abdullah's picture
Add files using upload-large-folder tool
3a258c2 verified
raw
history blame
43.3 kB
1
00:00:21,240 --> 00:00:27,440
ู„ุงุฒู„ู†ุง ููŠ ุดุจุชุฑ ุณุชุฉ ูˆู‡ูˆ ุงู„ isomorphism ุงู„ู…ุฑุฉ ุงู„ู„ู‰
2
00:00:27,440 --> 00:00:33,520
ูุงุชุช ุนุฑูู†ุง ุงู„ atomorphism ูˆุนุฑูู†ุง ุงู†ู‡ ุนุจุงุฑุฉ ุนู†
3
00:00:33,520 --> 00:00:37,880
isomorphism ู„ูƒู† ู…ู† ุงู„ group ุฅู„ู‰ ู†ูุณ ุงู„ group
4
00:00:37,880 --> 00:00:43,720
ูˆุจุงู„ุชุงู„ูŠ ุณู…ู†ุงู‡ atomorphismุนุฑูู†ุง ูƒู…ุงู† ุงู„ู€ Inner
5
00:00:43,720 --> 00:00:48,560
Atomorphism induced by an element of A group G
6
00:00:48,560 --> 00:00:55,940
ูˆู‚ู„ู†ุง ุงู„ู€ Phi A of X ูŠุณุงูˆูŠ A X A inverse ูˆุณู…ูŠู†ุง
7
00:00:55,940 --> 00:01:02,640
ู‡ุฐุง ุงู„ู€ Inner Atomorphism ู…ู† G ุงู„ุขู† ู„ูˆ ุฌู…ุนู†ุง ูƒู„
8
00:01:02,640 --> 00:01:08,570
ุงู„ู€ Atomorphism ููŠ G ูˆุณู…ูŠู†ุงู‡ู… ุงู„ุณุชAtomorphism ู„ู€ G
9
00:01:08,570 --> 00:01:14,310
ุฌู…ุนู†ุง ูƒู„ ุงู„ inner atomorphism ูˆุณู…ูŠู†ุงู‡ู… ุงู„ inner
10
00:01:14,310 --> 00:01:18,750
atomorphism of G ูŠูุฌุฑ ุงู„ุฑู…ุฒ ุงู„ู„ูŠ ู‚ุฏุงู… ุงู„
11
00:01:18,750 --> 00:01:24,110
atomorphism ู„ G ูƒู„ ุงู„ atomorphism ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
12
00:01:24,110 --> 00:01:28,910
ุงู„ group G ุงู„ inner atomorphism ู„ G ูƒู„ ุงู„ inner
13
00:01:28,910 --> 00:01:34,490
atomorphism of group G ุงู„ู†ุธุฑูŠุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุงุจุชู‚ูˆู„ ู„ูˆ
14
00:01:34,490 --> 00:01:38,210
ูƒุงู†ุช ุฌูŠ ุฌุฑูˆุจ ูŠุจู‚ู‰ ุงู„ุงุทู…ูˆุฑูุฒู… ูˆุงู„ inner
15
00:01:38,210 --> 00:01:45,270
-automorphism ู„ุฌุฑูˆุจ ุฌูŠ ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ุนุจุงุฑุฉ ุนู† ุฌุฑูˆุจ
16
00:01:45,770 --> 00:01:49,370
ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ูˆู…ู† ุซู… ุฃุซุจุช ุงู„ู†ู‚ุทุฉ
17
00:01:49,370 --> 00:01:53,170
ุงู„ุซุงู†ูŠุฉ ุทุจุน ุงู„ูƒุชุงุจ ุชุฑูƒู„ู‡ .. ุชุฑูƒู‡ ู…ู„ูƒู‡ as an
18
00:01:53,170 --> 00:01:57,170
exercise ูŠุนู†ูŠ ุญุทู‡ ุงู„ .. ุงู„ .. ุงู„ .. ููŠ ุงู„ุชู…ุฑูŠู†
19
00:01:57,170 --> 00:02:02,190
ุชุจุนุช ู…ูŠู… ุชุจุนุช ุงู„ูƒุชุงุจ ุนู„ู‰ ุฃุณุงุณ ุงุชุญู„ู‡ ูƒ exercise
20
00:02:02,190 --> 00:02:07,070
ุงุญู†ุง ู‡ู†ุจุฑู‡ ุฅู†ู‡ ุจุฑู‡ุงู† ุนุงุฏูŠูŠุจู‚ู‰ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ุจุฏูŠ
21
00:02:07,070 --> 00:02:11,590
ุฃุซุจุช ู„ู‡ ุงู† ุงู„ุงุชูˆ ู…ูˆุฑูุฒู… is a group ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช
22
00:02:11,590 --> 00:02:16,150
ุงู† ุงู„ binary operation ุงู„ู„ูŠ ุนู„ู‰ ุงู„ุงุชูˆ ู…ูˆุฑูุฒู… ุงู„ู„ูŠ
23
00:02:16,150 --> 00:02:20,150
ุฌูŠู‡ is a binary operation associative ุงู„ identity
24
00:02:20,150 --> 00:02:25,050
element ุงู„ inverse element ูˆ ู‡ูƒุฐุง ู†ุฌูŠ ู„ู„ู†ู‚ุทุฉ
25
00:02:25,050 --> 00:02:31,510
ุงู„ุฃูˆู„ู‰ ู„ุฐู„ูƒ ุจุฏูŠ ุฃู‚ูˆู„ู‡ letูุงูŠ ูˆุงุญุฏ ูˆูุงูŠ ุงุชู†ูŠู†
26
00:02:31,510 --> 00:02:39,110
ู…ูˆุฌูˆุฏุงุช ููŠ ุงู„ุงุชู…ูˆุฑูุฒู… ุงู„ู„ุงุฌุฆ ูŠุจู‚ู‰
27
00:02:39,110 --> 00:02:44,530
ุจู†ุงุก ุนู„ูŠู‡ ู…ุฏุงู… ุงุชู…ูˆุฑูุฒู… ูŠุจู‚ู‰ ูƒู„ ู…ู† ูุงูŠ ูˆุงุญุฏ ูˆูุงูŠ
28
00:02:44,530 --> 00:02:53,530
ุงุชู†ูŠู† is one to one and unto ูŠุจู‚ู‰ then ุงู„ูˆุงุญุฏ ูˆูุงูŠ
29
00:02:53,530 --> 00:03:01,210
ุงุชู†ูŠู† is one to one and untoู‡ุฐุง ุจูŠุนุทูŠู†ุง ู…ู† ู…ุจุงุฏุฆ
30
00:03:01,210 --> 00:03:06,910
ุงู„ุฑูŠุงุถูŠุงุช ุงู† ุงู„ composition ููŠู…ุง ุจูŠู†ู‡ู…ุง ููŠ ูˆุงุญุฏ ููŠ
31
00:03:06,910 --> 00:03:14,510
ุงุชู†ูŠู† is one to one and one to ูƒุฐู„ูƒู…ู† ู…ุจุงุฏุฆ
32
00:03:14,510 --> 00:03:18,330
ุงู„ุฑูŠุงุถูŠุงุช ู„ูˆ ูƒุงู† ุนู†ุฏู‰ two functions ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…
33
00:03:18,330 --> 00:03:21,730
one to one and unto ูŠุจู‚ู‰ ุงู„ composition ุนู„ูŠู‡ู…
34
00:03:21,730 --> 00:03:26,450
ุจูŠุนุทูŠู†ุง one to one and unto function ุจุฏู‰ ุฃุดูˆู
35
00:03:26,450 --> 00:03:31,110
ู‡ุงู„ู‡ุฏู‰ ุจุชุฎุฏู… ุฎุงุตูŠุฉ ุงู„ isomorphism ูˆู„ุง ู„ุฃ ุฅู† ุฎุฏู…ุช
36
00:03:31,110 --> 00:03:36,000
ูŠุจู‚ู‰ ุจุตูŠุฑ ู‡ุฏู‰ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ุงุชู…ูˆููŠุฒู…
37
00:03:44,810 --> 00:03:53,910
ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐูŠ ุจุชุนุทูŠู†ุง ููŠ ูˆุงู† ู„ููŠ ุชูˆู XY ู„ูŠุด
38
00:03:53,910 --> 00:03:57,970
ู‡ุฐุง ุชุนุฑูŠู ุงู„ composition of functions ุงู„ู„ูŠ ุฃุฎุฏู†ุงู‡
39
00:03:57,970 --> 00:04:05,810
ููŠ calculus A ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ููŠ ูˆุงุญุฏ ุงู…ุงู„ุงู† ููŠ
40
00:04:05,810 --> 00:04:11,070
ุงุชู†ูŠู† ุงู†ุง ูุฑุถู‡ ุงุชูˆ ู…ูˆุฑูุฒู… ู„ุฌูŠ ูŠุนู†ูŠ ุงูŠุฒูˆ ู…ูˆุฑูุฒู… ุงุฐุง
41
00:04:11,070 --> 00:04:15,110
ุจู†ุงุก ุนู„ูŠู‡ ู„ู…ุง ูŠุฃุซุฑ ุนู„ู‰ ุงู„ X ูˆ Y ูŠุจุฏูˆ ูŠุณุงูˆูŠ ููŠ ููŠ
42
00:04:15,110 --> 00:04:23,790
ุชูˆ of X ููŠ ููŠ ุชูˆ of Y ูŠุจู‚ู‰ ููŠ ุชูˆ of X ููŠ ููŠ ุชูˆ of
43
00:04:23,790 --> 00:04:33,230
Y ู„ูŠุดุŸ since ู„ุฅู† ุงู„ ููŠ ุชูˆ is isomorphismุทูŠุจ ู‡ุฐุง
44
00:04:33,230 --> 00:04:42,890
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ูŠุณุงูˆูŠ ูุงูŠ ูˆุงู† ู„ูุงูŠ two of x ูˆูƒู…ุงู† ูุงูŠ
45
00:04:42,890 --> 00:04:51,370
ูˆุงู† ู„ูุงูŠ two of y ู„ู†ูุณ ุงู„ุณุจุจ ู†ุธุฑุง ู„ุฅู† ูุงูŠ ูˆุงู† is
46
00:04:51,370 --> 00:04:57,510
an isomorphism ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… since ูุงูŠ ูˆุงู† is an
47
00:04:57,510 --> 00:05:01,930
isomorphismุทูŠุจ ุจุฏุง ุงู„ุดุบู„ุงู†ุฉ ุงู„ composition of
48
00:05:01,930 --> 00:05:06,930
functions ุจุฏู‡ ุฑุฌุนู‡ู… ุงู„ู‰ ุฃุตู„ู‡ู… ูŠุจู‚ู‰ ู‡ุฐุง ู…ุนู†ุงู‡ ููŠ
49
00:05:06,930 --> 00:05:12,890
ูˆุงุญุฏ ููŠ ุงุชู†ูŠู† ูƒู„ู‡ as a function of x ูˆ ููŠ ูˆุงุญุฏ ููŠ
50
00:05:12,890 --> 00:05:19,290
ุงุชู†ูŠู† as a function of y ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ููŠ
51
00:05:19,290 --> 00:05:23,950
ูˆุงุญุฏ ููŠ ุงุชู†ูŠู† ููŠ ุงุชู†ูŠู† is an isomorphism ูˆุจุงู„ุชุงู„ูŠ
52
00:05:23,950 --> 00:05:30,380
ุงุชูˆู…ูˆุฑูุฒู…ูŠุจู‚ู‰ ุงู„ atomorphism ู„ G is closed under
53
00:05:30,380 --> 00:05:34,500
the composition of functions ุฃูˆ ุงู„ composition of
54
00:05:34,500 --> 00:05:38,940
functions is a binary operation ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ G
55
00:05:38,940 --> 00:05:45,220
ูŠุจู‚ู‰ ูŠุง ุจุชุฑูˆุญ ุชู‚ูˆู„ูŠ ู‡ู†ุง ุงู„ atomorphism
56
00:05:45,220 --> 00:05:54,740
atomorphism ู„ G is closed under the
57
00:05:59,540 --> 00:06:06,340
composition of functions ูŠุนู†ูŠ ุฅุฐุง ูƒุงู† ุจุฏู„ ุงู„ุนุจุงุฑุฉ
58
00:06:06,340 --> 00:06:09,300
ู‡ุฐู‡ ุจุชู‚ุฏุฑ ุชู‚ูˆู„ูŠ so the composition of a function
59
00:06:09,300 --> 00:06:14,700
is a binary operation ุนู„ู‰ ู…ูŠู† ุนู„ู‰ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู…ูŠู†
60
00:06:14,700 --> 00:06:20,300
ุฅู„ู‰ ุฏูŠ ูŠุนู†ูŠ ุฅุญู†ุง ุญุชู‰ ุงู„ุขู† ุฃุซุจุชู†ุง ู…ูŠู† ุงู„ุฎุงุตูŠุฉ
61
00:06:20,300 --> 00:06:25,210
ุงู„ุฃูˆู„ู‰ ุฅู† ุงู„ operation is a binary operationุจุชู‚ุฏุฑ
62
00:06:25,210 --> 00:06:30,030
ุชู‚ูˆู„ู‡ุง ุจูŠู†ุฌูˆ ุณูŠู† ุญุทู‡ุง binary operation ุนู†ุฏูƒ ู…ุดุงู†
63
00:06:30,030 --> 00:06:34,390
ุชุชุฃูƒุฏ ุงู† ู‡ุฐู‡ ุงู„ุฎุทูˆุฉ ู‡ูŠ ุงู„ุฎุทูˆุฉ ุงู„ุฃูˆู„ู‰ ููŠ ุฅุซุจุงุช ุงู„
64
00:06:34,390 --> 00:06:40,690
group ุงู„ุฎุทูˆุฉ ุงู„ุชุงู†ูŠุฉ ุฎุงุตูŠุฉ associativity we know
65
00:06:40,690 --> 00:06:50,950
that ุงุญู†ุง ุจู†ุนุฑู ุงู† that the composition of
66
00:06:50,950 --> 00:06:52,870
functions
67
00:06:54,160 --> 00:06:59,880
is associative ูŠุจู‚ู‰ ููŠุด ุฏุงุนูŠ ุฃุฑูˆุญ ู†ุนู…ู„ู‡ุง ู„ุฅู†ู†ุง
68
00:06:59,880 --> 00:07:05,000
ุนุงุฑููŠู† ุฅู†ู‡ุง ู‡ุฐู‡ ูŠุจู‚ู‰ ุงุชุญู‚ู‚ุช ู…ู† ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ
69
00:07:05,000 --> 00:07:10,660
ุจุฏู†ุง ู†ุฑูˆุญ ู†ุฌูŠุจ ุฎุงุตูŠุฉ ุงู„ identity element ุงู„ุขู† ุงู„ I
70
00:07:10,660 --> 00:07:20,440
ู…ู† G ุฅู„ู‰ G ู‡ุฐู‡ is the identity function
71
00:07:21,740 --> 00:07:24,580
ุฎู„ู‘ูŠู†ูŠ ุฃุณุฃู„ูƒู… ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุทุงู„ุน ู„ู…ุง ุฃุฎุฏุชู… ู…ุจุงุฏุฆ
72
00:07:24,580 --> 00:07:27,460
ุงู„ุฑูŠุงุถูŠุฉ ุงู„ identity function one to one and unto
73
00:07:27,460 --> 00:07:34,460
ูˆู„ุง ู„ุฃุŸ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ identity function which
74
00:07:34,460 --> 00:07:44,920
is one to one and unto ู…ุด ุนุฌุจุง ู‡ูƒุฐุง and ุงู„ I ู„ูˆ
75
00:07:44,920 --> 00:07:50,000
ุฃุซุฑุช ุนู„ู‰ ุงู„ X ููŠ YุŒ ุฃูŠุด ุจุชุนุทูŠู‡ ู„ูƒุŸุงู„ู€ X ููŠ Y ู„ุฃู†
76
00:07:50,000 --> 00:07:56,920
ุงู„ู€ Identity function ุงู„ู€ X ู‡ุฐู‡ ู„ูŠุณุช I of X ูˆู‡ุฐู‡ I
77
00:07:56,920 --> 00:08:02,520
of Yุฅุฐุง ุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ู€ isomorphism ุตุงุฑ one
78
00:08:02,520 --> 00:08:08,260
to one and unto ูˆ ุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ูˆ ู…ู† ุงู„ group ู„ู†ูุณู‡ุง
79
00:08:08,260 --> 00:08:15,880
ูŠุจู‚ู‰ ู‡ู†ุง ุงู„ I ู…ูˆุฌูˆุฏ ููŠ ุงู„ atomorphism ุงู„ุฌูŠุจ ูŠุจู‚ู‰
80
00:08:15,880 --> 00:08:21,440
ุฃุตุจุญุช ุงู„ I ุนุจุงุฑุฉ ุนู† atomorphism ู‡ุฐุง ู‡ูˆ ุงู„ identity
81
00:08:21,440 --> 00:08:26,600
element ูŠุจู‚ู‰ is the identity
82
00:08:35,120 --> 00:08:42,320
Element of ุงู„ุงุชู…ูˆุฑูุฒู…
83
00:08:42,320 --> 00:08:49,620
ุงู„ู„ูŠ ุฌูŠู‡ ุจุฏูƒ ุชุนู…ู„ ุชุดูƒ ุชุงุฎุฏ ุงู„ identity ู…ุน ุงุชู…ูˆุฑูุฒู…
84
00:08:49,620 --> 00:08:52,740
ุชุงู†ูŠ ูˆ ุชุนู…ู„ ุจูŠู†ู‡ู… composites ุจูŠู†ู‡ู… ู…ุงู„ูˆุด ุชุฃุซูŠุฑ
85
00:08:52,740 --> 00:08:58,900
ู…ุงููŠุด ู…ุดูƒู„ุฉุทุจ ุงู„ุขู† ุจุฏู†ุง ู†ูŠุฌูŠ ู„ู…ูŠู†ุŸ ู„ู„ู…ุนูƒูˆุณุŒ ุงู„ุงู†
86
00:08:58,900 --> 00:09:09,160
ุงู ููŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ atom ูˆุงุฑูุฒู… ู„ุฌูŠุจุฃุญุงูˆู„ ุฃู† ุฃุซุจุช ุฃู†
87
00:09:09,160 --> 00:09:13,300
ุงู„ู€Phi Inverse ุนุจุงุฑุฉ ุนู† Atomorphism ุฅุฐุง ุฃุซุจุชุช ุฃู†
88
00:09:13,300 --> 00:09:16,780
ุงู„ู€Phi Inverse ุนุจุงุฑุฉ ุนู† Atomorphism ูŠุจู‚ู‰ ุฃุซุงุฑุฉ
89
00:09:16,780 --> 00:09:21,860
ุงู„ู€Atomorphism is a group ูˆุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุซู„ุฉ ูŠุนู†ูŠ
90
00:09:21,860 --> 00:09:27,060
ูƒุฃู†ู†ุง ู†ุดุชุบู„ ุงู„ุขู† ู…ุง ุฃุดุชุบู„ู†ุงู‡ ููŠ ุงู„ุดุงุจุชุฑ ุงู„ุซุงู†ูŠ ุจุนุฏ
91
00:09:27,060 --> 00:09:34,080
ุดุงุจุชุฑ ุงู„ู…ู‚ุฏู…ุฉ ูˆู‡ูˆ ุดุงุจุชุฑ ุงู„ู€group ูŠุจู‚ู‰ then Phi is
92
00:09:34,080 --> 00:09:40,910
one to one and untoู…ุด ุนู„ู‰ ุฌุฏ ู‡ูŠูƒ ู…ุงุฏุงู… ููŠ one to
93
00:09:40,910 --> 00:09:47,350
one and one to one ูŠุจุฌู‰ ู…ุนุงูƒุณู‡ as one to one and
94
00:09:47,350 --> 00:09:53,650
one to ูƒุฐู„ูƒ functionูŠุจู‚ู‰ one to one and onto
95
00:09:53,650 --> 00:09:58,590
function ู‡ุฐุง ู…ุนู†ุงู‡ ุงู†ู‡ ููŠ ุงู†ูุฑุณ ุนุจุงุฑุฉ ุนู† one to
96
00:09:58,590 --> 00:10:03,510
one and onto function ุถุงูŠู„ ุนู„ูŠู†ุง ู…ูŠู†ุŸ ุถุงูŠู„ ุนู„ูŠู†ุง
97
00:10:03,510 --> 00:10:07,670
ู†ุซุจุช ุงู† ููŠ ุงู†ูุฑุณ is an isomorphism ูŠุนู†ูŠ ููŠ ุงู†ูุฑุณ
98
00:10:07,670 --> 00:10:11,250
of x y ู‡ูˆ ููŠ ุงู†ูุฑุณ of x ูˆููŠ ุงู†ูุฑุณ of y ุงุธู†
99
00:10:11,250 --> 00:10:16,590
ุงุซุจุชู†ุงู‡ุง ููŠ ุงู„ู†ุธุฑูŠุฉ ู‚ุจู„ ุงู„ู…ุงุถูŠุฉ ุงูˆ ุงู„ุณุจุน ู†ู‚ุงุท
100
00:10:16,590 --> 00:10:20,810
ุงุซุจุชู†ุงู‡ุง ููŠู‡ู… ุทูŠุจ ูˆ
101
00:10:23,400 --> 00:10:31,860
Prove that ุงุญู†ุง ุจุฑู‡ู†ู†ุง ูƒุฐู„ูƒ ุงู† ููŠ ุงู†ูุฑุณ of x y
102
00:10:31,860 --> 00:10:40,780
ูŠุณูˆู‰ ููŠ ุงู†ูุฑุณ of x ููŠ ููŠ ุงู†ูุฑุณ of y ุจุฑู‡ู†ู‡ุง ุณุงุจู‚ุง
103
00:10:40,780 --> 00:10:47,440
ูŠุจู‚ู‰ ุตุงุฑุฉ ููŠ ุงู†ูุฑุณ exist ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช ุญู‚ู‚ุช ุฎุงุตูŠุฉ
104
00:10:47,440 --> 00:10:52,570
ุงู„ isomorphism ูŠุจู‚ู‰ ู‡ ุฃูˆ ุงู„ atomorphismู‡ุฐุง ู…ุนู†ุงู‡
105
00:10:52,570 --> 00:10:59,690
ุงู† ููŠ ุงู†ูุฑุณ ู…ูˆุฌูˆุฏ ููŠ ุงู„ุงุชู…ูˆููŠุฒู… ู„ู…ุงู… ุงู„ุงุฌูŠู‡ ุตุงุฑ
106
00:10:59,690 --> 00:11:03,510
ุงู„ุงุชู…ูˆููŠุฒู… ุงู„ุงุฌูŠู‡ closed under the operation
107
00:11:03,510 --> 00:11:08,850
ุงู„ุนู…ู„ูŠุฉ associative ุงู„ identity element ู…ูˆุฌูˆุฏ
108
00:11:08,850 --> 00:11:15,170
ุงู„ู…ุนูƒูˆุณ ู„ุฃูŠ element ู…ูˆุฌูˆุฏ ููŠ ุงู„ุงุชู…ูˆููŠุฒู… ู…ูˆุฌูˆุฏ ูŠุจู‚ู‰
109
00:11:15,170 --> 00:11:23,170
ุงู„ุงุชู…ูˆููŠุฒู… ู…ุงู„ู‡ุง is a groupูŠุจู‚ู‰ ุงู„ atomorphism ู„ุฏูŠ
110
00:11:23,170 --> 00:11:34,990
is a group under the composition of
111
00:11:34,990 --> 00:11:36,790
functions
112
00:11:38,510 --> 00:11:44,830
ุทูŠุจ ูƒูˆูŠุณ ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ุฃูˆู„ู‰ ู†ุฌู„ ู†ู‚ุทุฉ ุซุงู†ูŠุฉ ุงู„ inner
113
00:11:44,830 --> 00:11:50,910
atom morphism ู„ G the set of all elements Phi A
114
00:11:50,910 --> 00:11:58,610
such that ุงู„ Phi A of X ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ A X A inverse
115
00:11:58,610 --> 00:12:05,960
ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ Gู‡ุฐู‡ ุนุฑูู†ุงู‡ุง
116
00:12:05,960 --> 00:12:09,380
ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ู‡ุง ุฏู‡ุŒ ุจุฏูŠ ุฃุญุงูˆู„
117
00:12:09,380 --> 00:12:14,840
ุฃุซุจุช ุฅู†ู‡ ู‡ุฐู‡ is a group ุทุจ ุฎู„ูŠู†ูŠ ุฃุณุฃู„ูƒูˆุง ุงู„ุณุคุงู„
118
00:12:14,840 --> 00:12:19,960
ุงู„ุชุงู„ูŠุŒ ู„ูˆ ู‚ุฏุฑุช ุฃุซุจุช ุฅู† ุงู„ inner atomorphism ุงู„ู„ูŠ
119
00:12:19,960 --> 00:12:25,000
ุฌูŠ subgroup ู…ู† ุงู„ atomorphism ุงู„ู„ูŠ ุฌูŠ ู…ุด ุงู„ inner
120
00:12:25,000 --> 00:12:32,000
ุจุตูŠุฑ groupู„ุฃู† ุงู„ู€ subgroup ู‡ูŠ ู…ุฌู…ูˆุนุฉ ุฌุฒุฆูŠุฉ ู…ู†
121
00:12:32,000 --> 00:12:36,560
ุงู„ู…ุฌู…ูˆุนุฉ ุงู„ุฃุตู„ูŠุฉ ุจุณ ุชุญุช ู†ูุณ ุงู„ุนู…ู„ูŠุฉ ุฅุฐุง ู„ูˆ ู‚ุฏุฑุช
122
00:12:36,560 --> 00:12:41,540
ุฃุซุจุช ุฅู† ุงู„ inner atomorphisms ุงู„ู„ูŠ ุฌูŠู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
123
00:12:41,540 --> 00:12:45,580
subgroup ู…ู† ุงู„ atomorphism ุงู„ู„ูŠ ุฌูŠู‡ ุจุตูŠุฑ ู‡ุฐู‡ group
124
00:12:45,580 --> 00:12:52,360
ูˆู†ูƒูˆู† ุงู†ุชู‡ูŠู†ุง ู…ู† ุงู„ู…ุณุฃู„ุฉ ู‡ุฐู‡ ูŠุจู‚ู‰ ุจุฏู†ุง ู†ุฑูˆุญ ู†ุซุจุชู‡ุง
125
00:12:52,760 --> 00:13:00,500
ุจุฏู†ุง ู†ุซุจุช ุงู† ุงู„ inner ู‡ุฐู‡ is a group ู…ุดุงู† ุฃุซุจุชู‡ุง
126
00:13:00,500 --> 00:13:04,440
group ุจุฏุฃ ุฃุซุจุชู‡ุง sub group ู…ู† ุงู„ atom morphism ู„ G
127
00:13:04,440 --> 00:13:14,920
ุงู„ inner atom morphism ู„ G is non empty non empty
128
00:13:14,920 --> 00:13:16,280
ู„ูŠุดุŸ because
129
00:13:19,280 --> 00:13:27,680
ุงู„ู€ Phi E ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Inner Atomorphism ู„ุฌูŠ ูŠุนู†ูŠ
130
00:13:27,680 --> 00:13:36,440
ู‡ุฐุง ู‡ูˆ ุงู„ identity element because and ุงู„ Phi E is
131
00:13:36,440 --> 00:13:47,260
the identity element element andุงู„ู€ Inner
132
00:13:47,260 --> 00:13:49,740
Atomorphism ู„ู€ G
133
00:14:01,130 --> 00:14:05,330
ุงู†ุง ุจุชุฏุนูŠ ุงู†ู‡ ุงู„ identity element ุงู„ุงู† ุจุฏู‰ ุจูŠู† ุงู†
134
00:14:05,330 --> 00:14:10,470
ู‡ุฐุง ู‡ูˆ ุงู„ identity element ุชุจุน ุงู„ atomorphism ูŠุจู‚ู‰
135
00:14:10,470 --> 00:14:17,110
ู‡ุฐุง ุจุฏู‰ ูŠุนุทูŠู†ูŠ ุงู† ุงู„ phi E of X ูŠุณุงูˆูŠ ุงู„ X ูŠุณุงูˆูŠ
136
00:14:17,110 --> 00:14:22,410
ุดุฑูŠูƒ ุงู„ X ู‡ุฐู‡ ู„ูˆ ุถุฑุจุช ููŠ ุงู„ identity element ุชุชุบูŠุฑ
137
00:14:22,410 --> 00:14:30,360
ูŠุนู†ูŠ ู„ูˆ ู‚ู„ุชู„ูƒ ู‡ุฐู‡ E X ุตุญ ูˆู„ุง ุบู„ุทุŸู…ูŠุฉ ุงู„ู…ูŠุฉ ุทุจ ู„ูˆ
138
00:14:30,360 --> 00:14:34,440
ู‚ู„ุชู„ูƒ ูƒู…ุงู† ุถุฑุจุช ููŠ ู…ุนูƒูˆุณ ุงู„ identity element ู…ูŠู†
139
00:14:34,440 --> 00:14:39,600
ู…ุนูƒูˆุณ ุงู„ identity element ุงู„ identity element ู†ูุณู‡
140
00:14:39,600 --> 00:14:47,140
ูŠุจู‚ู‰ ุณุนุฑ ุงู„ ููŠ ุฅูŠู‡ ุฏู‡ ู…ูˆุฌูˆุฏ ููŠ ุงู„ inner atom
141
00:14:47,140 --> 00:14:51,880
morphism ู„ G ูˆู…ู† ู‡ู†ุง ุงู„ inner atom morphism ู„ G is
142
00:14:51,880 --> 00:14:59,450
non emptyุทุจ ูƒูˆูŠุณ ุงู„ุงู† ุจุฏุฃ ุงุฎุฏ two elements ู…ูˆุฌูˆุฏุงุช
143
00:14:59,450 --> 00:15:05,190
ููŠ ุงู„ inner ูˆ ุงุซุจุช ุงู† ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ู…ูˆุฌูˆุฏ
144
00:15:05,190 --> 00:15:13,910
ูŠุจู‚ู‰ ุจุฏุงุฌูŠ ุงู‚ูˆู„ู‡ let code ู„ูุงูŠ a ูˆูุงูŠ ุจูŠ ู…ูˆุฌูˆุฏุงุช
145
00:15:13,910 --> 00:15:18,750
ููŠ ุงู„ inner atomorphism ู„ุฌูŠู‡ then
146
00:15:20,330 --> 00:15:28,470
ุจุฏูŠ ุงุฎุฏ ูุงูŠ ุง ูุงูŠ ุจูŠ ุงู†ูุฑุณ ูƒู„ู‡ as a function of x
147
00:15:28,470 --> 00:15:34,330
ูˆุดูˆู ู‡ู„ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ inner ูˆู„ุง ู„ุฃ ุจู…ุนู†ู‰ ุงุฎุฑ ู‡ู„
148
00:15:34,330 --> 00:15:40,430
ุจู‚ุฏุฑ ุงูƒุชุจ ุญุตู„ ุงู„ุถุฑุจ ู‡ุฐุง ุนู„ู‰ ุดูƒู„ inner atomorphism
149
00:15:40,430 --> 00:15:47,060
ูˆุงู„ู„ู‡ ู…ู‚ุฏุฑุด ู‡ุฐุง ู…ุง ุณู†ุฌูŠุจ ุนู„ูŠู‡ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ
150
00:15:47,060 --> 00:15:52,820
as a
151
00:15:52,820 --> 00:15:58,700
function of x ุทุจุนุง ุจุฑู‡ู…ู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุณุงุจู‚ุง ูู‰
152
00:15:58,700 --> 00:16:03,440
ู†ุธุฑูŠุงุช ุงู„ุณุงุจู‚ุฉ ุจูŠุงู†ู†ุง ุงู† ูุงูŠ ุงูŠ ุงู†ูุฑุณ ุงู„ุงู†ูุฑุณ
153
00:16:03,440 --> 00:16:08,720
ุจู†ุฒู„ู‡ ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ element ูŠุจู‚ู‰ ู‡ุงูŠ ู†ุฒู„ู†ุง ุงู„
154
00:16:08,720 --> 00:16:12,470
inverse ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ element ุงู„ู„ู‰ ุฌูˆุงู‡ุฐุง
155
00:16:12,470 --> 00:16:20,610
composition of functions ูŠุจู‚ู‰ ูุงูŠ a ู„ู…ูŠู† ู„ูุงูŠ ุจูŠ
156
00:16:20,610 --> 00:16:27,150
ุงู†ูุฑุณ as a function of x ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ูุงูŠ ุงู„ู„ูŠ ุจุฑุง
157
00:16:27,150 --> 00:16:32,810
ู‡ุฐู‡ ุงู„ูุงูŠ ุงู„ู„ูŠ ุจุฑุง a ูˆุงู„ู„ูŠ ุฌูˆุง ู‡ุฐูŠ ุจุฏู‡ ุงุทุจู‚ ุนู„ูŠู‡ุง
158
00:16:32,810 --> 00:16:38,560
ุงู„ุชุนุฑูŠู ุงู„ู„ูŠ ุงุญู†ุง ุฌุงูŠู„ูŠู†ู‡ ู‡ู†ุงูŠุจู‚ู‰ ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† B
159
00:16:38,560 --> 00:16:46,220
inverse X B inverse Inverse ุทุจู‚ ู„ู‡ุฐุง ุงู„ุชุนุฑูŠู Phi A
160
00:16:46,220 --> 00:16:51,800
ุงู„ element A X A inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ element X ุงู„
161
00:16:51,800 --> 00:16:57,850
element inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุงุงู„ุงู† ุจุฏูŠ ุงุทุจู‚
162
00:16:57,850 --> 00:17:04,110
ุงู„ุชุนุฑูŠู ูƒู…ุงู† ู…ุฑุฉ ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏูŠ ูŠุนุทูŠู†ูŠ ุงู„ a b
163
00:17:04,110 --> 00:17:13,250
inverse x b inverse x b inverse inverse ูƒู„ ู‡ุฐุง
164
00:17:13,250 --> 00:17:20,410
ุงู„ูƒู„ุงู… ููŠ ู…ู†ุŸ ููŠ ุงู„ a inverseูŠุจู‚ู‰ ุงุนุชุจุฑุช ู‡ุฐุง ูƒู„ู‡
165
00:17:20,410 --> 00:17:24,790
element ููŠ domain ุงู„ู€ phi of A ุทุจู‚ุช ุนู„ูŠู‡ ุงู„ุชุนุฑูŠู
166
00:17:24,790 --> 00:17:30,030
ุงู„ู„ูŠ ู‡ู†ุงูƒ A ู†ูุณ ุงู„ element ุงู„ A inverse ุงู„ุงู†
167
00:17:30,030 --> 00:17:35,170
ุจุงู„ุฏุงู„ูŠ ู„ุฎุงุตูŠุฉ ุงู„ associativity ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฐุง
168
00:17:35,170 --> 00:17:42,120
ุจู‚ุฏุฑ ุงู‚ูˆู„ A B inverse ููŠ ุงู„ X ููŠู‡ุฃุชุทู„ุนู„ูŠ ู‡ุฐุง ุงู„
169
00:17:42,120 --> 00:17:45,660
element inverse ูˆ ู‡ุฐุง ุงู„ element inverse ุจู‚ุฏุฑ
170
00:17:45,660 --> 00:17:51,360
ุฃุฌู…ุนู‡ู… ุจ inverse ูˆุงุญุฏ ุจุนุฏ ู…ุง ุฃุบูŠุฑ ุฃูˆ ุฃุจุฏู„ ู…ูˆุงู‚ุนู‡ู…
171
00:17:51,360 --> 00:17:57,740
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ู‡ูˆ ุงู„ a b inverse ุงู„ูƒู„
172
00:17:57,740 --> 00:18:02,480
inverse ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูŠุจู‚ู‰ ู‡ุฐุง inverse ูˆ
173
00:18:02,480 --> 00:18:07,160
ู‡ุฐุง inverse ุฌู„ุจุช ูˆุถุนู‡ู… ูˆ ุฎู„ุช inverse ู„ู„ูƒู„ ุงุชุทู„ุนู„ูŠ
174
00:18:07,160 --> 00:18:12,120
ู„ู„ู…ู‚ุฏุงุฑ ุจูŠู† ุงู„ู‚ุงูˆุณูŠู† ู‡ูˆ ู‡ุฐุง ูˆู„ุง ู„ุงูŠุจู‚ู‰ ุตุงุฑ ุงู„
175
00:18:12,120 --> 00:18:18,180
element ู‡ุฐุง ู‡ูˆ ุงู„ element ู‡ุฐุง ุจุณ inverse ุฃู„ูŠุณ ู‡ูˆ
176
00:18:18,180 --> 00:18:25,760
ุชุนุฑูŠู inner atomorphism ูŠุนู†ูŠ ู‡ุฐุง ูƒุฃู†ู‡ ู…ูŠู† ูƒุฃู†ู‡ ููŠ
177
00:18:25,760 --> 00:18:32,300
a b inverse of x ุชู…ุงู…
178
00:18:32,970 --> 00:18:40,210
ูŠุจู‚ู‰ ุงุจุชุฏุงุช ุจ element ููŠ ู…ุนูƒูˆุณูŠ ุซุงู†ูŠ ุทู„ุน ุนู†ุฏูŠ Phi
179
00:18:40,210 --> 00:18:45,910
of AB inverse ูŠุนู†ูŠ ุฅูŠุดุŸ ูŠุนู†ูŠ ุงู„ู„ูŠ ู‡ูˆ inner
180
00:18:45,910 --> 00:18:53,370
atomorphism ุฅุฐุง ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ inner atomorphism ู„ G
181
00:18:55,870 --> 00:19:00,910
ุซุจุช ู‡ู†ุง ุงู†ู‡ non-empty ุฃุฎุฏุช ุงู„ elements ู…ูˆุฌูˆุฏุงุช ููŠ
182
00:19:00,910 --> 00:19:06,350
ุงู„ inner ูุฑุฏุช ุงู„ุฃูˆู„ ููŠ ู…ุนูƒูˆุณ ุงู„ุซุงู†ูŠ ุทู„ุน ู…ูˆุฌูˆุฏ ูˆูŠู†
183
00:19:06,350 --> 00:19:12,810
ููŠ ุงู„ inner atomorphism ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ inner
184
00:19:12,810 --> 00:19:20,150
atomorphism ู„ุฌูŠ is a subgroup ู…ู† ุงู„ atomorphism
185
00:19:20,150 --> 00:19:22,970
ู„ุฌูŠ ู‡ุฐุง ุจูŠุนุทูŠู†ุง
186
00:19:48,290 --> 00:19:52,050
ุญุฏ ู„ูˆ ูŠุชุณุงูˆู„ ุจุงู„ู†ุณุจุฉ ู„ู„ู†ุธุฑูŠุฉ
187
00:19:55,710 --> 00:20:02,030
ุนู„ูŠ ุตูˆุชูƒ ุดูˆูŠุฉ ุนุดุงู†
188
00:20:02,030 --> 00:20:13,110
ู†ุซุจุช ุงู†ู‡ุง non-empty ู…ู…ุชุงุฒ ุชุนุงู„
189
00:20:13,110 --> 00:20:17,810
ู‡ู†ุง ุชุนุงู„ ุชุนุงู„ ุงู„ุญู‚ ุงู„ุญู‚ ู‚ูˆู„
190
00:20:26,310 --> 00:20:31,150
ุงู†ุง ุงุฏุนูŠุช ุงู† ู‡ุฐุง ู‡ูˆ ุงู„ identity element ู‡ุงูŠูˆ ุฌุงูŠู„ูƒ
191
00:20:31,150 --> 00:20:34,990
ู‡ุฐุง is identity element ุงู† ุฌูŠู‡ ุฌูŠุช ู‚ูˆู„ุชู„ูƒ ู…ุฏุงู…
192
00:20:34,990 --> 00:20:39,410
identity ูŠุจู‚ู‰ ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ูŠูƒู…ุธุจูˆุท ุชุฃุซูŠุฑู‡ ุนู„ู‰ ุงู„
193
00:20:39,410 --> 00:20:43,350
element ุจูŠุณูˆูŠ ุงู„ element ู‡ุฐู‡ ุงู„ู†ุชูŠุฌุฉ ุจุฏูŠ ุงุญุงูˆู„ ุงุญุท
194
00:20:43,350 --> 00:20:49,510
ุนู„ู‰ ุดูƒู„ inner atomorphism ูุฑูˆุญุช ู‚ูˆู„ุช ุงู„ููŠ ูŠุณูˆูŠ X
195
00:20:49,510 --> 00:20:54,670
ูŠุณูˆูŠ E X E inverse ู‡ุฐุง ุดูƒู„ inner atomorphism
196
00:20:54,670 --> 00:21:02,070
ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐุง ู…ูˆุฌูˆุฏ ู‡ู†ุง ู‚ุณู…ุฉ ุนุงู„ู…ูŠุฉ ุฃุฑุจุนุฉ ุจูŠุตูŠุฑ
197
00:21:02,070 --> 00:21:09,380
ููŠ A X ุจูŠุณูˆูŠ E X E inverseูุงูŠ ุงูŠ ู‡ูŠ ุงู„ identity ู‡ูŠ
198
00:21:09,380 --> 00:21:14,840
ุฌุงูŠู„ูƒ ู…ู† ุงู„ุฃูˆู„ ููŠ ุงูŠ ู…ูˆุฌูˆุฏุฉ ูˆู‡ูŠ ุงู„ identity ู…ุด ุงู„
199
00:21:14,840 --> 00:21:19,620
ุงูŠ ุงู„ ุงูŠ ู‡ูˆ ุงู„ identity ุชุจุน ุงู„ group ู„ูƒู† ููŠ ุงูŠ ู‡ูˆ
200
00:21:19,620 --> 00:21:23,020
ุงู„ identity element ุชุจุน ุงู„ atom morphism ูˆุชุจุน ุงู„
201
00:21:23,020 --> 00:21:26,800
inner atom morphism ุฏุฑ ุจุงู„ูƒ ูŠุนู†ูŠ ู‡ุฏูˆู„ functions
202
00:21:26,800 --> 00:21:32,580
ูˆู„ูŠุณุช elements ุนุงุฏูŠุฉ ุชู…ุงู… ู„ูƒู† ุตูˆุฑู‡ุง ู‡ูŠ ุงู„ elements
203
00:21:32,580 --> 00:21:36,400
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ููŠ ู†ูุณ ุงู„ group ุงู„ู„ูŠ ุนู†ุฏู†ุง ุฌูŠู‡ุญุฏ
204
00:21:36,400 --> 00:21:41,380
ูŠู„ุงู‚ูŠ ุชุณุงูˆูŠ ุงู„ุขุฎุฑุŸ ุทูŠุจ ุจุฏู†ุง ู†ุฑูˆุญ ูˆ ู†ูˆุถุน ู‡ุฐุง ุงู„ูƒู„ุงู…
205
00:21:41,380 --> 00:21:49,800
ุจู…ุซุงู„ example
206
00:22:12,580 --> 00:22:22,400
ุจู‚ูˆู„ ุงู„ู ุฏูŠ ููˆุฑ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ R ู†ูˆุฏ R ุชุณุนูŠู† R ู…ูŠุฉ ูˆ
207
00:22:22,400 --> 00:22:35,360
ุชู…ุงู†ูŠู† R ู…ูŠุชูŠู† ูˆ ุณุจุนูŠู† H V D D prime find find ุงูˆ
208
00:22:35,360 --> 00:22:38,340
ุฌุฏ ู„ูŠู‡ ุงู„ inner
209
00:22:41,510 --> 00:22:47,710
ู„ู…ุงู† ู„ุฏูŠ four ุจุฏู†ุง ุงู„ inner atomorphism ู„ุฏูŠ four
210
00:22:47,710 --> 00:22:53,550
solution
211
00:23:03,160 --> 00:23:08,840
ุชุนุงู„ู‰ ู†ุดูˆู ุงู„ู„ู‰ ู‡ูˆ ุงู„ elements ุงู„ู…ุฎุชู„ูุฉ ุงู„ู„ู‰ ุจุฏู†ุง
212
00:23:08,840 --> 00:23:13,480
ู†ุฌูŠุจู‡ุง ู…ู† ุฎู„ุงู„ ุงู„ elements ุงู„ู„ู‰ ุนู†ุฏู†ุง ู†ุชูƒู„ู… ุงุญู†ุง
213
00:23:13,480 --> 00:23:17,620
ุนู„ู‰ ุงู„ inner ู…ุฏุงู… ุนู„ู‰ ุงู„ inner ูŠุจู‚ู‰ ู†ุชูƒู„ู… ุนู„ู‰
214
00:23:17,620 --> 00:23:23,560
functions ูƒู„ู‡ุง ุจู‡ุฐุง ุงู„ุดูƒู„ ุชู…ุงู…ุŸ ุจุฏู‰ ุฃุฑูˆุญ ุฃุฌูŠุจ ู‡ู†ุง
215
00:23:23,560 --> 00:23:34,730
ูุงูŠ ุงุฑุชุณ ุงุฑุฒูŠุฑูˆ as a function of xุทุจุนุง ุงู„ X ู…ูŠู† ูŠุง
216
00:23:34,730 --> 00:23:41,130
ุดุจุงุจ ุงู„ X ุงูŠ ุนู†ุตุฑ ู…ู† ู‡ุฏูˆู„ ู…ูŠู† ู…ุงูƒุงู† ูŠูƒูˆู† ูŠุจู‚ู‰ ู‡ุฐุง
217
00:23:41,130 --> 00:23:45,870
ู„ูƒู„ ุงู„ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G ูŠุจู‚ู‰ ู‡ุฐุง ุญุณุจ ุงู„
218
00:23:45,870 --> 00:23:52,890
definition ุจุฏู‡ ูŠุณุงูˆูŠ R node X R node inverse ุญุฏ
219
00:23:52,890 --> 00:23:59,030
ููŠูƒู… ูŠู‚ุฏุฑ ูŠู‚ูˆู„ูŠ ู‚ุฏุงุด ุงู„ู†ุงุชุฌุŸูƒุฏุงุดุŸ X ู„ุฃู† ู‡ุฐุง ู‡ูˆ ุงู„
220
00:23:59,030 --> 00:24:02,450
identity element ูˆู…ุนูƒูˆุณ ุงู„ identity element ุงู„
221
00:24:02,450 --> 00:24:06,210
identity element ู†ูุณู‡ ูˆูŠุถุฑุจู‡ ููŠ ุฃูŠ element ุจูŠุนุทูŠู†ุง
222
00:24:06,210 --> 00:24:12,790
ู†ูุณ ุงู„ element ุทูŠุจ ูƒูˆูŠุณ ุงุฐุง ุชุฃุซูŠุฑ ููŠ ุงุฑู†ูˆุฏ ุนู„ู‰
223
00:24:12,790 --> 00:24:17,350
ุฌู…ูŠุน ุฃู†ุงุตุฑ ุฌูŠู‡ ุจูŠุนุทูŠู†ูŠ ุฌู…ูŠุน ุฃู†ุงุตุฑ ุฏูŠ ุญุท ุนู„ู‰ ุดุฌุฑุฉ
224
00:24:17,350 --> 00:24:24,350
ุงู„ุงู† ุจุฏุงุฌุฉ ุงุฎุฏ ููŠ ุงุฑ ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† as a function of
225
00:24:24,350 --> 00:24:33,860
XูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ R180 X R180 Inverse
226
00:24:33,860 --> 00:24:41,360
ุงู„ุณุคุงู„ ู‡ูˆ ู‚ุจู„ ู…ุณุงูุฑ ุงุนุทูŠุชูƒูˆุง ุงู„ center ุชุจุน ุงู„ D4
227
00:24:41,360 --> 00:24:46,860
ุงูˆ ุงู„ DN ู‚ู„ู†ุง ู„ูƒูˆุง ุงุฐุง ุงู„ N ูุฑุฏูŠ ูŠุจู‚ู‰ ุงู„ center
228
00:24:46,860 --> 00:24:53,340
ู…ุงููŠู‡ ุงู„ุง ุงู„ identity elementูˆุฅุฐุง ุงู„ู€ DN ุงู„ู€ N
229
00:24:53,340 --> 00:24:58,140
ุฒูˆุฌูŠ ูŠุจู‚ู‰ ููŠู‡ุง ุงู„ู€ Identity Element ูˆุงู„ู€ R180 ุตุญูŠุญ
230
00:24:58,140 --> 00:25:02,860
ูˆู„ุง ู„ุฃุŸ ุฅุฐุง ุงู„ู€ R180 ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Center ูŠุนู†ูŠ
231
00:25:02,860 --> 00:25:10,100
ูƒู…ูŠูˆุชุณ ู…ุน ุฌู…ูŠุน ุนู†ุงุตุฑ D4 ุฅุฐุง ู‡ุฐู‡ ู„ูˆ ุจุฏู„ุชู‡ุง ู‡ู†ุง ุจุตูŠุฑ
232
00:25:10,100 --> 00:25:14,400
X R180 IR Inverse ุงู„ู„ูŠ ู‡ูŠ ุจุงู„ู€ Identity ูŠุจู‚ู‰ ู†ุงุชุฌ
233
00:25:14,400 --> 00:25:15,660
ูƒุฏู‡ ุจุฏู‡ ูŠุนุทูŠู†ุง
234
00:25:19,650 --> 00:25:27,540
ู„ุฃู† ุงู„ู€ R 180 ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ Center ุชุจุน ุงู„ู€ D4ุทุจ ู…ู†
235
00:25:27,540 --> 00:25:33,520
ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ุฅุฐุง ุงู„ู†ุงุชุฌ ู‡ูˆ ู†ูุณู‡ ู…ุนู†ุงุชู‡ ููŠ ุงุฑ ู†ูˆุช
236
00:25:33,520 --> 00:25:37,200
ุชุฃุซูŠุฑู‡ุง ุนู„ู‰ ุงู„ elements ุจุชุณุงูˆูŠ ููŠ ุงุฑ ู†ูˆุช ุชุฃุซูŠุฑู‡ุง
237
00:25:37,200 --> 00:25:40,920
ุนู„ู‰ ุงู„ุงุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุชุฃุซูŠุฑู‡ุง ุนู„ู‰ ุงู„ elements ูŠุจู‚ู‰
238
00:25:40,920 --> 00:25:49,640
ุฃุตุจุญ ููŠ ุงุฑ ู†ูˆุช ุจุชุณุงูˆูŠ ููŠ ุงุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุชู…ุงู… ูŠุจู‚ู‰
239
00:25:49,640 --> 00:25:53,600
ู‡ุฏูˆู„ ููŠ ุงู„ atom morphism ุนู†ุตุฑูŠู† ูˆู„ุง ุนู†ุตุฑ ูˆุงุญุฏ
240
00:25:54,780 --> 00:26:01,440
ุงู†ุตุฑูŠู† ูˆู„ุง ูˆุงุญุฏ ูˆุงุญุฏ ู…ู…ุชุงุฒ ุฌุฏุง ุทูŠุจ ุชุนุงู„ู‰ ู†ุดูˆู ูุงูŠ
241
00:26:01,440 --> 00:26:10,120
R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุชุซูŠุฑู‡ุง ุนู„ู‰ X ูŠุจู‚ู‰ ู‡ุฐู‡
242
00:26:10,120 --> 00:26:19,700
R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† X R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† inverse ูˆุชุณุงูˆูŠุงูŠุด
243
00:26:19,700 --> 00:26:28,240
ุฑุงูŠูƒ ุงู„ R270 ุจู‚ุฏุฑ ุงูƒุชุจู‡ุง R180 ู…ุถุฑูˆุจุฉ ููŠ R90 ุตุญูŠุญ
244
00:26:28,240 --> 00:26:33,500
ูˆู„ุง ู„ุงุŸู„ุฃู† ู‡ุฐู‡ ู†ูุณู‡ุง ุงู„ rotation ู‡ูˆ ู†ูุณู‡ ู…ุงุนู†ุงู‡ ู…ุด
245
00:26:33,500 --> 00:26:39,960
ู…ุดูƒู„ุฉ ุทูŠุจ ู‡ู†ุง ุงู„ X ุงู„ R ู…ูŠุชูŠู† .. ุงู‡ ู‡ุฐู‡ R ู…ูŠุชูŠู† ูˆ
246
00:26:39,960 --> 00:26:45,220
ุณุจุนูŠู† inverse ุญุณุจ ุงู„ุชุนุฑูŠู ุทุจุนุง ูŠุจู‚ู‰ R ู…ูŠุชูŠู† ูˆ
247
00:26:45,220 --> 00:26:49,120
ุณุจุนูŠู† inverse ููŠ ุงู„ H ู…ุด ุฎู„ูŠู†ูŠ ุงุณุฃู„ูƒูˆุง ุงู„ุณุคุงู„
248
00:26:49,120 --> 00:26:56,640
ุงู„ุชุงู„ูŠ R ุชู„ุชู…ูŠุฉ ูˆ ุณุชูŠู† ูƒุฏู‡ุด ุชุณุงูˆูŠ ูŠุง ุดุจุงุจ ุงุฑู†ูˆุฏ
249
00:26:56,640 --> 00:27:06,420
ุทุจุนุงุทูŠุจ ุงุฑู†ูˆุฏ ู„ูˆ ุถุฑุจุชู‡ุง ููŠ R ุชุณุนูŠู† ุงู†ูุฑุณ ุจูŠุตูŠุฑ ุงู„
250
00:27:06,420 --> 00:27:17,440
R ู…ูŠุชูŠู† ูˆ ุณุจุนูŠู† ุชุณุงูˆูŠ ุงู„ R ุชุณุนูŠู† ุงู†ูุฑุณ ูŠุนู†ูŠ ุถุฑุจุช
251
00:27:17,440 --> 00:27:24,200
ุงู„ุทุฑููŠู† ููŠ ู…ูŠู†ุŸุฑ ุชุณุนูŠู† ุงู†ูุฑุณ ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุงู„ุงุฑ
252
00:27:24,200 --> 00:27:30,500
ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุงู†ูุฑุณ ุงู„ุงุฑ ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุงู†ูุฑุณ ู„ูˆ ุจุฏุฃ
253
00:27:30,500 --> 00:27:35,660
ุงุฎุฏ ุงู„ุงู†ูุฑุณ ู‡ู†ุง ูŠู‚ูˆู„ ู‡ูŠุนุทูŠู†ูŠ ู…ู† ุงู„ุงู†ูุฑุณ ู‡ู†ุง ูŠุจู‚ู‰
254
00:27:35,660 --> 00:27:43,180
ุงู„ุงุฑ ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุงู†ูุฑุณ ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุงุฑ ุชุณุนูŠู† ุทูŠุจ
255
00:27:45,430 --> 00:27:54,010
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐู‡ ุงู„ R ุงู„ุชูŠ ู‡ูŠ
256
00:27:54,010 --> 00:28:02,850
R ุชุณุนูŠู† inverse ููŠ R ู…ูŠุฉ ูˆุชู…ุงู†ูŠู† inverseุงู„ู€ R 180
257
00:28:02,850 --> 00:28:07,570
ู…ูˆุฌูˆุฏุฉ ู…ุน ุงู„ู€ Center ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุจ ุชู‡ุงุฏูŠ ู…ุนู‡ุฏุด ุจุตูŠุฑ
258
00:28:07,570 --> 00:28:15,670
ุงู„ู€ Identity Element ูŠุจู‚ู‰ ุจุตูŠุฑ ุงู„ู†ุงุชุฌ R 90 X R 90
259
00:28:15,670 --> 00:28:21,410
Inverse ุฃู„ูŠุณ ุชู‡ุงุฏูŠ ุนู„ู‰ ุงู„ุตูŠุบุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง
260
00:28:21,410 --> 00:28:31,640
ู‡ุฐู‡ุŸูŠุจู‚ู‰ ู‡ุฐู‡ ูุงูŠ R ุชุณุนูŠู† ูŠุจู‚ู‰ ู‡ุฐู‡ ูุงูŠ R ุชุณุนูŠู† as a
261
00:28:31,640 --> 00:28:39,440
function of X ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุนู†ุฏ ู‡ู†ุง ู…ูŠู† ูุงูŠ
262
00:28:39,440 --> 00:28:48,640
R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ุจุฏู‡ ุณูˆู‰ ูุงูŠ R ุชุณุนูŠู† ู‡ุฐู‡ ุจุฑูˆุฒู†ุงู‡ุง
263
00:28:48,640 --> 00:28:54,030
ูˆู‡ุฐู‡ ุจุฑูˆุฒู†ุงู‡ุง ุงู„ู†ุชูŠุฌุฉ ุงู„ู„ูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุงูŠุจู‚ู‰ ุฎู„ุตู†ุง
264
00:28:54,030 --> 00:28:59,650
ู…ู† R ู†ูˆุฏ ูˆ ู…ู† R ุชุณุนูŠู† ูˆ ู…ู† R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ูˆ ู…ู† R
265
00:28:59,650 --> 00:29:07,710
ู…ูŠุชูŠู† ูˆ ุณุจุนูŠู† ุจุฏู†ุง ู†ุฌูŠ ู„ุงู…ุงู… ู„ูุงูŠ H as a function
266
00:29:07,710 --> 00:29:19,670
of X ูŠุจู‚ู‰ H X H inverse ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ุจุงู„ุฏุฌู„ ุงู„
267
00:29:19,670 --> 00:29:26,360
H ุนู†ุฏู†ุงู„ูˆ ุฑูˆุญุช ูุชุญุช ุนู„ู‰ ุงู„ุฌุฏูˆู„ ุตูุญุฉ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู†
268
00:29:26,360 --> 00:29:33,100
ุชุงุจุน ุงู„ูƒู„ุชุงุจ ุงู„ู„ุงู…ุงู† ู„ู„ ุฏูŠ ููˆุฑ ุตูุญุฉ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู†
269
00:29:33,100 --> 00:29:40,460
ูˆุฑูˆุญ ุชุฏูˆุฑ ุนู„ู‰ ุญ ู…ู…ูƒู† ุชุณุงูˆูŠ ู‡ู„ุงุฌูŠู‡ุง R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู†
270
00:29:40,460 --> 00:29:47,490
ููŠ VูŠุจู‚ู‰ ุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ V ู‡ูŠ ุงู„ H ุฅุฐุง ู…ู…ูƒู†
271
00:29:47,490 --> 00:29:56,890
ุฃุดูŠู„ู‡ุง ูˆ ุฃูƒุชุจ ุฑ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† V ููŠ ุงู„ X ููŠ ุงู„ R ู…ูŠุฉ
272
00:29:56,890 --> 00:30:05,800
ูˆ ุชู…ุงู†ูŠู† V ู„ูƒู„ inverseุทุจ ู„ูŠุด ูƒุชุจุชู‡ุง ู‡ูŠูƒุŸ ุนุดุงู† ุฃุณู‡ู„
273
00:30:05,800 --> 00:30:10,180
ุนู…ู„ูŠุฉ ุงู„ุงุฎุชุตุงุฑุงุช ูŠุนู†ูŠ ุจุฏูŠ ุฃุญุงูˆู„ ุฃูƒุชุจู‡ุง ุจุฏู„ุงู„ุฉ ู…ู†ุŸ
274
00:30:10,180 --> 00:30:14,560
ุจุฏู„ุงู„ุฉ ุงู„ R180 ูƒูˆู† ุงู„ R180 ููŠ ุงู„ center ุฅุฐุง
275
00:30:14,560 --> 00:30:20,780
ุจุชุฎุชุตุฑู†ูŠ ู†ุต ุงู„ุดูŠุก ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ
276
00:30:20,780 --> 00:30:23,060
R180
277
00:30:25,010 --> 00:30:33,570
ูู‰ V ูู‰ ุงู„ X ู‡ุฐู‡ ุงู„ inverse ุงู„ู„ู‰ V inverse R ู…ูŠุฉ ูˆ
278
00:30:33,570 --> 00:30:40,030
ุชู…ุงู†ูŠู† inverse ุทุจ ู‡ุฐู‡ ู„ูˆ ุฌุจุช ุนู†ุฏู‡ุง ุฏูŠ ุจู‚ู‰ ูƒู… ุจุตูŠุฑ
279
00:30:40,030 --> 00:30:48,770
ุจุงู„ identity ุงูŠุด ุจุตูŠุฑ ุนู†ุฏู†ุง ู‡ู†ุง VX V inverse ูŠุจู‚ู‰
280
00:30:48,770 --> 00:30:57,900
ู‡ุฐู‡ ู…ูŠู† ู‡ุฐู‡ Phi V of XูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ุนู†ุฏูŠ ูุงูŠ
281
00:30:57,900 --> 00:31:06,700
H ู‡ูŠ ุนุจุงุฑุฉ ุนู† ูุงูŠ V ุจู‚ู‰ ุงู„ู„ูŠ ุนู†ุฏูŠ ุฃุฎุฑ ุญุงุฌุฉ ูุงูŠ D
282
00:31:06,700 --> 00:31:14,780
Prime as a function of X ูŠุจู‚ู‰ ู‡ูŠ D Prime X D Prime
283
00:31:14,780 --> 00:31:21,100
Inverseุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู„ู‰ ุฌุจุช ููŠู‡ุง H ุจุฏู‰ ุฃุฑูˆุญ ุฃุฌูŠุจ
284
00:31:21,100 --> 00:31:28,460
D' ุจุฑูˆุญ ุจูุชุญ ุงู„ุฌุฏูˆู„ ุตูุญุฉ ูˆุงุญุฏ ูˆ ุชู„ุงุชูŠู† ุนู„ู‰ ุงู„ D'
285
00:31:29,220 --> 00:31:35,820
ุนู„ู‰ ู…ู†ุŸ ุนู„ู‰ ุงู„ D' ุจุฏู‰ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุนุดุงู† ูŠุฌูŠุจู„ูŠ
286
00:31:35,820 --> 00:31:42,530
D' ุจุตูŠุฑ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ DูŠุจู‚ู‰ ุจุดูŠู„ู‡ุง ูˆ ุจูƒุชุจ
287
00:31:42,530 --> 00:31:51,250
ุจุฏุงู„ู‡ุง R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ D ููŠ X ููŠ ุงู„ R ู…ูŠุฉ ูˆ
288
00:31:51,250 --> 00:31:58,270
ุชู…ุงู†ูŠู† ููŠ D ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู…
289
00:31:58,270 --> 00:32:02,370
ุจูŠุตูŠุฑ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ููŠ D
290
00:32:12,070 --> 00:32:18,930
ูŠุจู‚ู‰ ู‡ุฐู‡ ู…ุน ู‡ุฐู‡ ุจู…ูŠู† ุจุงู„ identity element ุชู…ุงู…
291
00:32:18,930 --> 00:32:26,920
ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ู‡ุชุนุทูŠูƒ DX D inverseู‡ุฐู‡ ู‡ูŠ ุนุจุงุฑุฉ ุนู†
292
00:32:26,920 --> 00:32:35,380
main ูุงูŠุฏูŠ of x ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุฃุตุจุญ ูุงูŠุฏูŠ prime
293
00:32:35,380 --> 00:32:38,300
ุจุฏู‡ ูŠุณุงูˆูŠ ูุงูŠุฏูŠ
294
00:32:40,110 --> 00:32:45,830
ูŠุจู‚ู‰ ุงู„ุชู…ุงู†ูŠุฉ inner atomorphism
295
00:32:45,830 --> 00:32:54,030
ุตุงุฑูˆุง ูƒุฏู‡ุŸ ุฃุฑุจุนุฉ ูˆู„ูŠุณุช ุชู…ุงู†ูŠุฉ ุงู„ุฃุฑุจุน ุตุงุฑูˆุง ุนู„ู‰
296
00:32:54,030 --> 00:32:55,850
ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ
297
00:33:11,130 --> 00:33:19,170
ูŠุจู‚ู‰ ู‡ู†ุง ุณุง ุงู„ inner atomorphism ู„ D for ู‡ูˆ ุนุจุงุฑุฉ
298
00:33:19,170 --> 00:33:26,130
ุนู† ุงู„ ููŠ R ู†ูˆุช ุทุจุนุง ูŠุณูˆูŠ ููŠ R ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ูˆุงู„ุชุงู†ูŠ
299
00:33:26,130 --> 00:33:33,850
ููŠ R ุชุณุนูŠู† ุงู„ู„ูŠ ูŠุณูˆูŠ ููŠ R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ูˆุงู„ุชุงู„ุช
300
00:33:33,850 --> 00:33:39,690
ุงู„ู„ูŠ ู‡ูˆ ููŠ H ูˆุงู„ุฑุงุจุน ุงู„ู„ูŠ ู‡ูˆ main ููŠ D ุจู‡ุฐุง ุงู„ุดูƒู„
301
00:33:40,480 --> 00:33:46,740
ูŠุจู‚ู‰ ู‡ุฏูˆู„ ุงู„ inner atomorphism ู„ู…ู†ุŸ ู„ู€G ุงู„ุณุคุงู„ ู‡ูˆ
302
00:33:46,740 --> 00:33:53,380
ู‡ู„ ุงู„ inner atomorphism ู„ู€G ุฃู‚ู„ ู…ู† ุฐู„ูƒ ูˆ ุงู„ู„ู‡ูŠู‡ู…
303
00:33:53,380 --> 00:33:58,720
ุงู„ุฃุฑุจุนุฉ ููŠุด ุบูŠุฑู‡ู… ุจู…ุนู†ู‰ ุฃุฎุฑ ู‡ู„ ุงู„ุฃุฑุจุนุฉ ู‡ุฏูˆู„ ุจู‚ุฏุฑ
304
00:33:58,720 --> 00:34:04,040
ุฃุฎุณุฑู‡ู… ู„ุชู„ุงุชุฉ ูˆู„ุง ู„ุงุชู†ูŠู† ุชุนุงู„ูˆุง ู†ุดูˆููˆุง ู†ุชุฃูƒุฏ ู…ู†
305
00:34:04,040 --> 00:34:09,640
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ุง ุฃุฏุนูŠ ุฃู† ู‡ุฐู‡ ุงู„ุฃุฑุจุนุฉ are destined
306
00:34:10,700 --> 00:34:21,380
ูŠุจู‚ู‰ ู‡ู†ุง this ุฃูˆ the elements ู„ู‡ five R node ูˆfive
307
00:34:21,380 --> 00:34:29,580
R ุชุณุนูŠู† ูˆfive H and ุงู„ููŠ
308
00:34:29,580 --> 00:34:31,260
ุฏูŠ are destiny
309
00:34:34,120 --> 00:34:38,580
ุฅุฐุง Destinate ู…ุนู†ุงุชู‡ ุฅูŠู‡ุŸ ู…ุนู†ุงุชู‡ ุฅู†ู‡ ูุนู„ุง ุงู„ู€
310
00:34:38,580 --> 00:34:43,080
Inner Atomorphism ููŠู‡ ุงู„ู€D ูˆ ุงู„ู€G ู…ุงููŠุด ููŠู‡ ุฅู„ุง
311
00:34:43,080 --> 00:34:49,600
ุงู„ุฃุฑุจุน ุนู†ุงุตุฑ ู‡ุฏูˆู„ ุฃูˆ ุงู„ุฃุฑุจุน Inner Atomorphism ู…ุดุงู†
312
00:34:49,600 --> 00:34:54,540
ุฃุซุจุชู‡ู… Destinate ูŠูƒููŠู†ูŠ counter example ูˆุงุญุฏ ู„ูƒู„
313
00:34:54,540 --> 00:34:59,670
ูˆุงุญุฏุฉ ููŠู‡ู… ุชุนุงู„ู‰ ู†ุดูˆูุงู„ุงู† ุงู†ุง ุงุฏุนู‰ ุงู†ู‡ู… ู‡ุฐูˆู„
314
00:34:59,670 --> 00:35:06,830
destinect ุงุฐุง ู„ูˆ ุฌูŠุช ู‚ู„ุช ูุงูŠ ุงุฑ ู†ูˆุฏ ูˆ ุจุฏู‡ ุงุฎู„ูŠู‡
315
00:35:06,830 --> 00:35:15,910
ุงุซุฑ ู…ุซู„ุง ุนู„ู‰ ุงุชุด ุงุฎุฏ ุงุชุด ุนุดูˆุงุฆูŠุง ู…ู† ุงู„ D4 ูŠุจู‚ู‰ ู‡ุฐุง
316
00:35:15,910 --> 00:35:23,290
ุจุฏู‡ ูŠุณูˆูŠ ุงุฑ ู†ูˆุฏ ุงุชุด ุงุฑ ู†ูˆุฏ ุงู„ู„ูŠ ู‡ูˆ main ุจ ุงุชุดุงู„ุงู†
317
00:35:23,290 --> 00:35:31,170
ุจุฏุฃ ุงุฎุฏ ูุงูŠ R ุชุณุนูŠู† as a function of H ูŠุจู‚ู‰ ู‡ุฐุง
318
00:35:31,170 --> 00:35:39,850
ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ R ุชุณุนูŠู† H R ุชุณุนูŠู† inverse ูˆ ูŠุณุงูˆูŠ
319
00:35:39,850 --> 00:35:46,370
ุจุฑุถู‡ ุจุฏู‡ ุงุฑุฌุน ู„ู„ุฌุฏูˆู„ R ุชุณุนูŠู† H ุงู„ู„ูŠ ููŠ ุตูุญุฉ ูˆุงุญุฏุฉ
320
00:35:46,370 --> 00:35:55,890
ูˆ ุชู„ุงุชูŠู† R ุชุณุนูŠู† HR ุชุณุนูŠู† ุชุถุฑุจู‡ุง ููŠ H ุจูŠุทู„ุน D
321
00:35:55,890 --> 00:36:02,590
Prime ูŠุจู‚ู‰ ู‡ุฐูŠ D Prime R ุชุณุนูŠู† Inverse ุงู„ู„ูŠ ู‡ูŠ
322
00:36:02,590 --> 00:36:09,250
ุจู…ูŠู† ุจR ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ูŠุจู‚ู‰ R ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ุงู„ D
323
00:36:09,250 --> 00:36:13,950
Prime ููŠ ุงู„ R ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ุนู†ุฏูƒ D Prime ููŠ ุงู„ R
324
00:36:13,950 --> 00:36:20,340
ู…ูŠุชูŠู† ูˆุงู„ุณุจุนูŠู† ุงู„ู„ูŠ ู‡ูˆ ุจูŠุนุทูŠู„ูƒ V ุจูŠุนุทูŠู„ูƒ Vู‡ุฐู‡
325
00:36:20,340 --> 00:36:29,460
ุงุนุทุชู†ู‰ H ูˆู‡ุฐู‡ ุงุนุทุชู†ู‰ V ุฅุฐุง ู„ุง ูŠู…ูƒู† ู„ู„ R ู„ู„ FI R
326
00:36:29,460 --> 00:36:37,460
ุชุณุนูŠู† ุงู†ู‡ ูŠุณุงูˆูŠ ู…ูŠู† ุงู†ู‡ ูŠุณุงูˆูŠ ุงู„ FI R ู†ูˆุช ุงู„ุงู†
327
00:36:37,460 --> 00:36:45,240
ุจุงู„ู…ุซู„ ู„ูˆ ุฌูŠุช ู‚ูˆู„ุช FI R ุชุณุนูŠู† ุจุฏูŠ ุงุจุญุซู‡ุง ู…ุน ู…ูŠู† ู…ุน
328
00:36:45,240 --> 00:36:50,710
FI H ุจุฏูŠ ุงุซุจุช ุงู†ู‡ ู…ููŠุด ุชุณุงูˆูŠ ููŠู…ุง ุจูŠู†ู‡ู…ุงูŠุจู‚ู‰ ููŠ ุงุฑ
329
00:36:50,710 --> 00:36:57,030
ุชุณุนูŠู† ู…ุซู„ุง ู„ูˆ ุฎู„ุชู‡ุง ุชุฃุซุฑ ุนู„ู‰ ุงุฑ ุชุณุนูŠู† ูŠุจู‚ุงุด ุจูŠุตูŠุฑ
330
00:36:57,030 --> 00:37:05,510
ุงุฑ ุชุณุนูŠู† ุงุฑ ุชุณุนูŠู† ุงุฑ ุชุณุนูŠู† ุงู†ูุฑุณ ุงู„ู„ูŠ ู‡ูˆ ุจู‚ุฏุงุด ุงุฑ
331
00:37:05,510 --> 00:37:14,770
ุชุณุนูŠู† ุงู„ุงู† ุจุฏูŠ ุงู†ุง ุงุฎุฏ ููŠ ุงุชุดุฑ ุชุณุนูŠู† ูŠุจู‚ู‰ ู‡ุฐุง
332
00:37:14,770 --> 00:37:24,750
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ H R ุชุณุนูŠู† H inverse ูŠุจู‚ู‰
333
00:37:24,750 --> 00:37:30,090
H inverse Y ูŠุณุงูˆูŠ ุจุงู„ุฏุงุฌู„ ุงู„ H R ุชุณุนูŠู† ุจุฑุถู‡ ู…ู†
334
00:37:30,090 --> 00:37:37,710
ุตูุญุฉ ูˆุงุญุฏุฉ ูˆุชู„ุงุชูŠู†ุจุฏูŠ ู…ู†ุŸ ุจุฏูŠ ุงู„ H R ุชุณุนูŠู† ุนู†ุฏูƒ ุงู„
335
00:37:37,710 --> 00:37:46,570
H R ุชุณุนูŠู† ุงู„ู„ูŠ ู‡ูŠ ุจ D ุฏูŠ ุฏูŠ ุทุจ ูˆ ุงู„ H ุงู†ูุฑุณ ู…ุด ู‡ูŠ
336
00:37:46,570 --> 00:37:54,720
H ูŠุง ุดุจุงุจ ูˆู„ุง ู„ุงุŸ ุณูƒุช ุงู„ุดุนุจุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡
337
00:37:54,720 --> 00:37:59,260
ู‡ูˆ ุงู„ุฑุงุญุฉ H ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ V ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ D ุชุฑุจูŠู‡ุง
338
00:37:59,260 --> 00:38:03,460
ุชุณุงูˆูŠ D ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ ุงู„ identity ู‚ูˆู„ู†ุง ูŠุจู‚ู‰ ุงู„ู€H
339
00:38:03,460 --> 00:38:06,900
ูˆุงู„ู€H inverse DD inverse VV inverse D prime ูŠุง D
340
00:38:06,900 --> 00:38:10,480
prime inverseุŒ ู…ุธุจูˆุทุŸ ุฅุฐุง ุงุดูŠู„ุชู‡ุง ูˆุญุทูŠุช ู‚ูŠู…ุชู‡ุงุŒ
341
00:38:10,480 --> 00:38:16,680
ุงู„ุขู† ุจุฏูŠ ุฃุดูˆู ุงู„ู€DH ู…ูŠู† ู‡ูŠุŒ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช ู„ู€D ููŠ HุŒ
342
00:38:16,680 --> 00:38:25,460
D ููŠ H ุจุงู„ู„ูŠ ุจู‚ู‰ 270ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ ุงู„ุงุฑ ู…ุชูŠู†
343
00:38:25,460 --> 00:38:30,980
ูˆุณุจุนูŠู† ูŠุจู‚ู‰ ู…ู† ุงู„ุงุชู†ูŠู† ู‡ุฏูˆู„ ู…ุนู†ุงู‡ ู‡ุฐุง ุงู„ูƒู„ุงู… ุงู„ู„ูŠ
344
00:38:30,980 --> 00:38:37,780
ู‡ูˆ ูุงูŠ ุงุฑ ุชุณุนูŠู† ู„ุง ูŠู…ูƒู† ุงู† ุชุณุงูˆูŠ ุงู„ูุงูŠ ุงุชุด ุงู„ู„ูŠ
345
00:38:37,780 --> 00:38:43,590
ุนู†ุฏู†ุง ุจู‚ู‰ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู…ูŠู† ุจู‚ู‰ ุงู„ูุงูŠุฏูŠู†ุงู„ุงู† ุงุญู†ุง
346
00:38:43,590 --> 00:38:47,850
ุจูŠุงู†ู†ุง ู‡ู‰ ุงู„ุชู†ุชูŠู† ุงู„ุงูˆู„ู‰ ู†ูŠุงุชู‰ ูˆ ู‡ู‰ ุงู„ุชู†ุชูŠู†
347
00:38:47,850 --> 00:38:53,850
ุงู„ุชุงู†ูŠุงุช ูˆ ู‡ู‰ ุงู„ุชู†ุชูŠู† ุงู„ู„ู‰ ุจุนุถู‡ู… ูุงูŠ R ุชุณุนูŠู† ุจุฑุถู‡
348
00:38:53,850 --> 00:38:59,770
ุจุฏู‡ ูŠุฎู„ู‰ ูŠุฃุซุฑ ุนู„ู‰ R ุชุณุนูŠู† ุงุนุทุงู†ู‰ R ุชุณุนูŠู† itself
349
00:38:59,770 --> 00:39:08,140
ุจุฏู‡ ุงุฎุฏ ุงุฎุฑ ูˆุงุญุฏุฉ ูุงูŠ Dู„ู…ุง ุชุฃุซุฑ ุนู„ู‰ R ุชุณุนูŠู† ูŠุจู‚ู‰
350
00:39:08,140 --> 00:39:16,660
ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ DR ุชุณุนูŠู† D inverseู‡ูˆ ูŠุณุงูˆูŠ ุจุฏูŠ
351
00:39:16,660 --> 00:39:22,760
ุฃุฌูŠุจ ู„ู‡ ุงู„ D R ุชุณุนูŠู† ู…ู† ุงู„ุฌุฏูˆู„ ุงู„ D R ุชุณุนูŠู† ุนุจุงุฑุฉ
352
00:39:22,760 --> 00:39:30,140
ุนู† V ูŠุจู‚ู‰ ู‡ุฐู‡ V ูˆ ุงู„ D inverse ู‡ูŠ ุนุจุงุฑุฉ ุนู† D ุจุฏูŠ
353
00:39:30,140 --> 00:39:38,300
ุฃุฌูŠุจ ู„ู‡ ุงู„ V ููŠ D ูŠุจู‚ู‰ ุงู„ V ููŠ D ุงู„ู„ูŠ ูŠุจู‚ู‰ R ู…ูŠุชูŠู†
354
00:39:38,300 --> 00:39:46,120
ูˆุณุจุนูŠู†ูŠุจู‚ู‰ ู‡ุฐู‡ ุชุณุงูˆูŠ R ู…ูŠุชูŠู† ูˆุณุจุนูŠู† ู…ู„ูŠ ุงุชู†ูŠู† ู‡ุฏูˆู„
355
00:39:46,120 --> 00:39:54,260
ุจุณ ุชู†ุชุฌ ุงู† ุงู„ูุงูŠ R ุชุณุนูŠู† ู„ุง ูŠู…ูƒู† ุงู† ุชุณุงูˆูŠ ุงู„ูุงูŠ D
356
00:39:55,610 --> 00:40:00,970
ุงู„ู„ูŠ ุนู…ู„ุชู‡ ุงู†ุง ู„ุณู‡ ุดุบู„ุฉ ุงุซุจุช ุงู† ุงู„ู€ Phi R ุชุณุนูŠู† ู„ุง
357
00:40:00,970 --> 00:40:05,030
ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูˆู„ุง ุจุชุณุงูˆูŠ ู‡ุฐู‡ ูˆู„ุง ุจุชุณุงูˆูŠ ู‡ุฐู‡ ุงู„ุงู† ุงู†ุช
358
00:40:05,030 --> 00:40:09,710
ุจูƒุชุจ ุงู† ุงู„ Phi H ุจุณุงูˆูŠุด ู‡ุฐู‡ Phi H ุจุณุงูˆูŠุด ู‡ุฐู‡ ูˆ Phi
359
00:40:09,710 --> 00:40:14,590
H ุจุณุงูˆูŠุด ู‡ุฐู‡ ูˆ ุจุนุฏูŠู† Phi D ูŠุจู‚ู‰ ุจุฑูˆุญ ุจู‚ูˆู„ู‡
360
00:40:14,590 --> 00:40:15,910
similarly
361
00:40:18,410 --> 00:40:28,530
similarly for ุงู„ู„ูŠ ู‡ูˆ ูุงูŠ ุงุชุด and ูุงูŠ ุฏูŠ thus ูˆ
362
00:40:28,530 --> 00:40:35,850
ู‡ูƒุฐุง ุงู„ inner atom morphism ุงู„ู„ูŠ ุฏูŠ for ู‡ูˆ ุนุจุงุฑุฉ
363
00:40:35,850 --> 00:40:46,050
ุนู† ุงู„ูุงูŠ ุงุฑ ู†ูˆุฏ ูˆ ุงู„ูุงูŠ ุงุฑ ุชุณุนูŠู† ูˆ ุงู„ูุงูŠ ุงุชุด ูˆ
364
00:40:46,050 --> 00:40:55,540
ุงู„ูุงูŠ ุฏูŠูู‚ุท ู„ุง ุบูŠุฑ ุทูŠุจ ุจุฏูŠ ุฃุณุฃู„ ุงู„ุณุคุงู„ ุงู„ุชุงู„ูŠ ุฃู†ุง
365
00:40:55,540 --> 00:41:01,360
ุฃุฎุฏ ุชุฃุซูŠุฑ ุงู„ R node ุนู„ู‰ H ูˆ R node ุนู„ู‰ H ุทุจ ู„ูˆ
366
00:41:01,360 --> 00:41:08,060
ุบูŠุฑุช ุงู„ H ู‡ุฐู‡ ูŠู…ูƒู† ูŠุทู„ุน ุงุชู†ูŠู† ุฒูŠ ุจุนุถ ุงู‡ ุฏูŠุฑ ุจุงู„ูƒ
367
00:41:08,060 --> 00:41:13,370
ุงุตุจุฑ ุดูˆูŠุฉ ุงุตุจุฑ ุนู„ูŠุง ุดูˆูŠุฉุงู†ุง ู‡ู†ุง ุงุซุจุช ู„ู‡ ุงู† ุงู„ุงุฑุฏ
368
00:41:13,370 --> 00:41:18,690
ู†ูˆุฏ ุงู„ุงุฑุฏ ู†ูˆุฏ ู‡ูŠ ุงู„ุงุฑุฏ ู…ูŠุฉ ูˆ ุชู…ุงู†ูŠู† ุนู„ู‰ ู…ูŠู† ุนู„ู‰
369
00:41:18,690 --> 00:41:25,270
ุงูƒุณ ู‡ู„ ุงู„ X ุงุฎุชุฑุช ุฑู…ุฒ ู…ุนูŠู† ูˆู„ุง ุฌูŠุช ุนู„ู‰ ุชู…ุงู†ูŠุฉ ุฑู…ูˆุฒ
370
00:41:25,270 --> 00:41:30,770
ุนู„ู‰ ุชู…ุงู†ูŠุฉ ู…ู…ุชุงุฒ ุงุฐุงุฅุฐุง ุฃู†ุง ู„ู…ุง ุฃู‚ูˆู„ ู‡ุฐู‡ ู„ุง ุชุณุงูˆูŠ
371
00:41:30,770 --> 00:41:36,190
ู‚ุฏ ุชุณุงูˆูŠ ุนู„ู‰ ุจุนุถ ุงู„ุฑู…ูˆุฒ ูˆู„ุง ุชุณุงูˆูŠ ุนู„ู‰ ุงู„ุจุนุถ ุงู„ุขุฎุฑ
372
00:41:36,190 --> 00:41:41,050
ูŠุจู‚ู‰ ุฃู†ุง ุจุณ ุฌุจุช counter example ุฃู†ู‡ุง ู„ุง ุชุณุงูˆูŠ in
373
00:41:41,050 --> 00:41:46,430
general ู„ูƒู† ู‚ุฏ ูŠุญุฏุซ ุชุณุงูˆูŠ ุขุฎุฑ ู„ุง ู…ุดูƒู„ุฉ ููŠ ุฐู„ูƒ ู„ุฃู†
374
00:41:46,430 --> 00:41:52,620
ุฃู†ุง ุจุฏูŠ ุนุฏู… ุงู„ุชุณุงูˆูŠ ูŠูƒูˆู† ุนู„ู‰ ุงู„ูƒู„ ุจู„ุง ุงุณุชุซู†ุงุกุงุฐุง
375
00:41:52,620 --> 00:41:58,260
ู„ูˆ ู„ุฌูŠุช ุฑู…ุฒ ูˆุงุญุฏ ู…ู† ุงู„ุชู…ุงู†ูŠุฉ ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุญุงุตู„ ุฒูŠ
376
00:41:58,260 --> 00:42:04,160
ู…ุง ุดูˆูุช ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฏูˆู„ ูŠู…ูƒู† ุงู† ูŠุชุณุงูˆู‰ ุฑุบู… ุงู† ู‡ู…
377
00:42:04,160 --> 00:42:08,680
ู…ู…ูƒู† ูŠุชุณุงูˆู‰ ุนู„ู‰ ุจุนุถ ุงู„ุนู†ุงุตุฑ ู„ูƒู† in general ุนู„ู‰ D4
378
00:42:08,680 --> 00:42:15,720
ูƒู„ู‡ุง ุจุญุตู„ุด ุชุณุงูˆูŠ ูˆุงุถุญ ูƒู„ุงู…ูŠุŸ ุงูŠูˆุฉ ู…ุด ุณุงู…ุน ุงูŠุด
379
00:42:15,720 --> 00:42:18,220
ุจุชู‚ูˆู„ ู‡ู„ุตูˆุชูƒ
380
00:42:23,350 --> 00:42:24,650
ู…ูŠู† ุงู„ู…ุชุณุงูˆูŠู†ุŸ
381
00:42:33,630 --> 00:42:38,550
ู…ุงุนู†ุฏูŠุด ู…ุดูƒู„ุฉ ุงู†ุง ุจู‚ูˆู„ูƒ ุงู†ู‡ ู…ู…ูƒู† ูŠุญุตู„ ุชุณุงูˆูŠ ู„ูƒู†
382
00:42:38,550 --> 00:42:42,710
ุงุฐุง ุจุฏูƒ ุงู„ุชุณุงูˆูŠ ุนู„ู‰ ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ูˆู„ูŠุณ ุนู„ู‰ ุจุนุถู‡ุง
383
00:42:42,710 --> 00:42:47,130
ุนุดุงู† ูŠุญุตู„ ุงู„ุชุณุงูˆูŠ ุทุจุนุง ุงุฐุง ุงู†ุง ู…ู† ุงู„ุชู…ุงู† ุนู†ุงุตุฑ
384
00:42:47,130 --> 00:42:52,650
ูุจุนุฏ if ู„ูˆ ู„ุฌูŠุช ุนู†ุตุฑ ูˆุงุญุฏ ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุญุงุตู„ ุงุฐุง in
385
00:42:52,650 --> 00:42:56,670
general ุงู„ุชุณุงูˆูŠ ุบูŠุฑ ุญุงุตู„ู…ุดุงู† ูŠูƒูˆู† ุชุณุงูˆูŠ ุจุฏูŠ ูŠูƒูˆู†
386
00:42:56,670 --> 00:43:02,510
ู„ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ X ูŠุนู†ูŠ ุฌู…ูŠุน ุนู†ุงุตุฑ D4 ุงู„ุซู…ุงู†ูŠุฉ ุจู„ุง
387
00:43:02,510 --> 00:43:06,710
ุงุณุชุซู†ุงุก ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ู‡ุฏูˆู„ ุนู†ุงุตุฑ ุงู„ inner
388
00:43:06,710 --> 00:43:11,790
automorphism ุชุจุนุช ู…ู†ู‡ู… ุชุจุนุงุช ุงู„ D4 ุงู„ู„ูŠ ู‡ูˆ ุทู„ุจู‡ู…
389
00:43:11,790 --> 00:43:18,570
ูˆุจุงู„ุชุงู„ูŠ ุงู†ุชู‡ู‰ ู‡ุฐุง ุงู„ุณุคุงู„ ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุณุคุงู„
390
00:43:20,250 --> 00:43:24,970
ุงู„ุณุคุงู„ ุงู„ุขุฎุฑ ูˆู‡ูˆ very important ูˆ ู„ูˆ ุงู†ู‡ ู„ู… ูŠุจู‚ู‰
391
00:43:24,970 --> 00:43:45,030
ู„ู‡ ูˆู‚ุช ุงู„ุณุคุงู„ ุงู„ุขุฎุฑ ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ ุฎู„ูŠู‡
392
00:43:45,030 --> 00:43:47,330
ุจู„ูƒู† ูƒู…ุงู† example
393
00:43:51,320 --> 00:44:02,000
example ุจู‚ูˆู„ ุงู„ูƒู…ุจูŠูˆุช ุงุญุณุจู„ูŠ ุงู„ atomorphism ู„ z
394
00:44:02,000 --> 00:44:04,080
ู…ู†ูŠู† ู„ z ุนุดุฑุฉ
395
00:44:12,500 --> 00:44:17,500
ุฃู†ุง ุจุฏูŠ ุงุญุณุจ ู„ู‡ ูƒู„ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู€ Z10 ูŠุนู†ูŠ ุงู†ุง ุจุฏูŠ
396
00:44:17,500 --> 00:44:24,460
function ู…ู† Z10 ุฅู„ู‰ Z10 ุชุจู‚ู‰ ูˆุงู†ุช ูˆุงู† ูˆุงู†ุช ูˆ ุชุฎุฏู…
397
00:44:24,460 --> 00:44:29,800
ุฎุงุตูŠุฉ ู…ู† ุงู„ู€ isomorphism ูƒู„ function ุจู‡ุฐู‡ ุงู„ุทุฑูŠู‚ุฉ
398
00:44:29,800 --> 00:44:35,480
ุจุชุจู‚ู‰ ู…ูˆุฌูˆุฏ ูˆูŠู†ุŸ ููŠ ุงู„ุงุชูˆู…ูˆุฑูุฒู… ู„ู…ูŠู†ุŸ ู„ู€ Z10 ุทุจุนุง
399
00:44:35,480 --> 00:44:41,590
ู‡ู†ุซุจุช ุงู† ู‡ุฏูˆู„ ุฃุฑุจุนุฉ ูู‚ุท ู„ุบูŠุฑูˆู‡ุฐุง ู…ุง ุณูŠูƒูˆู† ููŠ
400
00:44:41,590 --> 00:44:45,690
ุงู„ู…ุญุงุถุฑุฉ ุจุนุถ ุงู„ุธู‡ุฑ ู„ุฅู†ู‡ ู…ุงุถู„ุด ู…ุนุงู†ุง ูˆุงุฌุฏ ุฅู„ุง ุชู…ุงู…ุŸ
401
00:44:45,690 --> 00:44:49,230
ู‡ุฐุง ุฃู†ุง ุจุบุดุดูƒ ู…ู† ุงู„ุญูŠู† ุฅุฐุง ู…ุนุงูƒ ุงู„ูƒุชุงุจ ู…ูˆุฌูˆุฏุฉ ููŠ
402
00:44:49,230 --> 00:44:53,890
ุงู„ูƒุชุงุจ ุชู…ุฑ ุนู„ูŠู‡ุง ูˆู„ู† ุชูู‡ู… ู…ู†ู‡ุง ุฅู„ุง ุงู„ู‚ู„ูŠู„ ุฃู†ุง
403
00:44:53,890 --> 00:44:58,290
ู…ุชุฃูƒุฏ ู…ุด ู‡ุชูู‡ู… ุฅู† ู‡ูˆ ูƒุชุงุจ ุฅู„ุง ุงู„ู‚ู„ูŠู„ ู„ูƒู† ุงู† ุดุงุก
404
00:44:58,290 --> 00:45:02,510
ุงู„ู„ู‡ ุจู†ูˆุถุญู‡ุง ู„ูƒ ูˆ ุจู†ูู‡ู…ู‡ุง ู„ูƒ ููŠ ุงู„ู…ุญุงุถุฑุฉ ุงู„ู‚ุงุฏู…ุฉ
405
00:45:02,510 --> 00:45:04,170
ุงู† ุดุงุก ุงู„ู„ู‡ ูŠุนุทูŠูƒูˆุง ุงู„ุนููˆ