธุจูˆุทุฉ ู‡ูŠูƒ
273
00:23:06,220 --> 00:23:11,570
ุงุซู†ูŠู† M ุจุณุงูˆูŠ ุงูŠุด ุณุชูŠู† ุญูŠุซ ุงู„ M ุงูŠุด ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ
274
00:23:11,570 --> 00:23:15,550
ุนู†ุงุตุฑ ู„ุฏูƒ therefore M ุงูŠุด ุจุชุณุงูˆูŠ ุจุชุณุงูˆูŠ ุซู„ุงุซูŠู†
275
00:23:15,550 --> 00:23:20,050
ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ M is the number of edges ุงู„ู„ูŠ
276
00:23:20,050 --> 00:23:23,850
ู‡ูŠ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ E ู‡ุฐู‡ ูุด ู‡ุฐุง ู…ุด ู…ุธุจูˆุทุฉ ุงุซู†ูŠู† M
277
00:23:23,850 --> 00:23:28,470
ุจุชุณุงูˆูŠ ุณุชูŠู† ู‡ุฐู‡ ุทุจุนุง ูุด ูŠุณุงูˆูŠ ู‡ู†ุง ู‡ุฐู‡ ุงู„ E ุงู„ู„ูŠ ู‡ูŠ
278
00:23:28,470 --> 00:23:32,610
ุนุจุงุฑุฉ ุนู† ุงู„ M is the number of edge ุงู„ุงู† ุงุฐุง ุงู„ M
279
00:23:32,610 --> 00:23:35,650
ุงูŠุด ุจุชุณุงูˆูŠ ุซู„ุงุซูŠู† ุงูˆ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ edge ู‡ุฐู‡ ุงูŠุด
280
00:23:35,650 --> 00:23:41,430
ุจุชุณุงูˆูŠ ุซู„ุงุซูŠู† ุงู„ุงู† ู†ุฌูŠ ู„ู„ู€ Directed Graph ูŠุง ุฌู…ุงุนุฉ
281
00:23:41,430 --> 00:23:45,980
ุงู„ู€ Directed Graph ุงู„ู„ูŠ ู‡ูˆ ุฎู„ู‘ูŠู†ูŠ ุงุดูˆู Directed
282
00:23:45,980 --> 00:23:49,480
Graph V of E Consists .. ู‡ูˆ ู†ูุณ ุงู„ graph ุงู„ู„ูŠ ู‚ุจู„
283
00:23:49,480 --> 00:23:53,060
ุจุดูˆูŠุฉ ุจุณ ุจุฏู‡ ูŠุตูŠุฑ ุงุญู†ุง ู†ุฃุฎุฐ ุจุนูŠู† ุงู„ุงุนุชุจุงุฑ ุงู„ุงุชุฌุงู‡
284
00:23:53,060 --> 00:23:58,340
.. ุงู„ุชุฑุชูŠุจ ูŠุนู†ูŠ ุงุชุฌุงู‡ ู…ู† ูˆูŠู† ุทุงู„ุน ุงู„ู„ูŠ ู‡ูˆ ุงู„ .. ุงู„
285
00:23:58,340 --> 00:24:01,560
.. ุงู„ .. ุงู„ vertex ูˆ ุงูŠู† ุฑุงูŠุญู‡ ุงู„ุฎุท ู…ู† ูˆูŠู† ุทุงู„ุน ูˆ
286
00:24:01,560 --> 00:24:04,660
ู…ู† ูˆูŠู† ุฑุงูŠุญู‡ ุฏู‡ ู†ุดูˆู ุงูŠุด ุงู„ู„ูŠ ุจู‚ูˆู„ู‡ A Directed
287
00:24:04,660 --> 00:24:09,580
Graph V of E ูŠุนู†ูŠ Graph V ูˆ E ุฒูŠ ุงู„ู„ูŠ ู‚ุจู„ Consists
288
00:24:09,580 --> 00:24:14,580
of a set of vertices V ู†ูุณ ุงู„ุดูŠุก and a set of each
289
00:24:14,580 --> 00:24:19,320
E ุงู„ุงู† ุงู„ุงุฎุชู„ุงู ู‡ูŠุฌูŠ ุนู„ู‰ ุงู„ E ุงู„ E ุงูŠุด ุจุฏู‡ุง ุชุตูŠุฑ
290
00:24:19,320 --> 00:24:23,980
which are ordered pairs of elements of V ูŠุนู†ูŠ
291
00:24:23,980 --> 00:24:30,080
ุนู†ุงุตุฑ ุงู„ E ุงู„ุงู† ู„ู…ุง ู†ู‚ูˆู„ V1 V2 ุฎู„ุงุต V1 V2 ูŠุนู†ูŠ ู‡ุฐุง
292
00:24:30,080 --> 00:24:35,620
ู…ุด V2 V1 ูŠุนู†ูŠ ุนู†ุฏ ุงู„ order ู…ู‡ู… ุนุดุงู† ู‡ูŠูƒ ุจู†ู‚ูˆู„ ุนู†ู‡ุง
293
00:24:35,620 --> 00:24:39,220
ุงูŠุด ู…ุนู†ุงู‡ directed graph ูŠุนู†ูŠ ordered pairs
294
00:24:39,220 --> 00:24:45,600
ุนู†ุงุตุฑู‡ุง ู†ุดูˆู ูƒูŠู ู‡ูŠ ู…ุซู„ู‹ุง V ุจุชุณุงูˆูŠ A ูˆ B ูˆ C ูˆ D ู‡ุฐู‡
295
00:24:45,600 --> 00:24:49,200
ุงู„ู€ V ุนุจุงุฑุฉ ุนู† ุงูŠุด ูŠุง ุฌู…ุงุนุฉุŸ ู‡ูŠ ุนุจุงุฑุฉ ุนู† the set
296
00:24:49,200 --> 00:24:54,800
of vertices ุงู„ุงู† ุงู„ู€ E ุชุจุนุชู†ุง ุงู„ู„ูŠ ู‡ูŠ ุงู„ edges ุงู„ู€
297
00:24:54,800 --> 00:25:01,000
E ุงูŠุด ุงู„ู€ EุŸ ู‡ูŠ A ูˆ B ูˆ ู…ุฑุชุจุฉ ูƒุชุจู‡ุง ordered pair
298
00:25:01,000 --> 00:25:04,320
ูŠุนู†ูŠ ุจู‚ุตุฏูŠ ุงู„ a ูˆ ุงู„ b ูˆ ู…ุด ุจุงู„ b ูˆ ุงู„ a ุงู„ a ูˆ ุงู„
299
00:25:04,320 --> 00:25:08,280
b ู…ุนู†ุงุชู‡ ุงู†ู‡ ุฌุงูŠ ุงู„ุณู‡ู… ู…ู† a ูˆ ุฑุงูŠุญ ู…ู† ุจูŠู‡ ูŠุนู†ูŠ ู‡ูŠ
300
00:25:08,280 --> 00:25:12,700
ุฌุงูŠ ู…ู† a ูˆ ุฑุงูŠุญ ู„ b ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ initial point ูˆู‡ุฐู‡
301
00:25:12,700 --> 00:25:17,340
ุงู„ terminal point ู‡ูŠูƒ ุจุชู†ูู‡ู… ูŠุนู†ูŠ ุงู„ a ู‡ูŠ ู†ู‚ุทุฉ
302
00:25:17,340 --> 00:25:23,320
ุงู„ุจุฏุงูŠุฉ ูˆ b ู†ู‚ุทุฉ ุงู„ู†ู‡ุงูŠุฉ c ูˆ b ุงู„ู„ูŠ ู‡ูŠ ุฌุงูŠ ู…ู† c ูˆ
303
00:25:23,320 --> 00:25:27,640
ุฑุงูŠุญ ู„ b ู‡ุฐู‡ c ู†ู‚ุทุฉ ุงู„ุจุฏุงูŠุฉ ูˆ b ู†ู‚ุทุฉ ุงู„ู†ู‡ุงูŠุฉ D ูˆ B
304
00:25:27,640 --> 00:25:32,280
ู‡ูŠ ู…ู† D ุฅู„ู‰ B ู†ู‚ุทุฉ ุงู„ุจุฏุงูŠุฉ ูˆู‡ูŠ ู†ู‚ุทุฉ ุงู„ู†ู‡ุงูŠุฉ ุฏูŠ ุงูŠู‡
305
00:25:32,280 --> 00:25:37,220
ู†ู‚ุทุฉ ุงู„ุจุฏุงูŠุฉ ุฏูŠ ูˆู†ู‚ุทุฉ ุงู„ู†ู‡ุงูŠุฉ ุงูŠู‡ ุฅุฐุง ุงู„ุงู† ุงู„ู€ A
306
00:25:37,220 --> 00:25:42,640
ordered pairs ูˆ ุงู„ู€ V ู‡ูŠู‡ุง vertices ู…ุน ุจุนุถ V ูˆ E
307
00:25:42,640 --> 00:25:48,770
ุจู†ุณู…ูŠู‡ุง directed graph ูŠุนู†ูŠ graph ุงู„ู„ูŠ ู‡ูˆ ุงูŠุด ู…ุชุฌู‡
308
00:25:48,770 --> 00:25:54,070
ูŠุนู†ูŠ ุงู„ุงุชุฌุงู‡ ููŠู‡ ุจุงู„ู†ุณุจุฉ ู„ู†ุง ุงู„ู„ูŠ ู‡ูˆ ุถุฑูˆุฑูŠ let u
309
00:25:54,070 --> 00:25:57,890
,v directed graph ุฎู„ู‘ูŠู†ูŠ ุงุฎุฐ ุงู„ุงู† ุงู„ู„ูŠ ู‡ูŠ ุงู„ุชุณู…ูŠุงุช
310
00:25:57,890 --> 00:26:01,990
ุงู„ู„ูŠ ู‚ู„ุชู‡ุง ู‚ุจู„ ุดูˆูŠุฉ ุงู†ุง let u,v be an edge of the
311
00:26:01,990 --> 00:26:05,730
graph G ูŠุนู†ูŠ ู†ูุชุฑุถ ุงู† ุงู„ u ูˆ ุงู„ v ู‡ูˆ ุนุจุงุฑุฉ ุนู† edge
312
00:26:05,730 --> 00:26:10,510
ูŠุนู†ูŠ ุนู†ุตุฑ ู…ู† ุนู†ุงุตุฑ ุงู„ E ุงู„ู†ู‚ุทุฉ ุงู„ุจุฏุงูŠุฉ U ุงู„ุงู† ุจู†ู‚ุตุฏ
313
00:26:10,510 --> 00:26:15,210
U is called the initial vertex ูŠุนู†ูŠ ู†ู‚ุทุฉ ุงู„ุจุฏุงูŠุฉ
314
00:26:15,210 --> 00:26:20,530
ูŠุนู†ูŠ ุงู„ู„ูŠ ุจูŠุทู„ุน ู…ู†ู‡ุง ู…ู† ุงู„ุฎุท is the initial vertex
315
00:26:20,530 --> 00:26:27,560
of U V is called the terminal or end vertex of U V
316
00:26:27,560 --> 00:26:31,400
ูˆุจู†ุณู…ูŠ ุงู„ V ุงู„ู„ูŠ ู‡ูŠ ุงู„ terminal ุงูˆ ู†ู‚ุทุฉ ุงู„ู†ู‡ุงูŠุฉ ุงูˆ
317
00:26:31,400 --> 00:26:34,760
ุงู„ end ู„ู„ vertex ู„ุฐู† ูŠุนู†ูŠ ุงู„ุฎุท ุจูŠุทู„ุน ู…ู† U ุจูŠุฑูˆุญ
318
00:26:34,760 --> 00:26:39,720
ู„ู…ูŠู† ู„ V ู„ุฐู† ู„ู…ุง ู†ู‚ูˆู„ U ูˆ V ู…ุนู†ุงุชู‡ U ู†ู‚ุทุฉ ุงู„ุจุฏุงูŠุฉ
319
00:26:39,720 --> 00:26:46,990
adjacent to V ู…ุงุดูŠ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูŠ ุงู„ู„ูŠ ู‡ูŠ ุจุฌู†ุจ ุจุงู„ุฌู†ุจ
320
00:26:46,990 --> 00:26:51,850
ุฑุงูŠุญ ุนู„ูŠู‡ ุจุฌู†ุจ V ุจุณ ุฑุงูŠุญ ุนู„ู‰ ู…ูŠู† ุนู„ู‰ V ุงู„ U
321
00:26:51,850 --> 00:26:57,830
adjacent to V ูŠุนู†ูŠ ุฐุงู‡ุจุฉ ุงู„ู‰ ู…ูŠู† ุงู„ู‰ V ูŠุนู†ูŠ ุจุฌูˆุงุฑ
322
00:26:57,830 --> 00:27:03,210
V ุฐุงู‡ุจุฉ ุงู„ูŠู‡ุง ู„ูƒู† ุงู„ู€ V ุจุงู„ู†ุณุจุฉ ู„ู„ู€ U adjacent from
323
00:27:03,210 --> 00:27:09,850
U ุงู„ู„ูŠ ู‡ูˆ ุฌู†ุจู‡ุง ุฎุงุฑุฌู‡ุง ู…ู†ู‡ุง ุงู‡ ูŠุนู†ูŠ ุทุงู„ุนุฉ ู…ู† U ูˆ
324
00:27:09,850 --> 00:27:16,330
ุฑุงูŠุญุฉ ู„ู…ูŠู† ู„ู„ V ูŠุนู†ูŠ adjacent from U ุงู„ู„ูŠ ู‡ูˆ ุงู„ู„ูŠ
325
00:27:16,330 --> 00:27:27,100
ู‡ูŠ ุจุฌูˆุงุฑ ุงู„ู‰ U ูˆู‡ุฐู‡ ุจุฌูˆุงุฑ ู…ู† V ุงูˆ ุงู„ู‰ V ุทูŠุจ ุงูŠุด
326
00:27:27,100 --> 00:27:30,720
ูŠุนู†ูŠ ุจุงู„ุงู‚ุชุตุงุฏ ู‡ุฐู‡ ู†ู‚ุทุฉ ุงู„ู„ูŠ ู‡ูŠ ุงู„ุจุฏุงูŠุฉ ูˆู‡ุฐู‡ ู†ู‚ุทุฉ
327
00:27:30,720 --> 00:27:35,740
ุงู„ู†ู‡ุงูŠุฉ ุจุงู„ู†ุณุจุฉ ู„ ุงู„ H Definition ุจุฏู†ุง ู†ุนุฑู ุงู„ุงู†
328
00:27:35,740 --> 00:27:42,000
ุงุญู†ุง ุนุฑูู†ุง ู‚ุจู„ ุงู„ degree ู„ู„ vertex ุงู„ุงู† ุจุฏู†ุง ู†ุนุฑู
329
00:27:42,000 --> 00:27:46,980
ุงู†ู‡ ุตุงุฑ ููŠ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู†ู‚ุงุท ุฏุงุฎู„ุฉ ูˆ ู†ู‚ุงุท ุฎุงุฑุฌุฉ
330
00:27:46,980 --> 00:27:51,340
ุฎุทูˆุท ุฏุงุฎู„ุฉ ูˆ ุฎุทูˆุท ุฎุงุฑุฌุฉ ูŠุนู†ูŠ ู‡ุฐุง ุงู„ุฎุท ุฎุงุฑุฌ ู…ู† ุงู„ U
331
00:27:51,850 --> 00:27:56,130
ูˆุฏุงุฎู„ ุนุงู„ู…ูŠู† ุนู† ุงู„ู€ V ุนุดุงู† ู‡ูŠูƒ ุจู†ู‚ูˆู„ in a graph
332
00:27:56,130 --> 00:28:01,150
with directed edges the n degree of a vertex V
333
00:28:01,150 --> 00:28:06,150
ุจู†ุนุฑู ุญุงุฌุฉ ุงุณู…ู‡ุง ุงู„ู€ n degree ุงู„ู„ูŠ ู‡ูŠ ุงู„ุฏุฑุฌุฉ ุงู„ู‰
334
00:28:06,150 --> 00:28:10,390
of a vertex V ุงู„ู„ูŠ ู‡ูŠ degree ูˆ ู†ุงู‚ุต ุจู†ูƒุชุจู‡ุง n
335
00:28:10,390 --> 00:28:15,550
degree V is the number of edges with V as their
336
00:28:15,550 --> 00:28:20,530
terminal vertex ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ ู„ู…ุง ู†ู‚ูˆู„ in V ูŠุนู†ูŠ
337
00:28:20,530 --> 00:28:24,550
ุงู„ู„ูŠ ุฏุงุฎู„ ุนู„ู‰ ุงู„ V ูŠุนู†ูŠ ุงู„ V ุจุฏู‡ุง ุชูƒูˆู† ุงู„ู†ู‚ุทุฉ
338
00:28:24,550 --> 00:28:29,810
ุงู„ู†ู‡ุงุฆูŠุฉ ุงู„ terminal ุฅุฐู† degree in degree ู„ู„ V
339
00:28:29,810 --> 00:28:37,030
ุงู„ุฏุงุฎู„ุฉ ุนู„ู‰ ุงู„ V ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฏุงุฎู„ุฉ ุนู„ู‰ ุงู„ V ุฅุฐู†
340
00:28:37,030 --> 00:28:43,000
in degree ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฏุงุฎู„ุฉ ุนู„ู‰ ุงู„ V ุงู„ุงู† out
341
00:28:43,000 --> 00:28:49,660
degree of V ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฎุงุฑุฌุฉ ุงู„ู„ูŠ ู‡ูˆ main ู…ู† ุงู„
342
00:28:49,660 --> 00:28:54,580
V ูŠุนู†ูŠ ุจุชูƒูˆู† ุงู„ V initial point ุงู„ุงู† out degree
343
00:28:54,580 --> 00:28:59,080
ุงู„ุฎุงุฑุฌุฉ ู…ู† V ูŠุนู†ูŠ ุจุชูƒูˆู† ุงู„ V ุนุจุงุฑุฉ ุนู† initial
344
00:28:59,080 --> 00:29:04,600
point ู†ุฃุฎุฐ ู…ุซุงู„ ุงู„ุงู† ุจู‚ูˆู„ find the in degree and
345
00:29:04,600 --> 00:29:09,870
out degree of each vertex in the graph G with
346
00:29:09,870 --> 00:29:12,930
directed edges shown in figure 2 ู‡ูŠ ุงู„ููŠุฌูˆุฑ ุงู„ู„ูŠ
347
00:29:12,930 --> 00:29:18,530
ู‚ู„ู†ุงู‡ุง ุจุฏูƒ ุชุญุณุจู‡ ุงู„ in degree ู†ูŠุฌูŠ ู„ู…ู† ู„ุงู„ ุงูŠู‡
348
00:29:18,530 --> 00:29:22,670
ู†ุดูˆู ุงู„ in degree ุงู„ู„ูŠ ู‡ูŠ ุงูŠู‡ ุดู…ุงู„ู‡ุง ุงู„ุฏุงุฎู„ ุนู„ู‰ ุงู„
349
00:29:22,670 --> 00:29:26,090
ุงูŠู‡ ู…ูŠู† ุงู„ุฎุทูˆุท ุงู„ุฏุงุฎู„ ุนู„ู‰ ุงู„ ุงูŠู‡ ู‡ุงูŠ ูˆุงุญุฏ ู‡ุงูŠ ุงูˆู„
350
00:29:26,090 --> 00:29:31,630
ุฎุท ุงุซู†ูŠู† ุงู„ู„ูŠ ุฏุงุฎู„ ุนู„ู‰ ุงู„ ุงูŠู‡ ู‡ุงูŠ ูƒู…ุงู† ุฎุท ููŠ
351
00:29:31,630 --> 00:29:37,690
ุบูŠุฑู‡ู…ุŸ ู„ุง ุทูŠุจ ุงู„ degree ู„ู„ู€ B ุงู„ degree ู„ู„ B ุงู„
352
00:29:37,690 --> 00:29:41,510
degree ู„ู„ B ุงู„ุฏุงุฎู„ ุนู„ู‰ ุงู„ B ู…ูŠู† ุงู„ุฏุงุฎู„ ุนู„ู‰ ุงู„ B
353
00:29:41,510 --> 00:29:45,390
ู‡ุงูŠ ู‡ุฐุง ุฏุงุฎู„ ุนู„ู‰ ุงู„ B ูˆู‡ูŠ ุฏุงุฎู„ ุนู„ู‰ ุงู„ B ููŠ ุบูŠุฑู‡ู…
354
00:29:45,390 --> 00:29:50,930
ู„ุง ุฅุฐุง ุงุซู†ูŠู† ุงู„ degree ู„ู„ C ู‡ุงูŠ ุงูˆู„ ูˆุงุญุฏ ุฏุงุฎู„ ุนู„ู‰
355
00:29:50,930 --> 00:29:56,470
ุงู„ C ุงู„ุงู† ู‡ุงูŠ ูƒู…ุงู† ูˆุงุญุฏ ุฏุงุฎู„ ุนู„ู‰ ุงู„ C ู‡ุงูŠ ูƒู…ุงู†
356
00:29:56,470 --> 00:30:00,150
ูˆุงุญุฏ ุฏุงุฎู„ ุนู„ู‰ ุงู„ C ุฅุฐุง ุซู„ุงุซ ุฎุทูˆุท ุฅุฐุง ุงู„ degree in C
357
00:30:00,150 --> 00:30:04,950
ุซู„ุงุซุฉ ุงู„ุงู† ุงูˆ ุงู„ degree ุงู„ degree ู„ู„ a ุงู„ู„ูŠ ู‡ูŠ
358
00:30:04,950 --> 00:30:11,090
ุงู„ุฎุงุฑุฌุฉ ู…ู† ุงู„ a ุงู‡ ุงู„ุฎุงุฑุฌุฉ ู…ู† ุงู„ a ุงูˆู„ ุงูŠุด ุงู„ู„ูŠ
359
00:30:11,090 --> 00:30:16,010
ุฎุงุฑุฌ ู…ู† a ู‡ูŠ ู†ูุณู‡ุง ุฎุงุฑุฌ ูˆู‡ูŠ ูƒู…ุงู† ูˆุงุญุฏ ุฎุงุฑุฌ ุงุซู†ูŠู†
360
00:30:16,010 --> 00:30:20,310
ูˆู‡ูŠ ูƒู…ุงู† ูˆุงุญุฏ ุฎุงุฑุฌ ุซู„ุงุซุฉ ูˆู‡ูŠ ูƒู…ุงู† ูˆุงุญุฏ ุฎุงุฑุฌ ุงูŠุด
361
00:30:20,310 --> 00:30:25,700
ุงุฑุจุนุฉ ุฅุฐุง ู„ุงุญุธูˆุง ุงู† ุงู„ู„ูŠ ููŠ ุงู„ loop ุงู„ู„ูŠ ููŠ ุงู„
362
00:30:25,700 --> 00:30:32,500
loop ุจู†ุญุณุจ ุงู†ู‡ ุฏุงุฎู„ ูˆ ุฎุงุฑุฌ ู„ุงู†ู‡ ุฏุงุฎู„ ุนู„ู‰ ุงู„ a ูˆ
363
00:30:32,500 --> 00:30:36,980
ุฎุงุฑุฌ ู…ู† ุงู„ a ุนุดุงู† ู‡ูŠูƒ ููŠ ุงู„ุนุงุฏูŠ ุจู†ุญุณุจ ุจุฑุชูŠู† ู‡ู†ุง
364
00:30:36,980 --> 00:30:41,660
ุทุจุนุง ู‡ูŠู†ุญุณุจ ููŠ ุงู„ุฏุงุฎู„ ูˆ ููŠ ุงู„ุฎุงุฑุฌ ู„ุงู†ู‡ ูุนู„ุง ู…ู† ุงู„
365
00:30:41,660 --> 00:30:47,200
a ู„ ุงู„ a ุจูŠุทู„ุน ู…ู† ุงู„ a ูˆ ุจูŠุฏุฎู„ ู„ู„ a ูˆ ุจู†ุญุณุจ ุฏุงุฎู„ ูˆ
366
00:30:47,200 --> 00:30:52,670
ุฎุงุฑุฌ ุงู„ degree ู„ู„ B ุงู„ู„ูŠ ู‡ูˆ ุงู„ out degree ุงู„ู„ูŠ ุฎุฑุฌุช
367
00:30:52,670 --> 00:30:56,090
ู…ู† ุงู„ B ุงู„ู„ูŠ ุฎุฑุฌุช ู…ู† ุงู„ B ูˆูŠู† ุงู„ู„ูŠ ุฎุฑุฌุช ู…ู† ุงู„ BุŸ
368
00:30:56,090 --> 00:31:01,090
ู‡ุงูŠ ูˆุงุญุฏุŒ ููŠ ุบูŠุฑู‡ุŸ ู„ุงุŒ ู‡ุงูŠ ูˆุงุญุฏ ุงู„ู„ูŠ ุฎุฑุฌุช ู…ู† ู…ูŠู†ุŸ
369
00:31:01,090 --> 00:31:06,530
ู…ู† ุงู„ C ุงู„ุงู† ุงู„ู„ูŠ ุฎุฑุฌุช ู…ู† ุงู„ CุŒ ู‡ุงูŠ ูˆุงุญุฏุŒ ู‡ุงูŠ
370
00:31:06,530 --> 00:31:11,210
ุงุซู†ูŠู†ุŒ ููŠ ุบูŠุฑู‡ู…ุŸ ู„ุงุŒ ู‡ุงูŠ ุงู„ู„ูŠ ุฎุฑุฌุช ู…ู† ุงูŠุดุŸ ู…ู† ุงู„ C
371
00:31:11,210 --> 00:31:20,700
ุทูŠุจุŒ ู†ูŠุฌูŠ ุงู„ุงู† ู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู„ู„ู†ุธุฑูŠุฉ ุงู„ุงู† ู„ุงุญุธูˆุง ุงู†ู‡
372
00:31:20,700 --> 00:31:25,340
ู„ูˆ ุฌูŠู†ุง ูƒุงู†ุช G ุนู†ุฏ theorem let G ุจูŠุณุงูˆูŠ V ูˆ E be
373
00:31:25,340 --> 00:31:29,180
the graph with directed edges ูŠุนู†ูŠ ู†ูุชุฑุถ ุงู†ู‡ ุงู„ู„ูŠ
374
00:31:29,180 --> 00:31:33,300
ู‡ูˆ ู‡ุฐุง ุนุจุงุฑุฉ ุนู† graph ุนู†ุงุตุฑ ุงู„ E ุนุจุงุฑุฉ ุนู† ordered
375
00:31:33,300 --> 00:31:39,140
pairs ูŠุนู†ูŠ directed edges then ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ุฌูŠุช ุญุณุจุช
376
00:31:39,140 --> 00:31:44,580
ู„ู„ู€ in-degree ูŠุนู†ูŠ ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ุฏุงุฎู„ุฉ ุงู„ู„ูŠ ุฏุงุฎู„ุฉ
377
00:31:47,340 --> 00:31:52,440
ุงู„ู€ N ู‡ุฐู‡ ุงู„ู„ูŠ ุฏุงุฎู„ุฉ ุนู„ู‰ ุงู„ู€ V ู„ูƒู„ ุงู„ู†ู‚ุงุท ูˆุฌู…ุนุชู‡ู…
378
00:31:52,440 --> 00:31:57,700
ู‡ูŠูƒูˆู† ุฅู† ู‡ู…ุง ู†ูุณ ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฎุงุฑุฌูŠุฉ ุทุจูŠุนูŠ ุทุจูŠุนูŠ
379
00:31:57,700 --> 00:32:02,580
ู„ุฃู†ู‡ ุจุชูƒูˆู† ุงู„ู„ูŠ ู‡ูŠ ู…ุด ุจู†ุญุณุจ ุนู„ู‰ ูƒู„ ุงู„ู†ู‚ุงุท ุฅุฐุง ู…ุด
380
00:32:02,580 --> 00:32:07,890
ุฏุงุฎู„ุฉ ููŠ ู‡ุฐุง ุงู„ู€ .. ุฅุฐุง ุฏุงุฎู„ุฉ ููŠ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุฅุฐุง ู…ุด
381
00:32:07,890 --> 00:32:11,770
ุฏุงุฎู„ุฉ ููŠ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุฏุงุฎู„ุฉ ููŠ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ุฅุฐุง ู…ุด
382
00:32:11,770 --> 00:32:14,350
ุฎุงุฑุฌุฉ ููŠ ุงู„ู†ู‚ุทุฉ ู‡ุฐู‡ ุฎุงุฑุฌุฉ ููŠ ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ูˆู…ุง ุฏู‡
383
00:32:14,350 --> 00:32:19,030
ุจู†ุฌู…ุน ุนู„ู‰ ูƒู„ ุงู„ู†ู‚ุงุท ุฅุฐุง ุญูŠูƒูˆู† ู‡ุฏูˆู„ ู‡ู†ุง ุนุฏุฏ ุงู„ุฎุทูˆุท
384
00:32:19,030 --> 00:32:23,840
ูƒู„ู‡ู… ูˆู‡ุฏูˆู„ ุนุฏุฏ ุงู„ุฎุทูˆุท ูƒู„ู‡ู… ูˆุนุฏุฏ ุงู„ุฎุทูˆุท ูƒู„ ุฅู† ู‡ู…ุง
385
00:32:23,840 --> 00:32:29,740
ู…ู† ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ู‡ูˆ ู‡ุฐู‡ ูุฏุงุฆู…ุงู‹ ุนุฏุฏ ุงู„ุฎุทูˆุท
386
00:32:29,740 --> 00:32:34,780
ุงู„ู…ุฌู…ูˆุนุฉ ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฏุงุฎู„ุฉ ุจูŠุณุงูˆูŠ ู…ุฌู…ูˆุนุฉ ุนุฏุฏ
387
00:32:34,780 --> 00:32:38,420
ุงู„ุฎุทูˆุท ุงู„ุฎุงุฑุฌูŠุฉ ู„ูƒู„ ุงู„ู†ู‚ุงุท ุทุจุนุงู‹ ุจูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ
388
00:32:38,420 --> 00:32:42,820
ุงู„ุฎุทูˆุท ู‡ุฐู‡ ุทุจุนุงู‹ ู‡ุฐู‡ ุฅูŠู‡ ู‡ูŠ ู…ุฌู…ูˆุนุฉ ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ู‡ูŠ
389
00:32:42,820 --> 00:32:48,920
out-degree ุงู„ู„ูŠ ู‡ูŠ ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฎุงุฑุฌุฉ out-degree
390
00:32:48,920 --> 00:32:52,800
ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฎุงุฑุฌุฉ ู…ุฌู…ุนุฉ ุนู„ู‰ ูƒู„ ุงู„ู†ู‚ุงุท ูˆู‡ุฐุง ุนุฏุฏ
391
00:32:52,800 --> 00:32:57,760
ุงู„ุฎุทูˆุท ุงู„ุฏุงุฎู„ุฉ ุนู„ู‰ ูƒู„ ุงู„ู†ู‚ุงุท ูุจูŠุทู„ุน ุนู†ุฏูŠ ู‡ุฐู‡ ูƒู„
392
00:32:57,760 --> 00:33:01,560
ุงู„ุฎุทูˆุท ุงู„ู„ูŠ ุนู†ุฏูŠ ูˆู‡ุฐู‡ ุจุฑุถู‡ ูƒู„ ุงู„ุฎุทูˆุท ู„ุฃู† ุงู„ู„ูŠ ุฎุงุฑุฌ
393
00:33:01,930 --> 00:33:06,190
ููŠ ู†ู‚ุทุฉ ุจูŠูƒูˆู† ุฏุงุฎู„ ููŠ ู†ู‚ุทุฉ ูุจุชู†ุฌู…ุน ุงู„ู„ูŠ ุจู†ุฌู…ุน ุญู†
394
00:33:06,190 --> 00:33:10,370
ุจู†ุฌู…ุน ุญู† ูุจู†ุฌู…ุน ูƒู„ู‡ ุนู„ู‰ ู‡ุฏูˆู„ ุจู†ุฌู…ุน ูƒู„ู‡ ูุจูŠูƒูˆู† ู†ูุณ
395
00:33:10,370 --> 00:33:14,770
ุงู„ุดูŠุก ูˆ ุจูŠุทู„ุน ุนุฏุฏ ุงู„ุฎุทูˆุท ุงู„ุฏุงุฎู„ุฉ ูˆุฃู†ุช ุฅุฐุง ูƒุงู†
396
00:33:14,770 --> 00:33:19,490
ูŠุนู†ูŠ ุดุงูƒุฉ ุฑูˆุญ ุนุฏู„ูŠ ุนุฏุฏ ุงู„ู€ in-degree ูˆ ุงู„ู€
397
00:33:19,490 --> 00:33:22,350
in-degree ูˆ ุงู„ู€ in-degree ูˆ ุงู„ู€ in-degree ูˆ ุงู„ู€ in-degree
398
00:33:22,350 --> 00:33:25,960
ูˆ ุงู„ู€ in-degree ูˆ ุงู„ู€ in-degree ูˆ ุงุฌู…ุนู‡ู… ู‡ุชู„ุงู‚ูŠู‡ู…
399
00:33:25,960 --> 00:33:29,660
ุจูŠุณุงูˆูŠู† ุงู„ู€ out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
400
00:33:29,660 --> 00:33:31,240
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€ out-degree
401
00:33:31,240 --> 00:33:32,520
ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
402
00:33:32,520 --> 00:33:32,720
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
403
00:33:32,720 --> 00:33:32,960
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
404
00:33:32,960 --> 00:33:33,000
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
405
00:33:33,000 --> 00:33:33,040
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
406
00:33:33,040 --> 00:33:33,520
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
407
00:33:33,520 --> 00:33:34,400
out-degree ูˆ ุงู„ู€ out-degree ูˆ ุงู„ู€
408
00:33:34,400 --> 00:33:39,180
out-degree ูˆ ุงู„ู€
409
00:33:39,180 --> 00:33:44,090
out-degree ูˆู‡ู†ุง ุจูƒูˆู† ุนู†ุฏูŠ ุจูƒูˆู† ูˆุตู„ู†ุง ู„ู„ู€ homework
410
00:33:44,090 --> 00:33:49,110
ู„ู„ู…ุญุงุถุฑุฉ ุงู„ุนุงุดุฑุฉ ู‡ูŠ ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ู‡ูŠ ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ a
411
00:33:49,110 --> 00:33:53,630
ูˆ b ูˆุนู„ู‰ ุงู„ุฑุณู… ู‡ุฐู‡ ุณุฎู„ุงุช ุณู„ุฉ ูˆู‡ูŠ ุงู„ุณุคุงู„ ุงู„ุซุงู†ูŠ ูƒู„ู‡
412
00:33:53,630 --> 00:33:58,090
ุฒูŠ ุงู„ู„ูŠ ุดุฑุญุชู‡ ูˆู‡ูŠ ุงู„ุณุคุงู„ ุงู„ุซุงู„ุซ ููŠ ุงู„ู‡ุฏุงูƒ ูุงุฆู„ุง
413
00:33:58,090 --> 00:34:02,650
ุนู†ุฏูŠ ุฅุฐุง ุชู„ุช ุฃุณุฆู„ุฉ ูˆุฅู† ุดุงุก ุงู„ู„ู‡ ุจุชุญู„ูˆู† ุชุนุทูˆู†ูŠุง
414
00:34:02,650 --> 00:34:07,350
ูƒุงู„ุนุงุฏุฉ ูˆุฅู„ู‰ ู„ู‚ุงุก ุขุฎุฑ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡
415
00:34:07,350 --> 00:34:08,630
ูˆุจุฑูƒุงุชู‡