|
1 |
|
00:00:00,930 --> 00:00:06,630 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุฐู ูู ุงูู
ุญุงุถุฑุฉ ุฑูู
ุนุดุฑุฉ |
|
|
|
2 |
|
00:00:06,630 --> 00:00:12,170 |
|
ูู
ุณุงู ุฑูุงุถูุงุช ู
ููุตูุฉ ุทูุงุจ ู ุทุงูุจุงุช ุงูุฌุงู
ุนุฉ |
|
|
|
3 |
|
00:00:12,170 --> 00:00:17,470 |
|
ุงูุฅุณูุงู
ูุฉ ูููุฉ ุชูููููุฌูุง ุงูู
ุนููู
ุงุช ูุณู
ุงูุญูุซุจุฉ |
|
|
|
4 |
|
00:00:17,470 --> 00:00:22,690 |
|
ุงูู
ุชูููุฉ ุงูููู
ุงู ุดุงุก ุงููู ููุจุฏุฃ ูู ุงูุดุจุทุฑ ุงูุฃุฎูุฑ |
|
|
|
5 |
|
00:00:22,690 --> 00:00:28,290 |
|
ูู ุงูู
ุงุฏุฉ ุงููู ูู ุดุจุทุฑ ุนุดุฑุฉ ุชุญุช ุนููุงูigraphs |
|
|
|
6 |
|
00:00:30,140 --> 00:00:36,120 |
|
ููุฌู ุงููู ูู ุงูุนุฑู ุฅูุด ูู ู
ุนูุงุฉ graphs ุฅูุด ู
ุนูุงุฉ |
|
|
|
7 |
|
00:00:36,120 --> 00:00:42,500 |
|
ุงู graphุ a graph ูู ุจุงุฎุชุตุงุฑ is a pair of V ู E of |
|
|
|
8 |
|
00:00:42,500 --> 00:00:49,640 |
|
6 ูุนูู ูู ุนุจุงุฑุฉ ุนู ุฒูุฌ ู
ู V ู
ุฌู
ูุนุฉ ู E ู
ุฌู
ูุนุฉ ุงูุขู |
|
|
|
9 |
|
00:00:49,640 --> 00:00:54,820 |
|
V ุฅูุด ูู ู E ุฅูุด ููุ ููุดูู ุฅูุด ุงูุขู ุจุงูุชูุตูู ุฅูุด |
|
|
|
10 |
|
00:00:54,820 --> 00:00:59,760 |
|
ูู ุงู V ู ุฅูุด ูู ุงู EV non-empty set ุงููู ูู |
|
|
|
11 |
|
00:00:59,760 --> 00:01:06,020 |
|
ู
ุฌู
ูุนุฉ ุบูุฑ ุฎุงููุฉ and each element of a set E of E |
|
|
|
12 |
|
00:01:06,020 --> 00:01:10,120 |
|
is a set ูุนูู ูู element ูู ุงู E ุนุจุงุฑุฉ ุนู set ุงู |
|
|
|
13 |
|
00:01:10,120 --> 00:01:14,420 |
|
set ูุฐู ุจุณ ู
ููู ู
ููุง ู
ูููุฉ ุจุณ ู
ู ุนูุตุฑูู ุงู set E |
|
|
|
14 |
|
00:01:14,420 --> 00:01:19,720 |
|
ูุฐู ุนูุงุตุฑูุง ุนูุงุตุฑูุง ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุงุช ูู ู
ุฌู
ูุนุฉ |
|
|
|
15 |
|
00:01:19,720 --> 00:01:24,760 |
|
ู
ูููุฉ ู
ู ุนูุตุฑูููุฏูู ุงูุนูุตุฑูู ู
ู ููู ุฌูุงุช ู
ู ุงู V |
|
|
|
16 |
|
00:01:24,760 --> 00:01:31,480 |
|
ุงููู ูู ูู
ุง ู
ุฑุฉ and each element of E a set ูุนูู |
|
|
|
17 |
|
00:01:31,480 --> 00:01:34,840 |
|
ูู element ูู ุงู E ุนุจุงุฑุฉ ุนู set of two distinct |
|
|
|
18 |
|
00:01:34,840 --> 00:01:39,760 |
|
elements ู
ู ุนูุตุฑูู ู
ุฎุชููุงุช ู
ู ููู ู
ู ุงู E of V |
|
|
|
19 |
|
00:01:39,760 --> 00:01:46,040 |
|
ุงูุขู ูู ุงู E ู
ุซูุง V1 ู V2 ู
ูุฌูุฏุงุช ุนูุงุตุฑ ูู ู
ูู ูู |
|
|
|
20 |
|
00:01:46,040 --> 00:01:53,600 |
|
V ูุงู and Eุนูุงุตุฑูุง ุนุจุงุฑุฉ ุนู ุงูู set ุงูู
ูููุฉ ู
ู V1 |
|
|
|
21 |
|
00:01:53,600 --> 00:02:02,340 |
|
ู V2 ุฃู ุงููู ูู ุจูููู V1 join V2 ูุฐุง ุนูุตุฑ ู
ู ุนูุงุตุฑ |
|
|
|
22 |
|
00:02:02,340 --> 00:02:07,140 |
|
ุงููู ูู ุงูู set E ููุฌูุช ุชุถุญู ุงูุตูุฑุฉ ุฃูุซุฑ ุงุตุจุฑูุง |
|
|
|
23 |
|
00:02:07,140 --> 00:02:13,240 |
|
ุนูููุง ุงู elements of V called vertices ูุนูู ุนูุงุตุฑ |
|
|
|
24 |
|
00:02:13,240 --> 00:02:19,700 |
|
ุงู V ูุฐู ุจูุณู
ููุง vertices ุฑุคูุณ ูุนููุงูุงู ูู ุนูุตุฑ ู
ู |
|
|
|
25 |
|
00:02:19,700 --> 00:02:24,960 |
|
ุนูุตุฑ ุงู V ุจูุณู
ูู ุฑุฃุณ ุจุนุฏ ุดููุฉ ูู ุนูุตุฑ ู
ู ุนูุงุตุฑ ุงู |
|
|
|
26 |
|
00:02:24,960 --> 00:02:32,280 |
|
E ุงููู ูู ุจุชููู ู
ู ุฑุฃุณูู V1 ู V2 ุจูุณู
ูู Edge ุงู ุฎุท |
|
|
|
27 |
|
00:02:32,280 --> 00:02:40,870 |
|
ูุฐุง ุงููู ูู ุนูุตุฑ ู
ู ุนูุงุตุฑ ุงู Eุงูุฃู ุงูู elements of |
|
|
|
28 |
|
00:02:40,870 --> 00:02:48,570 |
|
E ุนูุงุตุฑ ุงูู E is an an unordered pairs ูุนูู ุนูุงุตุฑ |
|
|
|
29 |
|
00:02:48,570 --> 00:02:52,730 |
|
ุงูู E ุนุจุงุฑุฉ ุนู ุฃุฒูุงุฌ ู
ุด ู
ุฑุชุจุฉ ู
ุง ุจููููุด ุนููุง ุฃุฒูุงุฌ |
|
|
|
30 |
|
00:02:52,730 --> 00:02:58,010 |
|
ู
ุฑุชุจุฉ ูุฃ of vertices ุฅุฐู ุนูุงุตุฑ ุงูู E ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
31 |
|
00:02:58,010 --> 00:03:06,080 |
|
ุนู ูู ุนูุตุฑ ูู ุงูู E ุนุจุงุฑุฉ ุนู ุฒูุฌู
ู ุงูุนูุงุตุฑ ุงููู ูู |
|
|
|
32 |
|
00:03:06,080 --> 00:03:12,760 |
|
ู
ู ุงู vertices ุจูุณู
ููุง ุฅูุด Edge ูุนูู ุนูุงุตุฑ ุงู E ูู |
|
|
|
33 |
|
00:03:12,760 --> 00:03:16,700 |
|
ุนุจุงุฑุฉ ุนูุตุฑ ุงู E ุฒู ูุงุญุฏ ู
ู ุนูุงุตุฑ ุงู E ุงููู ูู ุงู |
|
|
|
34 |
|
00:03:16,700 --> 00:03:26,780 |
|
Edge V1 V2ูุนูู V1 ู V2 ูุฐุง ุนูุตุฑ ู
ู ุนูุงุตุฑ ุงูู E ูุฐุง |
|
|
|
35 |
|
00:03:26,780 --> 00:03:32,160 |
|
ุงูุนูุตุฑ V1 ู V2 ุจูุณู
ูู Edge ูุนูู ููู ุฅูุด ุนุจุงุฑุฉ ุนู |
|
|
|
36 |
|
00:03:32,160 --> 00:03:37,970 |
|
ุญุฑู ูุฐุง ุงูุญุฑู ุนูุตุฑ ู
ู ุนูุงุตุฑ ุงูู Eูู
ู ุฃูู ุฌุงุกุช ุงููู |
|
|
|
37 |
|
00:03:37,970 --> 00:03:43,490 |
|
ูู ุงููู ุจูููู ุงูุญุฑู ุงู V1 ู V2 ู
ู ุงู 6V ุงููู ูู |
|
|
|
38 |
|
00:03:43,490 --> 00:03:47,650 |
|
ุงูุณุช ุชุจุน ุงูุฑุคูุณ ุงููู ุนูุงุตุฑูุง ุงููู ูู ุนุจุงุฑุฉ ุนู ุงูุด |
|
|
|
39 |
|
00:03:47,650 --> 00:03:52,450 |
|
ุนู vertices ูุชุชุถุญ ุงูุตูุฑุฉ ุงุตุจุฑูุง ุดููุฉ ููุฌู ูุจุนุถ |
|
|
|
40 |
|
00:03:52,450 --> 00:03:58,440 |
|
ุงูุชุณู
ูุงุชุจููู ูู ูู ูุงู E is an edge E ูุฐุง ุนูุตุฑ ู
ู |
|
|
|
41 |
|
00:03:58,440 --> 00:04:02,260 |
|
ุนูุงุตุฑ ุงูู E ุงููุงุจุชู ุงููู ูุจูู ุดููุฉ ููู E ุดููู |
|
|
|
42 |
|
00:04:02,260 --> 00:04:08,000 |
|
ุนุจุงุฑุฉ ุนู V ู W ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ ูููุง V ู W ูุฐููุฉ ุงู |
|
|
|
43 |
|
00:04:08,000 --> 00:04:14,800 |
|
V ู W ุงูุขู V ุจูููู ู ุงู W are elements in V |
|
|
|
44 |
|
00:04:14,800 --> 00:04:20,830 |
|
different elements in Vุงูุงู E ุฌู
ุน ุงูู two vertices |
|
|
|
45 |
|
00:04:20,830 --> 00:04:27,170 |
|
V ูW ูุนูู ุงูู E ุจุชุฑุจุท ุงูู V ู
ุน ุงูู W ูุจุชุฑุจุท ููุง |
|
|
|
46 |
|
00:04:27,170 --> 00:04:34,590 |
|
ูุจุชููู ุฅูุด ุงู edge ุงููู ุจุฏูุงูุง ุฃู ุจูููู ุฃููOr the |
|
|
|
47 |
|
00:04:34,590 --> 00:04:39,330 |
|
vertices v and w are said to be incident with the |
|
|
|
48 |
|
00:04:39,330 --> 00:04:45,730 |
|
edged vw ูุนูู ุงููู ุงููู ูู ุงู vertices v ู w ุจุญุฏุซู |
|
|
|
49 |
|
00:04:45,730 --> 00:04:52,410 |
|
ุงููู ูู ุงู edge ุงููู ูู vwู
ุด ููุธู ููุชุจ ูููุง ุงููู |
|
|
|
50 |
|
00:04:52,410 --> 00:04:59,290 |
|
ูู ุงูุนูุตุฑ ุงููู ูู E ุจุนุฏ ุดููุฉ ุฎูุงุต ููุณู
ูู V or ุฃู V |
|
|
|
51 |
|
00:04:59,290 --> 00:05:03,950 |
|
joined W ุฃู ุฒู ู
ุง ุงุญูุง ุดุงูููู ูู ุนุจุงุฑุฉ ุนู ุงููู ูู |
|
|
|
52 |
|
00:05:03,950 --> 00:05:10,150 |
|
ุงู edge ูุฐุงุทูุจ ูุดูู ุงูุขู ุงููู ูู ูุฏุฎู ูู
ุงู ู
ุฑุฉ |
|
|
|
53 |
|
00:05:10,150 --> 00:05:15,350 |
|
ูุงุฎุฏ ุจุนุถ ุงูุชุณู
ูุงุช two vertices are adjacent ูุนูู |
|
|
|
54 |
|
00:05:15,350 --> 00:05:18,650 |
|
ุจูููู ุนู two vertices ุฑุงุณูู ุฅู ููู ุฌุงูุจ ุจุนุถ |
|
|
|
55 |
|
00:05:18,650 --> 00:05:23,930 |
|
ู
ุชุฌุงูุฑูู ุฃู ุฌุงูุงุช ูุฑุง ุจุนุถ or neighborhoods ูุนูู |
|
|
|
56 |
|
00:05:23,930 --> 00:05:29,990 |
|
ุฌูุฑุงูIf they are the end vertices of an edge ูุนูู |
|
|
|
57 |
|
00:05:29,990 --> 00:05:32,630 |
|
ุจุชููู ุนู two vertices in an adjacent ุฃู |
|
|
|
58 |
|
00:05:32,630 --> 00:05:38,110 |
|
neighborhood ุฅุฐุง ูุงู ุงูุงุชููู ูุฏููุฉ ุจููู ู
ู ุงู edge |
|
|
|
59 |
|
00:05:38,110 --> 00:05:43,460 |
|
ูุนูู ุงูุงุชููู ุจููู ูุฐุง ุงู edge ุจูุณู
ููู
adjacentุงููู |
|
|
|
60 |
|
00:05:43,460 --> 00:05:46,480 |
|
ูู ุจุชุณู
ู ุงููู ูู ุงูุนูุตุฑูู ูู ูุฐู ุงูุญุงูุฉ ุฅุดู
ุงููู
|
|
|
|
61 |
|
00:05:46,480 --> 00:05:53,160 |
|
ุนุจุงุฑุฉ ุนู adjacent ุงููู ูู ุงู ุงู two vertices ุงููู |
|
|
|
62 |
|
00:05:53,160 --> 00:05:57,780 |
|
ุนูุฏูุง ุงููู ูู two edges ุงุชุฌูู ุงููู ูู two edges ูู |
|
|
|
63 |
|
00:05:57,780 --> 00:06:02,320 |
|
edge ู ูุฏู ูู edge ุจูููู ุนููู
adjacent ู
ุชุฌุงูุฑุชูู |
|
|
|
64 |
|
00:06:02,320 --> 00:06:06,440 |
|
if they have a vertex in common ุฅุฐุง ูุงู ูู ุนูุฏูู
|
|
|
|
65 |
|
00:06:06,440 --> 00:06:12,310 |
|
ุฑุงุณ ู
ุดุชุฑู ูุนูู ุฅุฐุง ุงูุฑุงุณ ูุฐุงุทููุน edge ููู edge ู
ุน |
|
|
|
66 |
|
00:06:12,310 --> 00:06:15,390 |
|
ุงูุฑุฃุณ ูุฐุง ููุฐุง ุงูุฑุฃุณ ููุณู ุทููุน ู
ุน ูุฐุง ุงูุฑุฃุณ edge |
|
|
|
67 |
|
00:06:15,390 --> 00:06:20,790 |
|
ุจูููู ุฅู ูุฐุง ุงู edge ููุฐุง ุงู edge adjacent ูุฐุง ุงู |
|
|
|
68 |
|
00:06:20,790 --> 00:06:24,490 |
|
edge ูู ุนูุงุตุฑ ุงู E capital ููุฐุง ูู ุนูุงุตุฑ ุงู E |
|
|
|
69 |
|
00:06:24,490 --> 00:06:30,330 |
|
capital ูุงูุฑุคูุณ ูู ุนูุงุตุฑ ู
ู ุงู V ุงููู ุณู
ูุงูุง ุงููู |
|
|
|
70 |
|
00:06:30,330 --> 00:06:36,780 |
|
ูู ุงู set ุงู graph ุนุจุงุฑุฉ ุนู V ู ุนู Eุงูุฃู the |
|
|
|
71 |
|
00:06:36,780 --> 00:06:40,840 |
|
number of the edges that incident with a vertex v |
|
|
|
72 |
|
00:06:40,840 --> 00:06:43,580 |
|
is called the degree of the vertex ุงูุด ุงููู ุจูููู |
|
|
|
73 |
|
00:06:43,580 --> 00:06:48,580 |
|
ูุฐุงุ ุจูููู ุงูุขู ุจุฏูุง ูุนุฑู ุงู degree ูู
ูุ ูู vertex |
|
|
|
74 |
|
00:06:48,580 --> 00:06:51,840 |
|
ูุฐุง ุฃุญุฏ ุงูุฃูุฏุงู ุงููู ุจุฏูุง ูุนุฑููุง ุงูููู
ุงูุด ุงู |
|
|
|
75 |
|
00:06:51,840 --> 00:06:57,660 |
|
degree ูู vertexุ ูู ุนุจุงุฑุฉ ุนู ุนุฏุฏ ุงู edges ุงููู |
|
|
|
76 |
|
00:06:57,660 --> 00:07:03,010 |
|
ุจูุทูุน ู
ู ุงู vertexูุนูู the number of edges that |
|
|
|
77 |
|
00:07:03,010 --> 00:07:06,870 |
|
incident with a vertex V is called the degree of |
|
|
|
78 |
|
00:07:06,870 --> 00:07:11,510 |
|
the vertex ุจุชุถุญ ู
ุนู ุงูู
ุซุงู ุงูุงู if ุฅุฐุง ูุงู ุทูุน |
|
|
|
79 |
|
00:07:11,510 --> 00:07:14,410 |
|
ุนูุฏู ุงู degree ูู V ุจุนุฏ ุดููุฉ ุจูุญุณุจ ูุง ุฌู
ุงุนุฉ ุจุณ |
|
|
|
80 |
|
00:07:14,410 --> 00:07:18,430 |
|
ุฎูููู ูุณู
ู ุจุนุถ ุงูุชุณู
ูุงุช if ุงู degree ูู V ุงููู ูู |
|
|
|
81 |
|
00:07:18,430 --> 00:07:23,970 |
|
ุงู degree ูู vertex ุฏุฑุฌุฉ ุงู vertex ูุงูุช oddุฃู even |
|
|
|
82 |
|
00:07:23,970 --> 00:07:28,410 |
|
ุจูููู we say that V is an odd ุฃู even vertex ุฅุฐุง |
|
|
|
83 |
|
00:07:28,410 --> 00:07:32,070 |
|
ูู
ุง ูููู odd vertex ุฃู even vertex ู
ุนูุงุชู ุงู |
|
|
|
84 |
|
00:07:32,070 --> 00:07:38,350 |
|
degree ูู vertex even ุฃู odd ุทูุจ ุงูุขู a vertex of |
|
|
|
85 |
|
00:07:38,350 --> 00:07:42,970 |
|
degree zero ูุนูู ุงู vertex ุงููู degree ูู zero is |
|
|
|
86 |
|
00:07:42,970 --> 00:07:47,470 |
|
called an isolated vertexูุนูู ุงูู degree ูู zero |
|
|
|
87 |
|
00:07:47,470 --> 00:07:53,510 |
|
ูุนูู ู
ุงููุด ุจุชุทูุนุด ู
ูู ููุง ุฎุท ููุด ููุง ุฎุท ุจุฑูุญ ู
ูู |
|
|
|
88 |
|
00:07:53,510 --> 00:07:57,210 |
|
ุนุดุงู ููู ุจูููู ุนููุง ุงูููุทุฉ ุฅูู ุงูุดู
ุงู isolated |
|
|
|
89 |
|
00:07:57,210 --> 00:08:02,490 |
|
vertex ูุนูู ู
ุนุฒููุฉ ู
ุงููุด ูููุง ููุง ุฎุท ุทุงูุน ู
ููุง |
|
|
|
90 |
|
00:08:02,490 --> 00:08:07,280 |
|
ุงูุงู neighborhood of a vertexูุนูู ุงูุฌูุงุฑ ุชุจุน ุงู |
|
|
|
91 |
|
00:08:07,280 --> 00:08:11,300 |
|
vertex ุจูุณู
ูู ุงู ูููู ุงูุด ุฌูุงุฑ ุงู vertex ูู ุงููู |
|
|
|
92 |
|
00:08:11,300 --> 00:08:16,020 |
|
ูู ุงูููุงุท ุงููู ุจุชุตูุน ู
ุน ุงู ุงูู ุงู edges ุชุจุนุชูุง |
|
|
|
93 |
|
00:08:16,020 --> 00:08:20,180 |
|
ููุดูู ูุฐุง ุงูููุงู
ููู ูุชูุงููู ุณูู ุดูููุง ุงูุขู ุตููุง |
|
|
|
94 |
|
00:08:20,180 --> 00:08:23,000 |
|
ุนูู ุงููุจู ุนููู ุงูุตูุงุฉ ูุงูุณูุงู
ูุฌู ุงูุงู ูุญุงุฌุฉ ุงุณู
ุฉ |
|
|
|
95 |
|
00:08:23,000 --> 00:08:26,460 |
|
pseudograph ุงู graph ุจูุณู
ูู pseudograph ุงู graph |
|
|
|
96 |
|
00:08:26,460 --> 00:08:30,060 |
|
ุฒุงุฆู ุงูุด ูุฐุง ุงู graph ูุฐุง ูู graph like a graph |
|
|
|
97 |
|
00:08:30,060 --> 00:08:34,960 |
|
ุจุดุจู ูgraph ูู graphbut it may contains loops ูุนูู |
|
|
|
98 |
|
00:08:34,960 --> 00:08:38,640 |
|
ู
ู
ูู ุชุญุชูู ุนูู ุฅูุดุ ุนูู loopุ ุฃู loop ูุนูู ุงู loop |
|
|
|
99 |
|
00:08:38,640 --> 00:08:43,920 |
|
ุจูุฌู ู
ู ุงูููุทุฉ ู ุจุฑุฌุน ููููุทุฉ ููุณูุงุฃู a multiple of |
|
|
|
100 |
|
00:08:43,920 --> 00:08:47,040 |
|
edges ุฃู ุจูุญุชูู ุนูู multiple edges ูุนูู ูู ู
ู ูุฐุง |
|
|
|
101 |
|
00:08:47,040 --> 00:08:53,160 |
|
ูููุง ูู ุฃูู ุฎุท ูุจุฑุถู ูู ูู
ุงู ุฎุท ู
ู V2 ูุนูุฏ V1 ุงู |
|
|
|
102 |
|
00:08:53,160 --> 00:08:57,760 |
|
graph ุงููู ุจูุญุชูู ุนูู ุงููู ูู multiple edges ูุนูู |
|
|
|
103 |
|
00:08:57,760 --> 00:09:04,000 |
|
ุฃูุชุฑ ู
ู ุฎุท ุจูู ุงูููุทุชูู ุฃู ุงููู ูู ุงููู ูู loop ุฎุท |
|
|
|
104 |
|
00:09:04,000 --> 00:09:08,980 |
|
ุจูุฑูุญ ููููุทุฉ ูุจุฑุฌุนููุง ุจูุณู
ูู ุงููู ูู pseudo graph |
|
|
|
105 |
|
00:09:09,430 --> 00:09:13,650 |
|
ุฎููููุง ูุงุฎุฏ ุงูู
ุซุงู ูุฐุง ู ููุฌู ูุญุณุจ ุงููู ุจุฏูุง ูุญุณุจ |
|
|
|
106 |
|
00:09:13,650 --> 00:09:21,370 |
|
ุงููู ูู ุงู degree ูู V3 ู
ุซูุง ูู V3 ู
ุงุดู ุงูุขู ุฌุจู |
|
|
|
107 |
|
00:09:21,370 --> 00:09:25,290 |
|
ู
ุง ูุญุณุจ ุงู degree ูู V3 ุฎููููุง ูุญุณุจ ุงู degree ูู |
|
|
|
108 |
|
00:09:25,290 --> 00:09:32,230 |
|
V1 ุฅูุด ุงู degree ูู V1ุ ุฅูุด ุงูุฎุทูุท ุงููู ุจุชุทูุน |
|
|
|
109 |
|
00:09:32,230 --> 00:09:37,820 |
|
ู
ููุงุูู ุงุชููู ูุจููู ุงู degree ูู V ูุงุญุฏ ุงุชููู ุทุจ |
|
|
|
110 |
|
00:09:37,820 --> 00:09:42,320 |
|
ููุฌู ูู V ุชูุงุชุฉ ุงู V ุชูุงุชุฉ ุจุทูุน ูุงู ุฎุท ูุงู ุฎุทูู |
|
|
|
111 |
|
00:09:42,320 --> 00:09:49,520 |
|
ู
ุงุดู ููู ุงู V ุชูุงุชุฉ ุงููู ูู ุจุทูุน ุฎุท ู
ููุง in ู ุฎุท |
|
|
|
112 |
|
00:09:49,520 --> 00:09:55,120 |
|
ู
ููุง outุงูู Loop ุจูุญุณุจู ุฏุงูู
ุง ุงุชููู ูู ุงู degree |
|
|
|
113 |
|
00:09:55,120 --> 00:10:00,980 |
|
ูุนูู ุจูุญุณุจ ูุงุญุฏ in ู ูุงุญุฏ out ูุจุตูุฑ ุนูุฏู ุงุชููู ููู |
|
|
|
114 |
|
00:10:00,980 --> 00:10:04,800 |
|
ูู
ุงู ุฎุท ููู ูู
ุงู ุฎุท ูุจุตูุฑ ุงู degree ูู V3 ุงูุดุ |
|
|
|
115 |
|
00:10:04,800 --> 00:10:09,000 |
|
ุจูุณุงูู ุงุฑุจุนุฉ ุงู degree ูู V3 ุจูุณุงูู ุงุฑุจุนุฉ because |
|
|
|
116 |
|
00:10:09,000 --> 00:10:17,120 |
|
it connected E3ูุฃููุง ุจุชุนู
ู ุงูู edge E3 ู ุจุชุนู
ู ุงูู |
|
|
|
117 |
|
00:10:17,120 --> 00:10:23,500 |
|
edge E4 ู ุงูู edge E5 ุงููู ูู under the loop E5 |
|
|
|
118 |
|
00:10:23,500 --> 00:10:29,680 |
|
edge computed 2 ูุงุญุฏ as in ู ูุงุญุฏ as out ุฏู ุงู |
|
|
|
119 |
|
00:10:29,680 --> 00:10:33,780 |
|
loop ุจุณ ุงููู ุจูุญุณุจู ุงุชููู ู ุงูุจุงูู ุจูุญุณุจู ุงูุด ูุงุญุฏ |
|
|
|
120 |
|
00:10:33,780 --> 00:10:39,800 |
|
ูุงุญุฏ ูุจุตูุฑ ุงู degree ููู V3 ุจุนุฏุฏ ุงูุฎุทูุท ุงููู ุทุงูุนุฉ |
|
|
|
121 |
|
00:10:40,370 --> 00:10:45,650 |
|
ุงููู ูู ู
ููุง ุฃู ุงููู ุฏุฎูุฉ ุฅููุง ููุฐุง ููุญุณุจ ุงุชููู ูู |
|
|
|
122 |
|
00:10:45,650 --> 00:10:50,190 |
|
ุญุงูุฉ ุงู loop ุทูุจ ููุฌู ุงูุขู undirected graphs ุญุงุฌุฉ |
|
|
|
123 |
|
00:10:50,190 --> 00:10:52,790 |
|
ุงุณู
ูุง undirected graphs ุฃู ุงู graphs ุงููู ุจุชููู |
|
|
|
124 |
|
00:10:52,790 --> 00:10:57,600 |
|
ุฅูู ุดู
ุงููุง ุบูุฑ ู
ุชุฌูุฉ ุทูุจุบูุฑ ู
ุชุฌููุฉ ุฌุฏูุง ุจูุนุฑู ูุฃูู |
|
|
|
125 |
|
00:10:57,600 --> 00:11:00,780 |
|
ููุงุฎุฏ ุงูู Directed Graph ุจุนุฏ ุดููุฉ ุจูุนุฑู ุดู ู
ุนูุงู |
|
|
|
126 |
|
00:11:00,780 --> 00:11:05,480 |
|
Undirected Undirected ูุนูู ู
ุด ูุงุฑุฌุฉ ู
ู A ู B ุฃู ู
ู |
|
|
|
127 |
|
00:11:05,480 --> 00:11:10,460 |
|
B ู A ู
ุด ู
ุฑุชุจุฉ What are the degree and what are |
|
|
|
128 |
|
00:11:10,460 --> 00:11:13,640 |
|
the neighborhoods of the vertices in the graph |
|
|
|
129 |
|
00:11:13,640 --> 00:11:18,560 |
|
Undirectedุ ุงูุขู ุจุฏูุง ูุนุฑู ุฅูุด ุงู degreeู ุฅูุด ุงู |
|
|
|
130 |
|
00:11:18,560 --> 00:11:21,440 |
|
neighborhoods ููููุงุท ุงููู ู
ูุฌูุฏุฉ ุนูุฏู ูุฏูู ุงู |
|
|
|
131 |
|
00:11:21,440 --> 00:11:26,700 |
|
vertices ุงููู ุนูุฏู ุงู degree ูู vertices ู ุงููู ูู |
|
|
|
132 |
|
00:11:26,700 --> 00:11:30,220 |
|
ุงู neighborhood ูู vertices ููุฌู ุฃูู ุญุงุฌุฉ ูู |
|
|
|
133 |
|
00:11:30,220 --> 00:11:33,920 |
|
degree ูู ุฅูู ุงู degree ูู ุฅูู ูุนูู ูุฏุงุด .. ุฅูุด |
|
|
|
134 |
|
00:11:33,920 --> 00:11:38,000 |
|
ุงูุฎุทูุท ุงููู ุทุงูุนุฉ ู
ููุง ูุงู ุฎุท ูุงู ุงุชููู ุฅุฐุง ูุฐุง |
|
|
|
135 |
|
00:11:38,000 --> 00:11:42,240 |
|
ุนูุฏูุง ุงู degree ุฅูุด ุจุชุณุงูู ุงุชููู ุทูุจ ุงู degree ูู |
|
|
|
136 |
|
00:11:42,240 --> 00:11:47,850 |
|
ุจูู ูููู
ุญููู ูุงู ูุงุญุฏูู ุงุชููู ูู ุชูุงุชุฉ ูู ุงุฑุจุน |
|
|
|
137 |
|
00:11:47,850 --> 00:11:52,070 |
|
ุฎุทูุท ุทุงูุนูู ู
ููุง ุงุฐุง ุงู degree ูู ุจูู ุงูุด ุงุฑุจุนุฉ ูู |
|
|
|
138 |
|
00:11:52,070 --> 00:11:56,230 |
|
ุญุฏ ุฌุงูู ุงู degree ูู C ูู C ูุชููู ูู ูุงุญุฏ ูู ุงุชููู |
|
|
|
139 |
|
00:11:56,230 --> 00:12:01,030 |
|
ูู ุชูุงุชุฉ ูู ุงุฑุจุนุฉ ูู ุฌุงูู ุงู degree ูู G ูุชููููู |
|
|
|
140 |
|
00:12:01,030 --> 00:12:05,110 |
|
ุณูุฑ ุนุดุงู ููู ุจูุณู
ููุง isolated ู
ุนุฒููุฉ ูู ุงูุดุงุดุฉ |
|
|
|
141 |
|
00:12:05,110 --> 00:12:09,310 |
|
ุจุชุทูุน ู
ููุง ุทูุจ ุงู degree ุงููู ุงูุงู ุงู neighbor ูุฏ |
|
|
|
142 |
|
00:12:09,310 --> 00:12:14,830 |
|
ูู
ูุ ูู A ุฌูุงุฑ ุงู Aุฌูุงุฑ ุงู A ุงููู ุจูุนู
ู ุงูุฎุทูุท |
|
|
|
143 |
|
00:12:14,830 --> 00:12:18,170 |
|
ู
ุนูุง ุฌูุงุฑ ุงู A ุงููู ุจูุนู
ู ุงูุฎุทูุท ู
ุนูุง ู
ูู ุงููู |
|
|
|
144 |
|
00:12:18,170 --> 00:12:22,470 |
|
ุจูุนู
ู ุงูุฎุท ู
ุน ุงู Aุ ุงู B ู ุงู F ุนุดุงู ููู ุจูููู |
|
|
|
145 |
|
00:12:22,470 --> 00:12:27,710 |
|
ุฌูุงุฑ ุงู A ูู ุงู B ู ุงู F ููุฌู ุงูุขู ูุง ุฌู
ุงุนุฉ ุงูุด |
|
|
|
146 |
|
00:12:27,710 --> 00:12:31,350 |
|
ุฌูุงุฑ ุงู B ุงููู ุจูุนู
ู ุงูุฎุทูุท ู
ุน ุงู Bุ ุงูุด ู
ูู ุงููู |
|
|
|
147 |
|
00:12:31,350 --> 00:12:38,820 |
|
ุจูุนู
ู ุงูุฎุทูุท ู
ุน ุงู Bุ ุงู C ู ุงู E ู ุงู Fูุงูู A ูู |
|
|
|
148 |
|
00:12:38,820 --> 00:12:44,980 |
|
A ูC ูE ูF ูุฏููุฉ ุฌูุงุฑ ู
ู ุงูู B ุงูุขู ุฌูุงุฑ ุงูู D |
|
|
|
149 |
|
00:12:44,980 --> 00:12:47,540 |
|
ุงููู ุจูุนู
ู ุงูุฎุทูุท ู
ุน ุงูู D ู
ุงููุด ุญุฏ ุจูุนู
ู ุงูุฎุทูุท |
|
|
|
150 |
|
00:12:47,540 --> 00:12:51,340 |
|
ู
ุน ุงูู D ุงูุนุงูู
ูู ุงูู C ููู ูู ุฌููุง ูุฌูุงุฑ ุงูู G |
|
|
|
151 |
|
00:12:51,340 --> 00:12:59,660 |
|
ูููุงูู ูุด ุฅูุด ูุงู ุนุดุงู ูู ูุงูุช ุจูุณู
ููุง isolatedุฅูุด |
|
|
|
152 |
|
00:12:59,660 --> 00:13:06,640 |
|
point ุงููู ุจููููุด ุฅููุง ููุง ุฌูุงุฑ ุฃู ุจุชูููุด ุนุงู
ูุฉ ุฃู |
|
|
|
153 |
|
00:13:06,640 --> 00:13:10,240 |
|
ุงู degree ุฅููุง ุจุชุณุงูู ุณูุฑ ู
ุด ููุง ุฎุท ุทุงูุน ู
ููุง ุฃู |
|
|
|
154 |
|
00:13:10,240 --> 00:13:14,140 |
|
ุฌุงู ููุฌู ุงูุขู ูุงุฎุฏ ู
ุซุงู ุขุฎุฑ what are the degree |
|
|
|
155 |
|
00:13:14,140 --> 00:13:17,820 |
|
and what are the neighborhoods of the vertices in |
|
|
|
156 |
|
00:13:17,820 --> 00:13:20,980 |
|
the undirected graph ุฎูููุง ูุฐุง ุงู graph ุงู |
|
|
|
157 |
|
00:13:20,980 --> 00:13:24,870 |
|
undirected ุงููู ุบูุฑ ู
ุชุฌูุงููู ูุนูู ุชูุฑุฌุด ู
ู A ูุนูุฏ |
|
|
|
158 |
|
00:13:24,870 --> 00:13:29,630 |
|
B ุฃู ู
ู B ูุนูุฏ A ูุงุด ุงุชุฌุงู ุนูุฏูุง ุงูุงู ูุดูู ุงููู ูู |
|
|
|
159 |
|
00:13:29,630 --> 00:13:32,950 |
|
ูุณุฃู ุณุคุงูู ุงู degree ูู A ุงูุด ุงู degree ูู A ูุงู |
|
|
|
160 |
|
00:13:32,950 --> 00:13:38,650 |
|
ูุงุญุฏ ูุงู ุงุชููู ูุงู ุชูุงุชุฉ ูุงู ุงุฑุจุนุฉ ุงู degree ูู A |
|
|
|
161 |
|
00:13:38,650 --> 00:13:43,090 |
|
ููุฌู ูู degree ูู
ูู ูู B ุงู degree ูู B ูุงู ูุงุญุฏ |
|
|
|
162 |
|
00:13:43,090 --> 00:13:50,590 |
|
ูุงู ุงุชููู ูุงู ุชูุงุชุฉูุฐู ุฃุฑุจุนุฉ ููููุง ุงู loop ูุญุณุจ |
|
|
|
163 |
|
00:13:50,590 --> 00:13:56,790 |
|
ุฌุฏุงุด out ูin ุงุชููู ูุนูู ุงูุด ุจูุตูุฑ ุงู degree ู ุงู |
|
|
|
164 |
|
00:13:56,790 --> 00:14:02,910 |
|
B6 ููุฌู ุงู neighborhood ูู A ุฌูุงุฑ ุงู A ุงููู ูู |
|
|
|
165 |
|
00:14:02,910 --> 00:14:07,930 |
|
ุงูููุงุท ุงููู ุจูุตูุน ุงูู
ุญูู ุฎุทูุท ู
ูู ุจูุตูุน ุงูู
ุญูู |
|
|
|
166 |
|
00:14:07,930 --> 00:14:16,640 |
|
ุฎุทูุท ุจููุO D O E B D E ูุนูุฏ ููู neighborhood ููู B |
|
|
|
167 |
|
00:14:16,640 --> 00:14:20,020 |
|
ุงู neighborhood ููู B ู
ู ูุตูุน ุงูุฎุทูุท ู
ุนุงูุง ุงูู A |
|
|
|
168 |
|
00:14:20,020 --> 00:14:29,020 |
|
ูุงูู E ูุงูู A ุงูู D ุฃุณููุงูู C ูููุณู ูุฅู ูู ุจูุตูุน |
|
|
|
169 |
|
00:14:29,020 --> 00:14:33,420 |
|
ุฎุท ู
ุน ููุณู ุฅุฐุง ุจุฏู ููุญุท ูู neighborhood ููู B ุงูู |
|
|
|
170 |
|
00:14:33,420 --> 00:14:38,520 |
|
B ูุงุญุธ ุฅูู ูู
ุง ูููู ูู ุฏุงุฎู ุงู neighborhood ููู B |
|
|
|
171 |
|
00:14:38,520 --> 00:14:43,470 |
|
ุงูู B ู
ุนูุงุชู ุฅูู ูู Loopูู ุงูู neighborhood ููู A |
|
|
|
172 |
|
00:14:43,470 --> 00:14:47,210 |
|
ูู ุงูุดูุก A ุฅุฐุง ู
ุงููู Loop ุงู neighborhood ูู B ููู |
|
|
|
173 |
|
00:14:47,210 --> 00:14:51,230 |
|
B ุฌูุงุชู ุฅุฐุง ู
ุงููู Loop ูุนูู ููู ุฎุท ุฌุงู ู
ูู ูููุณู |
|
|
|
174 |
|
00:14:51,230 --> 00:14:56,750 |
|
ุทูุจ ููุฌู ุงูุขู ุงููู ูู ูุงุฎุฏ ูุญุงูู ุงููู ูู ุฃู
ุซูุฉ |
|
|
|
175 |
|
00:14:56,750 --> 00:15:00,330 |
|
ุจูุฏุฑ ุงูุฅู
ูุงู ูู
ูุงููู
ุฒู ู
ุง ุจุฏูุง ุทูุจ ุงู |
|
|
|
176 |
|
00:15:00,330 --> 00:15:03,270 |
|
neighborhood ูู D neighborhood ูู D ู
ู ููุณ ุงูุฃุณููุจ |
|
|
|
177 |
|
00:15:03,270 --> 00:15:05,730 |
|
ุฅูุด ุงู neighborhood ูู D ุงููู ูู ู
ูู ุงููู ู
ุงู |
|
|
|
178 |
|
00:15:05,730 --> 00:15:12,100 |
|
ุงูุฎุทูุท ู
ุนุงู ุงููู ูู ุงู B ู ุงู A ู ุงู Eุงูู B ูุงูู A |
|
|
|
179 |
|
00:15:12,100 --> 00:15:15,720 |
|
ูุงูู E ูููุง ุงูู neighborhood ููู A ุงูู A ูููุง ุงูู |
|
|
|
180 |
|
00:15:15,720 --> 00:15:22,610 |
|
D ููู ุงูู B ููู ุงูู Aุงูุงู ุจุชุตูุฑ ุงูุตูุฑุฉ ูุงุถุญุฉ ุงููุง |
|
|
|
181 |
|
00:15:22,610 --> 00:15:27,770 |
|
ูุตุงุฑุช ุงููู ูู ุงูุฃู
ูุฑ ูุงุถุญุฉ ุชู
ุงู
ุง ูุชูุดูู ุงูุงู graph |
|
|
|
182 |
|
00:15:27,770 --> 00:15:31,530 |
|
example ุงูุงู ูุฑุฌุน ูู graph ูุฃู ุฒู ู
ุง ุงุชูุฌูุง ุงู |
|
|
|
183 |
|
00:15:31,530 --> 00:15:36,210 |
|
graph ูู ุนุจุงุฑุฉ ุนู ุงูุด ุนู V ู E ุงู V ูู ุงูุด ุนุจุงุฑุฉ |
|
|
|
184 |
|
00:15:36,210 --> 00:15:43,130 |
|
ุนู vertices ูุงู V V1 V2 V3 V4 V5 V6 ุงุฐุง ู
ุฌู
ูุนุฉ ู
ู |
|
|
|
185 |
|
00:15:43,130 --> 00:15:48,380 |
|
ุงูููุงุท ุชุณู
ู vertices ุงู ุชุณู
ู ุฑุคูุณูุฐุง ุงูู Graph |
|
|
|
186 |
|
00:15:48,380 --> 00:15:53,100 |
|
ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ V ูู
ุฌู
ูุนุฉ ุชุงููุฉ E ุงูู E ูู ุฎุทูุท |
|
|
|
187 |
|
00:15:53,100 --> 00:15:58,360 |
|
ูุนูู ูุฐู ููุงุท ุฃู ุฑุคูุณ ููุฐู ุฎุทูุท ูุฐุง ุงูู Graph ุงูู |
|
|
|
188 |
|
00:15:58,360 --> 00:16:03,780 |
|
Graph ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ ู
ู ุงูู vertices ุงูุฑุคูุณ |
|
|
|
189 |
|
00:16:03,780 --> 00:16:10,850 |
|
ูู
ุฌู
ูุนุฉ ุฃุฎุฑู ู
ู ุงูู edges ุงูู
ุตู
ูุนุฉ ู
ู ุงูุฑุคูุณ Vุฅุฐุง |
|
|
|
190 |
|
00:16:10,850 --> 00:16:14,890 |
|
ููุถุญ ุฅูุด ูู ุงู graph ุนูู ุจุนุถู ุงู graph ูู ุนุจุงุฑุฉ ุนู |
|
|
|
191 |
|
00:16:14,890 --> 00:16:19,210 |
|
ู
ุฌู
ูุนุชูู ูุงุญุฏุฉ ู
ุฌู
ูุนุฉ ุงูุฑุคูุณ ูุงูุชุงููุฉ ู
ุฌู
ูุนุฉ |
|
|
|
192 |
|
00:16:19,210 --> 00:16:25,290 |
|
ุงูุฎุทูุท ุงูุชู ุชููู ู
ู ูุฐู ุงูุฑุคูุณ ุจุทุฑููุฉ ู
ุง ุทูุจ ุงู NE |
|
|
|
193 |
|
00:16:25,290 --> 00:16:30,890 |
|
ูููุง V1 joined V4 ุงููู ูุนูู ุจุงุฎุชุตุงุฑ V1 V4 ุงูุฎุท V1 |
|
|
|
194 |
|
00:16:30,890 --> 00:16:45,530 |
|
V4 V1 V6 V1 V6V2 V5 V2 V5 V4 V5 V4 V5 V5 V6 ุฅุฐู ูู |
|
|
|
195 |
|
00:16:45,530 --> 00:16:50,310 |
|
ุชุนุจูุฑ ุขุฎุฑ ุนู ู
ูู ุนู ุงูุฎุทูุท ูุนูู ู
ู
ูู ูุงุญุฏ ููุชุจ V1 |
|
|
|
196 |
|
00:16:50,310 --> 00:17:00,590 |
|
V4 ุฎูุงุต V1 V6 V2 V5 V4 V5 V5 V6 ู
ุด ูุงุฑู ุงูุชุฑุชูุจ |
|
|
|
197 |
|
00:17:00,590 --> 00:17:06,820 |
|
ููุง ุงู ููุง ู
ุด ูุงุฑู ุงูุชุฑุชูุจ ููุดุูุฃูู ุนูุฏู ุงููู ูู |
|
|
|
198 |
|
00:17:06,820 --> 00:17:13,160 |
|
ุงู ูุฐุง ุจูุณู
ู undirected graph ูุนูู graph ุบูุฑ ู
ุชุฌู |
|
|
|
199 |
|
00:17:13,160 --> 00:17:17,440 |
|
ูุนูู ู
ูุฑุฌุด ุนูุฏู v1 ู v4 ู v4 ู v1 ู
ุงููุด ุงุชุฌุงูุงุช |
|
|
|
200 |
|
00:17:17,440 --> 00:17:22,940 |
|
ู
ุงุญุฏุด ุญุงุฌุฉ ุจููุง ุทูุจ ุงูุงู ูู ุงูุงู note that ุจููู v3 |
|
|
|
201 |
|
00:17:22,940 --> 00:17:27,860 |
|
is an isolated vertex ุฒู ู
ุง ุนู
ููุง ูุจู ุดููุฉ ููุด ูุฅู |
|
|
|
202 |
|
00:17:27,860 --> 00:17:32,800 |
|
ุงู degree ู ุงู v3 ูุด ููุง ุฅูุด ูุทุงูุน ู
ููุงููู ูู ุฅูุด |
|
|
|
203 |
|
00:17:32,800 --> 00:17:38,520 |
|
ุจูุณุงููุ ุจูุณุงูู ุณูุฑ ุทูุจุ ุงูุขู ุงู vertexุ ุจุฏูุง ูุณู
ูู |
|
|
|
204 |
|
00:17:38,520 --> 00:17:44,000 |
|
ุชุณู
ูู ุงูุขู a vertex is .. is .. ุงููู ูู ุจูุณู
ูู a |
|
|
|
205 |
|
00:17:44,000 --> 00:17:49,880 |
|
vertex ุจูุณู
ูู is pendent if and only if it has |
|
|
|
206 |
|
00:17:49,880 --> 00:17:54,240 |
|
degree one ูุนูู ุงู vertex ุงููู ุจูููู degree ุชุจุนุชู |
|
|
|
207 |
|
00:17:54,240 --> 00:18:00,260 |
|
ูุงุญุฏุ ุจูุณู
ูู pendentู
ุงุดู V2 ู
ุซูุง V2 is a pendant |
|
|
|
208 |
|
00:18:00,260 --> 00:18:05,420 |
|
ููุด ูุฃูู ูุด ูุบูุฑ ุงููู ูู ุฎุท ูุงุญุฏ ุทุงูุน ู
ูู ูุนูุฏ V |
|
|
|
209 |
|
00:18:05,420 --> 00:18:08,140 |
|
ุฃุฎู
ุณุฉ ูุนูู ุงู adjacent ูู ุจุณ ุฎู
ุณุฉ ุฃู ุงู |
|
|
|
210 |
|
00:18:08,140 --> 00:18:12,040 |
|
neighborhood ูู ุงู V ุฎู
ุณุฉ ูุนูู ูุฐุง ุงููู ูู ุงู |
|
|
|
211 |
|
00:18:12,040 --> 00:18:16,420 |
|
degree ูู ุจุณุงูู ูุงุญุฏ ู
ุฏุงู
ุงู degree ูู ุจุณุงูู ูุงุญุฏ |
|
|
|
212 |
|
00:18:16,420 --> 00:18:24,630 |
|
ุฅุฐุง ุนูู ุทูู ุงููู ูู ุจูุณู
ูู pendant ุทูุจููุง ูู ูุธุฑูุฉ |
|
|
|
213 |
|
00:18:24,630 --> 00:18:29,310 |
|
hand shaking theorem ุจูููู ุงูู sum of the degree |
|
|
|
214 |
|
00:18:29,310 --> 00:18:34,150 |
|
of the vertices of an undirected graph ุจุณูุฏู graph |
|
|
|
215 |
|
00:18:34,150 --> 00:18:39,670 |
|
is even number or equal to twice the number of |
|
|
|
216 |
|
00:18:39,670 --> 00:18:44,690 |
|
edges ุงูุด ุงููู ุจูููู ุจููู ูุง ุฌู
ุงุนุฉ ูู ุงูุช ุฌูุช ุงุฎุฏุช |
|
|
|
217 |
|
00:18:44,690 --> 00:18:48,970 |
|
ุงู graph ุงููู ุนูุฏู ูู ุนูุฏู ููู graph graph V ู V ู |
|
|
|
218 |
|
00:18:48,970 --> 00:18:53,570 |
|
ุฌูุช ูู ูู ุงู vertices ุงู Vู ุญุณุจุช ูู ุงูุฑุคูุณ ููุง |
|
|
|
219 |
|
00:18:53,570 --> 00:18:58,770 |
|
ุญุณุจุช ุงู degree ููู ุฑุฃุณ ูุฌู
ุนุช ูู ุงู degree ุชุจุนุงุช |
|
|
|
220 |
|
00:18:58,770 --> 00:19:01,510 |
|
ุงูุฑุคูุณ ูุนูู ุงูุฑุฃุณ ุงูุฃูู degree ุฌุฏูุด ุงูุฑุฃุณ ุงูุฃูู |
|
|
|
221 |
|
00:19:01,510 --> 00:19:04,910 |
|
ุชุงูู degree ุฌุฏูุด ูู
ุง ุฎูุตุช ุนูู ูู ุงูุฑุคูุณ ุนุฑูุช |
|
|
|
222 |
|
00:19:04,910 --> 00:19:09,610 |
|
ุฏุฑุฌุงุชูู
ุจุฌู
ุน ุฏุฑุฌุงุช ุงูุฑุคูุณ ุจุฌู
ุน ุฏุฑุฌุงุช ุงูุฑุคูุณ ุงููู |
|
|
|
223 |
|
00:19:09,610 --> 00:19:14,770 |
|
ูู ุงู vertices ุจูุงุฌูู ุฏุงุฆู
ุง ุฏุงุฆู
ุง ุฏุงุฆู
ุง ุจุณุงูุฏ |
|
|
|
224 |
|
00:19:14,770 --> 00:19:21,230 |
|
ุงุชููู ูู ุนุฏุฏ ุงู edgesูู ุนุฏุฏ ุนูุงุตุฑ ู
ู ุงูู E ุนูุงุตุฑ |
|
|
|
225 |
|
00:19:21,230 --> 00:19:26,970 |
|
ู
ู ุงูู E ุฅูุด ูู ุฎุทูุท ูุนูู ุจู
ุนูู ุขุฎุฑ ุนุฏุฏ ู
ุฌู
ูุน |
|
|
|
226 |
|
00:19:26,970 --> 00:19:34,550 |
|
ู
ุฌู
ูุน ู
ุฌู
ูุน ุฏุฑุฌุงุช ุงู vertices ุจุณุงูู ุถุนู ุนุฏุฏ ุงูุฎุทูุท |
|
|
|
227 |
|
00:19:34,550 --> 00:19:38,870 |
|
ูุนูู ูู ุถุฑุจูุง ุงุชููู ูู ุนุฏุฏ ุงูุฎุทูุท ุนุฏุฏ ุนูุงุตุฑ ุงูู E |
|
|
|
228 |
|
00:19:38,870 --> 00:19:46,830 |
|
ููุงุฌููู
ุฏุงูู
ุง ุจุณุงููู ุฅูุด ู
ุฌู
ูุน ุฏุฑุฌุงุช ุงู verticesุฃู |
|
|
|
229 |
|
00:19:46,830 --> 00:19:50,270 |
|
ุงูุช ุงู
ุณู ู
ุซุงู ู ุฌุฑุจ ุนูู ุงููู ุญูููุงู ู ุฎูููุง ูุฌุฑุจ |
|
|
|
230 |
|
00:19:50,270 --> 00:19:54,470 |
|
ุนูู ูุฐุง ุงูู
ุซุงู ู
ุซูุง ูุงู ูู ุนูุฏู ุงููู ูู graph |
|
|
|
231 |
|
00:19:54,470 --> 00:19:59,270 |
|
undirected graph ููู ุงู vertices ุชุจุน ุนููููุง V1 V2 |
|
|
|
232 |
|
00:19:59,270 --> 00:20:05,110 |
|
V3 V4 ููู ุงููู ูู ุงู edges ุชุจุนุงุชู ุฃู ุงูุฎุทูุทุฅูุด |
|
|
|
233 |
|
00:20:05,110 --> 00:20:09,730 |
|
ุงูุฎุทูุท ุงููู ู
ูุฌูุฏุฉ ูููุง ูุงุญุฏ ุชููู ุชูุงุชุฉ ุฃุฑุจุน ุฎู
ุณุฉ |
|
|
|
234 |
|
00:20:09,730 --> 00:20:14,410 |
|
ุณุช ุฎุทูุท V1 V2 ุทุจุนุง ูุฐุง ูู ุงู degree ุจูุญุณุจ ุงุชููู |
|
|
|
235 |
|
00:20:14,410 --> 00:20:22,230 |
|
ููู ูู E ุจุงูุณุงููุฉ V1 V2 V2 V3 V1 V3 V3 V4 V4 V1 V3 |
|
|
|
236 |
|
00:20:22,230 --> 00:20:27,050 |
|
V3 ูู ุงูุฎุทูุท ุฌุฏุงุด ูุงุญุฏ ุชููู ุขุณู ุนูุงุก ุงู edges |
|
|
|
237 |
|
00:20:27,050 --> 00:20:32,470 |
|
ุชุจุนุงุช ุงู E ูุงุญุฏ ุชููู ุชูุงุชุฉ ุฃุฑุจุน ุฎู
ุณุฉ ุณุชุฉุงูุงู ุชุนุงูู |
|
|
|
238 |
|
00:20:32,470 --> 00:20:38,250 |
|
ุงุญุณุจ ุงู degree ููู ูุงุญุฏ ู
ู ูุฏููุฉ ูุฌู
ุญู ูุชูุงููููู |
|
|
|
239 |
|
00:20:38,250 --> 00:20:41,850 |
|
ุงุชูุงุด ูุงู ูุงุญุฏุ ูุงู ุงุชูููุ ูุงู ุชูุงุชุฉุ ูุงู ุงุฑุจุนุฉุ |
|
|
|
240 |
|
00:20:41,850 --> 00:20:46,850 |
|
ูุงู ุฎู
ุณุฉุ ูุงู ุณุชุฉูุงุฒู
ูู ุฃุฎุฏุช ุงู degree ููุฐู ุฒุงุฆุฏ |
|
|
|
241 |
|
00:20:46,850 --> 00:20:49,250 |
|
ุงู degree ููุฐู ุฒุงุฆุฏ ุงู degree ููุฐู ุฒุงุฆุฏ ุงู degree |
|
|
|
242 |
|
00:20:49,250 --> 00:20:54,710 |
|
ููุฐู ูุทูุน ู
ุฌู
ูุน ุงู degrees ุงุชููู ูู ุณุชุฉ ุญุณุจ |
|
|
|
243 |
|
00:20:54,710 --> 00:20:57,550 |
|
ุงููุงููู ุงูุง ุงุชูุงุดุฑ ูุนูู ููุทูุน ููุง ุงุชูุงุดุฑ degree |
|
|
|
244 |
|
00:20:57,550 --> 00:21:02,270 |
|
ู
ุฌู
ูุญูู ุฏู ูุดูู ูุฌุฑุจ ุงู degree ูู V ูุงุญุฏ ุงูู ูุงุญุฏ |
|
|
|
245 |
|
00:21:02,270 --> 00:21:06,730 |
|
ูู ุงุชููู ูู ุชูุงุชุฉ ุทูุจ ุงู degree ูู V ุงุชููู ูุงุญุฏ |
|
|
|
246 |
|
00:21:06,730 --> 00:21:11,630 |
|
ุงุชููู ุงู degree ูู V ุชูุงุชุฉูู ูุงุญุฏ ูู ุงุชููู ูู |
|
|
|
247 |
|
00:21:11,630 --> 00:21:16,310 |
|
ุชูุงุชุฉ ู ุงู loop ุจูุญุณุจ ุงุชููู ุงู two in ูู ุฎู
ุณุฉ ู ุงู |
|
|
|
248 |
|
00:21:16,310 --> 00:21:20,770 |
|
degree ูู V4 ุฌุฏูุด ุงุชููู ูู ูุงุญุฏ ูู ุงุชููู ุงุฌู
ุน ููู |
|
|
|
249 |
|
00:21:20,770 --> 00:21:23,710 |
|
ููุง ุฏููุฉ ุชูุงุชุฉ ู ุงุชููู ุฎู
ุณุฉ ู ุฎู
ุณุฉ ุนุดุฑุฉ ู ุงุชููู |
|
|
|
250 |
|
00:21:23,710 --> 00:21:29,500 |
|
ุงุชูุงุด ูุนูุง ุงุชูุงุด ุจุณุงูู ุณุชุฉุงููู ูู ุนุฏุฏ ุนูุงุตุฑ ูุฏูู |
|
|
|
251 |
|
00:21:29,500 --> 00:21:32,920 |
|
ูู ุงุชููู ุจุทูุน ุงูุด ุงุชู ุนุงุด ุงูู ุฏู ุงูู ุฏู ุงููุง ุฏู |
|
|
|
252 |
|
00:21:32,920 --> 00:21:37,160 |
|
hand shaking theorem ูู ูุฏู ูู ุชููู ุงุฐุง ุงู |
|
|
|
253 |
|
00:21:37,160 --> 00:21:40,980 |
|
summation ูู edge ูู V ูู ูู ูู ุจุณุงูุฉ ุงุชููู ูู |
|
|
|
254 |
|
00:21:40,980 --> 00:21:46,020 |
|
ุงููู ุงุชููู ูุณุชุฉ ุจุณุงูุฉ ุงุชู ุนุงุด ุงูุงู sum of degree |
|
|
|
255 |
|
00:21:46,020 --> 00:21:49,680 |
|
ุงููู ูู ู
ุซุงู ุนุงูู ุฌุจูู ุดููุฉ ุจููู ูู how many edges |
|
|
|
256 |
|
00:21:50,490 --> 00:21:55,030 |
|
ุฃูู
edges ูุนูู ูุฏุงุด ุนูุงุตุฑ ุงูู E are there in a |
|
|
|
257 |
|
00:21:55,030 --> 00:22:00,540 |
|
graph ูู ุงูู graph ุงููู ุงู vertices ูู ุนุดุฑุฉeach of |
|
|
|
258 |
|
00:22:00,540 --> 00:22:04,320 |
|
degree six ูุนูู ุจูููู ูู ุนูุฏู .. ุนูุฏู ุงููู ูู |
|
|
|
259 |
|
00:22:04,320 --> 00:22:09,920 |
|
vertices ุนุดุฑ vertices ุนุดุฑ ุฑุคูุณ ูู ุฑุงุณ ู
ููู
ุงู |
|
|
|
260 |
|
00:22:09,920 --> 00:22:15,220 |
|
degree ูู ุณุชุฉ ู
ุฏุงู
ุงู degree ูู ุณุชุฉ ุงูุขู ุจูุตูุฑ |
|
|
|
261 |
|
00:22:15,220 --> 00:22:20,620 |
|
ุงููู ูู
ู
ุฌู
ูุน ุงููู ูู ุงู vertices ูุฏููุฉ ู
ุฌู
ูุน ุงู |
|
|
|
262 |
|
00:22:20,620 --> 00:22:26,020 |
|
degrees ูู ุนุดุฑุฉ ูู ุณุชุฉ ุจุณุชูู ู
ุธุจูุท ุณุชูู ุงููู ูู
|
|
|
|
263 |
|
00:22:26,020 --> 00:22:30,950 |
|
ุจูุณุงููู ุงุชููู ู
ุถุฑูุจุฉ ูู ู
ูููู ุนุฏุฏ ุนูุงุตุฑ ุงู graph |
|
|
|
264 |
|
00:22:30,950 --> 00:22:34,390 |
|
ุฅุฐุง ุงูุนุฏุฏ ุนูุงุตุฑ ุงู edge ุฅุฐุง ุงู edge ูุงุฒู
ูุทูุน ุงููุ |
|
|
|
265 |
|
00:22:34,390 --> 00:22:37,390 |
|
ุงููู ูู ุณุชูู ุนูู ุงุชููู ู ูู ุณุงุนุฉ ู ุชูุงุชูู ุดูู ุงูุด |
|
|
|
266 |
|
00:22:37,390 --> 00:22:40,770 |
|
ุงููู ุจูููู because the sum of the degrees of the |
|
|
|
267 |
|
00:22:40,770 --> 00:22:44,630 |
|
vertices is ุณุชุฉ ูู ุนุดุฑุฉ ูุนูู ุงูุขู ุงู vertices ุนุดุฑุฉ |
|
|
|
268 |
|
00:22:44,630 --> 00:22:48,650 |
|
ู ูู ูุงุญุฏ ุงู degree ูู ุณุชุฉ ุจูุตูุฑ ู
ุฌู
ูุนุฉ degrees ูู |
|
|
|
269 |
|
00:22:48,650 --> 00:22:53,740 |
|
vertices ุณุชููit follows that ุงุชููู ูู M M ุฅูุด ูู |
|
|
|
270 |
|
00:22:53,740 --> 00:22:58,580 |
|
ุนุจุงุฑุฉ ุนู ุนุฏุฏ ุนูุงุตุฑ ุงู E ูุฑุถูุงูุง ุงู ุงุชููู M ุจุณุงูู |
|
|
|
271 |
|
00:22:58,580 --> 00:23:03,400 |
|
ุณุชูู ุงููู ูู where M is the number of edges ู
ุงุดู |
|
|
|
272 |
|
00:23:03,400 --> 00:23:06,220 |
|
ุงููู ุฃูุง ู
ุด ุงููู ุงูุง ู
ุด ุงู E ูุฐุง ู
ุด ู
ุธุจูุทุฉ ููู |
|
|
|
273 |
|
00:23:06,220 --> 00:23:11,570 |
|
ุงุชููู M ุจุณุงูู ุฅูุด ุณุชูู ุญูุซ ุงู M ุฅูุดุงููู ูู ุนุฏุฏ |
|
|
|
274 |
|
00:23:11,570 --> 00:23:15,550 |
|
ุนูุงุตุฑ ูุฏู therefore M ุงูุด ุจุชุณุงูู ุจุชุณุงูู ุชูุงุชูู |
|
|
|
275 |
|
00:23:15,550 --> 00:23:20,050 |
|
ุงููู ูู ุนุฏุฏ ุนูุงุตุฑ ุงู M is the number of edges ุงููู |
|
|
|
276 |
|
00:23:20,050 --> 00:23:23,850 |
|
ูู ุนุฏุฏ ุนูุงุตุฑ ุงู E ูุฐู ูุด ูุฐุง ู
ุด ู
ุธุจูุทุฉ ุงุชููู M |
|
|
|
277 |
|
00:23:23,850 --> 00:23:28,470 |
|
ุจุชุณุงูู ุณุชูู ูุฐู ุทุจุนุง ูุด ูุณุงูู ูุงู ูุฐู ุงู E ุงููู ูู |
|
|
|
278 |
|
00:23:28,470 --> 00:23:32,610 |
|
ุนุจุงุฑุฉ ุนู ุงู M is the number of edge ุงูุงู ุงุฐุง ุงู M |
|
|
|
279 |
|
00:23:32,610 --> 00:23:35,650 |
|
ุงูุด ุจุชุณุงูู ุชูุงุชูู ุงู ุนุฏุฏ ุนูุงุตุฑ ุงู edge ูุฐู ุงูุด |
|
|
|
280 |
|
00:23:35,650 --> 00:23:41,430 |
|
ุจุชุณุงูู ุชูุงุชููุงูุงู ูุฌู ููู Directed Graph ูุง ุฌู
ุงุนุฉ |
|
|
|
281 |
|
00:23:41,430 --> 00:23:45,980 |
|
ุงูู Directed Graphุงููู ูู ุฎููููู ุฃุดูู Directed |
|
|
|
282 |
|
00:23:45,980 --> 00:23:49,480 |
|
Graph V of E Consists .. ูู ููุณ ุงู graph ุงููู ูุจู |
|
|
|
283 |
|
00:23:49,480 --> 00:23:53,060 |
|
ุจุดููุฉ ุจุณ ุจุฏู ูุณูุฑ ุงุญูุง ูุฃุฎุฏ ุจุนูู ุงูุงุนุชุจุงุฑ ุงูุชุฌุงู |
|
|
|
284 |
|
00:23:53,060 --> 00:23:58,340 |
|
.. ุงูุชุฑุชูุจ ูุนูู ุงุชุฌุงู ู
ู ููู ุทุงูุน ุงููู ูู ุงู .. ุงู |
|
|
|
285 |
|
00:23:58,340 --> 00:24:01,560 |
|
.. ุงู .. ุงู vertex ู ุฃูู ุฑุงูุญู ุงูุฎุท ู
ู ููู ุทุงูุน ู |
|
|
|
286 |
|
00:24:01,560 --> 00:24:04,660 |
|
ู
ู ููู ุฑุงูุญู ุฏู ูุดูู ุฃุดู ุงููู ุจูููู A Directed |
|
|
|
287 |
|
00:24:04,660 --> 00:24:09,580 |
|
Graph V of E ูุนูู Graph V ู E ุฒู ุงููู ูุจู Consists |
|
|
|
288 |
|
00:24:09,580 --> 00:24:14,580 |
|
of a set of vertices V ููุณ ุงูุฃุดูand a set of each |
|
|
|
289 |
|
00:24:14,580 --> 00:24:19,320 |
|
E ุงูุขู ุงูุงุฎุชูุงู ููุฌู ุนูู ุงู E ุงู E ุฅูุด ุจุฏูุง ุชุตูุฑ |
|
|
|
290 |
|
00:24:19,320 --> 00:24:23,980 |
|
which are ordered pairs of elements of V ูุนูู |
|
|
|
291 |
|
00:24:23,980 --> 00:24:30,080 |
|
ุนูุงุตุฑ ุงู E ุงูุขู ูู
ุง ูููู V1 V2 ุฎูุงุต V1 V2 ูุนูู ูุฐุง |
|
|
|
292 |
|
00:24:30,080 --> 00:24:35,620 |
|
ู
ุด V2 V1 ูุนูู ุนูุฏ ุงู order ู
ูู
ุนุดุงู ููู ุจูููู ุนููุง |
|
|
|
293 |
|
00:24:35,620 --> 00:24:39,220 |
|
ุฅูุด ู
ุนูุงู directed graph ูุนูู ordered pairs |
|
|
|
294 |
|
00:24:39,220 --> 00:24:45,600 |
|
ุนูุงุตุฑูุง ูุดูู ููููู ู
ุซููุง V ุจุชุณุงูู A ูB ูC ูD ูุฐู |
|
|
|
295 |
|
00:24:45,600 --> 00:24:49,200 |
|
ุงูู V ุนุจุงุฑุฉ ุนู ุฅูุด ูุง ุฌู
ุงุนุฉุ ูู ุนุจุงุฑุฉ ุนู the set |
|
|
|
296 |
|
00:24:49,200 --> 00:24:54,800 |
|
of vertices ุงูุขู ุงูู E ุชุจุนุชูุง ุงููู ูู ุงู edges ุงูู |
|
|
|
297 |
|
00:24:54,800 --> 00:25:01,000 |
|
E ุฅูุด ุงูู Eุ ูู A ูBู ู
ุฑุชุจุฉ ูุชุจูุง ordered pair |
|
|
|
298 |
|
00:25:01,000 --> 00:25:04,320 |
|
ูุนูู ุจูุตูุฏ ุงู a ู ุงู b ู ู
ุด ุจุงู b ู ุงู a ุงู a ู ุงู |
|
|
|
299 |
|
00:25:04,320 --> 00:25:08,280 |
|
b ู
ุนูุงุชู ุงูู ุฌุงู ุงูุณูู
ู
ู a ู ุฑุงูุญ ู
ู ุจูู ูุนูู ููู |
|
|
|
300 |
|
00:25:08,280 --> 00:25:12,700 |
|
ุฌุงู ู
ู a ู ุฑุงูุญ ู b ูุนูู ูุฐู ุงู initial point ููุฐู |
|
|
|
301 |
|
00:25:12,700 --> 00:25:17,340 |
|
ุงู terminal point ููู ุจุชูููู
ูุนูู ุงู a ูู ููุทุฉ |
|
|
|
302 |
|
00:25:17,340 --> 00:25:23,320 |
|
ุงูุจุฏุงูุฉ ู b ููุทุฉ ุงูููุงูุฉ c ู b ุงููู ูู ุฌุงู ู
ู c ู |
|
|
|
303 |
|
00:25:23,320 --> 00:25:27,640 |
|
ุฑุงูุญ ู b ูุฐู c ููุทุฉ ุงูุจุฏุงูุฉ ู b ููุทุฉ ุงูููุงูุฉD ูB |
|
|
|
304 |
|
00:25:27,640 --> 00:25:32,280 |
|
ูู ู
ู D ุฅูู B ููุทุฉ ุงูุจุฏุงูุฉ ููู ููุทุฉ ุงูููุงูุฉ ุฏู ุฅูู |
|
|
|
305 |
|
00:25:32,280 --> 00:25:37,220 |
|
ููุทุฉ ุงูุจุฏุงูุฉ ุฏู ูููุทุฉ ุงูููุงูุฉ ุฅูู ุฅุฐุง ุงูุฃู ุงูู A |
|
|
|
306 |
|
00:25:37,220 --> 00:25:42,640 |
|
ordered pairs ูุงูู V ูููุง vertices ู
ุน ุจุนุถ V ูE |
|
|
|
307 |
|
00:25:42,640 --> 00:25:48,770 |
|
ุจูุณู
ููุง directed graphูุนูู graph ุงููู ูู ุฅูุด ู
ุชุฌู |
|
|
|
308 |
|
00:25:48,770 --> 00:25:54,070 |
|
ูุนูู ุงูุงุชุฌุงู ููู ุจุงููุณุจุฉ ุฅููุง ุงููู ูู ุถุฑูุฑู let u |
|
|
|
309 |
|
00:25:54,070 --> 00:25:57,890 |
|
,v directed graph ุฎููููู ุฃุฎุฏ ุงูุขู ุงููู ูู ุงูุชุณู
ูุงุช |
|
|
|
310 |
|
00:25:57,890 --> 00:26:01,990 |
|
ุงููู ููุชูุง ูุจู ุดููุฉ ุฃูุง let u,v be an edge of the |
|
|
|
311 |
|
00:26:01,990 --> 00:26:05,730 |
|
graph G ูุนูู ููุชุฑุถ ุฅู ุงู u ู ุงู v ูู ุนุจุงุฑุฉ ุนู edge |
|
|
|
312 |
|
00:26:05,730 --> 00:26:10,510 |
|
ูุนูู ุนูุตุฑ ู
ู ุนูุงุตุฑ ุงู Eุงูููุทุฉ ุงูุจุฏุงูุฉ U ุงูุงู ุจููุตุฏ |
|
|
|
313 |
|
00:26:10,510 --> 00:26:15,210 |
|
U is called the initial vertex ูุนูู ููุทุฉ ุงูุจุฏุงูุฉ |
|
|
|
314 |
|
00:26:15,210 --> 00:26:20,530 |
|
ูุนูู ุงููู ุจูุทูุน ู
ููุง ู
ู ุงูุฎุท is the initial vertex |
|
|
|
315 |
|
00:26:20,530 --> 00:26:27,560 |
|
of UVis called the terminal or end vertex of U V |
|
|
|
316 |
|
00:26:27,560 --> 00:26:31,400 |
|
ูุจูุณู
ู ุงู V ุงููู ูู ุงู terminal ุฃู ููุทุฉ ุงูููุงูุฉ ุฃู |
|
|
|
317 |
|
00:26:31,400 --> 00:26:34,760 |
|
ุงู end ูู vertex ูุฐู ูุนูู ุงูุฎุท ุจูุทูุน ู
ู U ุจุฑูุญ |
|
|
|
318 |
|
00:26:34,760 --> 00:26:39,720 |
|
ูู
ูู ู V ูุฐู ูู
ุง ูููู U ู V ู
ุนูุงุชู U ููุทุฉ ุงูุจุฏุงูุฉ |
|
|
|
319 |
|
00:26:39,720 --> 00:26:46,990 |
|
adjacent to Vู
ุงุดู ูุนูู ุงููู ูู ุงููู ูู ุจุฌูุจ ุจุงูุฌูุจ |
|
|
|
320 |
|
00:26:46,990 --> 00:26:51,850 |
|
ุฑุงูุญ ุนูู ุจูู ุฌูุจ V ุจุณ ุฑุงูุญ ุนูู ู
ูู ุนูู V ุงู U |
|
|
|
321 |
|
00:26:51,850 --> 00:26:57,830 |
|
adjacent to V ูุนูู ุฐุงูุจุฉ ุฅูู ู
ูู ุฅูู V ูุนูู ุจุฌูุงุฑ |
|
|
|
322 |
|
00:26:57,830 --> 00:27:03,210 |
|
V ุฐุงูุจุฉ ุฅูููุงููู ุงูู V ุจุงููุณุจุฉ ููู U adjacent from |
|
|
|
323 |
|
00:27:03,210 --> 00:27:09,850 |
|
U ุงููู ูู ุฌูุจูุง ุฎุงุฑุฌูุง ู
ููุง ุงู ูุนูู ุทุงูุนุฉ ู
ู U ู |
|
|
|
324 |
|
00:27:09,850 --> 00:27:16,330 |
|
ุฑุงูุญุฉ ูู
ูู ูู V ูุนูู adjacent from U ุงููู ูู ุงููู |
|
|
|
325 |
|
00:27:16,330 --> 00:27:27,100 |
|
ูู ุจุฌูุงุฑ ุฅูู U ููุฐู ุจุฌูุงุฑ ู
ู Vุฃู ุงูู V ุทูุจ ุงูุด |
|
|
|
326 |
|
00:27:27,100 --> 00:27:30,720 |
|
ูุนูู ุจุงูุงูุชุตุงุฏ ูุฐู ููุทุฉ ุงููู ูู ุงูุจุฏุงูุฉ ููุฐู ููุทุฉ |
|
|
|
327 |
|
00:27:30,720 --> 00:27:35,740 |
|
ุงูููุงูุฉ ุจุงููุณุจุฉ ู ุงู H Definition ุจุฏูุง ูุนุฑู ุงูุขู |
|
|
|
328 |
|
00:27:35,740 --> 00:27:42,000 |
|
ุงุญูุง ุนุฑููุง ูุจู ุงู degree ูู vertex ุงูุขู ุจุฏูุง ูุนุฑู |
|
|
|
329 |
|
00:27:42,000 --> 00:27:46,980 |
|
ุงูู ุตุงุฑ ูู ุนูุฏู ุงููู ูู ููุงุท ุฏุงุฎูุฉ ู ููุงุท ุฎุงุฑุฌุฉ |
|
|
|
330 |
|
00:27:46,980 --> 00:27:51,340 |
|
ุฎุทูุท ุฏุงุฎูุฉ ู ุฎุทูุท ุฎุงุฑุฌุฉ ูุนูู ูุฐุง ุงูุฎุท ุฎุงุฑุฌ ู
ู ุงู U |
|
|
|
331 |
|
00:27:51,850 --> 00:27:56,130 |
|
ูุฏุงุฎู ุงูุนุงูู
ูู ุนู ุงูู V ุนุดุงู ููู ุจูููู in a graph |
|
|
|
332 |
|
00:27:56,130 --> 00:28:01,150 |
|
with directed edges the n degree of a vertex V |
|
|
|
333 |
|
00:28:01,150 --> 00:28:06,150 |
|
ุจูุนุฑู ุญุงุฌุฉ ุงุณู
ูุง ุงูู n degree ุงููู ูู ุงูุฏุฑุฌุฉ ุงูู |
|
|
|
334 |
|
00:28:06,150 --> 00:28:10,390 |
|
of a vertex V ุงููู ูู degree ููุงูุต ุจููุชุจูุง n |
|
|
|
335 |
|
00:28:10,390 --> 00:28:15,550 |
|
degree V is the number of edges with V as their |
|
|
|
336 |
|
00:28:15,550 --> 00:28:20,530 |
|
terminal vertexูุนูู ุงููู ูู ูู
ุง ูููู in V ูุนูู |
|
|
|
337 |
|
00:28:20,530 --> 00:28:24,550 |
|
ุงููู ุฏุงุฎู ุนูู ุงู V ูุนูู ุงู V ุจุฏูุง ุชููู ุงูููุทุฉ |
|
|
|
338 |
|
00:28:24,550 --> 00:28:29,810 |
|
ุงูููุงุฆูุฉ ุงู terminal ุฅุฐู degree in degree ูู V |
|
|
|
339 |
|
00:28:29,810 --> 00:28:37,030 |
|
ุงูุฏุงุฎูุฉ ุนูู ุงู V ุนุฏุฏ ุงูุฎุทูุท ุงูุฏุงุฎูุฉ ุนูู ุงู V ุฅุฐู |
|
|
|
340 |
|
00:28:37,030 --> 00:28:43,000 |
|
in degree ุนุฏุฏ ุงูุฎุทูุท ุงูุฏุงุฎูุฉ ุนูู ุงู Vุงูุงู out |
|
|
|
341 |
|
00:28:43,000 --> 00:28:49,660 |
|
degree of V ุนุฏุฏ ุงูุฎุทูุท ุงูุฎุงุฑุฌุฉ ุงููู ูู main ู
ู ุงู |
|
|
|
342 |
|
00:28:49,660 --> 00:28:54,580 |
|
V ูุนูู ุจุชููู ุงู V initial point ุงูุงู out degree |
|
|
|
343 |
|
00:28:54,580 --> 00:28:59,080 |
|
ุงูุฎุงุฑุฌุฉ ู
ู V ูุนูู ุจุชููู ุงู V ุนุจุงุฑุฉ ุนู initial |
|
|
|
344 |
|
00:28:59,080 --> 00:29:04,600 |
|
point ูุงุฎุฏ ู
ุซุงู ุงูุงู ุจููู find the in degree and |
|
|
|
345 |
|
00:29:04,600 --> 00:29:09,870 |
|
out degree of each vertex in the graph Gwith |
|
|
|
346 |
|
00:29:09,870 --> 00:29:12,930 |
|
directed edges shown in figure 2 ูู ุงูููุฌูุฑ ุงููู |
|
|
|
347 |
|
00:29:12,930 --> 00:29:18,530 |
|
ูููุงูุง ุจุฏู ุชุญุณุจู ุงู in degree ููุฌู ูู
ู ูุงู ุฅูู |
|
|
|
348 |
|
00:29:18,530 --> 00:29:22,670 |
|
ูุดูู ุงู in degree ุงููู ูู ุฅูู ุดู
ุงููุง ุงูุฏุงุฎู ุนูู ุงู |
|
|
|
349 |
|
00:29:22,670 --> 00:29:26,090 |
|
ุฅูู ู
ูู ุงูุฎุทูุท ุงูุฏุงุฎู ุนูู ุงู ุฅูู ูุงู ูุงุญุฏ ูุงู ุฃูู |
|
|
|
350 |
|
00:29:26,090 --> 00:29:31,630 |
|
ุฎุท ุงุชููู ุงููู ุฏุงุฎู ุนูู ุงู ุฅูู ูุงู ูู
ุงู ุฎุท ูู |
|
|
|
351 |
|
00:29:31,630 --> 00:29:37,690 |
|
ุบูุฑูู
ุ ูุฃ ุทูุจุงูู degree ููู B ุงู degree ูู B ุงู |
|
|
|
352 |
|
00:29:37,690 --> 00:29:41,510 |
|
degree ูู B ุงูุฏุงุฎู ุนูู ุงู B ู
ูู ุงูุฏุงุฎู ุนูู ุงู B |
|
|
|
353 |
|
00:29:41,510 --> 00:29:45,390 |
|
ูุงู ูุฐุง ุฏุงุฎู ุนูู ุงู B ููู ุฏุงุฎู ุนูู ุงู B ูู ุบูุฑูู
|
|
|
|
354 |
|
00:29:45,390 --> 00:29:50,930 |
|
ูุฃ ุฅุฐุง ุงุชููู ุงู degree ูู C ูุงู ุฃูู ูุงุญุฏ ุฏุงุฎู ุนูู |
|
|
|
355 |
|
00:29:50,930 --> 00:29:56,470 |
|
ุงู C ุงูุขู ูุงู ูู
ุงู ูุงุญุฏ ุฏุงุฎู ุนูู ุงู C ูุงู ูู
ุงู |
|
|
|
356 |
|
00:29:56,470 --> 00:30:00,150 |
|
ูุงุญุฏ ุฏุงุฎู ุนูู ุงู C ุฅุฐุง ุชูุช ุฎุทูุท ุฅุฐุง ุงู degree in C |
|
|
|
357 |
|
00:30:00,150 --> 00:30:04,950 |
|
ุชูุงุชุฉุงูุงู ุงู ุงู degree ุงู degree ูู a ุงููู ูู |
|
|
|
358 |
|
00:30:04,950 --> 00:30:11,090 |
|
ุงูุฎุงุฑุฌุฉ ู
ู ุงู a ุงู ุงูุฎุงุฑุฌุฉ ู
ู ุงู a ุงูู ุงุด ุงููู |
|
|
|
359 |
|
00:30:11,090 --> 00:30:16,010 |
|
ุฎุงุฑุฌ ู
ู a ููู ููุณู ุฎุงุฑุฌ ููู ูู
ุงู ูุงุญุฏ ุฎุงุฑุฌ ุงุชููู |
|
|
|
360 |
|
00:30:16,010 --> 00:30:20,310 |
|
ููู ูู
ุงู ูุงุญุฏ ุฎุงุฑุฌ ุชูุงุชุฉ ููู ูู
ุงู ูุงุญุฏ ุฎุงุฑุฌ ุงูุด |
|
|
|
361 |
|
00:30:20,310 --> 00:30:25,700 |
|
ุงุฑุจุนุฉ ุงุฐุง ุงููุงุญุธูุง ุงู ุงููู ูู ุงู loopุงููู ูู ุงู |
|
|
|
362 |
|
00:30:25,700 --> 00:30:32,500 |
|
loop ุจูุญุณุจ ุฃูู ุฏุงุฎู ู ุฎุงุฑุฌ ูุฅู ูู ุฏุงุฎู ุนูู ุงู a ู |
|
|
|
363 |
|
00:30:32,500 --> 00:30:36,980 |
|
ุฎุงุฑุฌ ู
ู ุงู a ุนุดุงู ููู ูู ุงูุนุงุฏู ุจูุญุณุจ ุจุฑุชูู ููุง |
|
|
|
364 |
|
00:30:36,980 --> 00:30:41,660 |
|
ุทุจุนุง ูููุญุณุจ ูู ุงูุฏุงุฎู ู ูู ุงูุฎุงุฑุฌ ูุฅูู ูุนูุง ู
ู ุงู |
|
|
|
365 |
|
00:30:41,660 --> 00:30:47,200 |
|
a ู ุงู a ุจุทูุน ู
ู ุงู a ู ุจุฏุฎู ูู a ู ุจูุญุณุจ ุฏุงุฎู ู |
|
|
|
366 |
|
00:30:47,200 --> 00:30:52,670 |
|
ุฎุงุฑุฌุงู degree ูู B ุงููู ูู ุงู out degree ุงููู ุฎุฑุฌุช |
|
|
|
367 |
|
00:30:52,670 --> 00:30:56,090 |
|
ู
ู ุงู B ุงููู ุฎุฑุฌุช ู
ู ุงู B ููู ุงููู ุฎุฑุฌุช ู
ู ุงู Bุ |
|
|
|
368 |
|
00:30:56,090 --> 00:31:01,090 |
|
ูุงู ูุงุญุฏุ ูู ุบูุฑูุ ูุฃุ ูุงู ูุงุญุฏ ุงููู ุฎุฑุฌุช ู
ู ู
ููุ |
|
|
|
369 |
|
00:31:01,090 --> 00:31:06,530 |
|
ู
ู ุงู C ุงูุขู ุงููู ุฎุฑุฌุช ู
ู ุงู Cุ ูุงู ูุงุญุฏุ ูุงู |
|
|
|
370 |
|
00:31:06,530 --> 00:31:11,210 |
|
ุงุชูููุ ูู ุบูุฑูู
ุ ูุฃุ ูุงู ุงููู ุฎุฑุฌุช ู
ู ุฅูุดุ ู
ู ุงู C |
|
|
|
371 |
|
00:31:11,210 --> 00:31:20,700 |
|
ุทูุจุ ููุฌู ุงูุขู ููุธุฑูุฉ ุจุชููู ูููุธุฑูุฉุงูุงู ูุงุญุธูุง ุงูู |
|
|
|
372 |
|
00:31:20,700 --> 00:31:25,340 |
|
ูู ุฌููุง ูุงูุช G ุนูุฏ theorem let G ุจูุณูู V ู E be |
|
|
|
373 |
|
00:31:25,340 --> 00:31:29,180 |
|
the graph with directed edges ูุนูู ููุชุฑุถ ุงูู ุงููู |
|
|
|
374 |
|
00:31:29,180 --> 00:31:33,300 |
|
ูู ูุฐุง ุนุจุงุฑุฉ ุนู graph ุนูุงุตุฑ ุงู E ุนุจุงุฑุฉ ุนู ordered |
|
|
|
375 |
|
00:31:33,300 --> 00:31:39,140 |
|
pairs ูุนูู directed edges then ุงููู ูู ูู ุฌูุช ุญุณุจุช |
|
|
|
376 |
|
00:31:39,140 --> 00:31:44,580 |
|
ูู indegree ูุนูู ุนุฏุฏ ุงูุฎุทูุท ุงููู ุฏุงุฎูุฉ ุงููู ุฏุงุฎูุฉ |
|
|
|
377 |
|
00:31:47,340 --> 00:31:52,440 |
|
ุงูู N ูุฐู ุงููู ุฏุงุฎูุฉ ุนูู ุงูู V ููู ุงูููุงุท ูุฌู
ุนุชูู
|
|
|
|
378 |
|
00:31:52,440 --> 00:31:57,700 |
|
ููููู ุฅู ูู
ุง ููุณ ุนุฏุฏ ุงูุฎุทูุท ุงูุฎุงุฑุฌูุฉ ุทุจูุนู ุทุจูุนู |
|
|
|
379 |
|
00:31:57,700 --> 00:32:02,580 |
|
ูุฅูู ุจุชููู ุงููู ูู ู
ุด ุจูุญุณุจ ุนูู ูู ุงูููุงุท ุฅุฐุง ู
ุด |
|
|
|
380 |
|
00:32:02,580 --> 00:32:07,890 |
|
ุฏุงุฎูุฉ ูู ูุฐุง ุงู .. ุฅุฐุง ุฏุงุฎูุฉ ูู ุงูููุทุฉ ูุฐูุฅุฐุง ู
ุด |
|
|
|
381 |
|
00:32:07,890 --> 00:32:11,770 |
|
ุฏุงุฎูุฉ ูู ุงูููุทุฉ ูุฐู ุฏุงุฎูุฉ ูู ุงูููุทุฉ ุงูุซุงููุฉ ุฅุฐุง ู
ุด |
|
|
|
382 |
|
00:32:11,770 --> 00:32:14,350 |
|
ุฎุงุฑุฌุฉ ูู ุงูููุทุฉ ูุฐู ุฎุงุฑุฌุฉ ูู ุงูููุทุฉ ุงูุซุงููุฉ ูู
ุง ุฏู |
|
|
|
383 |
|
00:32:14,350 --> 00:32:19,030 |
|
ุจูุฌู
ุน ุนูู ูู ุงูู
ูุงุท ุฅุฐุง ุญูููู ูุฏููุฉ ููุง ุนุฏุฏ ุงูุฎุทูุท |
|
|
|
384 |
|
00:32:19,030 --> 00:32:23,840 |
|
ูููู
ููุฏููุฉ ุนุฏุฏ ุงูุฎุทูุท ูููู
ูุนุฏุฏ ุงูุฎุทูุท ูู ุฅู ูู
ุง |
|
|
|
385 |
|
00:32:23,840 --> 00:32:29,740 |
|
ู
ู ุนุฏุฏ ุงูุฎุทูุท ุงููู ูู ูุฐู ูุฏุงุฆู
ุง ุนุฏุฏ ุงูุฎุทูุท |
|
|
|
386 |
|
00:32:29,740 --> 00:32:34,780 |
|
ุงูู
ุฌู
ูุนุฉ ุนุฏุฏ ุงูุฎุทูุท ุงูุฏุงุฎูุฉ ุจุณุงูู ู
ุฌู
ูุนุฉ ุนุฏุฏ |
|
|
|
387 |
|
00:32:34,780 --> 00:32:38,420 |
|
ุงูุฎุทูุท ุงูุฎุงุฑุฌูุฉ ููู ุงูููุงุท ุทุจุนุง ุจุณุงูู ุงููู ูู |
|
|
|
388 |
|
00:32:38,420 --> 00:32:42,820 |
|
ุงูุฎุทูุท ูุฐู ุทุจุนุง ูุฐู ุงูู ูู ู
ุฌู
ูุนุฉ ุงูุฎุทูุท ุงููู ูู |
|
|
|
389 |
|
00:32:42,820 --> 00:32:48,920 |
|
degree outุงููู ูู ุนุฏุฏ ุงูุฎุทูุท ุงูุฎุงุฑุฌุฉ degree out |
|
|
|
390 |
|
00:32:48,920 --> 00:32:52,800 |
|
ุนุฏุฏ ุงูุฎุทูุท ุงูุฎุงุฑุฌุฉ ู
ุฌู
ูุญ ุนูู ูู ุงูููุงุท ููุฐุง ุนุฏุฏ |
|
|
|
391 |
|
00:32:52,800 --> 00:32:57,760 |
|
ุงูุฎุทูุท ุงูุฏุงุฎูุฉ ุนูู ูู ุงูููุงุท ูุจุทูุน ุนูุฏู ูุฐู ูู |
|
|
|
392 |
|
00:32:57,760 --> 00:33:01,560 |
|
ุงูุฎุทูุท ุงููู ุนูุฏู ููุฐู ุจุฑุถู ูู ุงูุฎุทูุท ูุฃู ุงููู ุฎุงุฑุฌ |
|
|
|
393 |
|
00:33:01,930 --> 00:33:06,190 |
|
ูู ููุทุฉ ุจูููู ุฏุงุฎู ูู ููุทุฉ ูุจุชูุฌู
ุน ุงููู ุจูุฌู
ุน ุญุงู |
|
|
|
394 |
|
00:33:06,190 --> 00:33:10,370 |
|
ุจูุฌู
ุน ุญุงู ูุจูุฌู
ุน ููู ุนูู ูุฏููุฉ ุจูุฌู
ุน ููู ูุจููู ููุณ |
|
|
|
395 |
|
00:33:10,370 --> 00:33:14,770 |
|
ุงูุงุดู ู ุจูุทูุน ุนุฏุฏ ุงูุฎุทูุท ุงูุฏุงุฎูุฉ ู ุฃูุช ุฅุฐุง ูุงู |
|
|
|
396 |
|
00:33:14,770 --> 00:33:19,490 |
|
ูุนูู ุดุงูู ุฑูุญ ุนุฏูู ุนุฏุฏ ุงู degree ุงููุงู ู degree |
|
|
|
397 |
|
00:33:19,490 --> 00:33:22,350 |
|
ุงููุงู ู degree ุงููุงู ู degree ุงููุงู ู degree ุงููุงู |
|
|
|
398 |
|
00:33:22,350 --> 00:33:25,960 |
|
ู degree ุงููุงู ู degree ุงููุงูู ุงุฌู
ุญูู
ูุชูุงูููู
|
|
|
|
399 |
|
00:33:25,960 --> 00:33:29,660 |
|
ุจุณุงููู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
400 |
|
00:33:29,660 --> 00:33:31,240 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
401 |
|
00:33:31,240 --> 00:33:32,520 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
402 |
|
00:33:32,520 --> 00:33:32,720 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
403 |
|
00:33:32,720 --> 00:33:32,720 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
404 |
|
00:33:32,720 --> 00:33:32,960 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
405 |
|
00:33:32,960 --> 00:33:32,960 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
406 |
|
00:33:32,960 --> 00:33:33,000 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
407 |
|
00:33:33,000 --> 00:33:33,000 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
408 |
|
00:33:33,000 --> 00:33:33,000 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
409 |
|
00:33:33,000 --> 00:33:33,040 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
410 |
|
00:33:33,040 --> 00:33:33,040 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
411 |
|
00:33:33,040 --> 00:33:33,040 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
412 |
|
00:33:33,040 --> 00:33:33,040 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
413 |
|
00:33:33,040 --> 00:33:33,040 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
414 |
|
00:33:33,040 --> 00:33:33,520 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
415 |
|
00:33:33,520 --> 00:33:34,400 |
|
out ู ุงู degree out ู ุงู degree out ู ุงู degree |
|
|
|
416 |
|
00:33:34,400 --> 00:33:39,180 |
|
out ู ุงู |
|
|
|
417 |
|
00:33:39,180 --> 00:33:44,090 |
|
degree out ููููุง ุจููู ุนูุฏู ุจููู ูุตููุง ูู homework |
|
|
|
418 |
|
00:33:44,090 --> 00:33:49,110 |
|
ููู
ุญุงุถุฑุฉ ุงูุนุงุดุฑุฉ ูู ุงูุณุคุงู ุงูุงูู ูู ุงูุณุคุงู ุงูุงูู a |
|
|
|
419 |
|
00:33:49,110 --> 00:33:53,630 |
|
ู b ูุนูู ุงูุฑุณู
ูุฐู ุณุฎูุงุช ุณูุฉ ููู ุงูุณุคุงู ุงูุชุงูู ููู |
|
|
|
420 |
|
00:33:53,630 --> 00:33:58,090 |
|
ุฒู ุงููู ุดุฑุญุชู ููู ุงูุณุคุงู ุงูุชุงูุช ูู ุงููุฏุงู ูุงุฆูุง |
|
|
|
421 |
|
00:33:58,090 --> 00:34:02,650 |
|
ุนูุฏู ุงุฐุง ุชูุช ุงุณุฆูุฉ ูุงู ุดุงุก ุงููู ุจุชุญููู ุชุนุทูููุง |
|
|
|
422 |
|
00:34:02,650 --> 00:34:07,350 |
|
ูุงูุนุงุฏุฉ ูุงูู ููุงุก ุงุฎุฑ ูุงูุณูุงู
ุนูููู
ูุฑุญู
ุฉ ุงููู |
|
|
|
423 |
|
00:34:07,350 --> 00:34:08,630 |
|
ูุจุฑูุงุชู |
|
|
|
|