abdullah's picture
Add files using upload-large-folder tool
7f38609 verified
raw
history blame
52.8 kB
1
00:00:21,240 --> 00:00:24,560
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ูŠูˆู… ุฅู† ุดุงุก ุงู„ู„ู‡ ุนู†ุฏู†ุง
2
00:00:24,560 --> 00:00:29,220
ู…ู†ุงู‚ุดุฉ ู„ู…ุง ุณุจู‚ ุฏุฑุงุณุชู‡ ููŠ chapter ุงู„ุฃูˆู„ ูˆู‡ูˆ
3
00:00:29,220 --> 00:00:33,580
chapter ุงู„ู€ groups ุชู…ุงู…ุŸ ููŠ ุนู†ุฏู†ุง ู…ุฌู…ูˆุนุฉ ู…ู† ุงู„ู…ุณุงุฆู„
4
00:00:33,580 --> 00:00:37,480
ุงู„ู„ูŠ ุทู„ุจู†ุง ุงู„ู…ุฑุฉ ุงู„ู„ูŠ ูุงุชุช ุงุชุญู„ูˆู‡ุง ูˆุจู†ุชูˆู‚ู ุนู†ุฏู‡ุง
5
00:00:37,480 --> 00:00:42,160
ุงู„ูŠูˆู… ููŠ ู‡ุฐู‡ ุงู„ู…ุญุงุถุฑุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ุณุคุงู„ ุงู„ุฃูˆู„ ู‡ูˆ
6
00:00:42,160 --> 00:00:46,040
ุงู„ุณุคุงู„ ุงู„ุฎุงู…ุณ ุจูŠู‚ูˆู„ ู„ูŠ ู‡ุงุช ู„ูŠ ู…ุนูƒูˆุณ ุงู„ู…ุตููˆูุฉ 2
7
00:00:46,040 --> 00:00:50,430
6 3 5 ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ general linear group
8
00:00:50,430 --> 00:00:55,530
of two by two matrices over Z11 ููŠ ุญุงุฌุฉ
9
00:00:55,530 --> 00:01:03,290
ุตุบูŠุฑุฉ ููŠู‡ุง ู‡ุฐุง ุทุจ
10
00:01:03,290 --> 00:01:08,090
ุงู„ูŠูˆู… ุฏู‡ ุฎู„ูŠู‡ุง ุชุทู„ุน ุฅู† ุดุงุก ุงู„ู„ู‡ ู…ุงุดูŠ ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ
11
00:01:08,090 --> 00:01:14,630
ุงู„ู…ุตููˆูุฉ 2 6 3 5 ูŠุจู‚ู‰ ุนู†ุฏูŠ 2 ุงู„ู„ูŠ
12
00:01:14,630 --> 00:01:20,210
ู‡ูˆ ุงู„ุณุคุงู„ ุงู„ุฎุงู…ุณ 2 6 3 5 ู‡ูŠูƒ ู…ุธุจูˆุทุŸ
13
00:01:21,940 --> 00:01:25,940
ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุจุฏู†ุง ู†ุญุงูˆู„ ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ
14
00:01:25,940 --> 00:01:31,140
ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู…ุดุงู† ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ู„ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ุทุจุนุง
15
00:01:31,140 --> 00:01:35,860
ุงู„ุนู†ุงุตุฑ 2 6 3 5 ู…ูˆุฌูˆุฏุฉ ูˆูŠู† ููŠ ุงู„ู€ Z11 ุฏูŠ
16
00:01:35,860 --> 00:01:40,000
11 ููŠ ุงู„ุฃูˆู„ ุจุฏูŠ ุฃุชุฃูƒุฏ ุฅู† ู„ู‡ุง ู…ุนูƒูˆุณ ูˆู„ุง ู„ุฃ
17
00:01:40,000 --> 00:01:45,610
ูุจุฑูˆุญ ุจุฌูŠุจ ู…ูŠู† ุงู„ู…ุญุฏุฏ ุชุจุน ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ูŠุจู‚ู‰ ู„ูˆ ุฌูŠุช
18
00:01:45,610 --> 00:01:51,930
ุฃุฎุฐุช ู„ู‡ุง determinant ู„ู€ 2 6 3 5 ุจุฏู‡ ูŠุณุงูˆูŠ
19
00:01:51,930 --> 00:01:58,350
3 ููŠ 5 2 ููŠ 5 ุจุนุดุฑุฉ ูˆ6 ููŠ 3
20
00:01:58,350 --> 00:02:07,440
ุจู€18 ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… modulo 11 ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
21
00:02:07,440 --> 00:02:14,000
ูŠุณุงูˆูŠ ุณุงู„ุจ 8 modulo 11 ู…ุง ุนู†ุฏูŠุด ุญุงุฌุฉ
22
00:02:14,000 --> 00:02:18,700
ุงุณู…ู‡ุง ุณุงู„ูุฉ ุจุฑูˆุญ ุจุฃุถูŠู 11 ู„ุณุงู„ุจ 8 ุจุตูŠุฑ
23
00:02:18,700 --> 00:02:24,800
ุงู„ุฌูˆุงุจ ู‚ุฏ ุงูŠู‡ุŸ 3 ุฅุฐุง ู‚ูŠู…ุฉ ุงู„ู…ุญุฏุฏ ุชุณุงูˆูŠ 3 ู„ุง
24
00:02:24,800 --> 00:02:31,140
ูŠุณุงูˆูŠ Zero ุฅุฐุง ู‡ู†ุง ุงู„ู€ A ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ู„ู‡ุง ู…ุนูƒูˆุณ ุงู„ุขู†
25
00:02:31,140 --> 00:02:34,460
ุจุฏู†ุง ู†ุฌูŠุจ ุงู„ู…ุนูƒูˆุณ ุฃุฎุฐู†ุง ู…ุซุงู„ ุงู„ู€ General Linear
26
00:02:34,460 --> 00:02:40,960
Group of 2x2 matrices over R ุงู„ู…ุนูƒูˆุณ ุชุจุนู‡ุง 1
27
00:02:40,960 --> 00:02:45,500
ุนู„ู‰ ู…ุญุฏุฏ ุงู„ู€ A ุจุบูŠุฑ ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุฑุฆูŠุณูŠ ู…ูƒุงู† ุจุนุถู‡
28
00:02:45,500 --> 00:02:51,560
ุจุบูŠุฑ ุฅุดุงุฑุงุช ุนู†ุงุตุฑ ุงู„ู‚ุทุฑ ุงู„ุซุงู†ูˆูŠ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ู„ูˆ
29
00:02:51,560 --> 00:02:57,680
ุฌูŠุช ุณู…ูŠุช ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ A ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ A inverse ุจุฏู‡
30
00:02:57,680 --> 00:03:05,080
ูŠุณุงูˆูŠ 1/3 ููŠ ุงู„ู…ุญุฏุฏ ููŠ ุงู„ู…ุตููˆูุฉ A 5 2 ุณุงู„ุจ
31
00:03:05,080 --> 00:03:13,670
6 ุณุงู„ุจ 3 ูŠุจู‚ู‰ ู‡ุฐุง 1/3 ููŠ ุงู„ุขู† ุฃู†ุง ู…ุง ุนู†ุฏูŠุด ุณุงู„ุจ
32
00:03:13,670 --> 00:03:16,950
3 ุฃูˆ ุณุงู„ุจ 6 ูŠุจู‚ู‰ ุจุฑูˆุญ ูˆุจุถูŠู ู„ูƒู„ ูˆุงุญุฏุฉ ููŠู‡ู…
33
00:03:16,950 --> 00:03:22,410
ู‚ุฏ ุงูŠู‡ ุงู„ู…ู‚ุงุณ ุงู„ู„ูŠ ุงุญู†ุง ู…ุงุดูŠูŠู† ุนู„ูŠู‡ ุงู„ู€ 11 ูŠุจู‚ู‰ 5
34
00:03:22,410 --> 00:03:27,370
ู‡ู†ุง ู„ูˆ ุฃุถูุช 11 ุจูŠุจู‚ู‰ ู‚ุฏ ุงูŠู‡ุŸ ูƒู…ุงู† 5 ู‡ู†ุง ู„ูˆ ุฃุถูุช
35
00:03:27,370 --> 00:03:35,520
11 ุจูŠุตูŠุฑ 8 ูˆู‡ู†ุง 2 ูƒู„ ู‡ุฐู‡ ุนู†ุงุตุฑ ู…ูˆุฏูŠูˆู„ูˆ 11
36
00:03:35,520 --> 00:03:39,480
ูŠุนู†ูŠ 5 modulo 11 8 modulo 11 2
37
00:03:39,480 --> 00:03:44,340
modulo 11 ู‡ู„ ุฃุถุฑุจ ุงู„ู€ 1/3 ููŠ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุฌูˆุง
38
00:03:47,100 --> 00:03:51,760
ุจุชุจุทู„ ูŠุตูŠุฑ ููŠ Z11 ุงู„ูƒู„ุงู… ู…ุด ุตุญูŠุญ ุทูŠุจ ุฅุฐุง ุดูˆ
39
00:03:51,760 --> 00:03:57,200
ู†ุนู…ู„ุŸ ุจุฏู‡ ุฃุฑูˆุญ ุงู„ุนู†ุงุตุฑ ุฌูˆุง ุฃุถูู„ู‡ุง ู…ุถุงุนูุงุช 11
40
00:03:57,200 --> 00:04:01,420
ุจุญูŠุซ ูƒู„ ูˆุงุญุฏ ูŠุตูŠุฑ ููŠู‡ู… ูŠู‚ุณู… ุนู„ู‰ 3 ู‡ุชุตูŠุฑ
41
00:04:01,420 --> 00:04:06,600
ูƒู„ุงู…ู†ุง ุตุญูŠุญ ุฅุฐุง ู‡ุฐู‡ ุงู„ู…ุตููˆูุฉ ู„ูˆ ุฌูŠุช ู‚ู„ุช what ุชุณุงูˆูŠ
42
00:04:06,600 --> 00:04:13,320
ู‡ูŠ ุงู„ู€ 1/3 ุงู„ู„ูŠ ุจุฑุง ูˆู‡ูŠ ุงู„ู…ุตููˆูุฉ ู„ุฃู† 11 ูˆ5 6
43
00:04:13,320 --> 00:04:18,120
10 ุชู‚ุณู…ู‡ุง 3 ู„ุฃ ูƒู…ุงู† 11 ูˆ16 7
44
00:04:18,120 --> 00:04:23,640
ูˆ20 7 27 ุชู‚ุณู… ู…ุธุจูˆุท ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€ 5
45
00:04:23,640 --> 00:04:30,020
ูƒุงูุฉ 27 ู…ุถุงุนูุงุช ุงู„ู€ 11 ุชู…ุงู…ุŸ ุงู„ู„ูŠ ุจุนุฏู‡ุง
46
00:04:30,020 --> 00:04:34,760
ุฒูŠู‡ุง ู‡ุงูŠ 27 ู…ุถุงุนูุงุช ุงู„ู€ 11 ู†ุฌูŠ ู„ู„ุชู…ุงู†ูŠุฉ
47
00:04:34,760 --> 00:04:42,210
11 19 9 10 ูˆูƒู…ุงู† 11 30 ุงู‡
48
00:04:42,210 --> 00:04:48,470
ุชู‚ุณู… ูŠุจู‚ู‰ ู‡ู†ุง 30 ูˆู‡ุฐู‡ 2 ูˆ11 13
49
00:04:48,470 --> 00:04:54,770
ูˆูƒู…ุงู† 11 24 ุชู‚ุณู… ุนู„ู‰ 3 ูŠุจู‚ู‰ ู‡ุฐู‡
50
00:04:54,770 --> 00:05:01,430
ูƒู…ุงู† 24 ูŠุจู‚ู‰ ุตุงุฑุช ุนู„ู‰ 3 ููŠู‡ุง 9
51
00:05:01,430 --> 00:05:08,130
9 ูˆู‡ู†ุง ููŠู‡ุง 10 ูˆู‡ู†ุง ููŠู‡ุง 8 ุงู„ุดูƒู„ ุนู†ุฏู†ุง
52
00:05:08,790 --> 00:05:14,450
ู„ุงุญุธ ุฅู† ุฌู…ูŠุน ุงู„ุนู†ุงุตุฑ ุงู„ุชูŠ ุญุตู„ู†ุง ุนู„ูŠู‡ุง 9 9
53
00:05:14,450 --> 00:05:21,230
8 10 ูƒู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ Z11 ูƒู„ู‡ุง ู…ูˆุฌูˆุฏุฉ ููŠ Z11
54
00:05:21,230 --> 00:05:27,030
ุงู„ุขู† ุจุฏูƒ ุชุชุฃูƒุฏ ุฅู† ู‡ุฐุง ุงู„ูƒู„ุงู… ุตุญูŠุญ ูุนู„ุง ู‡ุฐู‡ ู…ุนูƒูˆุณ
55
00:05:27,030 --> 00:05:31,170
ู„ู‡ุง ุฏูŠ ุจุฏู†ุง ู†ุนู…ู„ ุจุฏู†ุง ู†ุถุฑุจ ูˆู†ุณุชุฎุฏู… ุงู„ู€ modulo 11
56
00:05:31,170 --> 00:05:36,520
ูŠุจู‚ู‰ ู‡ุฐุง ู„ูƒ ููŠ ุงู„ุฏุงุฑ ุจุฑุงุญุชูƒ ุชุถุฑุจ ุงู„ู…ุตููˆูุฉ ุงู„ุขู† ุงู„ู€
57
00:05:36,520 --> 00:05:42,400
A A inverse ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ ู‡ูˆ 2 6 3 5
58
00:05:42,400 --> 00:05:48,000
ููŠ ู…ูŠู† ููŠ 9 10 8 ุจุฑุงุญุชูƒ ูˆู‡ุฐุง
59
00:05:48,000 --> 00:05:53,420
ุงู„ูƒู„ุงู… ู„ุงุฒู… ูŠุทู„ุน 1 0 0 1 ูˆู„ุง ุจุตูŠุฑ
60
00:05:53,420 --> 00:05:57,900
ูƒู„ุงู…ู†ุง ู…ุนู„ู‚ ู…ุด ุตุญูŠุญ ุทุจ ูŠุฌุจ ุฅู† ุชุนู…ู„ู‡ุง ููŠ ุงู„ุฏุงุฑ
61
00:05:57,900 --> 00:06:02,210
ุจุนู…ู„ูƒ ุจุณ ุฃูˆู„ term ูˆุงู„ุจุงู‚ูŠ ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ
62
00:06:02,210 --> 00:06:07,350
ุฃุถุฑุจ 2 ููŠ 9 18 18 ูˆ6 ููŠ 10
63
00:06:07,350 --> 00:06:13,590
ุจู€60 ูˆ18 78 ุจู†ุดูŠู„ ู…ู†ู‡ู… 11
64
00:06:13,590 --> 00:06:17,130
11 ููŠ 7 ุจู€77 ูƒุฏู‡ ุงุด ู…ุถุงู„ ุฎู„ุงุต ู†ู‡ูŠ
65
00:06:17,130 --> 00:06:21,050
ุงู„ู€ 1 ู…ูˆุฌูˆุฏ ูˆู‡ุง ูƒุฏู‡ ุนู…ู„ูƒ ุงู„ุชุงู†ูŠ ุดููˆูŠ ูƒู…ุงู† ูˆู„ุง
66
00:06:21,050 --> 00:06:26,030
ุฎู„ุงุต ุฎู„ุงุตู†ุง ู…ู†ู‡ ุงู„ุตุนุจ ู‡ุฐุง ุณุคุงู„ 5 ุทูŠุจ ู‡ุฐุง ุณุคุงู„
67
00:06:26,030 --> 00:06:32,690
5 ุณุคุงู„ 6 ุณุคุงู„ 6 ุจูŠู‚ูˆู„ ู„ูŠ give an example of
68
00:06:32,690 --> 00:06:38,270
a group elements A ูˆ B with property that ุฅู† ุงู„ู€ A
69
00:06:38,270 --> 00:06:44,320
inverse B A ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B ุดูˆู ูŠุง ุณูŠุฏูŠ ุงู„ุณุคุงู„
70
00:06:44,320 --> 00:06:48,840
ุงู„ู€ 4 ูˆุงู„ุณุคุงู„ ุงู„ู€ 6 ุงู„ุงุซู†ูŠู† are the same ุจุตุฑุงุญุฉ
71
00:06:48,840 --> 00:06:55,160
ุงู„ุณุคุงู„ ุงู„ู€ 6 ุตุงุบ ุจุตูŠุบุฉ ุฃุฎุฑู‰ ู‚ุงู„ ู„ูƒ B inverse A B ู„ุง
72
00:06:55,160 --> 00:07:01,200
ูŠุณุงูˆูŠ ุงู„ู€ B ูŠุจู‚ู‰ ุงู„ุณุคุงู„ ุงู„ู€ 6 ู‚ุงู„ ู„ูƒ B inverse A B
73
00:07:01,200 --> 00:07:07,680
ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B ุทุจ ุฃู†ุง ู„ูˆ ุถุฑุจุช ููŠ B ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„
74
00:07:07,680 --> 00:07:13,440
ุถุฑุจุช ููŠ B ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ B inverse A B ุจู‚ู‰ A B
75
00:07:13,440 --> 00:07:18,680
ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ B
76
00:07:18,680 --> 00:07:21,040
A ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B
77
00:07:21,040 --> 00:07:23,600
ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰
78
00:07:23,600 --> 00:07:23,740
A ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B
79
00:07:23,740 --> 00:07:26,580
ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰
80
00:07:26,580 --> 00:07:36,000
A ุจู‚ู‰ A B ุจู‚ู‰ A B ุจู‚ู‰
81
00:07:38,610 --> 00:07:43,530
ูŠุนู†ูŠ ุจูŠู‚ูˆู„ ู„ูŠ ู‡ุงุช ู„ูŠ ู…ุซุงู„ ู„ู€ group ุจุญูŠุซ ู„ูˆ ุฃุฎุฏุช ุนู†ุตุฑูŠู†
82
00:07:43,530 --> 00:07:47,910
ู…ู†ู‡ุง ุถุฑุจุช ุงู„ู€ B ููŠ A ู‡ุชู„ุงู‚ูŠ ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ A ููŠ B ู†ูุณ
83
00:07:47,910 --> 00:07:52,390
ุงู„ุณุคุงู„ ุงู„ู„ูŠ ู‡ูˆ ุชุจุน 4 ุจุงู„ุถุจุท ุชู…ุงู…ุง ุฌุงู„ูƒ ู‡ุงุช ู„ูŠ
84
00:07:52,390 --> 00:07:57,390
ู…ุซุงู„ ู„ู€ non appealing group ุฃูˆ ู„ู€ group ุจุญูŠุซ ุงู„ู€ A ููŠ
85
00:07:57,390 --> 00:08:02,050
B ู„ุง ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ A ูŠุจู‚ู‰ 4 ูˆ6 ู†ูุณ ุงู„ููƒุฑุฉ
86
00:08:02,050 --> 00:08:10,460
ุจุงู„ุถุจุท ุชู…ุงู…ุง ุทูŠุจ ู…ูŠู† ุนู†ุฏูƒ non abelian groupุŸ ุญุฏ
87
00:08:10,460 --> 00:08:15,220
ุจูŠู‚ุฏุฑ ูŠุฌูŠุจ ู„ูŠ ู…ุซุงู„ุŸ ู…ู…ุชุงุฒ ุฌุฏุง ูŠุจู‚ู‰ ุงู„ู€ general
88
00:08:15,220 --> 00:08:19,040
linear group of two by two matrices over R ุฃุจุณุท
89
00:08:19,040 --> 00:08:27,410
ู…ุซู„ ู†ุนุทูŠ ูƒู…ุงู† ู…ุซู„ ุขุฎุฑ ุนู…ู„ูŠุŸ ู†ุนุทูŠุŸ D4 ูŠุจู‚ู‰ D4 ู…ุซุงู„
90
00:08:27,410 --> 00:08:30,650
ู…ุญู„ูˆู„ ู…ุนุงูƒ ูˆุงู„ู€ general linear group ูƒู…ุงู† ู…ุซุงู„
91
00:08:30,650 --> 00:08:35,790
ู…ุญู„ูˆู„ ูƒูู†ุง ุงุญู†ุง ุจูƒููŠ ุงุซู†ูŠู† ู‡ุงูŠ ุฃุนุทูŠู†ุงูƒ ุจุฏู„ ุงู„ู…ุซุงู„
92
00:08:35,790 --> 00:08:42,490
ุงุซู†ูŠู† ูŠุจู‚ู‰ ูƒู…ุซุงู„ ุนู„ู‰ ุฐู„ูƒ ุนู†ุฏูƒ D4 ุฃูˆ ุนู†ุฏูƒ ูƒู…ุงู† ุงู„ู€
93
00:08:42,490 --> 00:08:45,950
general linear group of two by two matrices over R
94
00:08:45,950 --> 00:08:51,540
ุนู…ู„ูŠุฉ ุถุฑุจ ุงู„ู…ุตููˆูุงุช ู‡ู„ ู‡ูŠ ุฅุจุฏุงู„ูŠุฉุŸ ู„ุฃ ุงุซู†ูŠู† ุงู„ู€ D4 ู‡ู„
95
00:08:51,540 --> 00:08:56,240
ู‡ูŠ abelian ุทุจุนุง ูŠุจู‚ู‰ ุงู…ุณูƒ ุฃูŠ ุนู†ุตุฑูŠู† ู‡ุงุช ูˆุงุญุฏ ู…ุซู„ุง
96
00:08:56,240 --> 00:08:59,240
ู…ู† ุงู„ู€ rotation ูˆุงุญุฏ ู…ู† ุงู„ู€ inflection ูˆุงุถุฑุจู‡ู… ููŠ ุจุนุถ
97
00:08:59,240 --> 00:09:02,820
ูˆุงุฌู„ุจ ุทุจุนุง ุญุณุจู†ุง ู…ุนูƒู… ุงู„ูƒู„ุงู… ู‡ุฐุง ู‡ุชู„ุงู‚ูŠ ุงู„ู€ A ููŠ
98
00:09:02,820 --> 00:09:06,580
B ุงู„ู„ูŠ ู‡ูŠ ูˆุณุงูˆู‰ ู…ูŠู† ุงู„ู€ B ููŠ A ูˆู‡ูŠ ุนู†ุฏูƒ ุจุฏู„ ุงู„ู…ุซุงู„
99
00:09:06,580 --> 00:09:11,600
ุงุซู†ูŠู† ุจุนุฏ ุงู„ู€ 6 ุจุฏู†ุง ู†ุฑูˆุญ ู„ู€ 8 8 ููŠ
100
00:09:11,600 --> 00:09:15,260
ู…ุดูƒู„ุชู‡ุง ุฏู‡ ุฃุนุฏุงุฏ ุนุงุฏูŠุฉ ู…ุด ููŠ ู…ุดูƒู„ุฉ ุทุจ ู…ูŠู† ุงู„ู€
101
00:09:15,260 --> 00:09:21,460
identity elementุŸ ุงู„ู„ูŠ ู‚ุงู„ ู„ู‡ ุณุคุงู„ 8 5 ูˆ
102
00:09:21,460 --> 00:09:25,340
20 ู‡ูˆ ุงู„ู€ identity element ุนู„ู‰ ุทูˆู„ ุฎุงุทุฑ ุฃุถุฑุจ ุฃูŠ
103
00:09:25,340 --> 00:09:30,580
element ู…ู† ุงู„ู€ 6 ุงู„ู„ูŠ ุนู†ุฏูƒ ุงู„ู„ูŠ ู‡ูˆ 15 ูˆ5 ูˆ
104
00:09:30,580 --> 00:09:36,160
30 ุจุชู„ุงู‚ูŠ ู†ูุณ ุงู„ู€ element ู…ูˆุฌูˆุฏ ู‡ูˆ ู‡ูˆ ูŠุจู‚ู‰
105
00:09:36,160 --> 00:09:40,860
ุงู„ู€ 25 ู‡ูˆ ุงู„ู€ identity element ูŠุจู‚ู‰ ุงุญู†ุง
106
00:09:40,860 --> 00:09:43,880
ุนู†ุฏู†ุง ุงู„ู€ 5 ูˆุงู„ู€ 15 ูˆุงู„ู€ 25 ูˆุงู„ู€ 5
107
00:09:43,880 --> 00:09:48,720
ูˆ30 ุฃุฑุจุนุฉ ุนู†ุงุตุฑ ุนู†ุตุฑ ุงู„ูˆุญุฏุฉ ููŠู‡ู… ู‡ูˆ 5 ูˆ
108
00:09:48,720 --> 00:09:53,080
20 ุทุจุนุง modulo 40 ูŠุนู†ูŠ ุงู„ู…ู‚ุงุณ ุงู„ู„ูŠ ุงุญู†ุง
109
00:09:53,080 --> 00:09:58,340
ู…ุงุดูŠูŠู† ููŠู‡ ุงู„ู„ูŠ ู‡ูˆ ู…ูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 40 ุทูŠุจ ู†ูŠุฌูŠ ู„ุณุคุงู„
110
00:09:58,340 --> 00:10:05,340
ุงู„ุขู† 10 ุณุคุงู„ 10 ู…ุง ุทูŠู†ูŠ two sets ุงู„ู€ set ุงู„ุฃูˆู„ู‰
111
00:10:07,720 --> 00:10:13,960
ุณุคุงู„ 10 ุจูŠู‚ูˆู„ list the elements of H ุจุฏู‡ุง ุชุณุงูˆูŠ
112
00:10:13,960 --> 00:10:22,520
ูƒู„ ุงู„ุนู†ุงุตุฑ X ุชุฑุจูŠุน ุจุญูŠุซ ุงู„ู€ X ู…ูˆุฌูˆุฏุฉ ููŠ D4 ูˆูƒุฐู„ูƒ
113
00:10:22,520 --> 00:10:29,700
ุงู„ู€ set ุงู„ุชุงู†ูŠุฉ ู„ูƒุงุจูŠุชุงู„ K ู„ูƒู„ ุงู„ุนู†ุงุตุฑ X ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ
114
00:10:29,700 --> 00:10:39,410
D4 ุจุญูŠุซ ุฅู† Xยฒ is equal to the identity element ูŠุจู‚ู‰
115
00:10:39,410 --> 00:10:45,730
ุฃู…ุงู…ู†ุง ุงุญู†ุง ุณุคุงู„ูŠู† ูƒู„ ุณุคุงู„ ุจุฏู†ุง ู†ุญุณุจู‡ ุนู„ู‰ ุญุฏุฉ ุงู„ุขู†
116
00:10:45,730 --> 00:10:53,050
ู„ู…ุง ู†ูŠุฌูŠ ู„ู€ D4 ุงู„ู€ D4 ุงู„ุนู†ุงุตุฑ ุชุจุนู‡ุง R0 ูˆR90
117
00:10:53,050 --> 00:11:00,750
ูˆR180 ูˆR270 ูˆุงู„ู€ H ูˆุงู„ู€ V ูˆุงู„ู€
118
00:11:00,750 --> 00:11:06,240
D ูˆุงู„ู€ D prime ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ุซู…ุงู† ุนู†ุงุตุฑ ุชุจุนู‡ุง ุจุฏู†ุง
119
00:11:06,240 --> 00:11:12,160
ู†ูŠุฌูŠ ู†ุญุณุจู‡ ุงู„ู€ set ุงู„ุฃูˆู„ู‰ ู…ู† H ูƒู„ ุงู„ุนู†ุงุตุฑ X ุชุฑุจูŠุน
120
00:11:12,160 --> 00:11:17,660
ุจุญูŠุซ ุงู„ู€ X ู…ูˆุฌูˆุฏุฉ ููŠ D ูŠุนู†ูŠ ุงูŠู‡ุŸ ุจุฏุฃ ุฃุฎุฏ ุนู†ุตุฑ ู…ู† D4
121
00:11:17,660 --> 00:11:22,820
ูˆุฃุฑูˆุญ ุฃุฑุจุนู‡ ูˆุงู„ู†ุชุฌ ุฃุญุทู‡ ููŠ ู…ูŠู†ุŸ ููŠ ู‡ุฐู‡ ุงู„ู€ set ูŠุจู‚ู‰
122
00:11:22,820 --> 00:11:28,820
ุจู†ุงุก ุนู„ูŠู‡ ุงู„ู€ H ุจุฏู‡ุง ุชุณุงูˆูŠ ุจุฏุฃ ุฃู…ุณูƒ R0 ู„ูˆ ุฑุจุนุชู‡
123
00:11:28,820 --> 00:11:33,670
ู…ู† ุจูŠุทู„ุน R0 ู†ูุณู‡ ูŠุจู‚ู‰ R0 ู…ูˆุฌูˆุฏ ููŠ ู‡ุฐู‡
124
00:11:33,670 --> 00:11:38,970
ุงู„ู…ุฌู…ูˆุนุฉ ุจุงู„ุฏุงุฎู„ ุงู„ู€ R90 ู„ูˆ ุฑุจุนุชู‡ ุดูˆ ุจูŠุทู„ุน R
125
00:11:38,970 --> 00:11:44,850
180 ูŠุจู‚ู‰ R180 ุจุงู„ุฏุงุฎู„ ุงู„ู€ R180
126
00:11:44,850 --> 00:11:49,110
ูˆ 80 ู„ูˆ ุฑุจุนุชู‡ุง R40 ู…ูˆุฌูˆุฏุฉ ูŠุจู‚ู‰ ุจุณูŠุจู‡ุง
127
00:11:49,110 --> 00:11:53,170
ุจุงู„ุฏุงุฎู„ ุงู„ู€ R40 ูˆ 70 ู„ูˆ ุฑุจุนุชู‡ุง
128
00:11:55,600 --> 00:12:01,440
R ูƒุฏู‡ุŸ 180 ูŠุนู†ูŠ ุจุตูŠุฑ R 270 500 ูˆ
129
00:12:01,440 --> 00:12:05,320
40 ุดูŠู„ ู…ู†ู‡ู… ุงู„ุฏูˆุฑุฉ ุงู„ูƒุงู…ู„ุฉ ุงู„ู„ูŠ ู‡ูŠ 360 ูˆ
130
00:12:05,320 --> 00:12:11,700
60 ุจูŠุถู„ 180 ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ูŠุจู‚ู‰ ู‡ุฐู‡ ูƒู…ุงู†
131
00:12:11,700 --> 00:12:17,260
ุถุงู„ุฉ ู…ูˆุฌูˆุฏุฉ ุทุจ ุฏู‡ ุฑุงุจุน ุงู„ู€ H ุชุฑุจูŠุน ุงู„ู€ identity are
132
00:12:17,260 --> 00:12:24,210
not ู‡ูŠ ู…ูˆุฌูˆุฏุฉ R40 R40 R40 R40
133
00:12:24,210 --> 00:12:30,050
R40 R40 R40 R40 R40 R40 R40 R40
134
00:12:30,050 --> 00:12:30,290
R40 R40 R40 R40 R40 R40 R40 R40
135
00:12:30,290 --> 00:12:31,350
R40 R40 R40 R40 R40 R40 R40 R40
136
00:12:31,350 --> 00:12:39,570
R40 R40 R40 R40 R40 R40 R40 R40
137
00:12:39,570 --> 00:12:45,320
ุงู„ู€ K ุจุฏู‡ ูŠุณุงูˆูŠ ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููŠู‡ D4 ู„ู…ุง
138
00:12:45,320 --> 00:12:49,920
ุฑุจูŠุนู‡ุง ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู„ู€ identity ูƒุชุจู†ุง ู‡ู„ูƒู… ูƒุชุจู†ุง
139
00:12:49,920 --> 00:12:54,600
R180 ุชุฑุจูŠุน ุจู‚ุฏุงุดุŸ ุจุงู„ู€ identity ูˆ R40 ุชุฑุจูŠุน ูˆ ุงู„ู€ V
140
00:12:54,600 --> 00:12:57,120
ุชุฑุจูŠุน ูˆ ุงู„ู€ D ุชุฑุจูŠุน ูˆ ุงู„ู€ D' ุชุฑุจูŠุน ูƒู„ู‡ ุจุงู„ู€
141
00:12:57,120 --> 00:13:05,960
identity ุฅุฐุง ุนู†ุงุตุฑ ุงู„ู€ Kุงู„ุฑู‚ู… ุงู„ุฑุงุจุน ูŠุจู‚ู‰ ุงู„ู€
142
00:13:05,960 --> 00:13:14,640
identity ู†ูุณู‡ ุงู„ู€ identity ุงู„ู€ R40 ุงู„ู€ R
143
00:13:14,640 --> 00:13:17,800
90
144
00:13:17,800 --> 00:13:25,130
ุงู„ู€ R80 ูŠุจู‚ู‰ ุงู„ู€ R180 ุชุนุทูŠู†ุง ุงู„ู€
145
00:13:25,130 --> 00:13:29,010
identity ุงู„ู€ R270 ู„ูˆ ุฑุจุนุชู‡ุง ุจุชุนุทูŠู†ุง ุงูŠู‡ุŸ
146
00:13:29,010 --> 00:13:34,750
ุจุชุนุทูŠู†ุง ุงู„ู€ 180 ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงู„ู€ H ูˆ ุงู„ู€ V ูˆ ุงู„ู€
147
00:13:34,750 --> 00:13:39,470
D ูˆ ุงู„ู€ D' ูƒู„ู‡ุง ู‡ุฐู‡ ู„ูˆ ุฑุจุนุชู‡ุง ุจุชุนุทูŠู†ุง ู…ูŠุฉุŸ ุงู„ู€
148
00:13:39,470 --> 00:13:44,150
identity element ูŠุจู‚ู‰ ู‡ุฐุง ุจุงู„ู†ุณุจุฉ ู„ุณุคุงู„ 10
149
00:13:44,150 --> 00:13:46,450
ุจุงู„ู†ุณุจุฉ ู„ุณุคุงู„ 12
150
00:13:50,380 --> 00:13:55,380
12 ุจูŠู‚ูˆู„ ู„ูŠ for any integer n greater than or
151
00:13:55,380 --> 00:13:58,540
equal to 2 show that there are at least two
152
00:13:58,540 --> 00:14:04,880
elements in U N such that ุงู„ .. such that ุงู„ู„ูŠ ู‡ูˆ
153
00:14:04,880 --> 00:14:08,960
satisfy ุงู„ู€ X ุชุฑุจูŠุน ุจุฏู‡ ูŠุณู…ู‰ main ุงู„ู€ identity
154
00:14:08,960 --> 00:14:19,680
element ู„ูˆ ุฌูŠุช ุงู„ุขู† ู„ู„ู€ U N ุนู†ุงุตุฑู‡ุง 1 ูˆ ูƒุฏุงุด
155
00:14:19,680 --> 00:14:27,340
ุขุฎุฑ ุนู†ุตุฑ ู†ุงู‚ุต 1 ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุนู†ุตุฑ ุงู„ุฃุฎูŠุฑ
156
00:14:27,340 --> 00:14:38,060
ููŠ ุงู„ู€ group ุจูŠู‚ูˆู„ ูŠุจูŠู† ู„ูŠู‡ุฐุง ุงู„ู…ุนุงุฏู„ ูŠุญู‚ู‚
157
00:14:38,060 --> 00:14:43,780
ุนู„ู‰ ุฃู‚ู„ ุงุชู†ูŠู† ูŠุญู‚ู‚ูˆุง ุงู„ู…ุนุงุฏู„ุฉ X ุชุฑุจูŠุน ุชุณุงูˆูŠ 1
158
00:14:43,780 --> 00:14:49,880
ูŠุนู†ูŠ ู…ุฑุจุน ุงู„ุนู†ุตุฑ ุงู„ู€ identity element ุทุจุนุง ู…ู…ูƒู† ุฃู‚ู„
159
00:14:49,880 --> 00:14:53,400
ุญุงุฌุฉ ููŠู‡ุง 2 ู„ูƒู† ู…ู…ูƒู† ูŠูƒูˆู† ููŠู‡ุง 4 ู…ู…ูƒู† ูŠูƒูˆู†
160
00:14:53,400 --> 00:14:57,540
ููŠู‡ุง 6 ู…ู…ูƒู† ู…ู…ูƒู† ุฅู„ู‰ ุขุฎุฑู‡ ุชู…ุงู… ุทูŠุจ ุงุญู†ุง ุจุฏู†ุง
161
00:14:57,540 --> 00:15:03,760
ู†ูŠุฌูŠ ู†ุดูˆู ู‡ู„ ู‡ุฐู‡ ุงู„ู€ group ููŠู‡ุง two elements ู„ูˆ
162
00:15:03,760 --> 00:15:09,300
ุฑุจุนุชู‡ู… ุจูŠุนุทูŠู†ุง ุงู„ู€ identity element ูˆู„ุง ู„ุง ุงู„ู€ 1
163
00:15:09,300 --> 00:15:12,220
ู…ุฑุจุน ุจู€ 1 ูŠุจู‚ู‰ 1 ููŠู‡ู… ุงู„ุชุงู†ูŠ
164
00:15:17,630 --> 00:15:23,590
ุงู„ุขู† ุงุฏุนู‰ ุงู† ุงู„ุนู†ุตุฑูŠู† ุงู„ู„ูŠ ุจุญู‚ู‚ูˆุง ุงู„ู…ุนุงุฏู„ุฉ x
165
00:15:23,590 --> 00:15:30,610
ุชุฑุจูŠู‡ุง ุชุณุงูˆูŠ 1 ู‡ู…ุง ุงู„ุณุช ุงู„ุชุงู„ูŠุฉ 1 ูˆ N ู†ุงู‚ุต
166
00:15:30,610 --> 00:15:34,930
1 ู…ู…ูƒู† ูŠูƒูˆู† ููŠ ุบูŠุฑู‡ู… ู‡ู‡ ุจุณ ู‡ูˆ ุงูŠุด ุจูŠู‚ูˆู„ ู„ูŠ ุจูŠู‚ูˆู„ ู„ูŠ
167
00:15:34,930 --> 00:15:39,680
ุงุซุจุช ุงู†ู‡ ุนู„ู‰ ุงู„ุฃู‚ู„ ุนู†ุฏูŠ 2 ุจู‚ูˆู„ ุงู„ุขู† ุฃู†ุง ู‡ุฐูˆู„
168
00:15:39,680 --> 00:15:45,240
ู„ูŠุดุŸ because ุงู„ุณุจุจ ุงู† ู‡ุฐูˆู„ ู‡ู… ุงู„ู„ูŠ ุจูŠุญู‚ูˆุง ุงู„ู…ุนุงุฏู„ุฉ
169
00:15:45,240 --> 00:15:51,660
ุงู„ู€ 1 ุชุฑุจูŠุน ุดูˆ ุจูŠุนุทูŠู†ูŠุŸ ุงู„ู€ 1 it's ุงู„ู€ and N ู†ุงู‚ุต
170
00:15:51,660 --> 00:15:55,260
1 ู„ูƒู„ ุชุฑุจูŠุน ู‡ุฐุง ู„ุงุฒู… ูŠุนุทูŠู†ุง ุงู„ู€ identity ุงู„ู„ูŠ ู‡ูˆ
171
00:15:55,260 --> 00:16:01,880
ู…ูŠู†ุŸ 1 ุทูŠุจ ู‡ุฐุง ู„ูˆ ุฑุจุนุชู‡ ุจูŠุตูŠุฑ N ุชุฑุจูŠุน ู†ุงู‚ุต
172
00:16:01,880 --> 00:16:09,990
2 N ุฒุงุฆุฏ 1 ู‡ุฐุง ุงู„ูƒู„ุงู… ูƒู„ู‡ ุงูŠู‡ุŸ ูƒู„ู‡ ู…ุถุงุนู ุงู„ู€ N
173
00:16:09,990 --> 00:16:15,870
ุชู…ุงู… ูŠุนู†ูŠ ูƒู„ ุงู„ู€ N ู‡ุฐูŠ ุจุฏู‡ ูŠุดูŠู„ู‡ุง ุทูŠุจ ู‡ุฐูŠ N ุชุฑุจูŠุน
174
00:16:15,870 --> 00:16:22,210
ุจุงุนุชุจุงุฑู‡ุง ู‚ุฏุงุดุŸ 0 ุณุงู„ุจ 2 N ูƒู…ุงู† 0 ู„ุฅู† ูƒู„
175
00:16:22,210 --> 00:16:27,350
N ุจุฏู‡ ูƒุฏู‡ ุชุญุฐูู‡ุง ูˆู…ุถุงุนูู‡ุง ุชู‚ุฏุฑุด ุจูŠุถู„ ุนู†ุฏู†ุง ุจูŠุถู„
176
00:16:27,350 --> 00:16:32,730
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 1 ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ูŠู‡ ุนู†ุฏ ุงู„ุนู†ุตุฑูŠู† ู‡ุฏูˆู„ ู‡ู…
177
00:16:32,730 --> 00:16:40,930
ุงู„ู„ุฐุงู† ูŠุญู‚ู‚ุงู† ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ุทูŠุจ ู‡ุฐุง ุณุคุงู„ 12 ุจุนุฏู‡
178
00:16:40,930 --> 00:16:47,750
ุจุฑูˆุญ ู„ุณุคุงู„ 17 ู…ุด ู‡ูŠูƒุŸ ุณุคุงู„ 17 ู†ู…ุณุญ ุงู„ู†ุงุญูŠุฉ
179
00:16:47,750 --> 00:16:48,190
ู‡ุฐู‡
180
00:17:03,160 --> 00:17:08,180
ุงู„ุณุคุงู„ 17 ุจูŠู‚ูˆู„ ู…ุง ูŠู„ูŠ ุฅู† G ุฃุจูŠู„ูŠุงู† if
181
00:17:08,180 --> 00:17:16,600
and only if ุงู„ุณุคุงู„ 17 G ุฃุจูŠู„ูŠุงู† if and
182
00:17:16,600 --> 00:17:24,880
only if ุงู„ู„ูŠ ู‡ูˆ ู…ู† ุงู„ู€ (a b) ุงู„ูƒู„ inverse ุงู„ู€ (a b) ุงู„ูƒู„
183
00:17:24,880 --> 00:17:30,940
inverse ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ a inverse
184
00:17:43,130 --> 00:17:48,900
ุงู„ุจุฑู‡ุงู† ู‡ุฐุง ุจูŠุตูŠุฑ ููŠ ุงุชุฌุงู‡ูŠู† ูŠุจู‚ู‰ ุฃู†ุง ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„
185
00:17:48,900 --> 00:17:55,460
ุจุฏูŠ ุงุฌูŠ ุงู‚ูˆู„ู‡ ุงูุฑุถ ุงู† ุงู„ู€ G .. ูˆุงู„ู„ู‡ assume ..
186
00:17:55,460 --> 00:18:01,160
assume that ุงู† ุงู„ู€ G is abelian
187
00:18:05,580 --> 00:18:10,120
ู…ุฏุงู… ุฃุจูŠู„ูŠุงู† ุจุฏูŠ ุงุซุจุช ุงูŠุดุŸ ุจุฏูŠ ุงุซุจุช ุงู†ู‡ (a b) ู„ูƒู„
188
00:18:10,120 --> 00:18:14,320
inverse ุจุฏูŠ ูŠุณุงูˆูŠ a inverse b inverse ู„ูƒู† ุงุญู†ุง
189
00:18:14,320 --> 00:18:19,860
ุงุซุจุชู†ุง ุณุงุจู‚ุง ุงู† ุงู„ู€ (a b) ู„ูƒู„ inverse ูŠุณูˆูŠ b inverse
190
00:18:19,860 --> 00:18:25,120
a inverse ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุงู„ู€ (a b)
191
00:18:25,120 --> 00:18:32,620
inverse ุจุฏูŠ ูŠุณูˆูŠ ุงู„ู„ูŠ ู‡ูˆ b inverse a inverse ู…ุธุจูˆุท
192
00:18:33,120 --> 00:18:37,640
ู„ูƒู† ู‡ูˆ ุงูŠุด ู‚ุงู„ ู„ูŠ G ู…ุงู„ู‡ุงุŸ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุงุจุฏู„ ุฒูŠ ู…ุง
193
00:18:37,640 --> 00:18:41,800
ุฃู†ุง ุนุงูŠุฒู‡ ู…ุงู„ูˆุด ูƒู„ุงู… ุนู†ุฏูŠ ูŠุจู‚ู‰ ู‡ู†ุง ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡
194
00:18:41,800 --> 00:18:48,580
ูŠุณุงูˆูŠ a inverse b inverse ู„ูŠุดุŸ because ุงู„ุณุจุจ ุงู† ุงู„ู€
195
00:18:48,580 --> 00:18:57,180
G is abelian ูŠุจู‚ู‰ ุงุซุจุชู†ุง ุงู„ุงุชุฌุงู‡ ุงู„ุฃูˆู„ ุจุฏู‡ ุงุฑูˆุญ
196
00:18:57,180 --> 00:19:00,800
ุงู„ุขู† ู„ู…ู†ุŸ ู„ู„ุงุชุฌุงู‡ ุงู„ุซุงู†ูŠ
197
00:19:07,570 --> 00:19:14,170
ุงู„ุขู† ุจุฌูŠุจ ุงู‚ูˆู„ู‡ conversely assume
198
00:19:14,170 --> 00:19:23,850
ุงูุชุฑุถ ุงู† ุงู„ู€ (a b) ู„ูƒู„ inverse ุจุฏูŠ ูŠุณุงูˆูŠ a inverse b
199
00:19:23,850 --> 00:19:32,150
inverse ุจุฏูŠ ุงุซุจุชู„ู‡ ุงูŠุดุŸ ู„ูŠู‡ ู‚ุงุจู„ู‡ ุทูŠุจ ุจุฏูŠ ุงู‚ูˆู„ู‡
200
00:19:32,150 --> 00:19:38,940
consider ุฎุฏู„ูŠ ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ู€ A ููŠ B ุจุฏูŠ ุฃุซุจุช
201
00:19:38,940 --> 00:19:46,280
B ููŠ A ู„ูƒู„ ุงู„ู€ A ูˆ B ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ G consider A
202
00:19:46,280 --> 00:19:59,180
ูˆ B any elements ุฃูŠ ุนู†ุงุตุฑ in G ุทูŠุจ
203
00:19:59,180 --> 00:20:08,620
ู„ูˆ ุฃุฎุฏุช ุงู„ุขู† ุงู„ู€ (A B) ุงู„ูƒู„ inverse ุงูŠุด ุจูŠุณุงูˆูŠุŸ ุจุฏู‡
204
00:20:08,620 --> 00:20:16,640
ูŠุณุงูˆูŠ A inverse B inverse ุทูŠุจ ู„ูˆ ุฑูˆุญุช ุถุฑุจุช ููŠ
205
00:20:16,640 --> 00:20:26,880
ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ BA ูŠุนู†ูŠ ุตุงุฑ BA ููŠ ุงู„ู€ (A B)
206
00:20:26,880 --> 00:20:36,520
inverse ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ A ููŠ ุงู„ู€ A inverse ููŠ ุงู„ู€ B
207
00:20:36,520 --> 00:20:42,120
inverse ุถุฑุจุช ุงู„ุทุฑููŠู† ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ ุงู„ู€ B ุงูŠู‡
208
00:20:42,120 --> 00:20:47,920
ุงู„ู„ูŠ ุฃู†ุง ู„ุงุฒู…ุงู„ูŠ ู‡ุฐู‡ ุจุฏูˆุด ุฃุชู„ุงุนุจ ููŠู‡ุง ุทูŠุจ ู‡ุฏููŠ ู‡ุฏู‰
209
00:20:47,920 --> 00:20:55,140
ูƒุฏู‡ ุจูŠุนุทูŠู†ุง ูŠุนู†ูŠ ู‡ุฏู‰ B E B inverse ุงู„ู„ูŠ ุจุฏู‡ ูŠุณุงูˆูŠ B
210
00:20:55,140 --> 00:21:00,520
B inverse ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ identity ุทุจ ุฃู†ุง ุจุฏู‡ ุฃุฎู„ูƒ ููŠ
211
00:21:00,520 --> 00:21:07,210
ุงู„ู…ุณุฃู„ุฉ A B ูŠุจู‚ู‰ ุจุฅู…ูƒุงู†ูŠ ุถุฑุจ ุงู„ุทุฑููŠู† ููŠ A B ุฅุฐุง
212
00:21:07,210 --> 00:21:17,090
ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ A B ุจุตูŠุฑ BA ููŠ (A B) Inverse ููŠ A B
213
00:21:17,090 --> 00:21:24,230
ุจุฏูŠ ูŠุณุงูˆูŠ ุงู„ู€ E ููŠ ุงู„ู€ A B ูŠุจู‚ู‰ ุจูŠู‡ ุงู„ู„ูŠ ุงูŠู‡ ู…ูƒุชุณุจุงุช
214
00:21:24,230 --> 00:21:29,170
ูˆุทู†ูŠุฉ ุญูุธู†ุง ุนู„ูŠู‡ุง ู…ุงู„ุนุจู†ุงุด ููŠู‡ุง ู‡ุฐู‡ ุงูŠู‡ุŸ ุจุฏู‡ ุงุดู„ุฌ
215
00:21:29,170 --> 00:21:34,490
ููŠู‡ุง a ูˆ b ูุงุฑูˆุญ ุงู„ุทุฑููŠู† ุงู„ู…ุนุงุฏู„ุฉ ููŠ ุงู„ู€ element a
216
00:21:34,490 --> 00:21:40,590
ูˆ b ุทุจ ุงูŠู‡ ุฑุฃูŠูƒ ู‡ุฐุง ุงู„ุนู†ุตุฑ ูˆ ู‡ุฐุงุŸ ู…ุด 1 ู…ุนูƒูˆุณ
217
00:21:40,590 --> 00:21:46,810
ุงู„ุชุงู†ูŠ ูŠุจู‚ู‰ ุญุงุตู„ ุถุฑุจู‡ู…ุง ุจุงู„ู€ identity element ูŠุจู‚ู‰
218
00:21:46,810 --> 00:21:53,510
ุงู„ุณุนุฑ ุนู†ุฏูŠ B ููŠ A ููŠ ุงู„ู€ identity element ุจุฏูŠ ูŠุณุงูˆูŠ
219
00:21:53,510 --> 00:21:59,490
ุงู„ู€ identity element ููŠ a,b ุทุจ ุงู„ู€ identity element
220
00:21:59,490 --> 00:22:04,330
ู„ู…ุง ุชุถุฑุจ ููŠ ุฃูŠ element ุชุทู„ุน ู…ู† ู†ูุณ ุงู„ู€ element ูŠุจู‚ู‰
221
00:22:04,330 --> 00:22:13,590
B ููŠ A ุจุฏูŠ ูŠุณุงูˆูŠ A ููŠ B ููŠ ุนู†ุฏูŠ ู‚ูŠูˆุฏ ุนู„ู‰ A ูˆ BุŸ ุฃูŠ
222
00:22:13,590 --> 00:22:17,630
ุนู†ุงุตุฑ ููŠ G ูŠุจู‚ู‰ ุจู†ุงู† ุนู„ูŠู‡ ู…ุงู„ู‡ุงุŸ G is abelian
223
00:22:17,630 --> 00:22:24,150
ูŠุจู‚ู‰ ู‡ู†ุง ุฅุฐู† G is abelian
224
00:22:29,980 --> 00:22:39,120
ู‡ุฐุง ุณุคุงู„ 17 ุณุคุงู„ ุณุคุงู„ ุณุคุงู„ 18 ู‡ุฐุง ุญู„ู†ุงู‡
225
00:22:39,120 --> 00:22:44,740
ููŠ ุงู„ู…ุญุงุถุฑุฉ ุฃุฎุฏู†ุงู‡ ูƒู…ุซุงู„ ุทูŠุจ ุณุคุงู„ 19 ุจูŠู‚ูˆู„ ู„ูŠ
226
00:22:44,740 --> 00:22:51,420
ู„ุฃูŠ element a ูˆ b ู…ู† group G and any integer n
227
00:22:51,420 --> 00:22:57,390
prove that ุซู… ุงุซุจุช ุฃู†
228
00:22:57,390 --> 00:23:06,910
ุงู„ู€ a inverse b a to
229
00:23:06,910 --> 00:23:17,230
the power n ูŠุณุงูˆูŠ a inverse b in a ูˆ ุงู„ู€ n ู‡ุฐุง is an
230
00:23:17,230 --> 00:23:17,950
integer
231
00:23:20,710 --> 00:23:26,430
ู‚ุงู„ ูŠุซุจุช ุฃู† ุงู„ุทุฑููŠู† ู‡ุฏูˆู„ ู…ุชุณุงูˆูŠู† ุญุฏ ููŠูƒูˆุง ุญู„ ู‡ุฐุง
232
00:23:26,430 --> 00:23:33,050
ุงู„ุณุคุงู„ุŸ ูˆ ู„ูˆ ู†ุต ุญู„ ูŠุนู†ูŠ ุจุงู„ู€ induction ุจุณ ุงู„ู€
233
00:23:33,050 --> 00:23:40,680
induction ุงู„ู„ูŠ ุงุชุนู„ู…ู†ุงู‡ ุนู„ู‰ ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุตุญุŸ ุณูƒุช
234
00:23:40,680 --> 00:23:45,380
ุงู„ุดุนูˆุฑ ู…ุด ุดูƒูŠุช ููŠ ุงู„ู…ุจุงุฏุฆ ุฃุฎุฏู†ุง ุงู„ู€ induction ุนู„ู‰ ุฅู†
235
00:23:45,380 --> 00:23:49,900
ุนุฏุฏ ุตุญูŠุญ ู…ูˆุฌุจ ุทูŠุจ ู†ุดูˆู ุจุฏู†ุง ู†ุฑูˆุญ ู†ุณุชุฎุฏู… ุงู„ู€
236
00:23:49,900 --> 00:23:53,580
induction ูˆ ู†ุดูˆู ู‡ู„ ุงู„ูƒู„ุงู… ู‡ุฐุง ุตุญูŠุญ ูˆู„ุง ู„ุฃ ุจุณ ู‡ู†ุง
237
00:23:53,580 --> 00:23:58,110
ุฌุงู„ูŠ ุงู†ุชุฌุงุฑูŠ ูŠุนู†ูŠ ุงู†ุช ุจุฏูƒ ุชุญุณุจู‡ ู„ู„ู…ูˆุฌุจ ูˆุงู„ุณุงู„ุจ
238
00:23:58,110 --> 00:24:01,790
ูˆุงู„ุตูุฑ ููŠ ุฃุญุฏ ูŠู‚ูˆู„ ูƒู„ุงู…ูƒ ุตุญูŠุญ ู„ูƒู† ู„ูˆ ู‚ุงู„ ู„ูŠ n
239
00:24:01,790 --> 00:24:06,230
positive integer ุจุณุชุฎุฏู… ุงู„ู€ induction ู…ุจุงุดุฑุฉ ุชุจุน
240
00:24:06,230 --> 00:24:11,750
ู…ุจุงุฏุฆ ุงู„ุฑูŠุงุถูŠุงุช ูˆุจูˆุตู„ ู„ู„ู†ุชูŠุฌุฉ ุชู…ุงู… ุจุฏุงุฌูŠ ุงู‚ูˆู„ ู‡ู†ุง
241
00:24:11,750 --> 00:24:20,690
solution ู„ูˆ ูƒุงู†ุช ุงู„ู€ n ุจู€ 0 if ุงู„ู€ n ุชุณุงูˆูŠ 0
242
00:24:20,690 --> 00:24:26,740
then ุงู„ุนู„ุงู‚ุฉ ู‡ุฐู‡ ุตุญูŠุญุฉ ูˆู„ุง ู„ุฃ ุชุนุงู„ู‰ ู†ุดูˆู ุฃูŠ ุนุฏุฏ
243
00:24:26,740 --> 00:24:33,100
ู…ุฑููˆุน ู„ู„ู€ 0 ุจูƒุงู…ุŸ ุจุงู„ู€ identity ูŠุจู‚ู‰ ุงู„ู€ E ูŠุจู‚ู‰ A
244
00:24:33,100 --> 00:24:41,490
inverse ุจู€ 0 ุจุงู„ู€ identity ููŠ A ู…ุนู†ุงุชู‡ ุงูŠุดุŸ ุงู† ุงู„ู€ E
245
00:24:41,490 --> 00:24:46,950
ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ A inverse A ูŠุจู‚ู‰ ุงู„ู€ E ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู€ E
246
00:24:46,950 --> 00:24:51,290
ูŠุจู‚ู‰ ุงู„ู€ statement ุตุญูŠุญุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ ู‡ุฐุง ุจุฏู‡
247
00:24:51,290 --> 00:25:02,570
ูŠุนุทูŠู†ุง ุงู† the statement hold ุตุญูŠุญุฉ ุทูŠุจ ู„ูˆ ูƒุงู†ุช ุงู„ู€
248
00:25:02,570 --> 00:25:16,460
N ุจู€ 1 if ุงู„ู€ N ุชุณุงูˆูŠ 1 then the statement ุจุฑุถู‡
249
00:25:16,460 --> 00:25:17,580
hold ูˆู„ุง ู„ุงุŸ
250
00:25:29,880 --> 00:25:37,560
ุฃูุชุฑุถ ุฃู†ู‡ุง ุตุญูŠุญุฉ ุนู†ุฏ N ุชุณุงูˆูŠ K ูˆ ุฃุซุจุช ุตุญุชู‡ุง ุนู†ุฏ N
251
00:25:37,560 --> 00:25:42,860
ุชุณุงูˆูŠ K ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰ ู‡ู†ุง ู…ุงุฌูŠ ุจุฏุงุฌูŠ ุฃู‚ูˆู„ ู„ู‡
252
00:25:42,860 --> 00:25:46,880
assume that
253
00:25:47,930 --> 00:25:55,910
ุฅู† ุงู„ู€ a inverse b a to the power k ุจุฏูŠ ุฃุณูˆูŠ a
254
00:25:55,910 --> 00:26:05,450
inverse b<sup>k</sup> ูˆ ุงู„ k ุฃูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏ ูƒู…ุงู† ูˆ ุงู„ k
255
00:26:05,450 --> 00:26:14,470
integer ุฃูƒุจุฑ ู…ู† ุงู„ูˆุงุญุฏ ู‡ุฐุง ุงู„ k integer and ุงู„ k
256
00:26:14,470 --> 00:26:19,180
greater than one ุทูŠุจ ุชู…ุงู…
257
00:26:22,700 --> 00:26:28,420
ุจุฏูŠ ุฃุญุงูˆู„ ุฃุซุจุช ุตุญุฉ ู‡ุฐุง ุงู„ู…ูˆุถูˆุน ุนู†ุฏ K ุฒุงุฆุฏ ูˆุงุญุฏ ูŠุจู‚ู‰
258
00:26:28,420 --> 00:26:35,520
ุจุงุฌูŠ ุจู‚ูˆู„ู‡ consider ุฎุฏู„ูŠ a inverse ba to the power
259
00:26:35,520 --> 00:26:41,940
k plus one ุงู†ุทู„ุน ุงู„ู†ุงุชุฌ a inverse b<sup>k+1</sup> ููŠ a
260
00:26:41,940 --> 00:26:48,180
ุจุตูŠุฑ ูƒู„ุงู…ู†ุง ู…ุนู„ู‡ ุตุญูŠุญ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ a
261
00:26:48,180 --> 00:26:51,500
inverse ba ููŠ k
262
00:27:00,590 --> 00:27:11,330
ู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ุง ูุงุฑุถู‡ ู‡ู†ุง ูŠุจู‚ู‰ a inverse b to the
263
00:27:11,330 --> 00:27:18,790
power of k a ููŠ ู…ู† ููŠ ุงู„ a inverse ุจ a ุฌุจุชู‡ ู…ู† ูˆูŠู†
264
00:27:18,790 --> 00:27:25,590
from assumption ู…ู† ุงู„ูุฑุถ ุงู„ู„ูŠ ุฃู†ุง ูุฑุถู‡ ู…ุด ุฌุงูŠุจู‡ ู…ู†
265
00:27:25,590 --> 00:27:31,650
ูƒูŠุณูŠ ุฃู†ุง ูุฑุถู‡ ุงู† ู‡ูˆ ุตุญูŠุญ ุทูŠุจ ุชุนุงู„ูˆุง ุชุทู„ุนูˆุง ู„ู‡ุฏูˆู„
266
00:27:31,650 --> 00:27:37,920
ู‡ุฏูˆู„ ุจู‚ุฏุงุด ุงู„ a ููŠ ุงู„ a inverse ุจุงู„ู€ identity
267
00:27:37,920 --> 00:27:45,020
element ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจูŠุณุงูˆูŠ A inverse b<sup>k</sup> ููŠ
268
00:27:45,020 --> 00:27:52,340
ุงู„ E ููŠ ุงู„ ุจูŠ A ุงู„ identity element ุงุถุฑุจ ููŠ ุฃูŠ
269
00:27:52,340 --> 00:27:58,100
element ุจูŠุทู„ุน ู†ูุณ ุงู„ element ูŠุจู‚ู‰ ู‡ุฐุง A inverse b
270
00:27:58,100 --> 00:28:06,640
<sup>k</sup> ููŠ ุงู„ ุจูŠ A ุงู„ู€ B ูˆ ุงู„ู€ b<sup>k</sup> ู…ุด ู‡ู…ุงุฑุง b<sup>k+1</sup>
271
00:28:06,640 --> 00:28:14,540
ูŠุจู‚ู‰ ู‡ู†ุง A inverse b<sup>k+1</sup> ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ A
272
00:28:14,540 --> 00:28:20,260
ูŠุจู‚ู‰ ุตุงุฑุช ุงู„ statement ู…ุงู„ู‡ุง ุตุญูŠุญุฉ ู‡ู†ุง ู‡ุฐุง ุจุฏูŠ
273
00:28:20,260 --> 00:28:28,300
ูŠุนุทูŠู†ุง ุงู„ statement ุงู„ุฌู…ู„ุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง hold ุงูŠุด
274
00:28:28,300 --> 00:28:29,480
ุถุงูŠู‚ ุนู†ุฏู†ุงุŸ
275
00:28:34,110 --> 00:28:43,270
ุฅุฐุง ูƒุงู† ุงู„ู€ N ุฃู‚ู„ ู…ู† Zero ูุฃู†ุง
276
00:28:43,270 --> 00:28:43,990
ุจู‚ุฏุฑ ุฃุฎู„ูŠู‡ุง ู…ูˆุฌุจ
277
00:28:47,900 --> 00:28:53,800
ูŠุฌุจ ุฃู† ุงุถุฑุจ ููŠ ู‚ุฏุงุด ุงู„ุณุงู„ุจ ูŠุจู‚ู‰ ุงู„ุณุงู„ุจ n ุจุฏู‡ุง
278
00:28:53,800 --> 00:28:58,780
ุชุตูŠุฑ ุฃูƒุจุฑ ู…ู† ุงู„ zero ู„ู…ุง ุชุจู‚ู‰ ุงู„ n ุณุงู„ุจุฉ ุงุถุฑุจู‡ุง
279
00:28:58,780 --> 00:29:05,800
ููŠ ูƒู…ุงู† ุณุงู„ุจุฉ ุชุตูŠุฑ ู…ูˆุฌุจุฉ ู…ุธุจูˆุท ุทูŠุจ ุฎุฏ ู‡ู†ุง ุงู„ู…ุทู„ูˆุจ
280
00:29:05,800 --> 00:29:12,800
ุงู„ู„ูŠ ู‡ูˆ ุงู„ a inverse b a equal to the power n ู„ูˆ
281
00:29:12,800 --> 00:29:17,840
ุถุฑุจุช ูŠุง ุดุจุงุจ ููŠ ุงู„ู€ A inverse ุจู€ A to the power
282
00:29:17,840 --> 00:29:24,940
minus ุงู„ N ูƒุฏู‡ ุจูŠุทู„ุน ุงู„ identityุŸ ู„ุฃู†ู‡ ุจุตูŠุฑ ุงู„
283
00:29:24,940 --> 00:29:30,780
element ุฃูุณ Zero ูŠุจู‚ู‰ ู‡ุฐุง ูŠุนุทูŠู†ุง ุงู„ identity
284
00:29:30,780 --> 00:29:40,880
element ุทูŠุจ ู‡ุฐุง ู…ุนู†ุงู‡ ุฅูŠุดุŸ ู…ุนู†ุงู‡ ุฃู† ุงู„ A inverse b
285
00:29:40,880 --> 00:29:48,960
a to the power n ุจุฏู‡ ูŠุณุงูˆูŠ a inverse b to the
286
00:29:48,960 --> 00:29:56,540
minus n a ู‡ุฐุง ูŠุนู†ูŠ ู‡ุฐุง ููŠ ู‡ุฐุง ู…ุด ูŠุณุงูˆูŠ ู‡ุฐุง ููŠ ู‡ุฐุง
287
00:29:56,540 --> 00:30:02,720
ุจุฏู‡ ูŠุนุทูŠู†ุง ุงู„ identity ุตุญ ู‡ูŠ ุงู„ูƒู„ุงู…ูŠ ุตุญ ูˆู„ุง ุบู„ุท
288
00:30:02,720 --> 00:30:10,950
ู‡ุฐุง ุตุญ ู„ูŠุด ู„ุฃู† ู†ุงู‚ุต n ุฃูƒุจุฑ ู…ู† zero ูˆ ุงุญู†ุง ู‡ู†ุง ู„ู…ุง
289
00:30:10,950 --> 00:30:14,470
ุชุจู‚ู‰ ุงู„ n ุฃูƒุจุฑ ู…ู† zero ุงุซุจุชู†ุง ุงู„ statement ู…ุงู„ู‡ุง
290
00:30:14,470 --> 00:30:24,910
ุตุญูŠุญุฉ ูŠุจู‚ู‰ this is a true because ุงู„ุณุจุจ ุงู† ู†ุงู‚ุต n
291
00:30:24,910 --> 00:30:30,180
greater than zero ู„ุฃู† ุงู„ู…ุจุฑู‡ู†ู‡ุง ู‡ูŠ ููˆู‚ ู…ุดุงู† ู‡ูŠูƒ
292
00:30:30,180 --> 00:30:34,120
ุตุงุฑุช ุงู„ุนุจุงุฑุฉ ุงู„ู„ูŠ ุนู†ุฏู‡ุง ุฏูŠ ู…ุงู„ู‡ุง ุตุญูŠุญุฉ ุทุจ ุฅูŠุด
293
00:30:34,120 --> 00:30:39,740
ุฑุงูŠูƒุŸ ุจุฏูŠ ุฃุถุฑุจ ููŠ ู…ุนูƒูˆุณ ู‡ุฐุง ุงู„ุนู†ุตุฑ ูˆ ุฃุดูˆู ูˆูŠู†
294
00:30:39,740 --> 00:30:45,180
ุจุชูˆุฏูŠ ุงู„ุฏู†ูŠุง ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจุช ููŠ ู…ุนูƒูˆุณ ู‡ุฐุง ุงู„ุนู†ุตุฑ ุจุตูŠุฑ
295
00:30:45,180 --> 00:30:52,520
a inverse b a to the power n ูุงู‡ู…ูŠู†ุŸ ููŠ ุงู„ a
296
00:30:52,520 --> 00:31:03,570
inverse b to the minus n A ูƒู„ ู‡ุฐุง A ููŠ ุงู„ A inverse
297
00:31:03,570 --> 00:31:12,350
b<sup>-n</sup> A inverse ุจุฏู‡ ูŠุณุงูˆูŠ ุทุฑู ุงู„ูŠู…ูŠู† E ููŠ
298
00:31:12,350 --> 00:31:19,310
main ููŠ ุงู„ A inverse b<sup>-1</sup> A inverse
299
00:31:22,020 --> 00:31:27,320
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ูˆุตู„ุช ู„ู‡ุง ุถุฑุจุช ุงู„ุทุฑููŠู† ููŠ ู…ุนูƒูˆุณ ู‡ุฐุง
300
00:31:27,320 --> 00:31:33,020
ุงู„ุนู†ุตุฑ ูŠุจู‚ู‰ ู‡ูŠ ุงู„ุนู†ุตุฑ ุงู„ุฃูˆู„ ู‡ูŠ ุงู„ุซุงู†ูŠ ู‡ูŠ ู…ุนูƒูˆุณ
301
00:31:33,020 --> 00:31:37,360
ุงู„ุชุงู†ูŠ ุญุทูŠุช ุงู„ inverse ููˆู‚ ูŠุจู‚ู‰ ู‡ุฐุง ุดูˆ ุจุฏู‡ ูŠุนุทูŠู†ูŠ
302
00:31:37,360 --> 00:31:42,440
ุงู„ุนู†ุตุฑ ููŠ ู…ุนูƒุณู‡ ุงูŠุด ุจูŠุนุทูŠู†ูŠ ุงู„ identity element ููŠ
303
00:31:42,440 --> 00:31:48,060
ุงู„ู„ูŠ ุฌุงุจู„ู‡ ู†ูุณ ุงู„ element ูŠุจู‚ู‰ ุงู„ุทุฑู ุงู„ุดู…ุงู„ ุจุตูŠุฑ a
304
00:31:48,060 --> 00:31:56,900
inverse b ูƒู„ู‡ to the power n ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ identity
305
00:31:56,900 --> 00:32:01,680
element ููŠ ุงู„ุนู†ุตุฑ ุจุฏู‡ ูŠุนุทูŠู†ุง ู†ูุณ ุงู„ุนู†ุตุฑ ูŠุจู‚ู‰ ู‡ุฐุง
306
00:32:01,680 --> 00:32:08,720
ุจุฏู‡ ูŠุนุทูŠู†ุง a inverse b<sup>-n</sup> ุตู„ุญ ู„ูŠู‡ุง b<sup>-n</sup>
307
00:32:08,720 --> 00:32:17,800
ู†ุถุฑุจ ู†ู‡ุงูŠุฉ ู‡ู†ุง ูŠุจู‚ู‰ a inverse b<sup>-n</sup> a ูƒู„ู‡
308
00:32:17,800 --> 00:32:18,380
inverse
309
00:32:20,890 --> 00:32:26,990
ุทูŠุจ ู‡ุฑุฌุนู„ูŠ ู‡ุฐู‡ ุฎุฏู„ูŠ ููŠ ุงู„ู‡ุงู…ุด ู„ู…ุง ุงู‚ูˆู„ a b inverse
310
00:32:26,990 --> 00:32:33,030
ุงูŠู‡ ูŠุง ุดุจุงุจ ูƒุฏู‡ ุงูŠุด ุชุณุงูˆูŠ b inverse a inverse ุทุจ ู„ูˆ
311
00:32:33,030 --> 00:32:40,290
ู‚ู„ุช a b c inverse ุงูŠุด ุจุชุณุงูˆูŠ c inverse b inverse
312
00:32:40,290 --> 00:32:44,910
a inverse ุชู…ุงู… ู‡ุทุจู‚ ู‡ุฐุง ุงู„ูƒู„ุงู… ู‡ู†ุง ูŠุจู‚ู‰ ู‡ุฐุง ุงูŠุด
313
00:32:44,910 --> 00:32:54,410
ู‡ูŠุนุทูŠู„ูƒ ู‡ุฐุง ุณูŠุนุทูŠูƒ a inverse ูˆู‡ู†ุง b<sup>-n</sup> ูƒู„ู‡
314
00:32:54,410 --> 00:33:01,570
inverse ูˆู‡ุฐุง ุณูŠุนุทูŠูƒ ุงู„ู‡ู…ูŠู† a inverse inverse
315
00:33:04,680 --> 00:33:09,940
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ู‡ุฐูŠ ุงู„ a inverse ูƒู…ุง ู‡ูŠ
316
00:33:09,940 --> 00:33:15,840
ูˆ ู‡ุฐูŠ ุงู„ุฃุณุณ ุชุถุฑุจ ููŠ ุจุนุถู‡ุง ุถุฑุจ -n ููŠ -1
317
00:33:15,840 --> 00:33:22,580
ุจูŠุทู„ุน ุฌุฏูŠุด ุงู„ู„ูŠ ู‡ูˆ b<sup>n</sup> ูˆ a inverse inverse ู‡ูŠ
318
00:33:22,580 --> 00:33:28,230
ุงู„ element a ูŠุจู‚ู‰ ุตุญูŠุญุฉ ุจุฑุถู‡ ููŠ ุญุงู„ุฉ ุงู„ุณุงู„ุจ ูˆู„ุง ู„ุง
319
00:33:28,230 --> 00:33:36,330
ุฅุฐุง ุตุญูŠุญุฉ ู„ู„ูƒู„ ูŠุจู‚ู‰ ุฃุซุจุชู†ุงู‡ุง ู„ู„ zero ูˆ ู„ู„ูˆุงุญุฏ ูˆ
320
00:33:36,330 --> 00:33:41,550
ู„ู„ู…ูˆุฌุจ ูˆ ุงู„ุณุงู„ุจ ุฅุฐุง ู‡ูŠ ุตุญูŠุญุฉ ู„ any integer ุจุนุฏ ุฐู„ูƒ
321
00:33:41,550 --> 00:33:47,210
ุญุฏ ุจูŠุญุจ ูŠุณุฃู„ ุฃูŠ ุณุคุงู„ ู‡ู†ุง ุงู„ุณุคุงู„ ููƒุฑุชู‡ ุฌูŠุฏุฉ ูƒุชูŠุฑ
322
00:33:47,210 --> 00:33:52,890
ุงู„ุญู‚ูŠู‚ุฉ ู„ุฃู† ุงู„ุฏุฑุฌุฉ ุงู„ู„ูŠ ู…ุชุนุฑู ุนู„ูŠู‡ ุงู„ู„ูŠ ููŠู‡ ู…ุจุงุฏุฆ
323
00:33:52,890 --> 00:33:58,090
ุงู„ุฑูŠุงุถูŠุงุช ู†ุณุชุฎุฏู… ุงู„ induction ู„ุนุฏุฏ ุงู„ุตุญูŠุญ ุงู„ู…ูˆุฌุจ
324
00:33:58,090 --> 00:34:03,170
ู„ูƒู† ุงุณุชุฎุฏู…ู†ุง ู„ู„ู…ูˆุฌุจ ูˆุงู„ุณุงู„ุจ ูˆุทู„ุนู†ุง ู†ุชูŠุฌุฉ ุตุญูŠุญุฉ ููŠ
325
00:34:03,170 --> 00:34:12,620
ูƒู„ ุญุงู„ุฉ ู‡ุฐุง ูƒุงู† ุณุคุงู„ ุชุณุนุฉ ุนุดุฑ ุงู„ุขู† ุจุนุฏ ุชุณุนุฉ ุนุดุฑ ุนู†ุง
326
00:34:12,620 --> 00:34:17,400
ู…ูŠู† ุนู†ุง ุณุคุงู„ ุฃุฑุจุนุฉ ูˆ ุนุดุฑูŠู† ุจ deconstruct K ู„ูŠู‡
327
00:34:17,400 --> 00:34:22,300
ุชุงุจู„ ู„ูŠู‡ ูˆ ุงุชู†ุงุดุฑ ูƒู„ู…ุฉ K ู„ูŠู‡ ุชุงุจู„ ุฌุฏูŠุฏุฉ ุนู„ู‰ ู…ุง
328
00:34:22,300 --> 00:34:26,780
ุณุงู…ุนู†ุง ุฌุฏุงุด ู‚ูˆู„ู†ุง ุงู„ุญูŠู† ุงู„ุณุคุงู„ ุฃุฑุจุนุฉ ูˆ ุนุดุฑูŠู†
329
00:34:26,780 --> 00:34:30,600
ุจุงู„ู†ุณุจุงู„ูŠ ุงู„ู‡ุงู…ุดุฉ ุณูˆุงุก ูƒุงู† ุชุจุฏูŠู„ ุฃูˆ ุบูŠุฑ ุชุจุฏูŠู„
330
00:34:30,600 --> 00:34:34,260
ุงู„ุตุญูŠุญ ุจุงู„ุฌู…ู„ุฉ ุงู„ู„ูŠ ู‡ูŠ ู…ูŠู† ุงู„ู„ูŠ ููŠ ุงู„ู‡ุงู…ุด ูˆ ุฏู‡
331
00:34:34,260 --> 00:34:34,900
ุงู„ู„ูŠ ููŠ ุงู„ู‡ุงู…ุด
332
00:34:38,020 --> 00:34:45,100
ู‡ุฐู‡ non abelian group ู„ุง ู„ูˆ ูƒุงู†ุช abelian ุจุฏู„ ุฒูŠ ู…ุง
333
00:34:45,100 --> 00:34:49,840
ุจุฏู‡ุง ุจุณ non abelian ุจูŠุจู‚ู‰ ุชุฑุชูŠุจ ุงู„ุขุฎุฑ ุงู„ุซุงู†ูŠ ุงู„ุฃูˆู„
334
00:34:49,840 --> 00:34:54,480
ู‡ุงูŠ ุงู„ุขุฎุฑ ุงู„ุซุงู†ูŠ ุงู„ุฃูˆู„ ู†ู‚ู„ุจ ุงู„ูˆุถุน ุณุจุงุญุฉ ู…ู‚ุฏู…ุฉ ู…ุด
335
00:34:54,480 --> 00:34:56,920
ุชู„ุงุชุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠูƒูˆู†ูˆุง ุนุดุฑูŠู† ุจุจุฏุฃ ู…ู† ุงู„ ุนุดุฑูŠู†
336
00:34:56,920 --> 00:35:02,880
ุชุณุนุฉ ุนุดุฑ ุซู…ุงู†ูŠุฉ ุนุดุฑ ุงู„ุขุฎุฑูŠู† ู†ุฌูŠ ุงู„ุขู† ู„ุณุคุงู„ ุฃุฑุจุนุฉ ูˆ
337
00:35:02,880 --> 00:35:08,980
ุนุดุฑูŠู† ุจุฏูŠ K ุชุงุจู„ ู„ู„ูŠูˆ ุงุชู†ุงุดุฑ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ U 12
338
00:35:08,980 --> 00:35:15,340
ุงู„ู„ูŠ ุนู†ุงุตุฑู‡ุง ุงู„ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ุฎู…ุณุฉ ุณุชุฉ
339
00:35:15,340 --> 00:35:21,640
ุณุจุนุฉ ุซู…ุงู†ูŠุฉ ุชุณุนุฉ ุนุดุฑ ุฃุญุฏ ุนุดุฑ ุชู…ุงู…ุŸ ู„ู…ุง ูŠู‚ูˆู„ ุงู„ K
340
00:35:21,640 --> 00:35:25,080
ู„ูŠ ุงู„ table ูŠุนู†ูŠ ุจุฏูŠ ุงุถุฑุจ ุงู„ุนู†ุงุตุฑ ููŠ ุจุนุถ ูˆุดูˆู ูƒูŠู
341
00:35:25,080 --> 00:35:31,520
ุงู„ู†ุชูŠุฌุฉ ูุจุงุฌูŠ ุจู‚ูˆู„ู‡ ู‡ุฐุง ุงู„ุฌุฏูˆู„ ูˆุจุนุฏูŠู† ุจุญุท ุงู„ุนู†ุงุตุฑ
342
00:35:31,520 --> 00:35:38,720
ูˆุงุญุฏ ุฎู…ุณุฉ ุณุจุนุฉ ุฃุญุฏ ุนุดุฑ ูˆ ู‡ู†ุง ูˆุงุญุฏ ุฎู…ุณุฉ ุณุจุนุฉ ุฃุญุฏ ุนุดุฑ
343
00:35:38,720 --> 00:35:45,140
ูˆ ุจุนุฏูŠู† ุจุฌุณู…ู‡ุง ุฅู„ู‰ ุฌุฏูˆู„ ุจู‡ุฐุง ุงู„ุดูƒู„ ูˆ ู‡ู†ุง ุจุดุชุบู„
344
00:35:45,140 --> 00:35:50,640
ุฃูู‚ูŠ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆ ุจุนุฏูŠู† ุฃุนุจูŠ ู‡ุฐุง ุงู„ุฌุฏูˆู„
345
00:35:50,640 --> 00:36:01,380
ุชู…ุงู…ุŸ ุงู„ุขู† ู‡ู†ุง ุฏู‡ ูƒู„ู‡ ุงู„ุนู…ู„ูŠุฉ module 12 ุงู„ุขู† ุงู„ุนู†ุตุฑ
346
00:36:01,380 --> 00:36:04,280
ุงู„ูˆุญูŠุฏ ุงู„ู„ูŠ ู…ุงู†ุชุธุฑู‡ ููŠ ุฃูŠ ุนู†ุตุฑ ุจูŠุทู„ุน ู†ูุณ ุงู„ุนู†ุตุฑ
347
00:36:12,890 --> 00:36:16,810
ูƒูŠู ู‡ุฐู‡ุŸ ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ุจูˆุงุญุฏุŒ ูˆุงุญุฏ ููŠ ุฎู…ุณุฉ ุจุฎู…ุณุฉุŒ
348
00:36:16,810 --> 00:36:19,910
ูˆุงุญุฏ ููŠ ุณุจุนุฉ ุจุณุจุนุฉุŒ ูˆุงุญุฏ ููŠ ุฃุญุฏ ุนุดุฑ ุจุฃุญุฏ ุนุดุฑุŒ
349
00:36:19,910 --> 00:36:23,990
ุงู„ุนู†ุตุฑ ุฏู‡ ุฑุฃุณูŠุŒ ูˆุงุญุฏ ููŠ ูˆุงุญุฏ ุจูˆุงุญุฏุŒ ูˆุงุญุฏ ููŠ ุฎู…ุณุฉ
350
00:36:23,990 --> 00:36:27,690
ุจุฎู…ุณุฉุŒ ูˆุงุญุฏ ููŠ ุณุจุนุฉ ุจุณุจุนุฉุŒ ูˆุงุญุฏ ููŠ ุฃุญุฏ ุนุดุฑ ุจุฃุญุฏ ุนุดุฑุŒ
351
00:36:27,690 --> 00:36:31,350
ุทุจุนุง ู‡ุฐู‡ ุงู„ group ุฃุจุฏุงู„ูŠุฉ ูˆุจุงู„ุชุงู„ูŠ ูŠู…ูŠู† ูˆู…ูˆู„ ูˆุดู…ุงู„
352
00:36:31,350 --> 00:36:35,150
ู…ุง ุชูุฑู‚ุด ุนู†ู†ุงุŒ ุจุนุฏูŠู† ุชุฌูŠุจ ุงู„ุนู†ุงุตุฑ ู‡ู†ุงุŒ ู‡ุฐุง ู…ู†ุŸ ู‡ูˆ
353
00:36:35,150 --> 00:36:41,210
ุนุจุงุฑุฉ ุนู† ุฎู…ุณุฉ ููŠ ุฎู…ุณุฉุŒ ุฎู…ุณุฉ ููŠ ุฎู…ุณุฉุŒ ุฎู…ุณุฉ ูˆุนุดุฑูŠู†ุŒ
354
00:36:41,210 --> 00:36:48,370
ุชู…ุงู…ุŸ ู…ูˆุฏูŠูˆู„ูˆ ุงุชู†ุงุด ุงู‡ ุงู„ู„ูŠ ู‡ูˆ ูˆุงุญุฏ ุชู…ุงู…ุŸ ุงู„ุขู† ุฎู…ุณุฉ
355
00:36:48,370 --> 00:36:54,150
ููŠ ุณุจุนุฉ ุจุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ู…ูˆุฏูŠูˆู„ูˆ ุงุชู†ุงุด ุงู„ู„ูŠ ู‡ูˆ
356
00:36:54,150 --> 00:37:00,210
ุงู„ุฃุญุฏ ุนุดุฑ ุงู„ุขู† ุฎู…ุณุฉ ููŠ ุฃุญุฏ ุนุดุฑ ุจุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู† ู…ูˆุฏูŠูˆู„ูˆ
357
00:37:00,210 --> 00:37:05,750
ุฃุญุฏ ุนุดุฑ ุงู„ู„ูŠ ู‡ูˆ ูƒุฏู‡ุŸ ุณุจุนุฉ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุฃู†ุง ุงู†ุงู… ู…ู…ู†ูˆุน
358
00:37:05,750 --> 00:37:10,710
ุงู„ุฑู‚ู… ูŠุชูƒุฑุฑ ู…ุฑุชูŠู† ููŠ ู†ูุณ ุงู„ุตู ูŠุนู†ูŠ ุงู„ุฎุท ู‡ุฐุง ูˆ
359
00:37:10,710 --> 00:37:15,690
ุงู„ุฎุท ุงู„ุซุงู†ูŠ ุงู„ู„ูŠ ุฌูˆุง ู‡ุฐุง ู…ู…ู†ูˆุน ูŠุชูƒุฑุฑ ุงู„ุฑู‚ู… ุฅู„ุง ู…ุฑุฉ
360
00:37:15,690 --> 00:37:19,850
ูˆุงุญุฏุฉ ุงู…ุณูƒ ุฎู…ุณุฉ ูˆุงุญุฏ ุฃุญุฏ ุนุดุฑ ุณุจุนุฉ ู‡ู…ุง ุงู„ุนู†ุงุตุฑ ู…ู†
361
00:37:19,850 --> 00:37:24,530
ุงู„ู„ูŠ ููˆู‚ ูˆ ู‡ูƒุฐุง ุงู„ุขู† ุณุจุนุฉ ููŠ ูˆุงุญุฏุฉ ุณุจุนุฉ ุณุจุนุฉ ููŠ
362
00:37:24,530 --> 00:37:31,350
ุฎู…ุณุฉ ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ุฎู…ุณุฉ ูˆ ุชู„ุงุชูŠู† ุจุตูŠุฑ ุนู†ุฏ ุฅูŠุด ุงู„ู„ูŠ
363
00:37:31,350 --> 00:37:34,980
ู‡ูˆ ุฃุญุฏ ุนุดุฑ ุงู„ู„ูŠ ุจุนุฏู‡ ุณุจุนุฉ ููŠ ุณุจุนุฉ ุจุชุณุนุฉ ูˆ ุฃุฑุจุนูŠู†
364
00:37:34,980 --> 00:37:37,880
ุฃุฑุจุนุฉ ููŠ ุงุชู†ุงุดุฑ ุชุณุนุฉ ูˆ ุฃุฑุจุนูŠู† ูˆ ูŠุจู‚ู‰ ู„ู‡ ูˆุงุญุฏ ุงู„ุขู†
365
00:37:37,880 --> 00:37:42,660
ูˆุฃู†ูŠ ู…ุบู…ุท ุจู‚ุฏุฑ ุฃุญุท ุงู„ุฑู‚ู… ุจุฏูˆู† ู…ุญุณุจ ุงู„ุฑู‚ู… ุงู„ู„ูŠ ุถุงูŠู„
366
00:37:42,660 --> 00:37:47,160
ุทุจุนุง ุงู„ุขู† ู„ูˆ ุฌูŠุช ุฃุญุฏ ุนุดุฑ ูˆุงุญุฏ ุฃุญุฏ ุนุดุฑ ููŠ ุฎู…ุณุฉ ุฎู…ุณุฉ
367
00:37:47,160 --> 00:37:53,100
ูˆ ุฎู…ุณูŠู† ุงู„ู„ูŠ ู‡ูˆ ุงู„ุณุจุนุฉ ุฃุญุฏ ุนุดุฑ ููŠ ุณุจุนุฉ ุจุณุจุนุฉ ูˆุณุจุนูŠู†
368
00:37:53,100 --> 00:37:59,780
ุณุจุนุฉ ูˆุณุจุนูŠู† ูŠุนู†ูŠ ูƒุฏู‡ ุฅูŠุด ุจูŠุทู„ุน ุณุชุฉ ุฃุฑุจุนุฉ ุจูŠุทู„ุน
369
00:37:59,780 --> 00:38:06,160
ูˆุงุญุฏ ู…ู† ู‡ุฏูˆู„ ูŠุง ุฑุงุฌู„ ูŠุจู‚ู‰ ุฎู…ุณุฉ ุถู„ ุงู„ุบุงูŠุจ ุงู„ู„ูŠ ู‡ูˆ
370
00:38:06,160 --> 00:38:09,520
ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ูˆุงุญุฏ ุชู…ุงู… ูŠุจู‚ู‰ ู‡ูŠูƒ ุจู†ุดุชุบู„ ุจุงู„ุฌุฏูˆู„
371
00:38:09,520 --> 00:38:14,000
ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุณู…ุนุชู‡ ุจุฏู‡ ุฃุทุจู‚ู‡ ุนู„ู‰ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุนุฏู‡
372
00:38:14,000 --> 00:38:18,680
ูˆู†ุดูˆู ู‡ุฐุง ุณู‡ู„ ุนู„ุดุงู†ู‡ุง ุฃุฑู‚ุงู… ุณู‡ู„ุฉ ูŠุนู†ูŠ ุณู‡ู„ ุงู„ุดุบู„
373
00:38:18,680 --> 00:38:25,300
ููŠู‡ุง ุชู…ุงู…ุง ุงู„ุขู† ููŠ ุนู†ุฏูƒ ุงู„ table ุฌุงู‡ุฒุฉ ุจุณ ุจุงู„ุฑู…ูˆุฒ
374
00:38:25,300 --> 00:38:28,860
ุจุฏู‡ ุฃุดูˆู ูƒูŠู ุชุนุจูˆู„ูŠ ู‡ุฐู‡ ุงู„ุฑู…ูˆุฒ
375
00:38:41,310 --> 00:38:47,930
ุงู„ุขู† ุณุคุงู„ ุฎู…ุณุฉ ูˆ ุนุดุฑูŠู† ุจุฑุถู‡ ุฌุฏูˆู„ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
376
00:38:47,930 --> 00:39:00,390
ู‡ู†ุง ุงู„ุฌุฏูˆู„ ู…ูŠุนุทูŠู†ูŠ E ูˆ A B C D E ูˆ A B C D ุชู…ุงู… ูˆ
377
00:39:00,390 --> 00:39:06,730
ู‚ุณู…ู‡ุง ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง ูˆู‡ูŠู‚ูู„ู†ุง ุงู„ุฌุฏูˆู„ ูˆู‡ู†ุง
378
00:39:06,730 --> 00:39:21,050
E ูˆู‡ู†ุง A ูˆู‡ู†ุง B ูˆู‡ู†ุง C ูˆู‡ู†ุง D ูˆุฑุงุญ ุฃุจุงู„ูŠ ููŠ
379
00:39:21,050 --> 00:39:30,110
ุงู„ุฌุฏูˆู„ ุญุทู„ูŠ ู‡ู†ุง E ูˆุชุงู†ูŠ ุญุทู„ูŠ ู‡ู†ุง B ูˆุฌุจุงู„ A ุญุทู„ูŠ B
380
00:39:30,110 --> 00:39:44,370
ูˆุนู†ุฏ ุงู„ B ุญุท C D E C D E C D E ูˆ ุฌุจุงู„ SC ุญุทู„ูŠ D ูˆ
381
00:39:44,370 --> 00:39:52,350
ุจุนุฏ C ุญุทู„ูŠ D ูˆุจุนุฏูŠู† A ุจูŠู‡ A ูˆู‡ู†ุง ุจูŠู‡ ูˆุงู„ู„ูŠ ุจุนุฏู‡
382
00:39:52,350 --> 00:39:55,730
ูุฑู‚ ูƒู„ู‡ ูƒูŠูุŸ
383
00:39:57,720 --> 00:40:05,680
ููŠ ุฅูŠู‡ุŸ ุขู‡ ุงู„ุฃุฎูŠุฑ ุฅูŠู‡ุŸ ู‡ู†ุง ุฅูŠู‡ุŸ ุชู…ุงู… ูˆุงู„ุจุงู‚ูŠ ูƒู„ู‡
384
00:40:05,680 --> 00:40:09,840
ุชู…ุงู… ูŠุจู‚ู‰ ู‡ุงูŠ ุงู„ุฌุฏูˆู„ ุงู„ู„ูŠ ุนู†ุฏูƒ ูˆู‚ุงู„ ูŠุนุจูŠ ู‡ุงู„ูุฑุงุฑ
385
00:40:09,840 --> 00:40:15,840
ู‡ุฐุง ู…ู† ุฎู„ุงู„ ู‡ุงู„ุงุดูƒุงู„ ุงู„ู„ูŠ ุนู†ุฏูƒ ุชู…ุงู…ุŸ ู…ุดุงู† ู†ู…ูŠุฒ ู…ู†
386
00:40:15,840 --> 00:40:20,570
ุจูŠู† ุงู„ุงุชู†ูŠู† ุฃู†ุง ุญุงุจ ุงู„ูุฑุงุฑ ุจู„ูˆู† ุชุงู†ูŠ ุงู„ุขู† ู‡ุฐุง ุงู„
387
00:40:20,570 --> 00:40:24,170
identity ู„ูˆ ุถุฑุจุช ููŠ ุฃูŠ element ุจุฏูŠ ูŠุทู„ุน ู†ูุณ ุงู„
388
00:40:24,170 --> 00:40:31,810
element ูŠุจู‚ู‰ ู‡ู†ุง a,b,c,d ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ู‡ู†ุง a,b,c,d
389
00:40:31,810 --> 00:40:36,650
ูŠุจู‚ู‰ ุถุงูŠู‚ ู„ุฃู† ุจุนุถ ุงู„ูุฑู‚ุงุช ู‡ู†ุง ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ
390
00:40:36,650 --> 00:40:41,650
ูˆุตู ุงู„ุฃุฎูŠุฑ ุฅุฐุง ุนุจูŠุช ูˆุงุญุฏ ุงุชู†ูŠู† ุชู„ุงุชุฉ ุฃุฑุจุนุฉ ูˆุตู
391
00:40:41,650 --> 00:40:46,770
ุงู„ุฃุฎูŠุฑ ุชุญุตูŠู„ ุญุตู„ ุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ุบุงูŠุจ ู‡ูˆ ุงู„ุนู†ุตุฑ ุชู…ุงู…
392
00:40:46,770 --> 00:40:59,300
ูƒูŠูุŸ ุตูุฉ ุชุงู„ุช ู‡ุฐุง ูŠุนู†ูŠุŸ ุจุฏูŠ ูˆุงุญุฏ ูŠุญูƒูŠ ุจุณ ุฃูŠูˆุฉ ุฃูŠูˆุฉ
393
00:40:59,300 --> 00:41:05,540
ู‡ุงู† ู…ุงู„ู‡ุŸ ุจุฏูŠ ุฅูŠู‡ุŸ ุฃุญุท ุจูŠู‡ุŸ ุฅูŠู‡ุŸ ุจูŠู‡ุŸ ู…ู‚ุจุถ ู‡ู†ุง
394
00:41:05,540 --> 00:41:13,160
ุฅูŠู‡ุŸ ู‡ุงูŠ ุนุจู†ุงู„ู‡ ูŠุนู†ูŠ ุตุงุฑ ุงู„ุนู…ูˆุฏ ู‡ุฐุง ุฌุงู‡ุฒ ุซุงู†ูŠ ุดูˆูŠุฉ
395
00:41:13,160 --> 00:41:19,760
ุนู†ุฏูƒ ุฅูŠู† ุฏูŠุŸ ุฏูŠ ุฏูˆู„ ู‡ู†ุง ุฌุฏุงุดุŸ C ุงู„ุนู…ูˆุฏ ุงู„ุชุงู„ุช ุนู…ูˆุฏ
396
00:41:19,760 --> 00:41:25,820
ุงู„ุชุงู„ุช ู‡ุฐุง ุฅูŠู‡ุŸ ุฅูŠู‡ ุชู…ุงู… ู…ูŠุฑูŠ ู…ูŠุฉ ุงู„ู…ูŠุฉ ุจู‚ู‰ ุจุฑุถู‡
397
00:41:25,820 --> 00:41:34,040
ุงู„ู…ุดูƒู„ุฉ ู‚ุงุนุฏุฉ ู‡ุฐุง ู‡ุฐุง ู„ุง ุฅูŠู‡ ู…ูˆุฌูˆุฏุฉ ู‡ุฐุง ุฅูŠู‡ ุชู…ุงู…
398
00:41:34,040 --> 00:41:39,380
ุถุงูŠู„ ุฅูŠุด ุนู†ุฏู†ุง ุถุงูŠู„ ู‡ู†ุง ููŠ ุนู†ุตุฑูŠู† ูˆู‡ู†ุง ููŠ ุนู†ุตุฑูŠู†
399
00:41:39,380 --> 00:41:45,360
ู‡ู†ุง ููŠ ุงุชู†ูŠู† ูˆู‡ู†ุง ููŠ ุงุชู†ูŠู† ู…ุดูƒู„ุฉ ู…ุด
400
00:41:45,360 --> 00:41:46,060
ู‡ุชูƒุฑู‡ ุจุณ
401
00:41:50,390 --> 00:41:57,910
ุทูŠุจ ุฅุฐุง ุญู„ู†ุง ูˆุงุญุฏ ุจุชุจู‚ู‰ ุงู†ุญู„ุช ู‚ุถูŠุชู†ุงุŒ ูƒูŠูุŸ ุฏู‡ ู‚ุทุฑ
402
00:41:57,910 --> 00:42:02,510
ู…ุงููŠุด ุญุฏุŒ ุฏู‡ ู‚ุทุฑุŒ ุถุฑุจุŒ ูˆูู‚ ุจุฑุฃุณูŠุŒ ู…ุงู„ูƒ ุฃู†ุชุŸ ููŠ ุญุฏ
403
00:42:02,510 --> 00:42:11,750
ุนู†ุฏู‡ ุงู‚ุชุฑุงุญุŸ ุฃูŠูˆุฉ ููŠ
404
00:42:11,750 --> 00:42:16,550
ุนู†ุฏูŠ ู‡ูŠ ุงุชู†ูŠู† ูˆู‡ู†ุง ุงุชู†ูŠู† ูˆุฌูŠุช ุฃุฎูˆูƒ ุจู‡ู†ุง ุงุชู†ูŠู† ูˆ
405
00:42:16,550 --> 00:42:21,350
ู‡ู†ุง ุงุชู†ูŠู† ู‡ู†ุงุŸ
406
00:42:21,350 --> 00:42:27,470
ุฅูŠุด ู‡ุญุทุŸ ุฏูŠ ุทุจ
407
00:42:27,470 --> 00:42:31,100
ูƒูŠู ู‡ุชุญุทู‡ุงุŸ ูƒูŠูุŸ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ
408
00:42:31,100 --> 00:42:34,280
ุงุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ
409
00:42:34,280 --> 00:42:37,120
ุงุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุฃุณุชุงุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ
410
00:42:37,120 --> 00:42:41,440
ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ
411
00:42:41,440 --> 00:42:41,720
ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ
412
00:42:41,720 --> 00:42:42,660
ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ
413
00:42:42,660 --> 00:42:43,140
ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ
414
00:42:43,140 --> 00:42:58,540
ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุชุฐ ุงุณุช
415
00:42:58,920 --> 00:43:08,560
ุจ ููŠ ุฅูŠู‡ุŸ ู„ูŠุด ู‡ูŠ ุฅุจุฏุงู„ูŠุฉุŸ ู…ุง ู‚ู„ุชู„ูŠุด ุฅุจุฏุงู„ูŠุฉุŸ ุฑุฃุณ
416
00:43:08,560 --> 00:43:13,080
ู†ู‚ุทุฉุŒ ุฑุฃุณ ุฑู…ุฒุŒ
417
00:43:13,080 --> 00:43:16,280
ุฑุฃุณ ููŠ ุงู„ุนู…ูˆู† ููŠู‡ ุจุŒ ููŠ ุงู„ุขุฎุฑ ู…ุงููŠุด ุจ
418
00:43:21,670 --> 00:43:32,290
ู‡ู†ุงุŸ ููŠ ู‡ู†ุง ููŠ element ู‡ู†ุง ููŠ ูˆุงุญุฏ ู‡ู†ุง ูŠุง
419
00:43:32,290 --> 00:43:38,970
ุงู„ู„ู‡ ู…ุงููŠู‡ ุงุชู†ูŠู† ููŠู‡ ุฑู…ุฒูŠู† ู‡ู†ุง ุจุฑุถู‡ ุทุจ ุดูˆู ุดุบู„ู‡ุง
420
00:43:38,970 --> 00:43:44,170
ุงู„ุนูุฑุฉ ุดูˆู ุดุบู„ู‡ุง ุงู„ุนูุฑุฉ ูŠุง ุฑูŠุงุถูŠู„ ุฅูŠู‡ ูˆู‚ูˆู„ ูˆ ุงุฑูŠู†ุง
421
00:43:44,170 --> 00:43:44,470
ุดูˆู
422
00:43:48,580 --> 00:43:51,900
ู„ุงุฒู… ูŠุทู„ุน ููŠู‡ C ู„ุฃู†ู‡ ู„ุงุฒู… ูŠูƒูˆู† ููŠ ุงู„ุณุทุฑ ุงู„ู„ูŠ ู‡ูŠ C
423
00:43:51,900 --> 00:43:57,120
ุฅูŠู‡ ุฅู†ู‡ C ู‚ุตุฏูƒุŸ ู„ุฃ ุบุงุฏ ู‡ุฐุง CุŸ ู„ุงุฒู… ูŠุทู„ุน ููŠู‡ C ุทูŠุจ
424
00:43:57,120 --> 00:44:00,380
ูู…ุด ู…ู…ูƒู† ูŠุทู„ุน ููŠู‡ .. ู„ูŠุด ูŠุทู„ุน ููŠู‡ CุŸ ู…ู†ูุนุด ูŠุทู„ุน
425
00:44:00,380 --> 00:44:05,120
ู„ู‡ุฐู‡ ุณุทุฑุŒ ู†ูู‡ู… ู…ู†ู‡ุŒ ู†ูู‡ู… ู…ู†ู‡ุงุŒ ู…ู†ูุนุด ูŠุทู„ุน ููŠ
426
00:44:05,120 --> 00:44:08,680
ุงู„ุฌู†ุจู‡ ู„ุฅู†ู‡ ููŠู‡ ููŠ ุฌู‡ุฉ C ุนุดุงู† ูŠูƒูˆู† ูˆูู‚ู‡ ูˆู…ู†ูุนุด
427
00:44:08,680 --> 00:44:11,180
ูŠุทู„ุน ููŠ ุงู„ู„ูŠ ุชุญุช ุนุดุงู† ููŠู‡ ุบุงุฏ C ูุจู‚ู‰ ุงู„ุดุฑูƒุฉ ุงู„ู„ูŠ
428
00:44:11,180 --> 00:44:17,540
ู…ุฏุชุด ุชุบูŠุฑ ุฑูŠุงุถูŠู…ุธุจูˆุท ูŠุง ุญุฒูŠุฒูŠ ุฅูŠุด ุฑุฃูŠูƒ ู„ูˆ ุฌูŠู‡ ุชู‚ูˆู„
429
00:44:17,540 --> 00:44:27,800
ู„ูƒ a ููŠ a ู‚ุฏ ุงูŠุด ุจุฏู‡ ูŠุณุงูˆูŠ a ููŠ a ุจ b ุชู…ุงู… ุทูŠุจ ูˆ b
430
00:44:27,800 --> 00:44:39,760
ููŠ b b ููŠ b ุจ d ุทุจ ู„ูˆ ู‚ูˆู„ู„ูƒ c ููŠ c c ููŠ c ุจ a
431
00:44:39,760 --> 00:44:41,960
ู…ุธุจูˆุท
432
00:44:43,310 --> 00:44:50,990
ุทูŠุจ ุฅูŠุด ุฑุฃูŠูƒ ู„ูˆ ุฌูŠุช ุฃุฎุฏ ุฅูŠู‡ ููŠ ุจูŠ ุฅูŠู‡ ููŠ ุจูŠ ูŠุนู†ูŠ
433
00:44:50,990 --> 00:44:55,750
ุงู„ู„ูŠ ูŠุนู†ูŠ ู…ุฏูŠู‡ุง ุฏู‡ ุนุงุฑูุฉ ูƒุฏู‡ุด ุทูŠุจ ุจู„ุบุชู†ุง ู‡ู†ุง ุฅูŠู‡
434
00:44:55,750 --> 00:45:04,110
ููŠ ุจูŠ ุจุฏูŠ ุณุงูˆูŠ c ููŠ c ููŠ a ููŠ a ู…ุธุจูˆุทุŸ
435
00:45:04,420 --> 00:45:11,220
ู‡ุฐุง A ููŠ B ูŠุจู‚ู‰ C C A A ุชู…ุงู… ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
436
00:45:11,220 --> 00:45:23,300
C C ููŠ A ูŠุจู‚ู‰ C ููŠ A ุฅูŠุด ุจุชุทู„ุน D ูŠุจู‚ู‰ C D A ุชู…ุงู…
437
00:45:23,300 --> 00:45:31,740
ุทุจ ู„ูˆ ุฌูŠุช ุงู„ุขู† D ููŠ A ุฅูŠุด ุจูŠุทู„ุน ุนู†ุฏูŠ E ูŠุจู‚ู‰ C E
438
00:45:31,740 --> 00:45:38,890
ูŠุจู‚ู‰ ุจ C ู…ุงุดูŠ ูŠุจู‚ู‰ ุงู„ุญูŠู† ุตุงุฑุช ู‡ุฐู‡ C ูˆุจุงู„ุชุงู„ูŠ ู‡ุฐู‡
439
00:45:38,890 --> 00:45:46,170
ุฅูŠุด ุตุงุฑุช D ูˆุจุงู„ุชุงู„ูŠ ุงู†ุญู„ุช ูƒู„ ุงู„ู…ุดุงูƒู„ ุตุงุฑ C D E A
440
00:45:46,170 --> 00:45:54,170
ูŠุจู‚ู‰ ู‡ู†ุง B ูˆ B C D A ูŠุจู‚ู‰ ู‡ู†ุง A ุดุบู„ ุฑูŠุงุถูŠ ุณู„ูŠู… ูˆู„ุง
441
00:45:54,170 --> 00:45:58,150
ูˆุงุญุฏ ุจูŠู‚ุฏุฑ ูŠู‚ูˆู„ูƒ ููŠู‡ ุฃูŠ ุดุบู„ ุฃูŠ ุดุบู„ ุฑูŠุงุถูŠ ู…ุธุจูˆุท ู…ู†
442
00:45:58,150 --> 00:46:02,770
ุฎู„ุงู„ ุงู„ุฌุฏูˆู„ ูŠุจู‚ู‰ ุฃู†ุช ุจุฏูƒ ุชุฑูˆุญ ุชุนุจูŠ ุงู„ู„ูŠ ุนู†ุฏูƒ ู…ู†
443
00:46:02,770 --> 00:46:09,110
ุฎู„ุงู„ ุงู„ู…ูŠุงู‡ ู…ู† ุฎู„ุงู„ ุงู„ุฌุฏูˆู„ ุทูŠุจ ุงู„ุณุคุงู„ ุงู„ู„ูŠ ุจุนุฏ ู‡ูˆ
444
00:46:09,110 --> 00:46:15,590
ุณุคุงู„ ุณุชุฉ ูˆุนุดุฑูŠู† ุณุคุงู„ ุณุชุฉ ูˆุนุดุฑูŠู† ุจูŠู‚ูˆู„ ู…ุง ูŠุฃุชูŠ
445
00:46:15,590 --> 00:46:24,990
prove that ุฅุฐุง ูƒุงู† if ุงู„ a b ู„ูƒู„ ุชุฑุจูŠุน ูŠุณุงูˆูŠ a
446
00:46:24,990 --> 00:46:32,840
ุชุฑุจูŠุน b ุชุฑุจูŠุน then ุงู„ู€ A ููŠ B ุจุฏู‡ ูŠุณุงูˆูŠ ู…ูŠู†ุŸ ุจุฏู‡
447
00:46:32,840 --> 00:46:38,900
ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ A ุทุจุนุง ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ู€ A ููŠ B ุจุฏู‡
448
00:46:38,900 --> 00:46:44,060
ูŠุณุงูˆูŠ ุงู„ู€ B ููŠ A ุงู„ู‚ุตุฉ
449
00:46:44,060 --> 00:46:49,160
ุจุณูŠุทุฉ ุฌุฏุงุŒ ู…ุง ู‚ุงู„ูŠุด ุฌูŠ ุฃุจูŠู„ูŠุงู†ุŒ ู„ูˆ ู‚ุงู„ูŠ ุฌูŠ
450
00:46:49,160 --> 00:46:52,160
ุฃุจูŠู„ูŠุงู† ูƒุงู† ู‚ุถูŠุชูŠ ู…ุญู„ูˆู„ุฉุŒ ู…ุง ู‚ุงู„ูŠ ุฌูŠ ุฃุจูŠู„ูŠุงู†ุŒ ู„ูƒู†
451
00:46:52,160 --> 00:46:59,080
ุฃู†ุง ุนู†ุฏูŠ consider ุฎูุฏู„ูŠ A ุจูŠ ู„ูƒู„ ุชุฑุจูŠุน ุงู„ู„ูŠ ู‡ูˆ ุจุฏุฃ
452
00:46:59,080 --> 00:47:07,550
ููŠู‡ุง ู…ุง ุฏู‡ ู…ุด ab ูŠุนู†ูŠ ูŠุจู‚ู‰ a ููŠ b ููŠ a ููŠ b ุตุญ ูˆู„ุง
453
00:47:07,550 --> 00:47:15,190
ู„ุง ุทูŠุจ ู‡ุฐู‡ ุชุณุงูˆูŠ ู…ู† ุงู„ู…ุนุทูŠุงุช a ุชุฑุจูŠุน b ุชุฑุจูŠุน ุดูˆู
454
00:47:15,190 --> 00:47:20,490
ุงู„ู‚ุงู†ูˆู† ุงู„ุดุทุจ ุงู„ุฃูŠ ู…ู„ูŠ ุจูŠ ูˆู‚ุงู†ูˆู† ุงู„ุดุทุจ ุงู„ุฃูŠ ุตุงุฑู„ูŠ
455
00:47:20,490 --> 00:47:26,490
a ูŠุจู‚ู‰ ู‡ุฐุง ุฅูŠุด ุจุฏูŠ ุฃุนุทูŠู„ูƒ ูŠุนู†ูŠ ุง ุจู…ุนู†ู‰ ุขุฎุฑ ู„ูˆ ุถุฑุจุช
456
00:47:26,490 --> 00:47:30,970
ู‡ุฐู‡ ุงู„ู…ุนุงุฏู„ุฉ ู…ู† ุฌู‡ุฉ ุงู„ุดู…ุงู„ ููŠ a inverse ูˆุถุฑุจุช ู…ู†
457
00:47:30,970 --> 00:47:36,090
ุฌู‡ุฉ ุงู„ูŠู…ูŠู† ููŠ b inverse ุฃูˆ ุงู„ left cancellation
458
00:47:36,090 --> 00:47:39,970
law ูˆ ุงู„ right cancellation law ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุฎุท
459
00:47:39,970 --> 00:47:46,630
ุนุถุทูŠู†ูŠ ุจูŠ ุงูŠ ุจูŠุฒูŠ ุณุงูˆุฉ ู…ู† a ููŠ b ู„ู…ุง ุงุถุฑุจ ู‡ู†ุง ููŠ a
460
00:47:46,630 --> 00:47:51,010
inverse ุจุทูŠุฑ ู‡ุฐู‡ ูˆุจุทูŠุฑ ูˆุงุญุฏ ู…ู† ุงู„ุชุฑุจูŠุฉ ูู‡ูŠุธู„ ู‡ู†ุง
461
00:47:51,010 --> 00:47:58,550
ุนู†ุฏูŠ ู‚ุฏุงุด a ุจุชุธู‡ุฑ ุจูŠ ุงู†ูุฑุณุช ุจูŠุธู‡ุฑ ุจูŠ ุงู†ูุฑุณุช ุจูŠุธู‡ุฑ
462
00:47:58,550 --> 00:48:04,190
ุจูŠ ุงู†ูุฑุณุช
463
00:48:04,190 --> 00:48:06,730
ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ
464
00:48:06,730 --> 00:48:07,870
ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ
465
00:48:07,870 --> 00:48:13,810
ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ ุจูŠุธู‡ุฑ
466
00:48:13,810 --> 00:48:20,110
ุจ
467
00:48:22,250 --> 00:48:29,750
ุชู„ุงุชุฉ ูˆุชู„ุงุชูŠู† ุฅุฐุง ูƒุงู† ุงู„ a xb ุชู„ุงุชุฉ ูˆุชู†ู‚ู„ a xb
468
00:48:29,750 --> 00:48:37,570
ูŠุณูˆู‰ ุงู„ c xd ูŠุณูˆู‰ ุงู„ c xd ู‡ุฐุง ูŠุชุทู„ุจ ุฃู† ุงู„ a b ุจุฏู‡
469
00:48:37,570 --> 00:48:43,610
ูŠุณูˆู‰ ุงู„ c d ุนู†ุฏ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ุจู‚ูˆู„ ุชุญุช ุงู„ proof that
470
00:48:43,610 --> 00:48:49,530
ุงู„ g is abelian ุงุซุจุช ุฃู† ุงู„ g ู‡ุฐู‡ is abelian
471
00:48:54,000 --> 00:49:01,600
ุดูˆ ุจูŠูŠู„ู„ูŠ ุฅู†ู‡ ุฌู‰ ู‚ุงุจูŠู„ูŠุง ุจูŠุชู„ูŠ
472
00:49:01,600 --> 00:49:08,400
ุฅู†ู‡ ุฌู‰ ู‚ุงุจูŠู„ูŠุง ุจู‚ูˆู„ู‡ ุงู„ proof ุงู„ุขู†
473
00:49:08,400 --> 00:49:18,000
ุฃู†ุง ู„ูˆ ุฌูŠุช ุนู„ู…ูŠู† ู…ุซู„ุงู…ุนุทุจุฉ ู…ุนู†ุง ุงู„ุนู„ุงู‚ุฉ ู„ุฃู†ู‡ุง AXB
474
00:49:18,000 --> 00:49:23,700
ุจูŠุจู‚ู‰ CXD ุจูŠู‚ูˆู„ ู„ูˆ ุญุตู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุนู†ุฏูƒ ุฅุฐุง
475
00:49:23,700 --> 00:49:28,920
automatic ูƒุฃู†ู‡ ุจุฏูŠ ุฃุดุทุจ X ู…ู† ู‡ู†ุง ูˆุฃุดุทุจ X ู‡ู†ุง ู…ู†
476
00:49:28,920 --> 00:49:33,380
ุงู„ู…ุตุฑ ุทุจุนุง ุฑูŠุงุถูŠุง ู„ุฃ ุจุณ ุฃู†ุง ุจู‚ูˆู„ ูƒุฃู†ู‡ ุฑูŠุงุถูŠุง ู„ุฃ
477
00:49:33,730 --> 00:49:38,110
ูŠุจู‚ู‰ ู‡ู†ุง ูƒุฅู†ู‡ a ุจูŠุจุฏูˆุง ูŠุณุงูˆูŠ main CD ูŠุนู†ูŠ ุฅุฐุง
478
00:49:38,110 --> 00:49:45,750
ุฃุนุทูŠุช ู‡ุฐู‡ ู a ุจูŠุจุฏูˆุง ูŠุณุงูˆูŠ ุงู„ CD ุงู„ุขู† ุฃู†ุง ุจุฏูŠ
479
00:49:45,750 --> 00:49:49,650
ุฃุญุงูˆู„ ุฃุซุจุช ุฃู†ู‡ g a b ู„ุฅู† ูŠุนู†ูŠ ุจุฏูŠ ุฃุซุจุช ุฃู† ุงู„ a ููŠ
480
00:49:49,650 --> 00:49:54,410
b ุจูŠุจุฏูˆุง ูŠุณุงูˆูŠ b ููŠ a ู„ูƒู„ ุงู„ a ูˆ ุงู„ b ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
481
00:49:54,410 --> 00:50:00,250
ูˆูŠู† ููŠ g ุทุจ ุงู„ุขู† ู„ูˆ ุฌูŠุช ุงู„ุนู†ุตุฑ b ู…ุด ู‡ูˆ b ูˆู„ุง ู„ุฃ
482
00:50:03,250 --> 00:50:12,990
ุตุญุŸ ุทุจ ุฅูŠุด ุฑุฃูŠูƒ ู„ูˆ ุฌูŠุช ู‚ู„ุชู„ูƒ ุงู„ a a inverse b ู‡ู„
483
00:50:12,990 --> 00:50:21,130
ูŠุณุงูˆูŠ ุงู„ b ููŠ ุงู„ a inverse a ูˆู„ุง ู„ุงุŸ ู„ุฃู† ู‡ุฐุง ุงู„
484
00:50:21,130 --> 00:50:27,110
identity ูˆู‡ุฐุง ุงู„ identityุŒ ู…ุธุจูˆุทุŸ ุทุจ ุงุชุทู„ุน ุงู„ุนู†ุตุฑ
485
00:50:27,110 --> 00:50:33,110
ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ู‡ู†ุง ูˆุงู„ุนู†ุตุฑ ุงู„ู„ูŠ ููŠ ุงู„ู†ุต ุฏู‡ ู‡ูˆ ู†ูุณู‡
486
00:50:33,110 --> 00:50:37,950
ูˆุญุงุตู„ ุถุฑุจ ุชู„ุช ุนู†ุงุตุฑ ุฒูŠ ู…ุง ุฃู†ุช ุดุงูŠู ุจูŠุณุงูˆูˆุง ุจุนุถ
487
00:50:37,950 --> 00:50:43,210
ูŠุจู‚ู‰ ุจุงู„ assumption ุฅูŠุด ุจุฏูŠ ูŠุทู„ุน a ููŠ b ุจุฏูŠ ูŠุณุงูˆูŠ
488
00:50:43,210 --> 00:50:51,610
b ููŠ a ูŠุจู‚ู‰ g is abelian ูŠุจู‚ู‰ ู‡ู†ุง from assumption
489
00:50:51,610 --> 00:50:54,790
we
490
00:50:54,790 --> 00:51:02,250
have ุฅู† ุงู„ A ุจูŠุจุฏูŠ ุณูˆู‰ ุงู„ B ุฅูŠู‡ ู‡ุฐุง ุจุฏูŠ ุฃุนุทูŠู†ุง ุฅู†
491
00:51:02,250 --> 00:51:09,530
ุงู„ G is abelian ูŠุนู†ูŠ ุฃู†ุง ุชุญุช ู‡ุฐู‡ ุงู„ุฎุงุตูŠุฉ ู‚ุฏุฑุช ุฃุญูƒู…
492
00:51:09,530 --> 00:51:13,910
ุนู„ู‰ G is abelian ู„ูˆ ุงู„ุฎุงุตูŠุฉ ู‡ุฐู‡ ู…ุด ุนู†ุฏูŠ ู„ุฃ ูŠู…ูƒู†
493
00:51:13,910 --> 00:51:20,510
ุฃู‚ุฏุฑ ุฃุซุจุช ุฃูˆ ุฃุจูŠู† ุฅู† ุงู„ G ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† abelian
494
00:51:20,510 --> 00:51:21,330
group