|
1 |
|
00:00:21,160 --> 00:00:26,220 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุนูุฏ ุงูุขู ุฅูู ููุงูุฉ |
|
|
|
2 |
|
00:00:26,220 --> 00:00:29,920 |
|
ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ุจุฏุฃูุง ุจู
ูุถูุน ุงู |
|
|
|
3 |
|
00:00:29,920 --> 00:00:37,240 |
|
diagonalization ูููู ูุนู
ู ุงูู diagonalize ููู
ุตูููุฉ |
|
|
|
4 |
|
00:00:37,240 --> 00:00:41,780 |
|
ุจู
ุนูู ุฎูููุง ู
ุตูููุฉ ูุทุฑูุฉ ุงุจุชุฏุฃูุง ุจุชุนุฑูู ุงูู similar |
|
|
|
5 |
|
00:00:41,780 --> 00:00:47,180 |
|
matrix ููููุง ุฃู ุงูู similar matrix ุจุฅุฐ ุฌุฏุฑุช ูุฃุฌู |
|
|
|
6 |
|
00:00:47,180 --> 00:00:53,710 |
|
ู
ุตูููุฉ ุซุงููุฉ K ุจุญูุซ ุงูู K ูุฐู non zero matrix ูุนูู ุฃู |
|
|
|
7 |
|
00:00:53,710 --> 00:00:57,610 |
|
non singular matrix ุงูุด ูุนููุ ูุนูู ุงูู
ุนููุณ ุชุจุนูุง |
|
|
|
8 |
|
00:00:57,610 --> 00:01:02,470 |
|
ู
ูุฌูุฏ ุจุญูุซ ุงููู ุจูุจุฏุฃ ูุณูู ุงูู K inverse ูู ุงูู A ูู |
|
|
|
9 |
|
00:01:02,470 --> 00:01:06,750 |
|
ุงูู K ุชู
ุงู
ุ ูุฃุฎุฏูุง ุนูู ุฐูู ู
ุซุงูุง ูุงุญุฏุง ุจุนุฏ ู
ุง |
|
|
|
10 |
|
00:01:06,750 --> 00:01:11,440 |
|
ุฃุซุจุชูุง ุฃู ุฅุฐุง ูุงูุช ุงูู A similar ูู B ูุฅู B similar ูู |
|
|
|
11 |
|
00:01:11,440 --> 00:01:14,940 |
|
A ููู ููุณ ุงููุบุฉ ููู ููุณ ุงูููุช A is similar to |
|
|
|
12 |
|
00:01:14,940 --> 00:01:18,580 |
|
itself ุชู
ุงู
ุ ูุจูู ูุฐุง ุงููู ุฃุฎุฏูุงู ุงูู
ุญุงุถุฑุฉ ุงูู
ุงุถูุฉ ู |
|
|
|
13 |
|
00:01:18,580 --> 00:01:23,160 |
|
ุงูุขู ุจุฏูุง ูุถูู .. ุฃุฎุฏูุง ุทุจุนุง ู
ุซุงู ูุงุญุฏ ูุณู ูุงู
ุง |
|
|
|
14 |
|
00:01:23,160 --> 00:01:27,500 |
|
ูุงุฎุฏ ุฃู
ุซูุฉ ูุจุฏูุง ูุจุฏุฃ ูุญุท ุจุนุถ ุงูู
ุนููู
ุงุช ุงููุธุฑูุฉ |
|
|
|
15 |
|
00:01:27,500 --> 00:01:33,160 |
|
ุงูุฃุณุงุณูุฉ ุฃู ุงูุนู
ูุฏ ุงูููุฑู ูู ูุฐุง ุงูู section ุจูููู ูู |
|
|
|
16 |
|
00:01:33,160 --> 00:01:37,540 |
|
to show that the given n by n matrix is a is |
|
|
|
17 |
|
00:01:37,540 --> 00:01:41,120 |
|
similar to a diagonal matrix ู ุงูู diagonal matrix |
|
|
|
18 |
|
00:01:41,120 --> 00:01:44,180 |
|
ูู ุจูุชุจูุง ุจุงูุดูู ูุฐุง ู
ู ุญุฏ ู
ุง ุชุดููููุง ุฏู ูุนูู |
|
|
|
19 |
|
00:01:44,180 --> 00:01:49,800 |
|
ู
ุตูููุฉ ูุทุฑูุฉ ุฌู
ูุน ุนูุงุตุฑูุง ุฃุตูุงุฑ ู
ุนุงุฏุฉ ุนูุงุตุฑ ุงููุทุฑ |
|
|
|
20 |
|
00:01:49,800 --> 00:01:57,540 |
|
ุงูุฑุฆูุณู ูุฃุฎุฐ ุงููุธุฑูุฉ ุงูุชุงููุฉ ุทุจุนุง ู
ู ุงููู
ุฏุงุช ูุฐูู |
|
|
|
21 |
|
00:01:57,540 --> 00:02:00,400 |
|
ุงููู
ุฏุฉ ูุงุญุฏ ูุงููู
ุฏุฉ ุงุซููู ูุงููู
ุฏุฉ ุฅู ูู ุงูู eigen |
|
|
|
22 |
|
00:02:00,400 --> 00:02:07,440 |
|
values ู
ุด ุญูุงูู ู
ุด ุฃู ุฃุฑูุงู
ูุจูู ุฃุฑูุงู
ู
ุญุฏุฏุฉ ุทูุจ |
|
|
|
23 |
|
00:02:07,440 --> 00:02:11,480 |
|
ุงููุธุฑูุฉ ุจุชููู ุงููุ the n by n matrix A is similar |
|
|
|
24 |
|
00:02:11,480 --> 00:02:16,420 |
|
to a diagonal matrix ู
ูุงุญุธู ุงูู
ุฑุฉ ุงููู ูุงุชุช ุจุฏููุง |
|
|
|
25 |
|
00:02:16,420 --> 00:02:21,060 |
|
canvas A K ุทูุนุช ุนูุฏู ู
ุตูููุฉ ูุทุฑูุฉ ูู ุงูุขุฎุฑุ ู
ุตุจูุท |
|
|
|
26 |
|
00:02:21,060 --> 00:02:24,920 |
|
ููุง ูุฃุ ุงูู
ุตุฑูู ุงููุทุฑูุฉ ุงูุนู
ูุฏู ุงูููุฑู ููู
ุฉ ุงูู two |
|
|
|
27 |
|
00:02:24,920 --> 00:02:28,870 |
|
landers ุงููู ุทูุนุช ุนูุฏู ุจุงูุถุจุท ูุจูู ููุง ูู
ุง ุฃููู ุงูู |
|
|
|
28 |
|
00:02:28,870 --> 00:02:32,650 |
|
A is similar to a diagonal matrix if and only if |
|
|
|
29 |
|
00:02:32,650 --> 00:02:36,350 |
|
it has a set of linearly independent eigenvectors |
|
|
|
30 |
|
00:02:36,350 --> 00:02:43,250 |
|
K1 ู K2 ูุบุงูุฉ Km ุงูููุงู
ูุฐุง ุจุฏู ุฃุนูุฏ ุตูุงุบุชู ู
ุฑุฉ |
|
|
|
31 |
|
00:02:43,250 --> 00:02:48,750 |
|
ุซุงููุฉ ุจุงุฌู ุจููู that is ูู ูุงู ุนูุฏ ุงูู
ุตููุฉ K ูุฐู |
|
|
|
32 |
|
00:02:48,750 --> 00:02:53,670 |
|
ู
ุตูููุฉ K K1 ูู ุงูุนู
ูุฏ ุงูุฃูู K2 ุงูุนู
ูุฏ ุงูุซุงูู Kn |
|
|
|
33 |
|
00:02:53,670 --> 00:03:01,400 |
|
ุงูุนู
ูุฏ ุฑูู
M ููู eigen vector ูุฐุง ู
ูุงุธุฑ ูู
ูุ ู
ูุงุธุฑ |
|
|
|
34 |
|
00:03:01,400 --> 00:03:04,500 |
|
ููู eigen value ุงููู ูู lambda ูุงุญุฏ ูุงูุซุงูู lambda |
|
|
|
35 |
|
00:03:04,500 --> 00:03:08,920 |
|
ุงุซููู ูุงูุซุงูุซ lambda ุซูุงุซุฉ ูุงูุขุฎุฑ lambda in them ุงูู |
|
|
|
36 |
|
00:03:08,920 --> 00:03:14,340 |
|
K inverse A ูู ุงูู K ุจุฏู ูุณุงูู ุงูู
ุตูููุฉ ุงููู ุนูุฏูุง |
|
|
|
37 |
|
00:03:14,340 --> 00:03:18,880 |
|
ุฏู ูุนูู ุจุฏู ูุณุงูู ุงูู
ุตูููุฉ ูุฌู
ูุน ุนูุงุตุฑูุง ุฃุตูุงุฑ ู
ุง |
|
|
|
38 |
|
00:03:18,880 --> 00:03:25,450 |
|
ุนุฏุง ุนูุงุตุฑ ูุทุฑ ุงูุฑุฆูุณู ุจูููููุง ุนูู ุฃุณุฑูุง ูู ู
ูุ ูุฐู |
|
|
|
39 |
|
00:03:25,450 --> 00:03:29,090 |
|
ุงููุธุฑูุฉ ุจุชุญูู ุจุงููุงุฑุดุงูู ุฃููุง ุฏู ูุจูู ูู ุฃุนุทุงูู |
|
|
|
40 |
|
00:03:29,090 --> 00:03:35,010 |
|
ู
ุตูููุฉ A ุจุฏู ุฃุฌูุจ ุงูู diagonal matrix ุจุชุงุนูุง ุจุญูุซ |
|
|
|
41 |
|
00:03:35,010 --> 00:03:40,090 |
|
ุงูุนูุงุตุฑ ุชุจุน ุงูู diagonal matrix ูููููุง ูู
ุงูู eigen |
|
|
|
42 |
|
00:03:40,090 --> 00:03:46,120 |
|
values ูุจูู ุจุฏู ุฃุญุงูู ุฃุฌูุจ ุงูู Eigenvectors ุงููู |
|
|
|
43 |
|
00:03:46,120 --> 00:03:50,260 |
|
ุนูุฏูุง ูุงูู Eigenvectors ุจุณ ุจูุดุฑูููุง ูููู
linearly |
|
|
|
44 |
|
00:03:50,260 --> 00:03:54,260 |
|
independent ูุฃู ุฌุงูู linearly independent ููู |
|
|
|
45 |
|
00:03:54,260 --> 00:03:58,420 |
|
ูุงุญุฏ ูุนุชู
ุฏ ุนูู ุงูุซุงูู ูููู
ู
ุณุชููุงุช ุนู ุจุนุถ ุชู
ุงู
|
|
|
|
46 |
|
00:03:58,420 --> 00:04:02,220 |
|
ุงูุงุณุชููุงู ูุจูู ุจุญุตู ุงูุนุงูู
ูู ุนูู ุงูู diagonal matrix |
|
|
|
47 |
|
00:04:03,840 --> 00:04:07,760 |
|
ุงูุขู ุจุฏุง ุฃุฌู ููุนููุงู ุงููู ุฃูุง ุฑุงูุนู ุงูู
ุฑุฉ ุงููู ูุงุชุช |
|
|
|
48 |
|
00:04:07,760 --> 00:04:11,780 |
|
ููุง ุจูุชููู
ุนู ุงูู similar matrix ููุท ููู
ูุชููู
ุนู |
|
|
|
49 |
|
00:04:11,780 --> 00:04:15,460 |
|
ุงูู diagonalization ุชู
ุงู
ุ ูุฐุง ุงูููุงู
ุงููู ุงุญูุง |
|
|
|
50 |
|
00:04:15,460 --> 00:04:19,140 |
|
ุจูุญูู ูู ุงูู diagonalization ูุงุญูุง ู
ุด ุฐุงุฑูู ุทูุน |
|
|
|
51 |
|
00:04:19,140 --> 00:04:20,120 |
|
ุงูุชุฑููุด ุจููู |
|
|
|
52 |
|
00:04:24,300 --> 00:04:28,980 |
|
ุงูุชุนุฑูู ุงููู ุฌุงุจูู if a is a similar to a diagonal |
|
|
|
53 |
|
00:04:28,980 --> 00:04:34,880 |
|
matrix ูุนูู ูุงูููุงู
ูุฐุง ุตุญูุญ then a is said to be |
|
|
|
54 |
|
00:04:34,880 --> 00:04:40,130 |
|
diagonalizable ูุจูู ุงูู
ุตูููุฉ A ุจููุฏุฑ ูุนู
ููุง ุนูู |
|
|
|
55 |
|
00:04:40,130 --> 00:04:46,770 |
|
ุดูู ู
ุตูููุฉ ูุทุฑูุฉ ูุจูู ูู ูุงูุช ุงูู
ุตูููุฉ similar to a |
|
|
|
56 |
|
00:04:46,770 --> 00:04:50,330 |
|
diagonal matrix automatically ุจููู ุฃู ุงูู A ุฏู |
|
|
|
57 |
|
00:04:50,330 --> 00:04:55,180 |
|
diagonalizable ุทูุจ ุงูุชุนุฑูู ุงูุซุงูู ุจูููู ูู ูุงูุช ุงูู |
|
|
|
58 |
|
00:04:55,180 --> 00:05:00,600 |
|
A diagonalizable matrix then it possesses ูุชูุชุฑุถ |
|
|
|
59 |
|
00:05:00,600 --> 00:05:05,100 |
|
in linearly independent eigenvectors ูุจูู ุงูู |
|
|
|
60 |
|
00:05:05,100 --> 00:05:08,140 |
|
eigenvectors ุงููู ุนูุฏูุง ุนุฏุฏูู
ูุณุงูู n ุจุฏูู
ูููููุง |
|
|
|
61 |
|
00:05:08,140 --> 00:05:15,240 |
|
linearly independent ููุฐู ุงูู set ูุณู
ููุง complete set |
|
|
|
62 |
|
00:05:15,240 --> 00:05:20,380 |
|
of eigenvectors ูุจูู ูุฐู ุงูู
ุฌู
ูุนุฉ ุงููุงู
ูุฉ ูู
ููุ ููู |
|
|
|
63 |
|
00:05:20,380 --> 00:05:24,040 |
|
eigenvectors ุงููู ุนูุฏูุง ุนูู ุฃู ุญุงู ุงูุชุนุฑูู |
|
|
|
64 |
|
00:05:24,040 --> 00:05:29,380 |
|
ุงูุฃููุงูู ุฏููู ุฌุฏุง ูุฃูู ููููู ูู ููู ุจุฏู ุชุฎูู ุงูู
ุตูููุฉ |
|
|
|
65 |
|
00:05:29,380 --> 00:05:34,920 |
|
ุฏู diagonal matrix ุตุญุ ุงูุณุคุงู ู
ู
ูู ูุทูุน ููุง ูุทุฑุญ ุญุฏุซ |
|
|
|
66 |
|
00:05:34,920 --> 00:05:39,440 |
|
ููุญุงูู ุงูุฅุฌุงุจุฉ ุนููู ูู
ุดู ุฎุทูุงุช ู
ุญุฏุฏุฉ ุงูุขู ุจุนุฏ |
|
|
|
67 |
|
00:05:39,440 --> 00:05:44,080 |
|
ูููู ูุชุฌู ุชุฌู ู
ุนุงูุง ุจููู how to diagonalize an n by |
|
|
|
68 |
|
00:05:44,080 --> 00:05:48,180 |
|
n matrix ุฃูุง ุจุนุทูู ู
ุตูููุฉ ูู
ุง ุฃุนุทูู ู
ุตูููุฉ ููู |
|
|
|
69 |
|
00:05:48,180 --> 00:05:55,500 |
|
ุงูู
ุตูููุฉ ุฏู ุจุชูุชุจ ุนูููุง ุนูู ุดูู ูุทุฑู ููุท ูุจุญูุซ |
|
|
|
70 |
|
00:05:55,500 --> 00:06:00,480 |
|
ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ูู
ุง ุงูู Eigenvalues ููุท ูุง ุบูุฑ |
|
|
|
71 |
|
00:06:00,480 --> 00:06:04,360 |
|
ุจููู ููุง ุจุฏู ุฃู
ุดู ุซูุงุซ ุฎุทูุงุช ุงููู ุนูุฏูุง ุฎุทูุฉ ุงูุฃููู |
|
|
|
72 |
|
00:06:06,680 --> 00:06:10,320 |
|
Find n linearly independent eigenvectors of the |
|
|
|
73 |
|
00:06:10,320 --> 00:06:15,720 |
|
matrix A, C, K1, K2 ูุบุงูุฉ Kn ููุฐุง ุงูููุงู
ุจูุฌู ุงุญูุง |
|
|
|
74 |
|
00:06:15,720 --> 00:06:20,020 |
|
ุจููุฌุฏู ูู ุงูุฃู
ุซูุฉ ุงูุณุงุจูุฉ ูู ุฃุฑุจุน section ูุงุญุฏ ูุงู |
|
|
|
75 |
|
00:06:20,020 --> 00:06:24,310 |
|
ุงูู eigenvalues ู ุงูู eigenvectors ุฅุฐุง ุงูุฎุทูุฉ ุงูุฃููู |
|
|
|
76 |
|
00:06:24,310 --> 00:06:30,090 |
|
ุชุญุตูู ุญุงุตู ูู ูู ุงูุฃู
ุซูุฉ ุงููู ูุงุชุช ุณูุงุก ูุงูุช |
|
|
|
77 |
|
00:06:30,090 --> 00:06:33,530 |
|
complex ุงููู ุงููู ุนููุง ูุงูุช complex ุฃู real ุตุญูุญ |
|
|
|
78 |
|
00:06:33,530 --> 00:06:37,830 |
|
ููุง ูุงุ ูุฌุจ ุงูุฎุทูุฉ ุงูุฃููู ูู
ูุฃุชู ุจุฌุฏูุฏ ูุฌู ุงูุฎุทูุฉ |
|
|
|
79 |
|
00:06:37,830 --> 00:06:42,690 |
|
ุงูุซุงููุฉ finally matrix K ุงููู ูู ุนูุงุตุฑูุง ูู
ุงููู ุนู
ูุฏ |
|
|
|
80 |
|
00:06:42,690 --> 00:06:48,090 |
|
ุงูุฃูู K ูุงุญุฏ K ุงุซููู K ุงู
ูุจูู ูุฐู ุจุฑุถู ููุง ุจููุชุจูุง |
|
|
|
81 |
|
00:06:48,090 --> 00:06:50,930 |
|
ุงููู ูู ุงูุนูุงุตุฑ ุงููู ุนูุฏูุง ูุฐู ุชุจุนุช ุงูู |
|
|
|
82 |
|
00:06:50,930 --> 00:06:54,870 |
|
eigenvectors ูู
ุง ูููู ุงูุณุช ูุฐู ุชุณู
ู ุงูู bases ููู |
|
|
|
83 |
|
00:06:54,870 --> 00:07:00,260 |
|
eigen spaces ุชู
ุงู
ุ ูุจููุ ุงูู ุงูู
ุตูููุฉ ูู ูุฐูุ Where |
|
|
|
84 |
|
00:07:00,260 --> 00:07:04,840 |
|
ุงูุนู
ูุฏุงุช ูุฐูู are called eigenvectors ูุจูู ุฌุจูุง ูู |
|
|
|
85 |
|
00:07:04,840 --> 00:07:09,820 |
|
ุงูู
ุตูููุฉ ุชุญุตูู ุญุงุตู ูู
ุงู ูุฐู ูุนูู ุงูู eigenvectors |
|
|
|
86 |
|
00:07:09,820 --> 00:07:13,560 |
|
ุงููู ุฌุจูุงูู
ุจุฏู ุชูุชุจูู
ุจุณ ุนูู ุดูู ุงูู
ุตูููุฉ ูู ุงููู |
|
|
|
87 |
|
00:07:13,560 --> 00:07:17,900 |
|
ุจุชูููู ู
ููู
ุงูุฎุทูุฉ ุงูุซุงููุฉ ูุจูู ุงูุฎุทูุฉ ุงูุฃููู ุจุฏู |
|
|
|
88 |
|
00:07:17,900 --> 00:07:21,100 |
|
ุฃุฌูุจ ุงูู eigenvalues ู ุงูู eigenvectors ุงูุฎุทูุฉ |
|
|
|
89 |
|
00:07:21,100 --> 00:07:24,660 |
|
ุงูุซุงููุฉ ุจุฏู ุฃูุชุจ ุงูู eigenvectors ุนูู ุดูู ู
ุตูููุฉ |
|
|
|
90 |
|
00:07:24,660 --> 00:07:30,820 |
|
ุงูุฎุทูุฉ ุงูุซุงูุซุฉ ุฏู matrix ุงูู
ุตูููุฉ K ุฅููุฑุณ A K ูุงูุจู |
|
|
|
91 |
|
00:07:30,820 --> 00:07:35,080 |
|
A ุฏูAGONAL matrix ุญุฏููุง ุงูุฑู
ุฒ D ูุจูู ุจุชุทูุน ุนูุฏู |
|
|
|
92 |
|
00:07:35,080 --> 00:07:39,180 |
|
ุงูู diagonal ูุนูู ุจุฏู ุฃุถุฑุจ ู
ุนููุณ ุงูู
ุตูููุฉ K ุงููู |
|
|
|
93 |
|
00:07:39,180 --> 00:07:43,240 |
|
ุทูุนุช ููุง ููุง ูู ุงุซููู ูู ุงูู
ุตูููุฉ A ุงูุฃุตูู ุงููู |
|
|
|
94 |
|
00:07:43,240 --> 00:07:48,180 |
|
ุนูุฏู ูู ุงูู
ุตูููุฉ K ุงููุชุฌ ูุงุฒู
ูุทูุน ุงูู
ุตูููุฉ ุงููู |
|
|
|
95 |
|
00:07:48,180 --> 00:07:51,460 |
|
ุนูุฏูุง ูุฐู where lambda I the eigenvector the |
|
|
|
96 |
|
00:07:51,460 --> 00:07:56,580 |
|
eigenvalue corresponding to Ki ูุงูู I ู
ู ูุงุญุฏ ูุบุงูุฉ |
|
|
|
97 |
|
00:07:56,580 --> 00:08:01,200 |
|
ู
ููุ ูุบุงูุฉ ุงูู N ุทุจ ุญุฏ ูููู
ุจูุญุจ ูุณุฃู ุฃู ุณุคุงู ูู |
|
|
|
98 |
|
00:08:01,200 --> 00:08:05,120 |
|
ุงูููู
ุชูู ุฃูุง ุฃุถุบุทูู ูุจู ุฃู ูุฐูุจ ููุชุทุจูู ุงูุนู
ูู |
|
|
|
99 |
|
00:08:05,120 --> 00:08:11,690 |
|
ููุฐุง ุงูููุงู
ุญุฏ ููููุง ุจูุญุจ ูุณุฃููุง ุฃู ุณุคุงูุ ุฌุงูุฒููุ |
|
|
|
100 |
|
00:08:11,690 --> 00:08:16,010 |
|
ุทูุจ ุทุจุนุง ุชุนุฑููุง ุงูุงู
ุชุญุงู ูุฌู ุงูููู
24 ุงููู ูู ููู
|
|
|
|
101 |
|
00:08:16,010 --> 00:08:20,750 |
|
ุงูุซูุงุซุงุก ู
ุด ุจูุฑุง ุงูุซูุงุซุงุก ุงููู ุจุนุฏูุง ุงูุฃุฑุจุนุฉ ููุง |
|
|
|
102 |
|
00:08:20,750 --> 00:08:25,470 |
|
ุงูุซูุงุซุฉุ ุงูุฃุฑุจุนุฉ ุงูุฃุฑุจุนุฉ ู
ุง ููุด ู
ุดููุฉ ุนุงุฏู ุฌุฏุง ูุจูู |
|
|
|
103 |
|
00:08:25,470 --> 00:08:29,910 |
|
ุงูุงู
ุชุญุงู ููู
ุงูุฃุฑุจุนุงุก ุงููู ูู ุงููุงุฏู
ุณุงุนุฉ ูุฏ ุงูุดุ |
|
|
|
104 |
|
00:08:29,910 --> 00:08:35,140 |
|
ุณุงุนุชูู ุซุงููุฉ ุจุนุฏ ู
ุง ูุฎูุต ุงูู
ุญุงุถุฑุฉ ุจุณ ุนูุฏ ุงูุทูุงุจ ู
ุด |
|
|
|
105 |
|
00:08:35,140 --> 00:08:41,920 |
|
ุนูุฏูู
. ุทูุจ ุนูู ุฃู ุญุงู ู
ุง ุนูููุง ูุจูู ุงูุงู
ุชุญุงู ูู
ุง |
|
|
|
106 |
|
00:08:41,920 --> 00:08:47,280 |
|
ูู ูู chapter 3 ูุจุงูู chapter 2 ู
ุด ููุถูู ุฒูุงุฏุฉ |
|
|
|
107 |
|
00:08:47,280 --> 00:08:53,290 |
|
ููุงู
ุชุญุงู ุงูุทุจุน ุฌุงูุฒ. ูุฐุง ูู ุงูู
ุซุงู ุงููู ุนูุฏูุง ุจูููู |
|
|
|
108 |
|
00:08:53,290 --> 00:08:57,430 |
|
ุฎุฐ ุงูู
ุตูููุฉ ูุธุงู
ูุง ุงุซููู ูู ุงุซููู ุฒู ู
ุง ุฃูุช ุดุงูู |
|
|
|
109 |
|
00:08:57,430 --> 00:09:01,190 |
|
ูุงุช ุงูู eigen value ู ุงูู eigen vectors ูุจูู ูุฐุง |
|
|
|
110 |
|
00:09:01,190 --> 00:09:04,070 |
|
ุงููู ููุง ุจูุฌูุจู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ ูู ุงูู section ุฃุฑุจุนุฉ |
|
|
|
111 |
|
00:09:04,070 --> 00:09:08,510 |
|
ูุงุญุฏ ุจุนุฏูู ุชุจูู ุฅู ุงูู A is diagonalizable ูุจูู |
|
|
|
112 |
|
00:09:08,510 --> 00:09:15,340 |
|
ุจุนุฏูู ุชุจูู ุฃู ุงูู
ุตูููุฉ A ุจูุฏุฑ ุฃุณุชุจุฏููุง ุจู
ุตูููุฉ |
|
|
|
113 |
|
00:09:15,340 --> 00:09:21,180 |
|
ูุทุฑูุฉ ุนูุงุตุฑูุง ูู
ุง ุนูุงุตุฑ ู
ู ุงูู eigenvalues ุฅุฐุง ุจุฏู |
|
|
|
114 |
|
00:09:21,180 --> 00:09:28,300 |
|
ุฃุจุฏุฃ ุฒู ู
ุง ููุช ุจุจุฏุฃ ููุงู ุจุฏู ุขุฎุฐ lambda I ูุงูุต |
|
|
|
115 |
|
00:09:28,300 --> 00:09:36,080 |
|
ุงูู
ุตูููุฉ A ูุชุณุงูู I lambda ูููุง Zero Zero lambda |
|
|
|
116 |
|
00:09:36,080 --> 00:09:38,540 |
|
ูุงูุต ุงูู
ุตูููุฉ A |
|
|
|
117 |
|
00:09:41,740 --> 00:09:46,140 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ูุฐู ุจุชุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู |
|
|
|
118 |
|
00:09:46,140 --> 00:09:53,160 |
|
ููุง lambda ู
ุง ููุด ุบูุฑูุง ูููุง ูุงูุต ูุงุญุฏ ูููุง ูุงูุต |
|
|
|
119 |
|
00:09:53,160 --> 00:09:59,820 |
|
ุงุซููู ูููุง lambda ูุงูุต ูุงุญุฏ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง |
|
|
|
120 |
|
00:10:00,650 --> 00:10:04,650 |
|
ุจุนุฏ ุฐูู ุณุฃุญุตู ุนูู determinant ู
ู ุฎูุงู ุงูู |
|
|
|
121 |
|
00:10:04,650 --> 00:10:08,250 |
|
determinant ุฃู ุงูู
ุญุฏุฏ ุณุฃุญุตู ุนูู ููู
ุงูู |
|
|
|
122 |
|
00:10:08,250 --> 00:10:14,090 |
|
eigenvalues ูุจูู ุณุฃุญุตู ุนูู determinant ูู
ูุ ูู |
|
|
|
123 |
|
00:10:14,090 --> 00:10:20,330 |
|
lambda I ูุงูุต ุงูู A ูุฃุณุงูู ุจุงูุฒูุฑู ูุจูู ูุฐุง ู
ุนูุงู |
|
|
|
124 |
|
00:10:20,330 --> 00:10:26,570 |
|
ุฃู ุงูู
ุญุฏุฏ lambda ุณุงูุจ ูุงุญุฏ ุณุงูุจ ุงุซููู lambda ุณุงูุจ |
|
|
|
125 |
|
00:10:26,570 --> 00:10:33,390 |
|
ูุงุญุฏ ุณูุณุงูู ุจุชูู ูุฐุง ูุจูู lambda ูู lambda ูุงูุต ูุงุญุฏ |
|
|
|
126 |
|
00:10:33,390 --> 00:10:39,450 |
|
ูุงูุต ุงุซููู ูุณุงูู ู
ููุ ูุณุงูู Zero ูุจูู ุงูู
ุญุฏุฏ ูุฐุง |
|
|
|
127 |
|
00:10:39,450 --> 00:10:46,370 |
|
ูู lambda ุชุฑุจูุน ูุงูุต lambda ูุงูุต ุงุซููู ูุณุงูู Zero |
|
|
|
128 |
|
00:10:46,370 --> 00:10:52,770 |
|
ุจุฏู ุฃุญูู ูุฐุง ูุญุงุตู ุถุฑุจ ููุณูู ูุจูู ุฃู ุญุงุตู ุถุฑุจ ุนุงู
ููู |
|
|
|
129 |
|
00:10:52,770 --> 00:11:00,050 |
|
ูุณุงูู Zero ููุง lambda ููุง lambda ููุง ูุงุญุฏ ููุง ุงุซููู |
|
|
|
130 |
|
00:11:00,050 --> 00:11:04,930 |
|
ููุง ูุงูุต ููุง ุฒุงุฆุฏ ูุจูู ุฒุงุฆุฏ lambda ุฃู ูุงูุต ุงุซููู |
|
|
|
131 |
|
00:11:04,930 --> 00:11:08,190 |
|
lambda ุจูุจูู ูุงูุต lambda ูุงุญุฏุฉ ูู ู
ูุฌูุฏุฉ ุนูุฏูุง |
|
|
|
132 |
|
00:11:08,190 --> 00:11:13,730 |
|
ูุจูู ุชุญููููุง ุณููู
ูุจูู ุจูุงุก ุนููู lambda ุชุณุงูู ุณุงูุจ |
|
|
|
133 |
|
00:11:13,730 --> 00:11:17,910 |
|
ูุงุญุฏ ู lambda ุชุณุงูู ุงุซููู ู
ู ูุฐูู ุงูุจูุงุช |
|
|
|
134 |
|
00:11:21,730 --> 00:11:29,470 |
|
ูุจูู ูุฐูู are the eigenvalues |
|
|
|
135 |
|
00:11:29,470 --> 00:11:39,530 |
|
of the matrix A ูุจูู ูุฐูู ุงููู ูู
ุงูู eigenvalues |
|
|
|
136 |
|
00:11:57,290 --> 00:12:02,270 |
|
ุจุนุฏ ุฐูู ูุฌูุจ ุงูู Eigenvectors ูุจูู ุงุญูุง ุญุชู ุงูุขู ูู |
|
|
|
137 |
|
00:12:02,270 --> 00:12:06,390 |
|
ุงูุฎุทูุฉ ุงูุฃููู ูุณู ุฌุจูุง ุงูู Eigenvalues ูุจุนุฏ ุฐูู |
|
|
|
138 |
|
00:12:06,390 --> 00:12:09,930 |
|
ูุฌูุจ ุงูู Eigenvectors |
|
|
|
139 |
|
00:12:09,930 --> 00:12:16,490 |
|
ูุจูู ุจุงูุฏูู ุฏู ููู
ุตูููุฉ ุฃู ูุญุงุตู ุงูุถุฑุจ ุงููู ูู ู
ูู |
|
|
|
140 |
|
00:12:18,900 --> 00:12:22,260 |
|
ูุฐุง ููู ู
ู ุฃูู ูู
ุจุชุฏุฃ ุงูุญููุฉ ุชุนุชุจุฑ ุงูููุทุฉ ุงูุฃููู |
|
|
|
141 |
|
00:12:22,260 --> 00:12:29,560 |
|
ูู
ุฑุฉ a ุงุญูุง ุฃููุง lambda I ูุงูุต ุงูู a ูู ุงูู X ุจูุณุงูู |
|
|
|
142 |
|
00:12:29,560 --> 00:12:32,660 |
|
zero ูุฐู ุงูู
ุนุงุฏูุฉ ุงูุฃุตููุฉ ุงููู ุจูุดุชุบู ุนูููุง |
|
|
|
143 |
|
00:12:32,660 --> 00:12:40,440 |
|
ุงุจุชุฏุงุฆูุง ู
ู section 4-1 ูู ูู ู
ุง ุบูุฑูุงุด ูุฐุง ู
ุนูุงู |
|
|
|
144 |
|
00:12:42,120 --> 00:12:47,200 |
|
lambda I ูุงูุต ุงุซููู ูู ูู ุฌุงุฒุฉ ุงูู
ุตูููุฉ ูุฃููุง ูุงูุต |
|
|
|
145 |
|
00:12:47,200 --> 00:12:52,320 |
|
ูุงุญุฏ lambda I ูุงูุต ุงุซููู lambda I ูุงูุต ูุงุญุฏ lambda I |
|
|
|
146 |
|
00:12:52,320 --> 00:12:54,480 |
|
ูุงูุต ุงุซููู lambda I ูุงูุต ุงุซููู lambda I ูุงูุต ุงุซููู |
|
|
|
147 |
|
00:12:54,480 --> 00:12:55,100 |
|
lambda I ูุงูุต ุงุซููู lambda I ูุงูุต ุงุซููู lambda I ูุงูุต |
|
|
|
148 |
|
00:12:55,100 --> 00:12:55,320 |
|
ุงุซููู lambda I ูุงูุต ุงุซููู lambda I ูุงูุต ุงุซููู |
|
|
|
149 |
|
00:12:55,320 --> 00:12:55,620 |
|
lambda I ูุงูุต ุงุซููู lambda I ูุงูุต ุงุซููู lambda I ูุงูุต |
|
|
|
150 |
|
00:12:55,620 --> 00:12:59,240 |
|
ุงุซููู lambda I ูุงูุต ุงุซููู lambda I ูุงูุต ุงุซููู |
|
|
|
151 |
|
00:12:59,350 --> 00:13:05,730 |
|
ุจุชุฃุฎุฐ ุงูุญุงูุฉ ุงูุฃููู ูู ูุงูุช lambda ุชุณุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
152 |
|
00:13:05,730 --> 00:13:09,410 |
|
ู
ุง ููุด ุงููู ุจุฏู ูุตูุฑ ูุจูู ุจุฏู ุฃุดูู ูู lambda ูุฃุญุท |
|
|
|
153 |
|
00:13:09,410 --> 00:13:14,570 |
|
ู
ูุงููุง ุณุงูุจ ูุงุญุฏ ูุจูู ุจูุตูุฑ ุนู ููุง ุณุงูุจ ูุงุญุฏ ุณุงูุจ |
|
|
|
154 |
|
00:13:14,570 --> 00:13:22,530 |
|
ูุงุญุฏ ูููุง ุณุงูุจ ุงุซููู ุณุงูุจ ุงุซููู ูู X ูุงุญุฏ X ุงุซููู |
|
|
|
155 |
|
00:13:22,530 --> 00:13:27,650 |
|
ููู ุจุฏู ูุณุงูู ู
ู Zero ู Zero ูุฐุง ุงูู
ุนุงุฏู ูุฌุจ ุฃู |
|
|
|
156 |
|
00:13:27,650 --> 00:13:32,270 |
|
ุฃููุฑ ุงูู
ุนุงุฏูุฉ ูุฐู ูุฃุญูููุง ุฅูู ู
ุนุงุฏูุงุช ูุนูู |
|
|
|
157 |
|
00:13:32,270 --> 00:13:35,070 |
|
ุงูู
ุนุงุฏูุฉ ุงูู
ุตููููุฉ ูุฌุจ ุฃู ุฃุถุฑุจูุง ูุฃุญูููุง ุฅูู |
|
|
|
158 |
|
00:13:35,070 --> 00:13:41,890 |
|
ู
ุนุงุฏูุชูู ูุฃููู ูู ูุงูุต X1 ูุงูุต X2 ุณูููู Zero ูููุง |
|
|
|
159 |
|
00:13:41,890 --> 00:13:49,210 |
|
ูุงูุต 2 X1 ูุงูุต 2 X2 ุณูููู Zero ูุฐู ูุงูุช ู
ุนุงุฏูุฉ ูุง |
|
|
|
160 |
|
00:13:49,210 --> 00:13:54,000 |
|
ุจูุงุช ู
ุนุงุฏูุฉ ูุงุญุฏุฉ ุชูุชูู ูู ูู ุงูุญูููุฉ ู
ุนุงุฏูุฉ ูุงุญุฏุฉ |
|
|
|
161 |
|
00:13:54,000 --> 00:14:00,860 |
|
ุฅุฐุง ูุฐู ุงูู
ุนุงุฏูุฉ ุงููุงุญุฏุฉ X1 ุฒุงุฆุฏ X2 ุจุฏู ูุณุงูู Zero |
|
|
|
162 |
|
00:14:00,860 --> 00:14:08,820 |
|
ูู
ููุง X1 ุจุฏู ูุณุงูู ู
ู ุณุงูุจ X2 ุฃู X2 ุจุฏู ูุณุงูู ุณุงูุจ |
|
|
|
163 |
|
00:14:08,820 --> 00:14:17,060 |
|
X1 ูุจูู ุจุงุฌู ุจููู ูู ูู ูุงูุช ุงูู X2 ุจุฏู ุฃุณุงูููุง A then X1 |
|
|
|
164 |
|
00:14:17,060 --> 00:14:25,760 |
|
ุจุฏู ู
ููุ ุณุงูุจ A ูุฐุง ุจุฏู ูุนุทููู the eigen vectors |
|
|
|
165 |
|
00:14:26,750 --> 00:14:37,190 |
|
are in the form ุนูู ุงูุดูู ุงูุชุงูู ุงููู ูู
ุง ู
ู X1 X2 |
|
|
|
166 |
|
00:14:37,190 --> 00:14:47,310 |
|
ุจุฏู ูุณุงูู X1 ุงููู ูู ูุงูุต A ู X2 ุงููู ูู A ุจุงูุดูู |
|
|
|
167 |
|
00:14:47,310 --> 00:14:51,590 |
|
ุงููู ุนูุฏูุง ุฃู A ูู ุณุงูุจ ูุงุญุฏ ูุงุญุฏ |
|
|
|
168 |
|
00:14:54,310 --> 00:15:00,330 |
|
ูุจูู ุทุงูุน ุนูุฏู ูุฐุง ูู ูู
ุซู mean bases ููู eigen |
|
|
|
169 |
|
00:15:00,330 --> 00:15:06,510 |
|
vector space ุงูู
ูุงุธุฑ ููู eigen value ูู
ูุ lambda |
|
|
|
170 |
|
00:15:06,510 --> 00:15:08,590 |
|
ุชุณุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
171 |
|
00:15:17,540 --> 00:15:22,440 |
|
ุงูุขู ุจุฏูุง ูุฌู ูู
ููุ ูุฃุฎุฐ lambda ุงูุซุงููุฉ ูุจูู ุจุงุฌู |
|
|
|
172 |
|
00:15:22,440 --> 00:15:29,200 |
|
ุจููู ูู ููุง F lambda ุงูุซุงููุฉ ุทูุนุช ู
ุนุงูุง ุงุซููู |
|
|
|
173 |
|
00:15:29,200 --> 00:15:34,970 |
|
ูุจูู then ูู
ุง ุทูุนุช lambda ุชุณุงูู ุงุซููู ูุจูู ุงูู
ุนุงุฏูุฉ |
|
|
|
174 |
|
00:15:34,970 --> 00:15:39,390 |
|
ุงูู
ุตููููุฉ ูุชููู ุนูู ุงูุดูู ุงูุชุงูู ูุดูู ูู lambda ูุฃุญุท |
|
|
|
1 |
|
|
|
201 |
|
00:18:34,060 --> 00:18:40,500 |
|
ุงูุฎุทูุฉ ุงูุซุงูุซุฉ ูู ุงูู
ุทููุจ ุฃู ูู
ุฑ ุจู ู
ู ุงูู
ุณุฃูุฉ ุงูุชู |
|
|
|
202 |
|
00:18:40,500 --> 00:18:44,960 |
|
ุฃู a is diagonalizable ูุนูู ุงุญูุง ุญุชู ุงููู ูู ุฌุจูุงู |
|
|
|
203 |
|
00:18:44,960 --> 00:18:48,640 |
|
ุงู eigenvalues ูุงู eigenvectors ุงููู ุนูุฏูุง ู |
|
|
|
204 |
|
00:18:48,640 --> 00:18:54,840 |
|
ุญุทูุงูู
ุนูู ุดูู ู
ุตูููุฉ ุฅุฐุง ุจูุฏุงุฌู ููู
ุฑ ุจู ู
ู |
|
|
|
205 |
|
00:18:54,840 --> 00:19:00,110 |
|
ุงูุณุคุงู ู
ุด ูู ุฌุจ ูู
ุฑุฉ ุจู ุจุฏู ุฃุฌู ููู
ุตูููุฉ K ู ุฃุฌูุจ |
|
|
|
206 |
|
00:19:00,110 --> 00:19:05,170 |
|
ู
ู ุงูู
ุนููุณ ุณุจุนูุง ู
ุด ูู ุฌุจ ุงูู
ุนููุณ ุณุจุนูุง ุจุฏู ุฃุนุฑู |
|
|
|
207 |
|
00:19:05,170 --> 00:19:11,510 |
|
ูุฏุงุด ุงู determinant ูู K ุชู
ุงู
ูุจูู ุงูู
ุญุฏุฏ ุณุงูุจ |
|
|
|
208 |
|
00:19:11,510 --> 00:19:18,910 |
|
ูุงุญุฏ ูุงุญุฏ ุงุซููู ููุณุงูู ุณุงูุจ ุงุซููู ุณุงูุจ ูุงุญุฏ ููุณุงูู |
|
|
|
209 |
|
00:19:18,910 --> 00:19:24,870 |
|
ูุฏุงุด ุณุงูุจ ุซูุงุซุฉ ูุฒู ู
ุง ุฃูุชู
ุดุงูููู ูุง ูุณุงูู zero |
|
|
|
210 |
|
00:19:24,870 --> 00:19:31,350 |
|
ูุนูู ูุฐู ุงูู
ุตูููุฉ non singular matrix ูุจูู ูุฐุง |
|
|
|
211 |
|
00:19:31,350 --> 00:19:40,570 |
|
ู
ุนูุงู ุฃู k is a non singular matrix |
|
|
|
212 |
|
00:19:41,270 --> 00:19:46,830 |
|
ู
ุง ุฏุงู
non singular matrix ุฅุฐุง ุฅูู ุงููู ูู ู
ุนููุณ |
|
|
|
213 |
|
00:19:46,830 --> 00:19:52,310 |
|
ุจุฏูุง ูุฑูุญ ูุฌูุจ ุงูู
ุนููุณ ุชุจุน ูุฐู ุงูู
ุตูููุฉ ููุถุฑุจู ูู |
|
|
|
214 |
|
00:19:52,310 --> 00:19:59,650 |
|
ุงูู
ุตูููุฉ A ููุฐูู ูู ุงูู
ุตูููุฉ K ุชุณูู
ูุจูู ุงูุขู K |
|
|
|
215 |
|
00:19:59,650 --> 00:20:05,730 |
|
inverse AK ุฅูุด ุจุฏูุง ุชุนู
ู ุฅูุด ุงููุงุชุฌ ูุง ุจูุงุช ุญุชู |
|
|
|
216 |
|
00:20:05,730 --> 00:20:07,450 |
|
ุจุชุฌุฑู ุชูููู ูุฏ ุงูุด ุงููุงุชุฌ |
|
|
|
217 |
|
00:20:09,990 --> 00:20:15,550 |
|
ูู
ุง ุงูู
ุตูููุฉ ูุธุงู
ุงุซููู ูู ุงุซููู ุจุญูุซ ุงููุทุฑ ุงูุฑุฆูุณู |
|
|
|
218 |
|
00:20:15,550 --> 00:20:19,910 |
|
ูู ูุงูุต ูุงุญุฏ ูุงุซููู ูุงููุทุฑ ุงูุฑุฆูุณู ุงูุซุงููู ูุจูู |
|
|
|
219 |
|
00:20:19,910 --> 00:20:24,270 |
|
ุฃุตูุงุฑ ูุนูู ุฌุงุจ ุงูู
ุจุฏุฃ ูุฃู ูุฐู ุงูู
ุตูููุฉ ูู ุงููู |
|
|
|
220 |
|
00:20:24,270 --> 00:20:28,830 |
|
ุจุชุนู
ูู ุงู diagonalization ููู
ูู
ููู
ุตูููุฉ A ูุจุงูุชุงูู |
|
|
|
221 |
|
00:20:28,830 --> 00:20:34,850 |
|
ุจููู ุงู A is diagonalizable ุทูุจ ูุฐุง ู
ุนูุงู ุทุจุนุงู |
|
|
|
222 |
|
00:20:34,850 --> 00:20:39,970 |
|
ูุชุนุฑููุด ู
ูู ูุง ุจูุงุชุ ุงููุงุชุฌ ุงูู
ุตูููุฉ ุงููู ุจุชุทูุน ููู |
|
|
|
223 |
|
00:20:39,970 --> 00:20:44,610 |
|
ุจููู ุนูููุง similar to a ู
ุด ูุชุนุฑู ุงู similar ููุฃูู |
|
|
|
224 |
|
00:20:44,610 --> 00:20:48,850 |
|
ุงู similar ูู ู
ูุ ูู ุงู diagonalization ูู ููุณ |
|
|
|
225 |
|
00:20:48,850 --> 00:20:53,350 |
|
ุงูุนู
ููุฉ ุจุณ ููุง ุญุทูุง ููุง ุดุบู ููุฏู ููุงู ู
ุง ููุงุด |
|
|
|
226 |
|
00:20:53,350 --> 00:20:57,190 |
|
ุจูุนุฑู ูุฐุง ุงูููุงู
ูู ุงูู
ุซุงู ุงููู ุทุฑุญูุงู ุงูู
ุญุงุถุฑุฉ |
|
|
|
227 |
|
00:20:57,190 --> 00:21:02,010 |
|
ุงูู
ุงุถูุฉ ูุจูู ูุฐุง ุงูููุงู
ูุณุงูู ุจุงูุฏุงุฎู ูู
ุนููุณ |
|
|
|
228 |
|
00:21:02,010 --> 00:21:08,010 |
|
ุงูู
ุตูููุฉ K ุจูุจุฏู ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ู
ูุงู ุจุนุถ |
|
|
|
229 |
|
00:21:08,010 --> 00:21:14,130 |
|
ูุจูุบูุฑ ุฅุดุงุฑุงุช ุนูุงุตุฑ ุงููุทุฑ ุงูุซุงููู ูุจูุฌุณู
ุนูู ู
ุญุฏุฏ |
|
|
|
230 |
|
00:21:14,130 --> 00:21:19,730 |
|
ูุฐู ุงูู
ุตูููุฉ ุงูู
ุญุฏุฏ ูุฐุง ูุฏูุ ุณุงูุจ ุซูุงุซุฉ ูุจูู ูุงู |
|
|
|
231 |
|
00:21:19,730 --> 00:21:26,640 |
|
ูุงุญุฏ ุนูู ุณุงูุจ ุซูุงุซุฉ ุจุชุฏุฌู ููุง ูุฐุง ุงุซููู ูููุง ุณุงูุจ |
|
|
|
232 |
|
00:21:26,640 --> 00:21:32,020 |
|
ูุงุญุฏ ูููุง ุณุงูุจ ูุงุญุฏ ูููุง ุณุงูุจ ูุงุญุฏ ุบูุฑุช ุฅุดุงุฑุงุช |
|
|
|
233 |
|
00:21:32,020 --> 00:21:36,060 |
|
ุนูุงุตุฑ ุงููุทุฑ ุงูุซุงููู ูุจุฏูุช ุนูุงุตุฑ ุงููุทุฑ ุงูุฑุฆูุณู ู
ูุงู |
|
|
|
234 |
|
00:21:36,060 --> 00:21:43,500 |
|
ุจุนุถ ุงู a ุจุงุฌู ุจูุฒููุง ูู
ุง ูุงูุช ููุง zero ูุงุญุฏ ุงุซููู |
|
|
|
235 |
|
00:21:43,500 --> 00:21:52,120 |
|
ูุงุญุฏ ู
ุตูููุฉ K ูู
ุง ูู ูุงุญุฏ ุงุซููู ููุณุงูู ุณุงูุจ ุชูุช |
|
|
|
236 |
|
00:21:52,120 --> 00:21:57,980 |
|
ุฎููู ุจุฑุง ุชู
ุงู
ุ ุจูุถู ูุฃู ููุง ุจุฏู ุฃุถุฑุจ ุงูู
ุตูููุชูู |
|
|
|
237 |
|
00:21:57,980 --> 00:22:04,800 |
|
ู
ุซูุงู ูุฐุง ุงุซููู ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ููู |
|
|
|
238 |
|
00:22:04,800 --> 00:22:09,880 |
|
ุจุฏู ุฃุถุฑุจ ูุฏูู ุงูู
ุตูููุชูู ูู ุจุนุถ ูุจูู Zero ูุงุญุฏ ุงููู |
|
|
|
239 |
|
00:22:09,880 --> 00:22:15,740 |
|
ูู ุจูุงุญุฏ ูุจูู Zero ูุงุซููู ูุจูู ูู ุงุซููู ูุจูู ุณุงูุจ |
|
|
|
240 |
|
00:22:15,740 --> 00:22:21,440 |
|
ุงุซููู ู ูุงุญุฏ ูุจูู ุณุงูุจ ูุงุญุฏ ุงุซููู ู ุงุซููู ูุจูู ูุฏู |
|
|
|
241 |
|
00:22:21,440 --> 00:22:26,040 |
|
ุฅูุดุ ุฃุฑุจุนุฉ ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ูุฐุง ุงูููุงู
|
|
|
|
242 |
|
00:22:26,040 --> 00:22:32,080 |
|
ุจุฏูู ูุณุงูู ุณุงูุจ ุทูู ููู ูุถุฑุจ ุงูู
ุตูููุชูู ูุฏูู ูู ุจุนุถ |
|
|
|
243 |
|
00:22:32,080 --> 00:22:39,630 |
|
ูุจูู ููุง ุงุซููู ูููุง ูุงุญุฏ ูุจูู ุซูุงุซุฉ ููุง ุฃุฑุจุนุฉ |
|
|
|
244 |
|
00:22:39,630 --> 00:22:46,750 |
|
ููุงูุต ุฃุฑุจุนุฉ ูุจูู Zero ุชู
ุงู
ููุง ุตู ุซุงูู ุณุงูุจ ูุงุญุฏ |
|
|
|
245 |
|
00:22:46,750 --> 00:22:51,510 |
|
ูู
ูุฌุจ ูุงุญุฏ ูุจูู Zero ุงูุตู ุงูุซุงูู ูู ุงูุนู
ูุฏ ุงูุซุงูู |
|
|
|
246 |
|
00:22:51,510 --> 00:22:57,610 |
|
ุณุงูุจ ุงุซููู ูุณุงูุจ ุฃุฑุจุนุฉ ูุจูู ุณุงูุจ ุณุชุฉ ุจุงูุดูู ุงููู |
|
|
|
247 |
|
00:22:57,610 --> 00:23:03,690 |
|
ุนูุฏูุง ุฏู ุจุฏู ุฃุถุฑุจ ูู ุงูุนูุงุตุฑ ูู ุณุงูุจ ุทูู ูุจูู ูุฐุง |
|
|
|
248 |
|
00:23:03,690 --> 00:23:08,970 |
|
ุจูุนุทูููุง ูุฏ ุงูุดุ ุณุงูุจ ูุงุญุฏ ูููุง Zero ูููุง Zero ุณุงูุจ |
|
|
|
249 |
|
00:23:08,970 --> 00:23:14,230 |
|
ู
ุน ุณุงูุจ ู
ูุฌุจ ูููุง ุจุงุซููู ุงุทูุน ูู ุนูุงุตุฑ ุงููุทุฑ |
|
|
|
250 |
|
00:23:14,230 --> 00:23:18,810 |
|
ุงูุฑุฆูุณู ุณุงูุจ ูุงุญุฏ ูุงุซููู ูู ููู
main ุงู eigen value |
|
|
|
251 |
|
00:23:18,810 --> 00:23:23,970 |
|
ุงูู
ุนูู ูุฐุง ุงูููุงู
ุฃู ุงู a is diagonalizable ูุจูู |
|
|
|
252 |
|
00:23:23,970 --> 00:23:31,720 |
|
ููุง ุงูู A is diagonalizable |
|
|
|
253 |
|
00:23:31,720 --> 00:23:34,040 |
|
ููู ุงูู
ุทููุจ |
|
|
|
254 |
|
00:24:01,920 --> 00:24:11,060 |
|
ูุฃุฎุฐ ุงูู
ูุงุญุธุฉ ูุฐู remark it |
|
|
|
255 |
|
00:24:11,060 --> 00:24:22,540 |
|
should be noted that it should be noted that ูุฌุจ |
|
|
|
256 |
|
00:24:22,540 --> 00:24:29,060 |
|
ู
ูุงุญุธุฉ ุฃู not every square matrix not every |
|
|
|
257 |
|
00:24:32,360 --> 00:24:45,100 |
|
square matrix ู
ุด ูู ู
ุตูููุฉ ู
ุฑุจุนุฉ is similar to |
|
|
|
258 |
|
00:24:45,100 --> 00:24:51,880 |
|
a diagonal matrix |
|
|
|
259 |
|
00:24:51,880 --> 00:24:58,860 |
|
because ุงูุณุจุจ |
|
|
|
260 |
|
00:25:01,690 --> 00:25:11,770 |
|
ุจุณุจุจ ุฃู ููุณ ูู ู
ูุงุทุน ูู ู
ุฌู
ูุนุฉ |
|
|
|
261 |
|
00:25:11,770 --> 00:25:19,870 |
|
ูุฏููุง |
|
|
|
262 |
|
00:25:19,870 --> 00:25:26,650 |
|
ู
ุฌู
ูุนุฉ ูุงู
ูุฉ ูู
ุฌู
ูุนุฉ |
|
|
|
263 |
|
00:25:31,150 --> 00:25:38,230 |
|
complete set of eigenvectors |
|
|
|
264 |
|
00:25:38,230 --> 00:25:41,450 |
|
example |
|
|
|
265 |
|
00:25:41,450 --> 00:25:48,430 |
|
is |
|
|
|
266 |
|
00:25:48,430 --> 00:25:57,750 |
|
the matrix A ุชุณุงูู |
|
|
|
267 |
|
00:25:58,890 --> 00:26:07,490 |
|
ุงุซููู ุซูุงุซุฉ ุตูุฑ ุงุซููู Similar to |
|
|
|
268 |
|
00:26:07,490 --> 00:26:10,890 |
|
a diagonal matrix |
|
|
|
269 |
|
00:26:36,780 --> 00:27:04,360 |
|
ุงูุนู
ูุฏ ูุฐุง ูุงุฒู
ุฎูุงุต ุฎูู |
|
|
|
270 |
|
00:27:04,360 --> 00:27:10,490 |
|
ุจุงููู
ุงูู
ูุงุญุธุฉ ุงููู ูุชุจูุงูุง ุงูู
ุซุงู ุงููู ุฌุงุจ ูู ูุงู |
|
|
|
271 |
|
00:27:10,490 --> 00:27:13,810 |
|
ููุง ู
ุตูููุฉ ู
ุฑุจุนุฉ ูุธุงู
ุงุซููู ูู ุงุซููู ููููุงูุง |
|
|
|
272 |
|
00:27:13,810 --> 00:27:18,010 |
|
diagonalizable ูู
ุง ูุณุฃู ูู ุงูู
ุตูููุฉ ุฏู |
|
|
|
273 |
|
00:27:18,010 --> 00:27:22,370 |
|
diagonalizable ููุง ูุง ุฃูุง ุจููู
ู
ููุง ุดุบูุชูู ุงูุดุบู |
|
|
|
274 |
|
00:27:22,370 --> 00:27:26,130 |
|
ุงูุฃููู ูุฏ ุชููู diagonalizable ููุฏ ูุง ุชููู |
|
|
|
275 |
|
00:27:26,130 --> 00:27:31,060 |
|
diagonalizable ุฅุฐุง ู
ุง ุจููุฏุฑ ูููู ู
ุด ูู ู
ุตูููุฉ |
|
|
|
276 |
|
00:27:31,060 --> 00:27:36,100 |
|
similar to ุฃู ู
ุตูููุฉ ุฃุฎุฑู ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ุจู
ุนูู |
|
|
|
277 |
|
00:27:36,100 --> 00:27:41,760 |
|
ุขุฎุฑ ู
ุด ูู ู
ุตูููุฉ ุจุชููู diagonalizable ุทูุจ ููู ุจุฏูุง |
|
|
|
278 |
|
00:27:41,760 --> 00:27:46,300 |
|
ูุซุจุช ุตุญุฉ ูุฐุง ุงูููุงู
ุฃู ููู ุจุฏูุง ูุจูู ูุฐุง ุงูููุงู
ุ |
|
|
|
279 |
|
00:27:46,300 --> 00:27:49,120 |
|
ุฅูุด ุจููู ูู ููุง ูู ุงูู
ูุงุญุธุฉ ุฏูุ |
|
|
|
280 |
|
00:27:57,900 --> 00:28:07,700 |
|
ู
ุด ูู ู
ุตูููุฉ ู
ุฑุจุนุฉ ู
ุดููุฉ ู
ุด ูู ู
ุตูููุฉ |
|
|
|
281 |
|
00:28:07,700 --> 00:28:11,600 |
|
ู
ุฑุจุนุฉ ู
ุดููุฉ |
|
|
|
282 |
|
00:28:11,600 --> 00:28:12,280 |
|
ู
ุด ูู |
|
|
|
283 |
|
00:28:14,720 --> 00:28:18,640 |
|
square matrix ุงูู
ุตูููุฉ ุงูู
ุฑุจุนุฉ ู complete set of |
|
|
|
284 |
|
00:28:18,640 --> 00:28:24,120 |
|
eigenvalues ุชุนุงูู ูุชุฑุฌู
ูุฐุง ุงูููุงู
ุนูู ุฃุฑุถ ุงููุงูุน |
|
|
|
285 |
|
00:28:24,120 --> 00:28:27,100 |
|
ุงูู
ุนุทููู ุงูู
ุตูููุฉ ูุฌุงูู ูุดูู ูู ูู ูุฐู |
|
|
|
286 |
|
00:28:27,100 --> 00:28:32,180 |
|
diagonalizable ููุง not diagonalizable ุฅุฐุง ุจุฏู ุฃู
ุดู |
|
|
|
287 |
|
00:28:32,180 --> 00:28:35,940 |
|
ู
ุซู ู
ุง ู
ุดูุช ูู ุงูู
ุซุงู ุงููู ุทูู ุดูู ุญุงูู ุฅูู ููู |
|
|
|
288 |
|
00:28:35,940 --> 00:28:41,280 |
|
ุจุฏู ุฃูุตู ูู ุจูุฏุฑ ุฃูู
ู ููุง ุจูุฏุฑุด ุฃูู
ู ุฅุฐุง ู
ุง ูุฏุฑุด |
|
|
|
289 |
|
00:28:41,280 --> 00:28:45,360 |
|
ุฃูู
ู ุฅูุด ุงูุดูุก ุงููู ุฎูุงูู ู
ุง ูุฏุฑุด ุฃูู
ู ุงูุญูู ุชุจุนู |
|
|
|
290 |
|
00:28:45,360 --> 00:28:52,280 |
|
ุจููู ูู ุจุณูุทุฉ ุฅุฐุง ุฃูุง ุจุฏู ุฃุจุฏุฃ ุจ lambda I ูุงูุต ุงู a |
|
|
|
291 |
|
00:28:52,280 --> 00:29:02,480 |
|
ูุจูู ุงููู ูู mean lambda 00 lambda ูุงูุต ุงู a 2302 |
|
|
|
292 |
|
00:29:02,480 --> 00:29:10,830 |
|
ููุณุงูู ููุง lambda ูุงูุต ุงุซููู ูููุง ูุงูุต ุซูุงุซุฉ ู Zero |
|
|
|
293 |
|
00:29:10,830 --> 00:29:16,590 |
|
ูุฒู ู
ุง ูู ูููุง lambda ูุงูุต ุงุซููู ุจุดูู ุงููู ุนูุฏูุง |
|
|
|
294 |
|
00:29:16,590 --> 00:29:25,080 |
|
ูุฐุง ุจุฏู ุขุฎุฐ ุงูู
ุญุฏุฏ ูุจูู determinant ูู lambda I ูุงูุต |
|
|
|
295 |
|
00:29:25,080 --> 00:29:32,580 |
|
ุงู a ููุณุงูู ุงูู
ุญุฏุฏ lambda ูุงูุต ุงุซููู ูุงูุต ุซูุงุซุฉ Zero |
|
|
|
296 |
|
00:29:32,580 --> 00:29:39,270 |
|
lambda ูุงูุต ุงุซููู ูุจูู ูุฐุง lambda ูุงูุต ุงุซููู ููู |
|
|
|
297 |
|
00:29:39,270 --> 00:29:45,470 |
|
ุชุฑุจูุน ูุงูุต ุงู Zero ูุฐุง ุงูููุงู
ุจุฏูู ูุณุงูู Zero ูุจูู |
|
|
|
298 |
|
00:29:45,470 --> 00:29:51,210 |
|
ูุฐุง ู
ุนูุงู ุฃู ุงู lambda ูุงูุต ุงุซููู ููู ุชุฑุจูุน ูุณุงูู |
|
|
|
299 |
|
00:29:51,210 --> 00:29:56,410 |
|
Zero ูุฐู ู
ุนุงุฏูุฉ ู
ู ุฃู ุฏุฑุฌุฉุ ู
ู ุฏุฑุฌุฉ ุงุซููู ูุจูู ููุง ูู
|
|
|
|
300 |
|
00:29:56,410 --> 00:30:00,890 |
|
ุญูุ ุญููู ูุจูู ูุฐู ุงูู
ุนุงุฏูุฉ ููุง ุญููู |
|
|
|
301 |
|
00:30:05,540 --> 00:30:12,540 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจูุงุก ุนููู ุฃู lambda ูุงุญุฏ ุชุณุงูู |
|
|
|
302 |
|
00:30:12,540 --> 00:30:19,850 |
|
lambda ุงุซููู ุชุณุงูู ุงุซููู ุจูุงุก ุนููู ุณุฃุญุตู ุนูู |
|
|
|
303 |
|
00:30:19,850 --> 00:30:27,190 |
|
ุงู eigenvectors ุงูู
ูุงุธุฑุฉ ูู
ูุ ูู lambda ุชุณุงูู ุงุซููู |
|
|
|
304 |
|
00:30:27,190 --> 00:30:32,930 |
|
ูุจูู ุจุงุฌู ุจููู ููุง ูู ุฃุฎุฐูุง lambda ูุงุญุฏ ุชุณุงูู ุงุซููู |
|
|
|
305 |
|
00:30:32,930 --> 00:30:40,090 |
|
ุชู
ุงู
ุ ุจุฏู ุฃุฑูุญ ุขุฎุฐ ู
ูุ lambda I ูุงูุต ุงูู A ูู ุงูู X |
|
|
|
306 |
|
00:30:40,090 --> 00:30:47,130 |
|
ูู ูุฐุง ุงูููุงู
ุจุฏูู ูุณุงูู Zero ูุฐุง ุจุฏูู ูุนุทููู lambda |
|
|
|
307 |
|
00:30:47,130 --> 00:30:52,150 |
|
ุงู ูุงูุต ููุง ูุฐู ุงูู
ุตูููุฉ ูุดูู lambda ูุฐู ูุฃูุชุจ |
|
|
|
308 |
|
00:30:52,150 --> 00:30:58,540 |
|
ู
ูุงููุง ูุฏ ุงูุดุ ูุฃูุชุจ ู
ูุงููุง ุงุซููู ุจูุตูุฑ ูุงููุง ูุงู |
|
|
|
309 |
|
00:30:58,540 --> 00:31:02,240 |
|
lambda ูุงูุต ุงุซููู ููุง ุดูุก ุชูููู ู
ู ููู ุงุฌุช ูููุง |
|
|
|
310 |
|
00:31:02,240 --> 00:31:10,760 |
|
ูุงูุต ุซูุงุซุฉ ูููุง Zero ูููุง lambda ูุงูุต ุงุซููู ููุงุฏ |
|
|
|
311 |
|
00:31:10,760 --> 00:31:16,820 |
|
ุงู X ูุงุญุฏ X ุงุซููู ุจุฏูุง ุชุณุงูู Zero ู Zero ุจุงูุดูู |
|
|
|
312 |
|
00:31:16,820 --> 00:31:21,810 |
|
ุงููู ุนูุฏูุง ููุง ูุจูู ูู
ุง lambda ุชุณุงูู ุงุซููู ุจูุตูุฑ |
|
|
|
313 |
|
00:31:21,810 --> 00:31:26,970 |
|
ุงูู
ุตูููุฉ ูุฃููุง ุชุจูู ูู
ุ Zero ููุฐู ุณุงูุจ ุซูุงุซุฉ ููุฐู |
|
|
|
314 |
|
00:31:26,970 --> 00:31:33,690 |
|
Zero ููุฐู Zero ูู X ูุงุญุฏ X ุงุซููู ุจุฏูุง ุชุณุงูู Zero ู |
|
|
|
315 |
|
00:31:33,690 --> 00:31:39,730 |
|
Zero ูุจูู ุงูุตู ุงูุฃูู ูู ุงูุนู
ูุฏ ุงูุฃูู ุจูุนุทููุง ู
ููุ |
|
|
|
316 |
|
00:31:39,730 --> 00:31:45,130 |
|
ุจูุนุทููุง ุณุงูุจ ุซูุงุซุฉ X ุงุซููู ูุณุงูู Zero ูู ุบูุฑ ูู |
|
|
|
317 |
|
00:31:45,130 --> 00:31:51,940 |
|
ูุฏูุ ู
ุง ุฃุนุทุงููุด ุฅูุง ู
ุนุงุฏูุฉ ูุงุญุฏุฉ ุจู
ุฌููู ูุงุญุฏ ูู |
|
|
|
318 |
|
00:31:51,940 --> 00:31:57,060 |
|
ุงููู ุจูุฏุฑ ุฃูููู ู
ู ูุฐู ุงูู
ุนุงุฏูุฉ ุฃู ุงู X2 ุจุฏูุง ุชุณุงูู |
|
|
|
319 |
|
00:31:57,060 --> 00:32:05,550 |
|
ูุฏ ุงูุดุ ุทุจ ูุงู X1 ุฃู ุฑูู
ุ ู
ูู ู
ูุงู ูููู ูุจูู ุจุงุฌู |
|
|
|
320 |
|
00:32:05,550 --> 00:32:14,170 |
|
ุจููู ูู and X ุงุซููู ุจุฏูุง ุชุณุงูู ุงู A say ู
ุซูุงู ูุนูู ุงู |
|
|
|
321 |
|
00:32:14,170 --> 00:32:17,270 |
|
ููุน ูููุ ุจุณู
ุน |
|
|
|
322 |
|
00:32:19,810 --> 00:32:31,730 |
|
ูุจูู X1 ูุจูู X1 ูุจูู X1 |
|
|
|
323 |
|
00:32:31,730 --> 00:32:40,890 |
|
ูุจูู X1 ูุจูู X1 ูุจูู X1 ูุจูู X1 ูุจูู X1 ูุจูู X1 |
|
|
|
324 |
|
00:32:40,890 --> 00:32:43,450 |
|
ูุจูู X1 ูุจูู |
|
|
|
325 |
|
00:32:46,580 --> 00:32:55,980 |
|
ุชู lambda ูุงุญุฏ ุชุณุงูู ุงุซููู are in the form ุนูู |
|
|
|
326 |
|
00:32:55,980 --> 00:33:04,040 |
|
ุงูุดูู ุงูุชุงูู X ูุงุญุฏ X ุงุซููู ูุณุงูู X ูุงุญุฏ ุงููู ูู ุจู |
|
|
|
327 |
|
00:33:04,040 --> 00:33:09,700 |
|
A ู X ุงุซููู ุงููู ูู ุจูุฏ ุงูุดุ ุจ Zero ุงููู ูุณุงูู A ูู |
|
|
|
328 |
|
00:33:09,700 --> 00:33:14,260 |
|
ูุงุญุฏ Zero ุทุจ |
|
|
|
329 |
|
00:33:14,260 --> 00:33:21,480 |
|
lambda ู
ูุฑุฑุฉ ูุจูู ุงูุซุงููุฉ ุฒููุง ุตุญ ููุง ูุฃุ ูุจูู also |
|
|
|
330 |
|
00:33:21,480 --> 00:33:28,240 |
|
the eigenvectors |
|
|
|
331 |
|
00:33:28,240 --> 00:33:35,900 |
|
corresponding to |
|
|
|
332 |
|
00:33:35,900 --> 00:33:45,480 |
|
lambda ุงุซููู ุชุณุงูู ุงุซููู are in the four |
|
|
|
333 |
|
00:33:47,770 --> 00:33:54,870 |
|
ูุจูู ุฃุตุจุญุช ุนูู ุงูุดูู ุงูุชุงูู ุงููู ูู ุจู ู
ุซูุงู ููู ูู |
|
|
|
334 |
|
00:33:54,870 --> 00:34:00,370 |
|
ูู ููุณูุง ู
ุง ุชุบูุฑุชุด ูุจูู ููุณ ุจู ูุฅูู
ุง ุฅููุ ูู ูุงุญุฏ |
|
|
|
335 |
|
00:34:00,370 --> 00:34:01,070 |
|
ุตูุฑ |
|
|
|
336 |
|
00:34:04,190 --> 00:34:09,650 |
|
ุทูุจ ุชุนุงูู ูุดูู ูู ูุฐู ุงูุญุงูุฉ ุดู ุดูู ุงูู
ุตูููุฉ K |
|
|
|
337 |
|
00:34:09,650 --> 00:34:14,310 |
|
ุงูู
ุตูููุฉ K ุจุญุท ูููุง ุงู Eigen vectors ู
ุธุจูุทุฉ ููุง ูุฃุ |
|
|
|
338 |
|
00:34:14,310 --> 00:34:24,210 |
|
ูุจูู ุจูุงุก ุนููู ุงูู
ุตูููุฉ K ุจุฏูุง ุชุณุงูู 1 0 1 0 |
|
|
|
339 |
|
00:34:24,210 --> 00:34:26,070 |
|
ุชู
ุงู
|
|
|
|
340 |
|
00:34:28,060 --> 00:34:32,700 |
|
ูู ุฑุฌุนูุง ูู a similar to b ูููู ููุง if there exists a |
|
|
|
341 |
|
00:34:32,700 --> 00:34:38,620 |
|
non singular matrix K such that ุชู
ุงู
ุ ุจุฏูุง ูุดูู ูู |
|
|
|
342 |
|
00:34:38,620 --> 00:34:42,220 |
|
ูุฐู singular ููุง non singular |
|
|
|
343 |
|
00:34:44,480 --> 00:34:49,600 |
|
ูุจูู ุงุญูุง ุจูุงุช ููุง ุทูุนูุง ุงูู
ุตูููุฉ K ุชุจุนุช ุงู |
|
|
|
344 |
|
00:34:49,600 --> 00:34:54,480 |
|
eigenvectors ุนูู ุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุฌููุง ุฃุฎุฐูุง |
|
|
|
345 |
|
00:34:54,480 --> 00:34:59,300 |
|
ุงูู
ุญุฏุฏ ุงููู ููุง ูุฌููุง ุงูู
ุญุฏุฏ ุงููู ูุณุงูู ู
ููุ Zero |
|
|
|
346 |
|
00:34:59,300 --> 00:35:03,780 |
|
ู
ุฏุงู
ุงูู
ุญุฏุฏ Zero ูุนูู ุงู K inverse does not exist |
|
|
|
347 |
|
00:35:03,780 --> 00:35:09,760 |
|
ูุฃู ุงูู
ุตูููุฉ ุงููู ููุง ู
ุนููุณ ูู ุงูู
ุตูููุฉ ุงููู ู
ุญุฏุฏูุง |
|
|
|
348 |
|
00:35:09,760 --> 00:35:15,700 |
|
ูุง ูุณุงูู Zero ุชู
ุงู
ุ ูุณุงูู ุฒูุฑู ูุจูู ุฌูุฏู ู
ุด ู
ูุฌูุฏุฉุ |
|
|
|
349 |
|
00:35:15,700 --> 00:35:20,980 |
|
ู
ุฏู ู
ุด ู
ูุฌูุฏุฉุ ุฅุฐุง ูุง ูู
ูู ุชุจูู ุงูู
ุตูููุฉ similar to |
|
|
|
350 |
|
00:35:20,980 --> 00:35:24,560 |
|
a diagonal matrix ุฃู ุงูู
ุตูููุฉ ุจููู ุนููุง ูู |
|
|
|
351 |
|
00:35:24,560 --> 00:35:29,160 |
|
diagonalizable ูุนุทููู
ุงูุนุงููุฉ |
|
|