|
1 |
|
00:00:21,290 --> 00:00:25,850 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ูุณุชูู
ู ุงูู
ูุถูุน ุงููู ุจุฏุฃูุงู |
|
|
|
2 |
|
00:00:25,850 --> 00:00:31,590 |
|
ุงูุตุจุญ ููู ู
ูุถูุน ุงู external direct product ุจุนุฏ ู
ุง |
|
|
|
3 |
|
00:00:31,590 --> 00:00:35,770 |
|
ุฃุฎุฏูุง ุฃู
ุซูุฉ ู
ู ุฎูุงููุง ุจูุนูู ุงู order ูู element |
|
|
|
4 |
|
00:00:35,770 --> 00:00:42,070 |
|
ููุฐูู ุนุฏุฏ ุงููู ูู ุงู elements ุจ order ู
ุนูู ูุนุฏุฏ ุงู |
|
|
|
5 |
|
00:00:42,070 --> 00:00:46,830 |
|
cyclic groups ุจ order ู
ุนูู ููุชูู ุงูุขู ุงูู ูุฐู |
|
|
|
6 |
|
00:00:46,830 --> 00:00:51,500 |
|
ุงููุธุฑูุฉุงููุธุฑูุฉ ุจุชููู ููุชุฑุถ ุงู ุฌู ู ุงุชุด ุจูู finite |
|
|
|
7 |
|
00:00:51,500 --> 00:00:55,140 |
|
cyclic groups ูุจูู ูู ูุงุญุฏุฉ ูููุง ุนุฏุฏ ู
ุญุฏูุฏ ู
ู |
|
|
|
8 |
|
00:00:55,140 --> 00:01:00,060 |
|
ุงูุนูุงุตุฑ ูุงูุชูุชูู are cyclic groups ุจูููู ูู ูุฐู |
|
|
|
9 |
|
00:01:00,060 --> 00:01:05,080 |
|
ุงูุญูููู ุงู ุฌู eccentric product ู
ุน ุงุชุด is cyclic |
|
|
|
10 |
|
00:01:05,080 --> 00:01:08,760 |
|
in fact ุชููู ูู ุงู order ุฌู ู ุงู order ุงุชุด are |
|
|
|
11 |
|
00:01:08,760 --> 00:01:13,240 |
|
relatively prime ูุจูู ู
ู ุงูุขู ูุตุงุนุฏุง ูู ุงู two |
|
|
|
12 |
|
00:01:13,240 --> 00:01:17,080 |
|
groups ุฌู ู ุงุชุดุชููู ุงู order ุงููู ูู
are |
|
|
|
13 |
|
00:01:17,080 --> 00:01:19,840 |
|
relatively prime ุงููู ูุจูู ุงู external product |
|
|
|
14 |
|
00:01:19,840 --> 00:01:25,960 |
|
ู
ุนูุงู is a cyclic group ู
ุจุงุดุฑุฉ ู ุงูุนูุณ ูู ูุงูุช |
|
|
|
15 |
|
00:01:25,960 --> 00:01:28,860 |
|
cyclic groups ูุจูู ุงู two orders are relatively |
|
|
|
16 |
|
00:01:28,860 --> 00:01:35,620 |
|
prime ูุฐุง ุงููู ุนุงูุฒูู ูุซุจุชู ุงูุขู ูุจูู ูุฐูู ูุซุจุชู |
|
|
|
17 |
|
00:01:35,620 --> 00:01:41,040 |
|
ุงูุชุฑุถ ุงู ุงู H ููุง order ู
ุนูู ู ุงู G ูุฐูู ููุง order |
|
|
|
18 |
|
00:01:41,040 --> 00:01:47,800 |
|
ู
ุนูู ู ูุดูู ููู ุจุฏูุง ูุนู
ููุจูู let ุงู order ูู G |
|
|
|
19 |
|
00:01:47,800 --> 00:01:55,680 |
|
ุจุฏู ูุณุงูู ุงู M and ุงู order ูู H ุจุฏู ูุณุงูู ุงู N |
|
|
|
20 |
|
00:01:55,680 --> 00:02:00,200 |
|
then |
|
|
|
21 |
|
00:02:00,200 --> 00:02:11,180 |
|
ูู ุจุฏู ุงุฌูุจ ุงู order ูู G with H ูุจูู thenุงูุฃุฑุฏุฑ |
|
|
|
22 |
|
00:02:11,180 --> 00:02:16,380 |
|
ููู G External Hierarchical Product ู
ุน H ูุฏู ูุณูู |
|
|
|
23 |
|
00:02:16,380 --> 00:02:20,040 |
|
ูุฐุง ูุง ุดุจุงุจ ู
ูุชูุจ ู
ุนุงูู
ู
ู ุงูู
ุฑุฉ ุงููู ูุงุชุช ุงูุฃุฑุฏุฑ |
|
|
|
24 |
|
00:02:20,040 --> 00:02:26,400 |
|
ููุฃููู ูู ุงูุฃุฑุฏุฑ ูุซุงููุฉ ูุจูู ูุฐุง ุงูููุงู
ูุณูู ุงู M |
|
|
|
25 |
|
00:02:26,400 --> 00:02:33,020 |
|
ูู Nูุฐู ุงูู
ุนููู
ุฉ ุญุทูุชูุง ูุจู ุงูู
ุจุฏุฃ ู ุงูุฃู ุจุฏู ุฃุจุฏุฃ |
|
|
|
26 |
|
00:02:33,020 --> 00:02:38,360 |
|
ูุฅูุด ุญุทูุชูุงุ ูุฃู ูู ุดุบู ุจุงูุญุจ ูู ูุงุฒู
ุงูู ุงูุฃู ุจุฏูุง |
|
|
|
27 |
|
00:02:38,360 --> 00:02:48,400 |
|
ูููู Assume that ุงููG external product ู
ุน ุงููH is |
|
|
|
28 |
|
00:02:48,400 --> 00:02:54,540 |
|
cyclicู
ุงุฐุง ุฃุฑูุฏ ุฃู ุฃุซุจุชุ ุฃู ุงูู order ุงููู ุฌู ู ุงู |
|
|
|
29 |
|
00:02:54,540 --> 00:02:58,560 |
|
order ุงููู ุงุชุด ุงุชููู are relatively prime ูุนูู |
|
|
|
30 |
|
00:02:58,560 --> 00:03:01,520 |
|
ุฃุฑูุฏ ุฃู ุฃุซุจุช ุฃู ุงู Euclides common divisor ู
ุง ุจูู |
|
|
|
31 |
|
00:03:01,520 --> 00:03:05,920 |
|
ุงูุงุชููู ุณูููู ูู
ุ ุณูููู ูุงุญุฏุ ุตุญูุญ ุทุจ ุงูุชุฑุถูุง ูุฐู |
|
|
|
32 |
|
00:03:05,920 --> 00:03:10,040 |
|
Cyclic ู
ุฏุงู
ุงูู Cyclic ูุจูู ููุง generator ุตุญ ููุง |
|
|
|
33 |
|
00:03:10,040 --> 00:03:14,600 |
|
ูุงุ ูุจูู Cyclic assume |
|
|
|
34 |
|
00:03:15,770 --> 00:03:25,370 |
|
ุฃูุชุฑุถ ูุฐูู ุฅู ุงูู G ูุงูู H is a generator is a |
|
|
|
35 |
|
00:03:25,370 --> 00:03:33,870 |
|
generator for ุงููู ูู external product ููู H ู
ุน G |
|
|
|
36 |
|
00:03:34,700 --> 00:03:38,460 |
|
ู
ุง ุฏุงู
ูุฐุง generator ูุจูู ุงู order ุงููู ุจุฏู ูุณุงูู |
|
|
|
37 |
|
00:03:38,460 --> 00:03:43,860 |
|
ู
ููู ุงู order ูู G ู
ูุฏูู ูู G external direct |
|
|
|
38 |
|
00:03:43,860 --> 00:03:50,920 |
|
product ู
ุน H ูุฐุง ู
ุนูุงู ุงู ุงู order ูู G ูุงูH ุจุฏู |
|
|
|
39 |
|
00:03:50,920 --> 00:03:56,600 |
|
ูุณุงูู ุงู order ูู G external direct product ู
ุน ู
ูุ |
|
|
|
40 |
|
00:03:56,600 --> 00:04:05,990 |
|
ู
ุน ุงู H ูุฐุง ุจุฏู ูุนุทููู ุทูุจ ุงู order ูู Gูุงูู H ุจุฏู |
|
|
|
41 |
|
00:04:05,990 --> 00:04:11,410 |
|
ูุณุงูู ุงู least common multiple ูู order ุชุจุน ุงู G |
|
|
|
42 |
|
00:04:11,410 --> 00:04:18,870 |
|
ูุงู order ุชุจุน ุงู H ูุจูู |
|
|
|
43 |
|
00:04:18,870 --> 00:04:23,050 |
|
ุงู order ูู G ูุงู order ุชุจุน ุงู H ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
44 |
|
00:04:23,050 --> 00:04:28,730 |
|
ูุฐุง ุงููู ูู ุจุฏู ูุณุงูู ุงู order ููุฐู ูุฏุงุด ุงููู ู
ูู |
|
|
|
45 |
|
00:04:28,730 --> 00:04:34,700 |
|
ููุจูู ุฃูุง ุจููู ุงู order ูู element ูุฐุง ุจูุณุงูู ุงู |
|
|
|
46 |
|
00:04:34,700 --> 00:04:38,300 |
|
order ูู element ูุฐู ุจูุจูู ุจูุงุก ุนููู ุงู order ูู |
|
|
|
47 |
|
00:04:38,300 --> 00:04:42,520 |
|
element g ู h ุจูุณุงูู ุงู least common multiple ู
ุง |
|
|
|
48 |
|
00:04:42,520 --> 00:04:46,360 |
|
ุจูู ุงู two orders ุทุจูุง ูููุธุฑูุฉ ุงูุณุงุจูุฉ ุงููู |
|
|
|
49 |
|
00:04:46,360 --> 00:04:51,340 |
|
ุจุฑูููุงูุง ุทูุจ ูุฐุง ุงู order ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุนู m ูู |
|
|
|
50 |
|
00:04:51,340 --> 00:04:57,020 |
|
n ุฎูู ูุฐู ุงูู
ุนููู
ุฉ ูู ุฏู
ุงุบู ู ููุฑุฌุนููุง ุจุนุฏ ูููู |
|
|
|
51 |
|
00:04:57,020 --> 00:05:05,640 |
|
ุทูุจ ุงูุขูุงูู order ููู G ุงู order ููู G ููุณู
ุงู |
|
|
|
52 |
|
00:05:05,640 --> 00:05:11,840 |
|
order ููู G ูุจุชุงุฑ ุตุญ ููุง ูุง ูุจูู divide ุงู order |
|
|
|
53 |
|
00:05:11,840 --> 00:05:19,250 |
|
ููู G ุงููู ูู ุจุฏู ุณุงูู ูุฏุงุดM ูุนูู ุงู order ุงููู |
|
|
|
54 |
|
00:05:19,250 --> 00:05:25,670 |
|
ุฌูู ุจุฏู ููุณู
ู
ู ุงู M ููู ููุณ ุงูููุช ุงู order ู ุงู H |
|
|
|
55 |
|
00:05:25,670 --> 00:05:33,390 |
|
ุจุฏู ููุณู
ู
ู ุจุฏู ููุณู
ุงู order ู ู
ู ู ุงู H ุงููู ูู |
|
|
|
56 |
|
00:05:33,390 --> 00:05:38,870 |
|
ุจุฏู ูุณุงูู ุงู N ุฅุฐุง |
|
|
|
57 |
|
00:05:38,870 --> 00:05:44,710 |
|
ู
ุง ูู ุนูุงูุฉ least common multiple ูู two orders ู
ุน |
|
|
|
58 |
|
00:05:44,710 --> 00:05:45,970 |
|
M ู N |
|
|
|
59 |
|
00:05:48,440 --> 00:05:52,340 |
|
ุงูููุฒ ููู
ู ู
ูุชุจู ูู ุงูุถุฉ ู
ุน ุงูููุฒ ููู
ู ู
ูุชุจู ูู M |
|
|
|
60 |
|
00:05:52,340 --> 00:05:55,360 |
|
ู N ู
ูู ุงููู ุงุตุบุฑ ู ู
ูู ุงููู ุงูุจุฑุ ูููุฒ ููู
ู ู
ูุชุจู |
|
|
|
61 |
|
00:05:55,360 --> 00:06:01,800 |
|
ูู
ูุ ูู H ู G ู
ูุฉ ูู
ูุฉ ุงุตุบุฑ ู
ู ู
ูุู
ู ุงู least |
|
|
|
62 |
|
00:06:01,800 --> 00:06:06,840 |
|
common multiple ูู M ู N ุชู
ุงู
ุ ูุจูู ูุฐุง ูุทูุก |
|
|
|
63 |
|
00:06:06,840 --> 00:06:12,840 |
|
ููู
ููุ ุงู ุงู least common multiple ูู order ุชุจุน ุงู |
|
|
|
64 |
|
00:06:12,840 --> 00:06:24,040 |
|
G ูุงู order ุชุจุน ุงู H ูุฐุง ููู ู
ุงูู ุฃูู ู
ู ุฃู ูุณุงูู |
|
|
|
65 |
|
00:06:24,040 --> 00:06:32,930 |
|
ุงู least common multiple ูู M ู Nุชู
ุงู
ุทูุจ ุงู least |
|
|
|
66 |
|
00:06:32,930 --> 00:06:40,450 |
|
common multiple ููุฐุง ุงููู ูู ูุฏุงุด M ูู N ูุจูู ุจูุงุก |
|
|
|
67 |
|
00:06:40,450 --> 00:06:47,950 |
|
ุนููู So ุงู M ูู N ุฃูู ู
ู ุฃู ูุณูู ุงู least common |
|
|
|
68 |
|
00:06:47,950 --> 00:06:56,450 |
|
multiple ูู
ูุ ูู M ู N ุงุนุชุจุฑ ูุฐู ุงูู
ุนุงุฏูุฉ ุฑูู
Star |
|
|
|
69 |
|
00:06:58,800 --> 00:07:06,940 |
|
ุงูุณุคุงู ูู ุงุญูุง ูุงู ุฌูุจูุง ุงู M ู ุงู N ุงูู ู
ู ุงู |
|
|
|
70 |
|
00:07:06,940 --> 00:07:12,720 |
|
least common multiple ูู
ูุ ูู M ู N ุทุจ in general |
|
|
|
71 |
|
00:07:12,720 --> 00:07:24,720 |
|
but ู ููู we know that ุงู ุงู least common multiple |
|
|
|
72 |
|
00:07:24,720 --> 00:07:26,840 |
|
ูู M ู N |
|
|
|
73 |
|
00:07:30,950 --> 00:07:35,450 |
|
100% ุตุญูุญ ููุง ูุฃุ ุฏุงุฆู
ุง ู ุฃุจุฏุง ุงู least common .. |
|
|
|
74 |
|
00:07:35,450 --> 00:07:39,430 |
|
ุฃูุตู ุญุงุฌุฉ ุญุตู ุถุฑุจูู
ู ุฏุงุฆู
ุง ู ุฃุจุฏุง ุจูููู ุฃูู ู
ู |
|
|
|
75 |
|
00:07:39,430 --> 00:07:44,870 |
|
ููู ูุนูู ุงูู
ุถุงุนู ุงูู
ุดุชุฑู ุฃุญูุงู ุจูููู ูุจูุฑู ูู ุฃูู |
|
|
|
76 |
|
00:07:44,870 --> 00:07:51,630 |
|
ู
ุง ูู
ูู ูุจูู ูุฐุง ุฃูู ู
ู ู
ููุ ู
ู M ูู N ู ูุฐู |
|
|
|
77 |
|
00:07:51,630 --> 00:07:56,550 |
|
ุงูุนูุงูุฉ ุงูุชุงููุฉ ูู ุฑูู
Star ุฅุฐุง ู
ู ุงูุฅุชููู ู
ุน ุจุนุถ |
|
|
|
78 |
|
00:07:56,550 --> 00:08:02,130 |
|
ุจููู ุฅู ุฅุชููู ูุฏูู ู
ุง ููู
ุงุฑููู
ูุจูู ููุง ุณูุง ุงู |
|
|
|
79 |
|
00:08:02,130 --> 00:08:09,150 |
|
least common multiple ูู M ู N ุจุฏู ูุณุงูู ุงู M ูู N |
|
|
|
80 |
|
00:08:11,690 --> 00:08:17,290 |
|
ุทูุจ ูุฑุฌุน ุจุงูุฐุงูุฑุฉ ุงุตุจุฑ ุนูููุง ุดููุฉ ูุฑุฌุน ุจุงูุฐุงูุฑุฉ |
|
|
|
81 |
|
00:08:17,290 --> 00:08:22,650 |
|
ูููุฑุงุก ุฎูู ุงูุงูู chapter ุงุฐุง ุจุชุฐูุฑูุง ููุง ูููุง ู |
|
|
|
82 |
|
00:08:22,650 --> 00:08:26,290 |
|
grace is common divided between ุนุฏุฏูู ูู least |
|
|
|
83 |
|
00:08:26,290 --> 00:08:29,990 |
|
common multiple ุงูุนุฏูู ุจูุนุทููุง ู
ููุ ููุณ ุงูุนุฏุฏูู |
|
|
|
84 |
|
00:08:29,990 --> 00:08:40,950 |
|
ูุจูู ููุง ุจุงุฌู ุจูููู ุจุท ูููู ู ูุงthat ูุงุจูุนุฑู ุงู |
|
|
|
85 |
|
00:08:40,950 --> 00:08:47,530 |
|
ุงูู greatest common divisor ูู M ูุงูN ู
ุถุฑูุจ ูู |
|
|
|
86 |
|
00:08:47,530 --> 00:08:55,510 |
|
least common multiple ูู M ูN ุจุฏู ูุณุงูู M ูู N ูุฐุง |
|
|
|
87 |
|
00:08:55,510 --> 00:09:01,790 |
|
ุจุฏู ูุนุทููุงุงูุงู ุงู least common multiple ูู M ูู N |
|
|
|
88 |
|
00:09:01,790 --> 00:09:07,570 |
|
ูุจูู ูุฐุง ุจุฏู ุงุนุทูู ุงูู ุงู greatest common divisor |
|
|
|
89 |
|
00:09:07,570 --> 00:09:13,070 |
|
ูู M ู N ูู ุงู least common multiple ุงููู ูู M ูู |
|
|
|
90 |
|
00:09:13,070 --> 00:09:20,040 |
|
N ุจุฏู ูุณูู ุงู M ูู Nูุจูู ูุฐุง ูุนุทููุง common divisor |
|
|
|
91 |
|
00:09:20,040 --> 00:09:25,980 |
|
ูู M ู N ูุจูู ูู
ูุฉ ุทุจ ุงู M ู
ุด ุงู order ุชุจุน ุงู G ู |
|
|
|
92 |
|
00:09:25,980 --> 00:09:32,260 |
|
ุงู N ูู ุงู order ุชุจุน ุงู H ูุจูู ูุฐุง ู
ุนูุงู ุงู ุงู M |
|
|
|
93 |
|
00:09:32,260 --> 00:09:44,640 |
|
and ุงู N are relatively prime ูุฐุง ูุนุทููุงูุฐุง ุจุฏู |
|
|
|
94 |
|
00:09:44,640 --> 00:09:51,120 |
|
ูุนุทููุง ุงู ุงู order ู capital G ูู group ูููุง and |
|
|
|
95 |
|
00:09:51,120 --> 00:09:57,700 |
|
ุงู order ู ุงู H are relatively right |
|
|
|
96 |
|
00:10:03,000 --> 00:10:07,320 |
|
ุฃุญูุง ุฎูุตูุง ุงูุงุชุฌุงู ุงูุฃูู ูู ุงููุธุฑูุฉุ ููู ุฃูู ูู |
|
|
|
97 |
|
00:10:07,320 --> 00:10:14,100 |
|
ูุงู ุงูู G ุฅูุณููุฏุฑุงููุงูุจุฑูุฏู ู
ุน H is cyclic ูุจูู |
|
|
|
98 |
|
00:10:14,100 --> 00:10:17,080 |
|
ุงูุฃูุฑุฏุฑ ูู G ู ุงูุฃูุฑุฏุฑ ูู H are relatively |
|
|
|
99 |
|
00:10:17,080 --> 00:10:22,010 |
|
primaryุ ูุฃููุง ุจุฏุฃ ูู
ุดู ุงูุนู
ููุฉ ุงูุนูุณูุฉุฃุซุจุช ู ุงูุฑุถ |
|
|
|
100 |
|
00:10:22,010 --> 00:10:27,250 |
|
ุงู ุงุชููู ูุฏูู are relatively prime ุฐุงุชุณ ูุนูู ุงูุด |
|
|
|
101 |
|
00:10:27,250 --> 00:10:32,030 |
|
ุฐุงุชุณุ ูุฌุฑูุณ ุงู common divisor ูู M ู N ุจุฏู ูุณุงูู |
|
|
|
102 |
|
00:10:32,030 --> 00:10:37,350 |
|
ูุฏู ุงูุดุ ุจุฏู ูุณุงูู ูุงุญุฏ ุตุญูุญ ุทูุจ ูู ุญุงุฌุฉ ู
ูุฌูุฏุฉ ูู |
|
|
|
103 |
|
00:10:37,350 --> 00:10:42,690 |
|
ุงููุตุฑ ูุญุชู ุงูุขู ูู
ูุณุชุฎุฏู
ูุง ุงุดูู .. ุงููู ูู ูุงุญุฏุฉ |
|
|
|
104 |
|
00:10:42,690 --> 00:10:47,350 |
|
ู
ู ุงู two groups ุงุชููู ูุฏูู cycling ู
ุฏุงู
ูู ูุงุญุฏุฉ |
|
|
|
105 |
|
00:10:47,350 --> 00:10:56,270 |
|
cycling ุงุฐุง ูู ูุงุญุฏุฉ ูููุงgenerator ูุจูู since ุงู g |
|
|
|
106 |
|
00:10:56,270 --> 00:10:59,350 |
|
since |
|
|
|
107 |
|
00:10:59,350 --> 00:11:07,070 |
|
ุงู g is cyclic we have since ุงู .. ุฎูู ุงู g ุจุงุชููู |
|
|
|
108 |
|
00:11:07,070 --> 00:11:15,950 |
|
ู
ุฑุฉ ูุงุญุฏุฉ since ุงู g and ุงู h and ุงู h are cyclic |
|
|
|
109 |
|
00:11:15,950 --> 00:11:24,510 |
|
we haveุฅู ุงูู G ูุฐู ูู ุงููุง generator ููููู small |
|
|
|
110 |
|
00:11:24,510 --> 00:11:33,050 |
|
g and ุงู H ุงููุงูุงูุง ุงููู ูู generator ููููู main |
|
|
|
111 |
|
00:11:33,050 --> 00:11:38,110 |
|
ููููู H ุทูุจ |
|
|
|
112 |
|
00:11:38,110 --> 00:11:46,110 |
|
ุฅุฐุง ูุฏุงุด ุงู order ู G small M ู ุงู order ู H M |
|
|
|
113 |
|
00:11:46,110 --> 00:11:52,630 |
|
ููููุณ ูุจูู ูุฐุง ุจุฏู ูุนุทููุงุฅู ุงู order ููู G ุจุฏู |
|
|
|
114 |
|
00:11:52,630 --> 00:11:58,430 |
|
ูุณุงูู ุงู M and ุงู order ู H ุจุฏู ูุณุงูู ุงู main ุจุฏู |
|
|
|
115 |
|
00:11:58,430 --> 00:12:05,390 |
|
ูุณุงูู ุงู N ุทูุจ ูููุณ ูุจูู ุฃูุง ุจุฏู ุฃุฌู ูู order ุชุจุน |
|
|
|
116 |
|
00:12:05,390 --> 00:12:11,630 |
|
ุงู G ู ุงู H ู
ุฑุฉ ูุงุญุฏุฉ ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
117 |
|
00:12:11,630 --> 00:12:16,950 |
|
least common multiple ูู order ุจุชุจุน ุงู G ู ุงู |
|
|
|
118 |
|
00:12:16,950 --> 00:12:23,120 |
|
order ุจุชุจุน ุงู Hูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณูู ุงู least |
|
|
|
119 |
|
00:12:23,120 --> 00:12:30,180 |
|
common multiple ุงู least common multiple ูู
ููุ ูู |
|
|
|
120 |
|
00:12:30,180 --> 00:12:39,940 |
|
M ู ูู N ุฃูุง ุฃุฏุนู ุงู M ูู N ุทูุจ ููุดุ ูุฃู ุงู common |
|
|
|
121 |
|
00:12:39,940 --> 00:12:47,400 |
|
divisor ูุณูู 1 ูุจูู ูุฐุง ููุดุ ูุฃูุฅู ุงูู common |
|
|
|
122 |
|
00:12:47,400 --> 00:12:54,480 |
|
divisor ูู M ู ูู N ูุจุฏู ูุณุงูู ูุงุญุฏ ุตุญูุญ ุทุจ ูุฐุง |
|
|
|
123 |
|
00:12:54,480 --> 00:13:00,120 |
|
ุงูู M ูู ุงูู N ูู ุนุจุงุฑุฉ ุนู ุงู order ูู
ูุ ุงู order |
|
|
|
124 |
|
00:13:00,120 --> 00:13:03,970 |
|
ูู group ุงููู ูู ูุณู
ูู ูุงูููู ุนุจุงุฑุฉ ุนู ุงูู order |
|
|
|
125 |
|
00:13:03,970 --> 00:13:09,850 |
|
ููุฌุฑูุจ ูุจูู ูุฐุง ุงูููุงู
ูุณุงูู ุงู order ููู G |
|
|
|
126 |
|
00:13:09,850 --> 00:13:15,530 |
|
external direct product ูู
ูุ ูู H ูุจูู ุงู gate |
|
|
|
127 |
|
00:13:15,530 --> 00:13:20,630 |
|
element ู
ูุฌูุฏ ูู ุงู external direct product ุงู |
|
|
|
128 |
|
00:13:20,630 --> 00:13:26,150 |
|
order ูู ูุณุงูู ุงู order ูู
ูุ ูู group ูุจูู ุงู |
|
|
|
129 |
|
00:13:26,150 --> 00:13:31,250 |
|
group ูุฐุง ู
ุง ูุตูุฑุ Cyclic ููุฐุง generator ูุจูู ููุง |
|
|
|
130 |
|
00:13:31,250 --> 00:13:43,780 |
|
ุณุงุงูู G ูุงูู H is a generator for ุงููู ูู ุงูู G |
|
|
|
131 |
|
00:13:43,780 --> 00:13:50,320 |
|
external direct product ู
ุน ู
ูู ู
ุน H ูุฐุง ุจุฏู ูุนุทููู |
|
|
|
132 |
|
00:13:50,320 --> 00:13:57,620 |
|
ุงูู G external direct product ู
ุน H is cyclic ููู |
|
|
|
133 |
|
00:13:57,620 --> 00:14:05,720 |
|
ุงูู
ุทููุจุฅุฐุง ููุช ูู ุฅุซุจุช |
|
|
|
134 |
|
00:14:05,720 --> 00:14:11,100 |
|
ุงููexternal ูุฐุง direct product is cyclic ุชู
ุงู
ุ |
|
|
|
135 |
|
00:14:11,100 --> 00:14:15,520 |
|
ุจุนุฏูู ุจูููู ุฅุฐุง ูุงููู ุงูุชูุชูู ูู ูุงุญุฏุฉ ูููู
cyclic |
|
|
|
136 |
|
00:14:15,520 --> 00:14:18,940 |
|
ูุงู order ุชุจุน ูู ูุงุญุฏุฉ ูููู
ู
ุน ุงูุชุงูู ุงุชููู |
|
|
|
137 |
|
00:14:18,940 --> 00:14:22,570 |
|
relatively primeor than automatic ุนูู ุทูู ุงูุฎุทุจ |
|
|
|
138 |
|
00:14:22,570 --> 00:14:27,210 |
|
ูุฐู ุงููุธุฑูุฉ ุงู external direct product is cyclic |
|
|
|
139 |
|
00:14:27,210 --> 00:14:31,670 |
|
group ูุจูู ุงูุดุฑุท ุงู external direct product ุฃู |
|
|
|
140 |
|
00:14:31,670 --> 00:14:36,270 |
|
ูููู cyclic group ุฃู
ุฑูู ุงูุฃู
ุฑ ุงูุฃูู ูู ูุงุญุฏุฉ ูููู
|
|
|
|
141 |
|
00:14:36,270 --> 00:14:41,190 |
|
ุชุจูู cyclic ุงูุฃู
ุฑ ุงูุซุงูู ุงู order ูู group ุงูุฃููู |
|
|
|
142 |
|
00:14:41,190 --> 00:14:43,850 |
|
ู ุงู order ูู group ุงูุชุงูู ูููููุง ุงุชููู ู
ุนุงูู
|
|
|
|
143 |
|
00:15:00,200 --> 00:15:05,820 |
|
ุงููุธุฑูุฉ ูุฐู ุฃุซุจุชูุงูุง ูู
ูู ูุชู group ุทุจ ูู ุตุงุฑูุง |
|
|
|
144 |
|
00:15:05,820 --> 00:15:11,810 |
|
ุชูุงุชุฉุชูุงุชุฉ groups ูุงููู ุฃุฑุจุนุฉ ูุงููู ุฎู
ุณุฉ ูุงููู in |
|
|
|
145 |
|
00:15:11,810 --> 00:15:16,550 |
|
ู
ู ุงู groups ูุงููุธุฑูุฉ ุตุญูุญุฉ ููุฐุง ุงูู
ูุถูุน ู |
|
|
|
146 |
|
00:15:16,550 --> 00:15:27,390 |
|
crawlery ุฑูู
ูุงุญุฏ ูุจูู crawlery ุฑูู
ูุงุญุฏ ุจุชููู ุงู |
|
|
|
147 |
|
00:15:27,390 --> 00:15:34,230 |
|
external direct product ุงู external direct |
|
|
|
148 |
|
00:15:35,820 --> 00:15:44,680 |
|
a product external direct product g one external |
|
|
|
149 |
|
00:15:44,680 --> 00:15:50,520 |
|
direct product ู
ุน g two external direct product ู
ุน |
|
|
|
150 |
|
00:15:50,520 --> 00:16:03,000 |
|
ู
ูู ู
ุน g n of a finite of a finite number |
|
|
|
151 |
|
00:16:04,660 --> 00:16:20,060 |
|
finite number of finite cyclic groups is |
|
|
|
152 |
|
00:16:20,060 --> 00:16:33,660 |
|
cyclic if and only ifุงูู order ููู G I and ุงู |
|
|
|
153 |
|
00:16:33,660 --> 00:16:46,100 |
|
order ููู G J are relatively a prime are |
|
|
|
154 |
|
00:16:46,100 --> 00:16:54,380 |
|
relatively a prime when ุงู I ูุง ุชุณุงูู ู
ููุ ูุง |
|
|
|
155 |
|
00:16:54,380 --> 00:17:02,540 |
|
ุชุณุงูู ุงู Gูู
ุงู ูุฑููุฑู ุชุงููุฉ ุจุชููู |
|
|
|
156 |
|
00:17:02,540 --> 00:17:10,240 |
|
let ุงููู ูู ุงู M ุนู
ููุงูุง ุชุญููู ุตุงุฑุช N ูุงุญุฏ ูู N |
|
|
|
157 |
|
00:17:10,240 --> 00:17:18,760 |
|
ุงุชููู ูู N K then ุงู |
|
|
|
158 |
|
00:17:18,760 --> 00:17:31,150 |
|
ZM ุงู ZM isomorphicูู
ูุ ู z n one external product |
|
|
|
159 |
|
00:17:31,150 --> 00:17:43,350 |
|
ู
ุน z n two external product ู
ุน ู
ูุ ู
ุน z n k if and |
|
|
|
160 |
|
00:17:43,350 --> 00:17:53,930 |
|
only if if and only if ุงู n i and ุงู n j are |
|
|
|
161 |
|
00:17:53,930 --> 00:18:06,240 |
|
relatively primeare relatively prime when |
|
|
|
162 |
|
00:18:06,240 --> 00:18:11,100 |
|
I ูุง ุชุณุงูู ุงูุฌูุฉ |
|
|
|
163 |
|
00:18:38,860 --> 00:18:44,120 |
|
ุงููุฑููุฑู ุงูุฃููู ูู ุชุนู
ูู
ูููุธุฑูุฉ ุงููุฑููุฑู ุงูุซุงููุฉ |
|
|
|
164 |
|
00:18:44,120 --> 00:18:48,760 |
|
ูุฃูู ุชุทุจูู ู
ุจุงุดุฑ ุนุงูู
ูู ุนูู ุงููุธุฑูุฉ ุชุนุงูู ูุดูู |
|
|
|
165 |
|
00:18:48,760 --> 00:18:53,640 |
|
ุงูุชุนู
ูู
ูู ุงูุฃูู ูู
ู ุซู
ุจูุฑูุญ ูููุฑููุฑู ุงูุชุงููุฉ |
|
|
|
166 |
|
00:18:53,640 --> 00:18:59,380 |
|
ุงููู ูู ุฑูู
ุงุชููู ูุจูู ูุฐู ุงููุฑููุฑู ุงูุฑูู
ุงุชููู |
|
|
|
167 |
|
00:19:00,650 --> 00:19:03,590 |
|
ุชุนุงูู ุงูุฑุฑูู ุฑูู
ูุงุญุฏ ุจูููู ุงู external direct |
|
|
|
168 |
|
00:19:03,590 --> 00:19:08,770 |
|
product ูู
ุฌู
ูุนุฉ ู
ู ุงู group of a finite number |
|
|
|
169 |
|
00:19:08,770 --> 00:19:13,330 |
|
ูุจูู ุนุฏุฏ ู
ุญุฏูุฏ ู
ู ุงู groups ููู group has finite |
|
|
|
170 |
|
00:19:13,330 --> 00:19:18,490 |
|
order ูู ูุงุญุฏุฉ ุงููู ุนุฏุฏ ุชุจุนูุง ู
ุญุฏูุฏ ูุจูู ูุฐุง ุงู |
|
|
|
171 |
|
00:19:18,490 --> 00:19:21,710 |
|
external direct product ุจูููู cyclic if and only |
|
|
|
172 |
|
00:19:21,710 --> 00:19:26,230 |
|
if ุงู order ูุฌู ุงู and ุงู order ูุฌู ุฌู are |
|
|
|
173 |
|
00:19:26,230 --> 00:19:31,510 |
|
relatively primeูุงู ุงู I ูุง ุชุณุงูู ุงู ุฌูู ูุนูู ุจุฏูุด |
|
|
|
174 |
|
00:19:31,510 --> 00:19:36,650 |
|
ุงููู ูุฌุฑูุจู ููุณู ูู ุงูู
ูุตูุฏ I ูุง ุชุณุงูู ุงูุฌูู ูุนูู |
|
|
|
175 |
|
00:19:36,650 --> 00:19:40,570 |
|
ูุงุฏ ุงูุฌุฑูุจ ุชุฎุชูู ุชู
ุงู
ุง ู
ุน ู
ู ู
ุน ูุงุฏ ุงูุฌุฑูุจ ุทุจ ุงุญูุง |
|
|
|
176 |
|
00:19:40,570 --> 00:19:47,290 |
|
ุนูุฏูุง ูุงู
ุฌุฑูุจุฃู ูุงุญุฏุฉ ู
ุน ุงูุชุงููุฉ ุจูููู relatively |
|
|
|
177 |
|
00:19:47,290 --> 00:19:50,270 |
|
prime ูุนูู ุงูุฃููู ู
ุน ุงูุชุงููุฉ ุงูุฃููู ู
ุน ุงูุชุงูุชุฉ |
|
|
|
178 |
|
00:19:50,270 --> 00:19:54,350 |
|
ุงูุฃููู ู
ุน ุงูุนุงุดุฑุฉ ุงูุชุงููุฉ ู
ุน ุงูุชุงูุชุฉ ุงูุชุงููุฉ ู
ุน .. |
|
|
|
179 |
|
00:19:54,350 --> 00:19:58,950 |
|
ููู are relatively prime ุชู
ุงู
ุงู order ุชุจุน ูู |
|
|
|
180 |
|
00:19:58,950 --> 00:20:01,550 |
|
ูุงุญุฏุฉ ู
ููู
ู
ุน ุงู order ู
ุน ุงูุชุงููุฉ ุจูููู are |
|
|
|
181 |
|
00:20:01,550 --> 00:20:05,420 |
|
relatively primeููู ุชุนู
ูู
ูููุธุฑูุฉ ุงููุธุฑูุฉ ูุงูุช |
|
|
|
182 |
|
00:20:05,420 --> 00:20:08,620 |
|
ุนุงูู
ูุง ุนูู two groups ุงููู ูู GUH ุนู
ูู
ูุงูุง |
|
|
|
183 |
|
00:20:08,620 --> 00:20:11,800 |
|
ุฎููููุงูู
ุชูุงุชุฉ ุฎููููุงูู
ุฃุฑุจุนุฉ ุฎููููุงูู
ุฎู
ุณุฉ ู
ุด |
|
|
|
184 |
|
00:20:11,800 --> 00:20:16,900 |
|
ู
ุดููุฉ ูุฏ ู
ุง ูููู ุงูุนุฏุฏ ูุจูู ูุฐู ุงููุธุฑูุฉ ุตุญูุญ ุนูููู
|
|
|
|
185 |
|
00:20:16,900 --> 00:20:21,700 |
|
ููู ูุฐู ุงููุชูุฌุฉ ุฑูู
ูุงุญุฏ ุงูุง ูููุชูุฌุฉ ุฑูู
ุงุชููู |
|
|
|
186 |
|
00:20:21,700 --> 00:20:27,780 |
|
ุจูููู ูู ุนูุฏู ุฑูู
M ุญููุชู ุฅูู ุญุงุตู ุถุฑุจ ุฃุนุฏุงุฏ ุฒู |
|
|
|
187 |
|
00:20:27,780 --> 00:20:33,700 |
|
ุงูุด ู
ุซูุง ุฒู ุชูุงุชููุชูุงุชูู ุจูุฏุฑ ุงููู ุงุชููู ูู ุชูุงุชุฉ |
|
|
|
188 |
|
00:20:33,700 --> 00:20:38,780 |
|
ูู ุฎู
ุณุฉ ูุจูู ูุงู ุญูุชู ูุญุงุตู ุถุฑุจ ุซูุงุซุฉ ุงุนุฏุงุฏ |
|
|
|
189 |
|
00:20:38,780 --> 00:20:43,480 |
|
ูุงูุซูุงุซุฉ ุงุนุฏุงุฏ ู
ุง ููู
ุ Primes ุงุชููู ูุงูุชูุงุชุฉ |
|
|
|
190 |
|
00:20:43,480 --> 00:20:48,500 |
|
ูุงูุฎู
ุณุฉ are primes ุงูุด ุจููู ููุงุูู ุญููุช ุงู M ูุญุงุตู |
|
|
|
191 |
|
00:20:48,500 --> 00:20:58,140 |
|
ุถุฑุจ ุฃุนุฏุงุฏ ูุจูู ZM isomorphic ู ZN1, ZN2, ZN3, ZNK, |
|
|
|
192 |
|
00:20:58,400 --> 00:21:04,080 |
|
F and only F ูู ุนุฏุฏ ู
ู ูุฐู ุงูุฃุนุฏุงุฏ are relatively |
|
|
|
193 |
|
00:21:04,080 --> 00:21:10,580 |
|
prime ู
ุน ุจุนุถูู
ุงูุจุนุถ ูุนูู ููุณ ุจุงูุถุฑูุฑุฉ ุฃู ูููููุง |
|
|
|
194 |
|
00:21:10,580 --> 00:21:15,240 |
|
primes ูุฅูู
ุง ูููููุง relatively primesูุนูู ู
ู
ูู ุงุฎุฏ |
|
|
|
195 |
|
00:21:15,240 --> 00:21:21,360 |
|
ุงููู ูู ุงูุนุฏุฏ ุงุชููู ู
ุน ุงูุนุฏุฏ ุณุจุนุฉ ู
ู
ูู ุงุฎุฏ ุณุชุฉ ู |
|
|
|
196 |
|
00:21:21,360 --> 00:21:24,800 |
|
ุฎู
ุณุฉ ุณุชุฉ ู ุฎู
ุณุฉ ุงุชููู relatively primes ุฑุบู
ุงูู |
|
|
|
197 |
|
00:21:24,800 --> 00:21:29,980 |
|
ุฎู
ุณุฉ primes ุณุชุฉ ูุฃ ุชู
ุงู
ูุจูู ููุณ ุจุงูุถุฑูุฑุฉ ุงู ุชููู |
|
|
|
198 |
|
00:21:29,980 --> 00:21:35,420 |
|
ูุฐู ุงูุงุนุฏุงุฏ primes ู
ุซู ู
ุง ุญูููุง ุงุด ุงูุชูุงุชูู ูุจูู |
|
|
|
199 |
|
00:21:35,420 --> 00:21:40,310 |
|
ู
ู
ูู ูููู ุงุฑุจุนุฉ ู ุนุดุฑููุฃุฑุจุนุฉ ู ุนุดุฑูู ูู ุชูุงุชุฉ ูู |
|
|
|
200 |
|
00:21:40,310 --> 00:21:45,110 |
|
ุชู
ุงู ูุนูู ุงุชููู ูู ุชูุงุชุฉ ูู ุงุฑุจุน ู
ุธุจูุท ูุจูู ุงูุงุฑุจุน |
|
|
|
201 |
|
00:21:45,110 --> 00:21:47,730 |
|
ู ุนุดุฑูู ุงุชููู ูู ุชูุงุชุฉ ูู ุณุชุฉ ูู ุงุฑุจุน ู ุงุฑุจุน ู |
|
|
|
202 |
|
00:21:47,730 --> 00:21:53,010 |
|
ุนุดุฑูู ุงูุงู ูุจูู ูุฐูู ุงุชููู ูู ุชูุงุชุฉ ูู ุณุชุฉ ุงุชููู ู |
|
|
|
203 |
|
00:21:53,010 --> 00:21:57,810 |
|
ุชูุงุชุฉ ูุฐูู ุงููprimes ุจุณ ุฅูุด ุจูุตูุฑ ุงุชููู ู
ุน ุงูุฃุฑุจุน |
|
|
|
204 |
|
00:21:57,810 --> 00:22:01,880 |
|
are not relatively primeูุจูู ุจุตูุฑ ูู ุงุจู ูุฐุง ุตุญูุญ |
|
|
|
205 |
|
00:22:01,880 --> 00:22:06,600 |
|
ููุง ู
ุด ุตุญูุญุ ู
ุด ุตุญูุญ ูุงุฒู
ุชุงุฎุฏ ุฃู ุฑูู
ูู ู
ููู
|
|
|
|
206 |
|
00:22:06,600 --> 00:22:10,640 |
|
ูุฏู
ููููุง ู
ุน ุจุนุถ ุงุชููู ู
ุนุงูู
relatively a primes |
|
|
|
207 |
|
00:22:10,640 --> 00:22:16,220 |
|
ูููุณ ุจุงูุถุฑูุฑุฉ ุงู ูููููุง a primes ูุจูู ู
ุฑุฉ ุชุงููุฉ |
|
|
|
208 |
|
00:22:16,220 --> 00:22:22,740 |
|
ุจููู ุญููุช ุงู M ุงูู ุญุงุตู ุถุฑุจ ุงุนุฏุงุฏู
ุฏุงู
ุญููุช ูุฌุฒุฏ ุงู
|
|
|
|
209 |
|
00:22:22,740 --> 00:22:30,040 |
|
ุงูุฃุตููุฉ isomorphic ูู
ุงู
ูู external direct product |
|
|
|
210 |
|
00:22:30,040 --> 00:22:35,340 |
|
ุงููู ูู
ูููู
ูุฏูู if and only if ุฃู ุงุชููู ู
ููู
|
|
|
|
211 |
|
00:22:35,340 --> 00:22:39,640 |
|
ุจุฏูู
ูููููุง relatively prime ู
ุน ุจุนุถูู
ุงูุจุนุถ ุงูุงู |
|
|
|
212 |
|
00:22:39,640 --> 00:22:46,020 |
|
ูุนุทูู ุชู
ุซูู ุนุฏุฏู ุดุบู ุนุฏุฏู ููู ูุฐุง ุงูููุงู
example |
|
|
|
213 |
|
00:22:53,570 --> 00:22:58,310 |
|
ูุฐุง ูู ุงูุชูุถูุญ ุงููู ูุงู ูู ุฌูุช ู z ุฏู ุงุชููู |
|
|
|
214 |
|
00:22:58,310 --> 00:23:04,670 |
|
external like product ู
ุน z ุฏู ุงุชููู external like |
|
|
|
215 |
|
00:23:04,670 --> 00:23:11,390 |
|
product ู
ุน z ุชูุงุชุฉ external like product ู
ุน ู
ููุ |
|
|
|
216 |
|
00:23:11,390 --> 00:23:14,590 |
|
ู
ุน z ุฎู
ุณุฉ ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
217 |
|
00:23:17,820 --> 00:23:21,800 |
|
ุจุฏู ุฃูููู ู
ู ูุฐู ู
ุฌู
ูุนุฉ milligroups ุจูููููุง |
|
|
|
218 |
|
00:23:21,800 --> 00:23:27,260 |
|
isomorphic ููุง ุจุงุฌู ุจููู ูุงููู ูููุณ ุดุฑุงูู ุงูุชูุชูู |
|
|
|
219 |
|
00:23:27,260 --> 00:23:31,200 |
|
ูุฐูู are relatively prime ุงุชููู ูุงูุชูุงุชุฉ ููุง ูุฃ |
|
|
|
220 |
|
00:23:31,200 --> 00:23:38,460 |
|
ุงุฐุง ูุฐู isomorphic ูู
ูู ุฒุฏ ุณุชุฉ ุฒุฏ ุณุชุฉ ูุฃู ุงูุง ูููู |
|
|
|
221 |
|
00:23:38,460 --> 00:23:44,580 |
|
M ู ูุฐุง M ููู ุจุณ ุฃุตุบุฑ ุดููุฉ ูุงุญุฏุฉ ูุงุญุฏุฉูุจูู ูุฐู |
|
|
|
222 |
|
00:23:44,580 --> 00:23:53,600 |
|
isomorphic ูู
ููุ ูุฒุฏ ุงุชููู ูู
ุง ูู ูุฒุฏ ุงุชููู |
|
|
|
223 |
|
00:23:53,600 --> 00:24:00,340 |
|
ุงูุณุชูุฑูุง ุงู product ูุฒุฏ ุณุชุฉ ุงูุณุชูุฑูุง ุงู product |
|
|
|
224 |
|
00:24:00,340 --> 00:24:11,060 |
|
ูู
ูุ ูุฒุฏ ุฎู
ุณุฉ ููุดุ since ุงุชููู and ุงูุชูุงุชุฉ are |
|
|
|
225 |
|
00:24:11,430 --> 00:24:21,670 |
|
relatively prime ุทูุจ ..ุงูุงู ูุฐู ุจุฏู ุงุฌูุจ ูู
ุงู |
|
|
|
226 |
|
00:24:21,670 --> 00:24:28,630 |
|
group ุงุฎุฑู isomorphic ููุงููุฐู ูู
ุงู isomorphic ูุฒุฏ |
|
|
|
227 |
|
00:24:28,630 --> 00:24:32,750 |
|
ุงุชููู external by product ูุฏูู ุงุชููู are |
|
|
|
228 |
|
00:24:32,750 --> 00:24:39,110 |
|
relatively prime ูุจูู ุฒุฏ ู
ููุ ุฒุฏ ุชูุงุชูู ุญุงุตูุฉ ุถุฑุจ |
|
|
|
229 |
|
00:24:39,110 --> 00:24:49,230 |
|
ูุจูู ูุฐู ูุฒุฏ ุชูุงุชูู ูุจูู ููุดุ since ุงูุณุชุฉ and |
|
|
|
230 |
|
00:24:49,230 --> 00:24:53,650 |
|
ุงูุฎู
ุณุฉ are relatively |
|
|
|
231 |
|
00:24:57,660 --> 00:25:04,940 |
|
ุงูุณุคุงู ูู ูู ูุฐุง ุงูุฒู ู
ูุฑูู ูุฒุฏ ุณุชูู ูุฃ ููุด ูุฃู |
|
|
|
232 |
|
00:25:04,940 --> 00:25:12,080 |
|
ูุฐุง ููุณ ุนุดุงู ุงูุฒู ู
ูุฑูู ูุฒุฏ ุณุชูู ูุณุชูู ููู ูุฐุง ููุณ |
|
|
|
233 |
|
00:25:12,080 --> 00:25:24,880 |
|
ุนุดุงู ุงูุฒู ู
ูุฑูู ูุฒุฏ ุณุชูู ูุฃู ุงูุณุจุจ ุงู ุงูุงุชููู and |
|
|
|
234 |
|
00:25:25,300 --> 00:25:30,240 |
|
ุงูุซูุงุซูู ููุณูุง |
|
|
|
235 |
|
00:25:30,240 --> 00:25:41,180 |
|
ู
ุฑุชูุนูู ุจุดูู ุนุงู
ุทูุจ |
|
|
|
236 |
|
00:25:41,180 --> 00:25:47,640 |
|
ุงูุด ุฑุงููุ ุจุฏู ุงุฎูู ูู
ุงู groups ุงุฎุฑู ุงูุฒู ู
ูุฑูุฉ |
|
|
|
237 |
|
00:25:47,640 --> 00:25:57,570 |
|
ููุฐู ุงู group also ูู ุฌูุช ุงุฎุฏุชุงููู ูู Z ุงุชููู |
|
|
|
238 |
|
00:25:57,570 --> 00:26:03,490 |
|
external by-product ูุฒุฏ ุงุชููู external by-product |
|
|
|
239 |
|
00:26:03,490 --> 00:26:10,010 |
|
ูุฒุฏ ุชูุงุชุฉ external by-product ูุฒุฏ ุฎู
ุณุฉ is |
|
|
|
240 |
|
00:26:10,010 --> 00:26:15,910 |
|
isomorphic ูููุง ูุจู ูููู ุฒุฏ ุงุชููู external by |
|
|
|
241 |
|
00:26:15,910 --> 00:26:21,850 |
|
-product is ุณุชุฉ external by-product ูู
ู ูุฒุฏ ุฎู
ุณุฉ |
|
|
|
242 |
|
00:26:23,460 --> 00:26:27,620 |
|
ูุฐุง ุงููู ูููุงูุง ูุจู ูููู ู
ู ูุฐู ุจุฏู ุฃุฎูู groups |
|
|
|
243 |
|
00:26:27,620 --> 00:26:32,320 |
|
ุฃุฎุฑู ุชุจูู isomorphic ูููุณ ุงู group ููู ูุงูุช ุชุงููุฉ |
|
|
|
244 |
|
00:26:32,320 --> 00:26:39,840 |
|
ุฃุทูุน ูู ููุง ุจูุฏุฑ ุฃูุชุจ ูุฐู Z2 ุฒู ู
ุง ูู ูุฐู Z6 ุงูููู |
|
|
|
245 |
|
00:26:39,840 --> 00:26:45,980 |
|
Z2 external dichromate ู
ุน Z3 ููุง Z3 external ู
ุน Z2 |
|
|
|
246 |
|
00:26:45,980 --> 00:26:50,160 |
|
ููุณ ุงูุดูุก ูุฃูู ุญุตู ุถุฑุจูู
ูุณูุก 6 ู 2 are relatively |
|
|
|
247 |
|
00:26:50,160 --> 00:26:54,690 |
|
prime ุจููุณ ุงููุธุฑูุฉ ุงููู ูู ูุจู ูููููุจูู ุจูุงุกู ุนููู |
|
|
|
248 |
|
00:26:54,690 --> 00:27:00,210 |
|
ูุฐู ุจูุฏุฑ ุฃููู ุจุฏู ู
ุง ูู z6 ุจุฏู ุฃููู ุนูููุง z3 |
|
|
|
249 |
|
00:27:00,210 --> 00:27:05,690 |
|
external by-product ู
ุน z2 external by-product ู
ุน |
|
|
|
250 |
|
00:27:05,690 --> 00:27:16,790 |
|
z5 ุทูุจ ูุฐู isomorphic ูู
ูุ ุทูุนูู ููุฐู relatively |
|
|
|
251 |
|
00:27:16,790 --> 00:27:24,330 |
|
primeูุจูู ูุฐูู ุงูู Z6 External Direct Product ู
ุน |
|
|
|
252 |
|
00:27:24,330 --> 00:27:30,610 |
|
Z2 External Direct Product ู
ุน Z5 ูุจูู ูุฐู ุฌุฑูุจ |
|
|
|
253 |
|
00:27:30,610 --> 00:27:37,130 |
|
ุฌุฏูุฏุฉ ุจุฏู ุฃุทูุน ูู
ุงู ุฌุฑูุจ ุชุงูู ูุจูู ูุฐู isomorphic |
|
|
|
254 |
|
00:27:37,130 --> 00:27:45,770 |
|
ูู
ุงู ูู
ููุ ูู Z6 External Direct Product 2 5 ูุจูู |
|
|
|
255 |
|
00:27:45,770 --> 00:27:54,900 |
|
ู
ุน Z10ููุดุ ูุฃูู ุงูุณุชุฉ ูุงูุฎู
ุณุฉ are .. ูุฃูู ุงูุงุชููู |
|
|
|
256 |
|
00:27:54,900 --> 00:28:00,140 |
|
ูุงูุฎู
ุณุฉ are relatively prime ูุจูู ูุฐุง sense ุงุชููู |
|
|
|
257 |
|
00:28:00,140 --> 00:28:10,160 |
|
and ุฎู
ุณุฉ are relatively primeูุงูุฎุทูุฉ ุงูุฃููู ุงููู |
|
|
|
258 |
|
00:28:10,160 --> 00:28:13,380 |
|
ุนูุฏูุง ุฒุฏ ุณุชุฉ ูุฅูู ุงุชููู ู ุชูุงุชุฉ relatively prime |
|
|
|
259 |
|
00:28:13,380 --> 00:28:20,600 |
|
ูุฐุง ูุชุจูุงู ูุจู ูููู ุทุจ ุงูุณุคุงู ูู ูู ูุฐู isomorphic |
|
|
|
260 |
|
00:28:20,600 --> 00:28:28,340 |
|
ูุฒุฏ ุณุชูู ู
ุง ููููุง ุณุชูู ุนูุตุฑ ุทุจุนุง ูุฃ ุงูุณุจุจ because |
|
|
|
261 |
|
00:28:29,790 --> 00:28:40,350 |
|
ุฅู ุงูุณุชุฉ ู ุงูุนุดุฑุฉ ููุณูุง ู
ุฑุชุจุทูู ุจุดูู |
|
|
|
262 |
|
00:28:40,350 --> 00:28:40,370 |
|
ุนุงู
|
|
|
|
263 |
|
00:28:47,410 --> 00:28:53,090 |
|
ุจููู isomorphic ููู ููุ ูุฃ ูุฃ ููู isomorphic ูุง |
|
|
|
264 |
|
00:28:53,090 --> 00:28:57,310 |
|
ุดุจุงุจ ู
ุงุนูุฏูุด ู
ุงููุชุด ูุณุงูู ูุจูู ูู ููุช ูุณุงูู ู
ุนูุงุชู |
|
|
|
265 |
|
00:28:57,310 --> 00:29:03,170 |
|
ูู ุนูุตุฑ ูุณุงูู ูุธูุฑู ููู ูุฐู group ุชุฎุชูู ุนู ูุฐู |
|
|
|
266 |
|
00:29:03,170 --> 00:29:08,050 |
|
ูุนูู ู
ุซูุง ุนูุตุฑ ุงููู ููุง ูู ุจุฏู ุฃุฎุฏ ุงููุงุญุฏ ู ู
ู ููุง |
|
|
|
267 |
|
00:29:08,050 --> 00:29:12,010 |
|
ุจุฏู ุฃุฎุฏ ุงุชููู ู ู
ู ููุง ุจุฏู ุฃุฎุฏ ุงู zero ู ู
ู ููุง |
|
|
|
268 |
|
00:29:12,010 --> 00:29:16,350 |
|
ุจุฏู ุฃุฎุฏ ุงูุฃุฑุจุนุฉ ู
ุซูุงุจูุฎุชูู ุนู ูุฐุง ุงููู ููุง ูููุฐุง |
|
|
|
269 |
|
00:29:16,350 --> 00:29:20,810 |
|
ุฅุฐุง ุฃู ุฒู
ุงุฑ ููู ูุนูู ูุฌุฑูุจ ุงูุฃููู ู ูุฌุฑูุจ ุงูุชุงููุฉ |
|
|
|
270 |
|
00:29:20,810 --> 00:29:27,730 |
|
ููุง ููุณ ุงูุฎูุงุต ุงูุฑูุงุถูุฉ ูุจูู ูุงู ูู ุงููู ุจููููู |
|
|
|
271 |
|
00:29:27,730 --> 00:29:33,530 |
|
ุจูุงุณู
ุฉ ูุนูู ูุฐุง ู
ุซุงู ุนู
ูู ุนูู ุงูุดุบูุงูุฉ ุทูุจ ููุชูู |
|
|
|
272 |
|
00:29:33,530 --> 00:29:39,110 |
|
ุงูุขู ูููุทุฉ ุจุฑุถู ููุง ุนูุงูุฉ ุจูุฐุง ุงูู
ูุถูุน |
|
|
|
273 |
|
00:29:58,550 --> 00:30:02,970 |
|
ูู ููุง ุชุนุฑูู ุฃุฎุฏูุงู ุณุงุจูุง ูู chapter of subgroup |
|
|
|
274 |
|
00:30:02,970 --> 00:30:11,090 |
|
ูุฐูุฑู ูุฃูู ุจุฏูุง ูุจูู ุงูุดุบู ุนููู definition ุชุนุฑูู |
|
|
|
275 |
|
00:30:11,090 --> 00:30:17,810 |
|
ูููู if ุงู K is a divisor of N if ุงู K is a |
|
|
|
276 |
|
00:30:17,810 --> 00:30:30,020 |
|
divisor of N ูู ูุงู ุงู K ูุงุณู
ูู N ูdefine ุจุฏูุง |
|
|
|
277 |
|
00:30:30,020 --> 00:30:40,800 |
|
ูุฑูุญ ุงูุนุฑู ุงู U K of N ูู ูู ุงูุนูุงุตุฑ X ุงููู ู
ูุฌูุฏุฉ |
|
|
|
278 |
|
00:30:40,800 --> 00:30:48,740 |
|
ูู U M X ุงููู ู
ูุฌูุฏุฉ ูู U N such that X modulo K |
|
|
|
279 |
|
00:30:48,740 --> 00:30:57,410 |
|
ุจุฏู ุณุงูู ู
ูู ุจุฏู ุณุงูู ุงููุงุญุฏููุฐุง ุดุจุงุจ sub group ู
ู |
|
|
|
280 |
|
00:30:57,410 --> 00:30:58,850 |
|
ุงู UN |
|
|
|
281 |
|
00:31:20,410 --> 00:31:23,750 |
|
ุทูุนูู ูู ุงูููุงู
ุงููู ุงุญูุง ูุชุจููู ู
ู ุฃูู ู ุฌุฏูุฏ |
|
|
|
282 |
|
00:31:23,750 --> 00:31:29,610 |
|
ุจุฏูุง ูุนุทู ุชุนุฑูู ู ูุฐุง ุงูุชุนุฑูู ู
ุฑ ุนูููุง ูุจู ููู |
|
|
|
283 |
|
00:31:29,610 --> 00:31:35,150 |
|
ูุจูู ุงุญูุง ุจุณ ุจูุฐูุฑ ุจุงูุฐูุฑ ุจููู ูู ูุงู ุนูุฏู K ูู |
|
|
|
284 |
|
00:31:35,150 --> 00:31:40,010 |
|
divisor ูู N ูุจูู ุงูุดุฑุท ุฃุณุงุณู ุงู ุงู K ูุงุฒู
ููุณู
ูู |
|
|
|
285 |
|
00:31:42,860 --> 00:31:49,420 |
|
ุจูุนุฑู ุณุชุฉ ุฌุฏูุฏุฉ ุณู
ูุชูุง U K of N U N ูุนุฑููููุง ูู |
|
|
|
286 |
|
00:31:49,420 --> 00:31:53,220 |
|
ุงูุฅุนุฏุงุฏ ุงููู ูู relatively prime ู
ุน M ุจุณ U K ุฏุฎูุช |
|
|
|
287 |
|
00:31:53,220 --> 00:31:59,960 |
|
ุนูู ุฎุท ุจูููู ูู
ูููู ุงู X's ุงููู ู
ูุฌูุฏุฉ ูู UN ูุจูู |
|
|
|
288 |
|
00:31:59,960 --> 00:32:04,720 |
|
ุนูุงุตุฑ ู
ู UN ุจุญูุซ ุงู X modulo K ุจูุณูู ุฌุฏุงุด ูุงุญุฏ |
|
|
|
289 |
|
00:32:04,720 --> 00:32:09,800 |
|
ูุนูู ูู ุงูุฃุนุฏุงุฏ ุงููู ุงููุฑู ุจูููุง ูุจูู ุงููุงุญุฏ ูุณูู |
|
|
|
290 |
|
00:32:09,800 --> 00:32:15,880 |
|
ู
ุถุงุนูุงุช ุงู K ูู ุงูุฃุนุฏุงุฏ ุงููู ู
ูุฌูุฏุฉ ูู UN ุงููู |
|
|
|
291 |
|
00:32:15,880 --> 00:32:19,740 |
|
ุงููุฑู ุจูููุง ูุจูู ุงููุงุญุฏ ูู ู
ุถุงุนูุงุช ุงู K ูุนูู Zero |
|
|
|
292 |
|
00:32:20,270 --> 00:32:26,410 |
|
ุทุจุนุง ูุนูู ูู ุทุฑุญุช ูุฐุง ุงูุนุฏุฏ ู
ู ุงููุงุญุฏ ุจุฏู ูุทูุนูู |
|
|
|
293 |
|
00:32:26,410 --> 00:32:32,030 |
|
ู
ุถุงุนูุงุช ุงู K ูุทูุนูู K ูุทูุนูู 2K ู
ุถุงุนูุงุช ูุนูู ูุฃูู |
|
|
|
294 |
|
00:32:32,030 --> 00:32:35,130 |
|
ุงูู
ุถุงุนูุงุช ุงู K ุฒุงุฆุฏ ูุงุญุฏ ุตุญูุญ ูุจูู ุงููุฑู ุจูููู
|
|
|
|
295 |
|
00:32:35,130 --> 00:32:43,210 |
|
ุจูุณุงูู Zero ูุนุทู ู
ุซุงู let ุงู |
|
|
|
296 |
|
00:32:43,210 --> 00:32:50,020 |
|
G ุจุฏูุง ุชุณุงูู U ุฃุฑุจุนููU ุงุฑุจุนูู ู
ูู ุนูุงุตุฑูุง ุดุจุงุจ ุทูุจ |
|
|
|
297 |
|
00:32:50,020 --> 00:32:57,220 |
|
find ุจุฏูุง ุชู
ุงููุฉ ุจุฏูุง ุนุฏุฏ ููุณู
ุงูุงุฑุจุนูู ููููู |
|
|
|
298 |
|
00:32:57,220 --> 00:33:05,100 |
|
ุชู
ุงููุฉ ู
ุซูุง find U ุชู
ุงููุฉ of ุงุฑุจุนูู ูู ุงููู ุจุฏูุง |
|
|
|
299 |
|
00:33:05,100 --> 00:33:06,440 |
|
solution |
|
|
|
300 |
|
00:33:12,160 --> 00:33:16,040 |
|
ุงูุฃูู ุงููู ุจุฏูุง ูุนุฑูู ูู ุนูุงุตุฑ ุงููU40 ูู
ููู
ุจุฏูุง |
|
|
|
301 |
|
00:33:16,040 --> 00:33:22,480 |
|
ูุจุฏุฃ ูุฌูู ูุจูู ุจุฏุงุฌุฉ ุฃููู ูู ุงููU40 ุนูุงุตุฑูุง ุงููู |
|
|
|
302 |
|
00:33:22,480 --> 00:33:31,680 |
|
ูู ูุงุญุฏ ุงุชููู ุชูุงุชุฉ ุฃุฑุจุน ุฎู
ุณุฉ ุณุชุฉ ุงูุณุฉ ุณุจุนุฉ ุชู
ุงููุฉ |
|
|
|
303 |
|
00:33:31,680 --> 00:33:44,690 |
|
ุชุณุนุฉ11 .. 13 .. 14 .. 15 .. 16 .. 17 .. 19 .. 21 |
|
|
|
304 |
|
00:33:44,690 --> 00:33:47,710 |
|
.. |
|
|
|
305 |
|
00:33:47,710 --> 00:33:59,490 |
|
23 .. 24 .. 25 .. 26 .. 27 ..ููู
ุงู ุชุณุนุฉ ู ุนุดุฑูู |
|
|
|
306 |
|
00:33:59,490 --> 00:34:07,490 |
|
ุชูุงุชูู ุงูุณู ูุงุญุฏ ู ุชูุงุชูู ุงุชููู ู ุชูุงุชูู ุชูุงุชุฉ ู |
|
|
|
307 |
|
00:34:07,490 --> 00:34:12,670 |
|
ุชูุงุชูู ุงุฑุจุนุฉ ู ุชูุงุชูู ุฎู
ุณุฉ ู ุชูุงุชูู ุณุชุฉ ู ุชูุงุชูู |
|
|
|
308 |
|
00:34:12,670 --> 00:34:18,910 |
|
ุณุจุนุฉ ู ุชูุงุชูู ุชุณุนุฉ ู ุชูุงุชูู ูุจูู ูุฐู ุนูุงุตุฑ ู
ู |
|
|
|
309 |
|
00:34:18,910 --> 00:34:21,050 |
|
ุนูุงุตุฑ ุงู U ุงุฑุจุนูู |
|
|
|
310 |
|
00:34:27,390 --> 00:34:33,650 |
|
ุฃุญูุง ุจูุดุฑุญ ูููู ู
ุด ููุญุฏุ ููุง ุจูุดุฑุญ ููููุ ุงูุถุนูู |
|
|
|
311 |
|
00:34:33,650 --> 00:34:37,190 |
|
ูุงููุณุท ูุงูููู ููู ู
ูุฌูุฏุ ุจุฏู ุชุญูู ููุงู
ูุชูุงุณุจ ู
ุน |
|
|
|
312 |
|
00:34:37,190 --> 00:34:41,010 |
|
ุงูุฌู
ูุนู
ุงุดู ูุนูู ุงูุง ูุงู ุจูุจูู ู
ูุงู ููููู ุฏู ูู |
|
|
|
313 |
|
00:34:41,010 --> 00:34:44,270 |
|
ุฏุบุฑู ุฎุฏ ุงููู ูู ุงูุฑูู
ูู ุชูุงุชุฉ ู ุงูููู ุฏู ูู
ููููุง |
|
|
|
314 |
|
00:34:44,270 --> 00:34:49,790 |
|
ุจูุงุดู ุจูููู
ูู ุฎุทูุฉ ุจูุนู
ููุง ููู ุฌุช ูุงูู ุทูุจ ูุงููู |
|
|
|
315 |
|
00:34:49,790 --> 00:34:54,410 |
|
ุงุญุณุจูู ูุฏุงุด ุงู U ุชู
ุงููุฉ ู ุฃุฑุจุนูู ูุจุงุฌู ุจูููู U |
|
|
|
316 |
|
00:34:54,410 --> 00:35:05,110 |
|
ุชู
ุงููุฉ ู ุฃุฑุจุนูู ุจุฏู ุชุณุงูู U ุณุงูู ูู ุงููุงุญุฏ ู
ููู
ูู |
|
|
|
317 |
|
00:35:05,110 --> 00:35:11,130 |
|
ููุช ูู ูุฃ ูููููุง ุบูุท ูุฃู ูุจู ูููู ุฌุงูู ูุฐู ุงู |
|
|
|
318 |
|
00:35:11,130 --> 00:35:16,510 |
|
group ุชุญุชูู ุนูู ุงู identity ุงุชููู ูุงุญุฏ ูุงูุต ูุงุญุฏ |
|
|
|
319 |
|
00:35:16,510 --> 00:35:22,090 |
|
ูุณูู ุฌุฏุงุด ุงู zero ูู ู
ุถุงุนูุงุช ุงูุฃุฑุจุนูู ุฃู ู
ุถุงุนูุงุช |
|
|
|
320 |
|
00:35:22,090 --> 00:35:26,310 |
|
ุงู K ู
ุถุงุนูุงุช ุงูุชู
ุงููุฉ ุงููู ุนูุฏูุง ูุจูู ุงููุงุญุฏ ู
ููู
|
|
|
|
321 |
|
00:35:27,330 --> 00:35:33,470 |
|
ูุงูุง ุชุณุนุฉ ูู ุดููุช ู
ู ุฃูุงูุง ุจุตูุฑ ุชู
ุงููุฉ ุชู
ุงู
ูุจูู |
|
|
|
322 |
|
00:35:33,470 --> 00:35:39,190 |
|
ูุฐู ุงูุชุณุนุฉ ุฃุญุฏุงุดุฑ ุชูุชุงุดุฑ ุณุจุนุชุงุดุฑ ุดููุช ู
ู ุฃูุงูุง ุจุถู |
|
|
|
323 |
|
00:35:39,190 --> 00:35:44,600 |
|
ูุฏู ุณุชุงุดุฑ ูู ู
ุถุงุนูุงุช ุงูุชู
ุงููุฉูุจูู ุงูู ุณุจุนุชุงุดุฑ |
|
|
|
324 |
|
00:35:44,600 --> 00:35:52,080 |
|
ุชุณุนุชุงุดุฑ ูุฃ ูุงุญุฏ ู ุนุดุฑูู ุชูุงุชุฉ ู ุนุดุฑูู ุณุจุนุฉ ู ุนุดุฑูู |
|
|
|
325 |
|
00:35:52,080 --> 00:36:00,260 |
|
ุชุณุนุฉ ู ุนุดุฑูู ูุงุญุฏ ู ุชูุงุชูู ุชูุงุชุฉ ู ุชูุงุชูู ุงู ุชูุงุชุฉ |
|
|
|
326 |
|
00:36:00,260 --> 00:36:06,160 |
|
ู ุชูุงุชูู ู
ููู
ุชูุงุชุฉ ู ุชูุงุชูู ูุฅู ูู ุฃูู ู
ููุง ูุงุญุฏ |
|
|
|
327 |
|
00:36:06,160 --> 00:36:10,780 |
|
ูุชุจูู ุงุชููู ู ุชูุงุชูู ุชุณู
ุน ุชู
ุงููุฉ ุณุชุฉ ู ุชูุงุชูู ูุฃ |
|
|
|
328 |
|
00:36:10,780 --> 00:36:16,160 |
|
ุชู
ุงููุฉ ู ุชูุงุชูู ูุฃ ูุจูู ู
ุงุนูุฏูุด ุฅูุง ุงูุฃุฑุจุนุฉ ุนูุงุตุฑ |
|
|
|
329 |
|
00:36:16,160 --> 00:36:19,820 |
|
ุงููู ูุฏุงู
ู ูุนูู ูุจูู ุฅุฐู ุงู U ุชู
ุงููุฉ ู ุฃุฑุจุนูู ูู |
|
|
|
330 |
|
00:36:19,820 --> 00:36:23,860 |
|
ูุงุญุฏ ู ุชุณุนุฉ ู ุณุจุชุงุดุฑ ู ุชูุงุชุฉ ู ุชูุงุชูู ู ูู ู
ููุง |
|
|
|
331 |
|
00:36:23,860 --> 00:36:29,490 |
|
ูุญูู ู
ูุงูู
ุนุงุฏูุฉ ุงู ุญุณุจูุงูู
ุจูุงุก ุนูู ุงูุชุนุฑูู ุงููู |
|
|
|
332 |
|
00:36:29,490 --> 00:36:37,550 |
|
ุงุนุทูุงู ู UKM ูุฐุง ููุงู
ู
ูู
ูุงู ุจุฏูุง ูุจูู ุนููู ุดุบู |
|
|
|
333 |
|
00:36:37,550 --> 00:36:42,230 |
|
ุชุงูู ุจุนุฏ ูููู ุงูุงู ุจุฏูุง ููุฌู ููุธุฑูุฉ ุงุฎุฑู ูู ูุฐุง |
|
|
|
334 |
|
00:36:42,230 --> 00:36:47,350 |
|
ุงูุดุจุชุฑ ุงููุธุฑูุฉ ุจุชููู ู
ุง ูุฃุชู IRM |
|
|
|
335 |
|
00:36:52,330 --> 00:37:06,230 |
|
theorem suppose that suppose that ุงู ุงู S and T ุงู |
|
|
|
336 |
|
00:37:06,230 --> 00:37:18,490 |
|
S and T are relatively prime are relatively prime |
|
|
|
337 |
|
00:37:20,290 --> 00:37:31,510 |
|
are relatively prime then then |
|
|
|
338 |
|
00:37:31,510 --> 00:37:40,830 |
|
ุงู U S T ุงู U S T isomorphic |
|
|
|
339 |
|
00:37:40,830 --> 00:37:50,770 |
|
ูู U S external product ู
ุน ู
ูู ู
ุน U Tmoreover |
|
|
|
340 |
|
00:37:50,770 --> 00:37:54,230 |
|
ูุฃูุซุฑ |
|
|
|
341 |
|
00:37:54,230 --> 00:37:59,050 |
|
ู
ู ุฐูู ุงู |
|
|
|
342 |
|
00:37:59,050 --> 00:38:12,930 |
|
subgroup U S of ST isomorphic ู U T and ุงู U Tูู
ู |
|
|
|
343 |
|
00:38:12,930 --> 00:38:22,170 |
|
ูู ST isomorphic ูู
ู ู US ุงูุดูู ุงููู ุนูุฏูุง ุงูุง |
|
|
|
344 |
|
00:38:22,170 --> 00:38:32,050 |
|
isomorphic ู US ููู ูุชูุฌุฉ ุนูููุง ู ุฑููุฑู ุจุชููู |
|
|
|
345 |
|
00:38:32,050 --> 00:38:44,170 |
|
ู
ุง ูุฃุชู let ุงู M ุจุฏุฃ ุชุณุงูู N ูุงุญุฏ N ุงุชูููููุบุงูุฉ NK |
|
|
|
346 |
|
00:38:44,170 --> 00:38:55,190 |
|
ุงู ูุงุญุฏ ุงู ุงุชููู ูุบุงูุฉ NK where ุญูุซ ูุฌูุณ ุงู common |
|
|
|
347 |
|
00:38:55,190 --> 00:39:08,010 |
|
divisor ูู N I ู N J ุจุฏูุง ุชุณุงูู ูุงุญุฏ for I ูุงุชุณุงูู |
|
|
|
348 |
|
00:39:08,010 --> 00:39:09,810 |
|
ุฌู then |
|
|
|
349 |
|
00:39:11,580 --> 00:39:19,920 |
|
ุงูู UM ุงูุฒู ู
ูุฑูู ูู
ูุ ูู U N 1 ุงูุณุชุงูุงุถุงูู ุจุฑูุฏู |
|
|
|
350 |
|
00:39:19,920 --> 00:39:28,200 |
|
ู
ุน U N 2 ุงูุณุชุงูุงุถุงูู ุจุฑูุฏู ู
ุน ู
ููุ ู
ุน U N K ุจุงูุดูู |
|
|
|
351 |
|
00:39:28,200 --> 00:39:28,860 |
|
ุงููู ุนูุฏูุง ููุง |
|
|
|
352 |
|
00:39:42,060 --> 00:39:48,760 |
|
ู
ุฑุฉ ุชุงููุฉ ุจููู ุจููู ูู ุนูุฏู ุฑูู
ูู S ูT are |
|
|
|
353 |
|
00:39:48,760 --> 00:39:57,880 |
|
relatively prime then ุงู U S T ูุจูู ุงู group ุงููู |
|
|
|
354 |
|
00:39:57,880 --> 00:40:03,080 |
|
ุนูุฏูุง ุงู U S T isomorphic ูู externa ุชุงูุฑูุฏู ุชุจูู |
|
|
|
355 |
|
00:40:03,080 --> 00:40:09,120 |
|
ุญุงุตู ุงูุถุฑุจ ุฒู ุงูุด ู
ุซูุง ูู ููุชูู U ุฎู
ุณุชุงุดุฑุจูุฏุฑ |
|
|
|
356 |
|
00:40:09,120 --> 00:40:15,260 |
|
ุงูุชุจูุง U ุชูุงุชุฉ ูู ุฎู
ุณุฉ ู
ุธุจูุท ุงุฐุง ูุฐู ุงู U ุฎู
ุณุงุด |
|
|
|
357 |
|
00:40:15,260 --> 00:40:19,820 |
|
ุงูุฒู ู
ูุฑูู ู U ุชูุงุชู ุงูุณุชุฑูู ุถุงููุฉ ุถุนูู ู
ุน ู
ูู ู
ุน |
|
|
|
358 |
|
00:40:19,820 --> 00:40:24,740 |
|
U ุฎู
ุณู ูุชูููู ุชูุงุชู ู ุฎู
ุณู relatively prime ุจูููู |
|
|
|
359 |
|
00:40:24,740 --> 00:40:33,900 |
|
ู
ุงุดู ุงุด ุฑุงูู U ุชูุงุชูู ุชุณุงูู U ุฎู
ุณู ูู ุณุชุฉ ุตุญ ุฎู
ุณู |
|
|
|
360 |
|
00:40:33,900 --> 00:40:39,070 |
|
ูู ุณุชุฉ ุงู ุนุดุฑุฉ ูู ุชูุงุชููุฐู ููุฐู ุงู ุงุชููู ูู |
|
|
|
361 |
|
00:40:39,070 --> 00:40:43,410 |
|
ุฎู
ุณุชุงุดุฑ ูููุง ุฃุฑูุงู
are relatively prime ุงุฐุง ุงู U |
|
|
|
362 |
|
00:40:43,410 --> 00:40:47,930 |
|
ุชูุงุชูู isomorphic ุงูู U ุนุดุฑุฉ ูู ุชูุงุชุฉ ุงู |
|
|
|
363 |
|
00:40:47,930 --> 00:40:53,830 |
|
isomorphic ู U ุฎู
ุณุฉ ูู ุณุชุฉ ุงู isomorphic ููุงุชููู |
|
|
|
364 |
|
00:40:53,830 --> 00:40:58,390 |
|
ูู U ุงุชููู external like product ู
ุน U ุฎู
ุณุชุงุดุฑ ู |
|
|
|
365 |
|
00:40:58,390 --> 00:41:03,670 |
|
ููุฐุงู
ุฏุงู
ุงูุฑูุงู
ูู ุงู ุงูุชูุงุชุฉ ุงููู ุนูุฏู ุชูุงุชุฉ ู
ู |
|
|
|
366 |
|
00:41:03,670 --> 00:41:08,790 |
|
ุงูู ุฌุจุชูุง ุฏูุ ุฌุจุชูุง ู
ู ุงููุฑููุฑู ุงููุฑููุฑู ุจุชููู ุงุฐุง |
|
|
|
367 |
|
00:41:08,790 --> 00:41:11,490 |
|
ู
ุง ุนูุฏู ููุณ ุจุถุฑุฑ ุฑูุงู
ูู ู
ู
ูู ุงูุฑูุงู
ุงููู ุนูุฏู |
|
|
|
368 |
|
00:41:11,490 --> 00:41:16,090 |
|
ุชุญููู ุงูู ุญุตู ุถุฑุจ ุซูุงุซุฉ ุฑูุงู
ุงู ุงุฑุจุนุฉ ุงุฑูุงู
ุงู |
|
|
|
369 |
|
00:41:16,090 --> 00:41:21,690 |
|
ุฎู
ุณุฉ ุงู ุนุดุฑุฉ ุงู ูู
ู
ู ุงูุฃุฑูุงู
ุญูู ูุฏ ู
ุง ุจุฏููุจูู ูู |
|
|
|
370 |
|
00:41:21,690 --> 00:41:27,990 |
|
ุนูุฏู ุงูู M ูุฐุง ุญูููุงู ุฅูู ุญุงุตู ุถุฑุจ N ู
ู ุงูุฃุฑูุงู
N1 |
|
|
|
371 |
|
00:41:27,990 --> 00:41:32,450 |
|
N2 ูุบุงูุฉ NK ุจุญูุซ ุงูู greatest common divisor ุจูู |
|
|
|
372 |
|
00:41:32,450 --> 00:41:37,250 |
|
ุฃู ุงุชููู ุจุฏู ูููู relatively prime ุจุฏู ูููู ูุงุญุฏ |
|
|
|
373 |
|
00:41:37,250 --> 00:41:41,690 |
|
ุตุญูุญ ูุนูู ุงูุงุชููู ูุฐูู are relatively prime ูุจูู |
|
|
|
374 |
|
00:41:41,690 --> 00:41:46,830 |
|
ุงู U M isomorphic ู U of ุงูุฑูู
ุงูุฃูู ูุณุชุงูุงุฏุงููู |
|
|
|
375 |
|
00:41:46,830 --> 00:41:51,030 |
|
ุจุฑูุฏู U ู
ุน ุงูุฑูู
ุงูุชุงูู ูุณุชุงูุงุฏุงููู ุจุฑูุฏูู
ุน ุงูุฑูู
|
|
|
|
376 |
|
00:41:51,030 --> 00:41:55,250 |
|
ูู ู ููุฐุง ุงูู
ุฑุฉ ุงูุฌุงูุฉ ุงู ุดุงุก ุงููู ุจูุงุฎุฏ ุฃู
ุซูุฉ |
|
|
|
377 |
|
00:41:55,250 --> 00:41:59,890 |
|
ุชูุถุญูุฉ ุนูู ููููุฉ ุงุณุชุฎุฏุงู
ุงูููุงู
ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
|