|
1 |
|
00:00:20,670 --> 00:00:24,010 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูููู
ุฅู ุดุงุก ุงููู ูุจุฏุฃ ุญููุฉ |
|
|
|
2 |
|
00:00:24,010 --> 00:00:30,490 |
|
ุฌุฏูุฏุฉ ุญููุฉ 6 ุชุชููู
ุนู ูุงุญุฏุฉ ู
ู ุงูู
ุดุงุฑูุงุช ุงูุนุงู
ุฉ ูู |
|
|
|
3 |
|
00:00:30,490 --> 00:00:37,990 |
|
ุงูุงุณุชุงุชูููุฉ ุงุณู
ูุง ุงูู
ุดุงุฑูุฉ ุงูุทุจูุนูุฉ ุญููุฉ |
|
|
|
4 |
|
00:00:37,990 --> 00:00:43,750 |
|
6 ุงูู
ุดุงุฑูุฉ |
|
|
|
5 |
|
00:00:43,750 --> 00:00:45,230 |
|
ุงูุทุจูุนูุฉ |
|
|
|
6 |
|
00:00:52,820 --> 00:00:54,740 |
|
ุงูุงู ู
ุงุฐุง ูุนูู ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
7 |
|
00:00:54,740 --> 00:00:57,180 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
8 |
|
00:00:57,180 --> 00:00:59,640 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
9 |
|
00:00:59,640 --> 00:01:00,020 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
10 |
|
00:01:00,020 --> 00:01:01,640 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
11 |
|
00:01:01,640 --> 00:01:03,280 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
12 |
|
00:01:03,280 --> 00:01:03,620 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
13 |
|
00:01:03,620 --> 00:01:08,800 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
14 |
|
00:01:08,800 --> 00:01:14,440 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุน |
|
|
|
15 |
|
00:01:22,100 --> 00:01:29,000 |
|
around the mean and all measures of centered |
|
|
|
16 |
|
00:01:29,000 --> 00:01:35,680 |
|
tendency are roughly equal I mean mean, median and |
|
|
|
17 |
|
00:01:35,680 --> 00:01:41,900 |
|
mode are roughly equal ุชูุฑูุจุง ู
ุชุณุงููุฉ ุงุฐุง ุงู mean |
|
|
|
18 |
|
00:01:41,900 --> 00:01:49,180 |
|
equal median equal modeูุฐูู ุงูุงูุชุฌุงุฑ ุงูุนุงุฏู ูุญุชูู |
|
|
|
19 |
|
00:01:49,180 --> 00:01:57,580 |
|
ุนูู ุซูุงุซ ู
ูุฒุงููู ูุจุฏู ู
ุซููุง ุจูู ุดูุจุฏ ู
ูุฒุงูู ุญูู |
|
|
|
20 |
|
00:01:57,580 --> 00:02:06,140 |
|
ุงูู
ูุงู ููู ู
ูุฒุงูู ุงูุชุฌุงุฑุจ ุชูุฑูุจูุง ุฃู ุชูุฑูุจูุง ู
ุซููุง |
|
|
|
21 |
|
00:02:09,770 --> 00:02:14,490 |
|
ุฎููููู ุฃุจุฏุฃ ุงูุชูุฒูุน ุงูุทุจูุนู ุจุขูุฉ ูุฑุฃููุฉ ุจุชูุณุฑ |
|
|
|
22 |
|
00:02:14,490 --> 00:02:17,250 |
|
ุงูู
ุนูู ููุชูุฒูุน ุงูุทุจูุนูุ ุงูู
ูููู
ุชุจุน ุงูุชูุฒูุน |
|
|
|
23 |
|
00:02:17,250 --> 00:02:23,850 |
|
ุงูุทุจูุนู ูู ุงูุตูุฑุฉ .. ุฅูู ุงููู ูุชุนุฑูููุง ูุนูู ููุนูู
|
|
|
|
24 |
|
00:02:23,850 --> 00:02:30,170 |
|
ุจุงูุดูุกุ ุตูุฑุฉ ุงูุฑูู
ุ ุขูุฉ 54 ุงููู |
|
|
|
25 |
|
00:02:30,170 --> 00:02:31,810 |
|
ุงูุฐู ุฎูููู
ู
ู ุถุนู |
|
|
|
26 |
|
00:02:37,980 --> 00:02:40,840 |
|
ูุญุธุฉ ุถุนู ูุนูู ุงูุจุฏุงูุฉ ุฎุงูุต ุงููู ูู ุงูู
ูุทูุฉ ุงููู |
|
|
|
27 |
|
00:02:40,840 --> 00:02:45,700 |
|
ููุง ุจุชุนุฑู ูุญุธุฉ ุจููู ููุง ุฏู ุตุบูุฑ ูุนูู ููุง ุฏู ุตุบูุฑ |
|
|
|
28 |
|
00:02:45,700 --> 00:02:52,380 |
|
ุจุนุฏูู ู
ุงุจุจุฏุงูุด ุจููุจุฑ ุดููุฉ ุดููุฉ ูุบุงูุฉ ู
ุง ูุตู ููู |
|
|
|
29 |
|
00:02:52,380 --> 00:02:58,700 |
|
ุงููู
ุฉ ู
ุฑุงุญุฉ ุงูุดุจุงุจ ุงููู ูู ุงูููุฉ ุงููู ุงูุฐู ุฎูููู
|
|
|
|
30 |
|
00:02:58,700 --> 00:03:04,200 |
|
ู
ู ุถุนู ุซู
ุฌุนูู ู
ู ุจุนุฏ ุถุนู ููุฉ |
|
|
|
31 |
|
00:03:07,210 --> 00:03:11,950 |
|
ูุฐู ุงูุชูุฒูุน ุจูุจุฏุฃ ุตุบูุฑุ ุจุนุฏูู ุจูุจุฏุฃ ุจุงูุชุณุงุนุฏ ูุบุงูุฉ |
|
|
|
32 |
|
00:03:11,950 --> 00:03:20,590 |
|
ู
ุง ูุญุตู ุงููู
ุฉ ุชุจุนุชูุ ุซู
ุฌุนูู ู
ู ุจุนุฏ ููุฉุ ุงูููุฉ |
|
|
|
33 |
|
00:03:20,590 --> 00:03:28,590 |
|
ุงููู ููุงุ ุชูุฌู ุถุนู ููุงุ ู ู
ุด ุจุนุฏ ุงูุถุนูุ ุดูุจุฉุ ุซู
|
|
|
|
34 |
|
00:03:28,590 --> 00:03:33,730 |
|
ุฌุนูู ุจุนุฏ ููุฉุ ุถุนู ู ุดูุจุฉ |
|
|
|
35 |
|
00:03:37,660 --> 00:03:42,400 |
|
ุจุงูุธุจุท ูุฐู ุฏูุฑุฉ ุญูุงุฉ ุงูุฅูุณุงูุ ู
ุด ูููุ ุฏูุฑุฉ ุญูุงุฉ ุฃู |
|
|
|
36 |
|
00:03:42,400 --> 00:03:46,620 |
|
ูุงุญุฏุ ุฅูุณุงู ูุบูุฑ ุฅูุณุงูุ ุจูุจุฏู ุตุบูุฑุ ุจููุจุฑ ุชุฏุฑูุฌูุ |
|
|
|
37 |
|
00:03:46,620 --> 00:03:52,480 |
|
ุจูุตู ูููู
ุฉุ ู ุจุนุฏูู ุจููุชููุ ูุทูุนุช ู
ุซูุง ุจูุตู ูููู
ุฉุ |
|
|
|
38 |
|
00:03:52,480 --> 00:03:59,640 |
|
ููุชุฑุถ ุฃู ูู ุฑุจุนูู ุณูุฉ ุชูุฑูุจุงุ ู
ุด ูููุ |
|
|
|
39 |
|
00:03:59,640 --> 00:04:05,600 |
|
ุจุนุฏ ุงูุนูู
ูุฉ ุจูุจุฏู ูุงุญุฏ ุนุงูุดุ ููุจุฑ ู ุจุฎูุตูู ูุงู |
|
|
|
40 |
|
00:04:05,600 --> 00:04:08,440 |
|
ุงูุงุฑุจุนูู ูู ุงูู
ุชุตู ุจุณู
ูู symmetric distribution |
|
|
|
41 |
|
00:04:08,440 --> 00:04:13,960 |
|
ุชูุฒูุน ู
ุชู
ุซู ู
ุน ูุฏู ุงูุด ู
ุชู
ุซู ูุนูู ุงู area to the |
|
|
|
42 |
|
00:04:13,960 --> 00:04:20,400 |
|
right equals area to the left ู
ุน ูุฏู the minimum |
|
|
|
43 |
|
00:04:20,400 --> 00:04:24,660 |
|
splits the curve into two equal pieces ุงุชููู ุฒู |
|
|
|
44 |
|
00:04:24,660 --> 00:04:29,500 |
|
ุจุนุถ ูุงุญุฏ ุงู right ูุงูุชุงูู ุงู left ุฒู ู
ุง ุญููุช ุงูุฃูู |
|
|
|
45 |
|
00:04:29,500 --> 00:04:34,550 |
|
ุฃูุชุฑ ุชูุฒูุน ู
ุนุฑูู ุงู normal distributionููุฐุง ูุงุฑูุฒ |
|
|
|
46 |
|
00:04:34,550 --> 00:04:37,110 |
|
ุนููู ุทุจุนุง ุงูุช ุจุงููุณุจุงูู ู
ูู
ุฌุฏุง ุงูุช ูุงูู
ูู ุงูู |
|
|
|
47 |
|
00:04:37,110 --> 00:04:40,950 |
|
ุจูุนุชู
ุฏ ุนููู ูู ุงู chapters ุงููู ุฌุงูุฉ ูุนูู ูุบุงูุฉ ู
ุง |
|
|
|
48 |
|
00:04:40,950 --> 00:04:46,130 |
|
ูุฎูุต ุงู semester ูู ุดุบู ุนูู ุงูุชูุฒูุน ุงูุทุจูุนู so now |
|
|
|
49 |
|
00:04:46,130 --> 00:04:48,970 |
|
let's start what are the objectives for this |
|
|
|
50 |
|
00:04:48,970 --> 00:04:52,590 |
|
distribution mainly for this chapter there are |
|
|
|
51 |
|
00:04:52,590 --> 00:04:58,410 |
|
three features or three objectives one to compute |
|
|
|
52 |
|
00:04:58,410 --> 00:05:01,670 |
|
probabilities from the normal distribution ุจุชุญุณุจ |
|
|
|
53 |
|
00:05:01,670 --> 00:05:06,520 |
|
ุงุญุชู
ุงููุงุซุงูููุงุ ููู ูุณุชุฎุฏู
ุงูู
ุดุงุฑูุฉ ุงูุทุจูุนูุฉ |
|
|
|
54 |
|
00:05:06,520 --> 00:05:12,140 |
|
ูุชุญุณูู ุชุทุจููุงุช ุญููููุฉ ุงูุญูุงุฉ ูู ุงูู
ุนุงู
ูุงุชุ ุฎุตูุตูุง |
|
|
|
55 |
|
00:05:12,140 --> 00:05:16,340 |
|
ูู ุงูุดุฑูุฉุ ููู ูู
ูููุง ุงุณุชุฎุฏุงู
ุงูู
ุดุงุฑูุฉ ุงูุทุจูุนูุฉ |
|
|
|
56 |
|
00:05:16,340 --> 00:05:21,980 |
|
ูุชุญุณูู ุงูู
ุดุงูู ูู ุงูุดุฑูุฉุ ูุฃุฎูุฑูุงุ ุณูุฑู ููู ูู
ูููุง |
|
|
|
57 |
|
00:05:21,980 --> 00:05:27,000 |
|
ุงุณุชุฎุฏุงู
ุดูุก ูุณู
ู ุจูุงุณุทุฉ ุงููุงูุนูุฉ ุงูุทุจูุนูุฉ ูุชุญุณูู |
|
|
|
58 |
|
00:05:27,000 --> 00:05:31,260 |
|
ู
ุง ุฅุฐุง ู
ุฌู
ูุนุฉ ู
ู ุงูุจูุงูุงุช ู
ูุงุฑูุฉ ุจุดูู ุทุจูุนูุ |
|
|
|
59 |
|
00:05:34,690 --> 00:05:41,210 |
|
ุจุชุฐูุฑ ุงููุง ุงุณุชุฎุฏู
ูุง ุงูู z-score ูุชุชุฃูุฏ |
|
|
|
60 |
|
00:05:41,210 --> 00:05:47,130 |
|
ุงู ุงู ููู
ุฉ ูุงูุช |
|
|
|
61 |
|
00:05:47,130 --> 00:05:56,990 |
|
ุชุนุชุจุฑ ุงูุชุฑูู
ุงู ุงูุงุช ููุฑ ุจุธุจุท ูุนูู ูู ุงูู chapter |
|
|
|
62 |
|
00:05:56,990 --> 00:06:01,710 |
|
3 ุญูููุง ุนู ุงูููุงู
ุงุณุชุฎุฏู
ูุง ุงู z-score ูู ูุงู ุนูุฏู |
|
|
|
63 |
|
00:06:01,710 --> 00:06:04,870 |
|
data point ูุงุญุฏุฉ ููู
ุฉ ูุงุญุฏุฉููู ูู
ูููุง ุฃู ูููู ุฅู |
|
|
|
64 |
|
00:06:04,870 --> 00:06:10,910 |
|
ูุฐุง ุงููุถุน ุฃู ูุฐุง ู
ุฌูุฏ ุงูุจูุงูุงุช ู
ูุฌูุฏ ุฃู ููุณ ู
ูุฌูุฏุ |
|
|
|
65 |
|
00:06:10,910 --> 00:06:20,490 |
|
ููู ูู ูุฐู ุงููุตุฉ ู
ุฑูุฒูุง ุนูู ู
ุฌูุฏ ุงูุจูุงูุงุช ุงูุขู ูู |
|
|
|
66 |
|
00:06:20,490 --> 00:06:27,870 |
|
ูุฐุง ู
ุฌูุฏ ุงูุจูุงูุงุช ู
ุฌู
ูุนุฉ ุฃู ููุณุ ูุจุญุซ ุนู ุงูุจูุงูุงุช |
|
|
|
67 |
|
00:06:27,870 --> 00:06:33,710 |
|
ุชู
ุงู
ุฉุ ูุฐูู ู
ุฌูุฏ ุงูุจูุงูุงุชูู ูุฐุง ุงูุจูุงูุงุช ุทุจูุนูุฉ ุงู |
|
|
|
68 |
|
00:06:33,710 --> 00:06:37,750 |
|
ููุณ ุทุจูุนูุฉุ ูุฐุง ูุฏููุง ูู ูุฐู ุงููุตุฉ ุ ูุฐูู ูู ูุตุฉ T |
|
|
|
69 |
|
00:06:37,750 --> 00:06:43,330 |
|
ูุฑูุฒ ููุท ุนูู ูุงุญุฏุฉ ููู
ุฉ ููุง ูุฑูุฒ ุนูู ุฌู
ูุน ู
ุฌู
ูุนุฉ |
|
|
|
70 |
|
00:06:43,330 --> 00:06:47,810 |
|
ุงูุจูุงูุงุช ูู ูู ุชูุฑูุจุง ุทุจูุนูุฉ ุงู ููุณ ุทุจูุนูุฉุ ุณุฃุจุฏุฃ |
|
|
|
71 |
|
00:06:47,810 --> 00:06:54,090 |
|
ู
ุน ุงููุงุถุญุฉ ูุชูู
ูุฉ ุทุจูุนูุฉ ุซู
ุณูุฐูุจ ุฅูู ุงูู
ูู
ุฉ |
|
|
|
72 |
|
00:06:54,090 --> 00:06:54,810 |
|
ุงูุฃููู |
|
|
|
73 |
|
00:06:57,570 --> 00:07:00,330 |
|
ููุจุฏุฃ ู
ุน continuous probability distributions |
|
|
|
74 |
|
00:07:31,070 --> 00:07:43,210 |
|
ูู ุงูุจูุงูุงุช ููุงู ุงุชุฌุงุฑุงุช ู
ุฎุชููุฉ ุชุณู
ู ูุชููุณ ูุชููุณ |
|
|
|
75 |
|
00:07:43,210 --> 00:07:50,910 |
|
ูุชููุณ ูุชููุณ ูู ูุชููุณ ุชุณุชุฎุฏู
ุงู ููู
ุฉ ุชุณุชุฎุฏู
ุงู ููู
ุฉ |
|
|
|
76 |
|
00:07:50,910 --> 00:07:54,410 |
|
ุชุณุชุฎุฏู
|
|
|
|
77 |
|
00:07:54,410 --> 00:08:00,730 |
|
ุงู ููู
ุฉ ุชุณุชุฎุฏู
ุนูู ุณุจูู ุงูู
ุซุงูุ ูู ููุง ูุชููู
ุนู |
|
|
|
78 |
|
00:08:00,730 --> 00:08:12,570 |
|
ุงููุถุน ู ูู ุฃู ุงููุถุน ูุชุฌุงูุฒ ู
ู 60 ูููู ุฌุฑุงู
ุฅูู 75 |
|
|
|
79 |
|
00:08:12,570 --> 00:08:17,790 |
|
ูููู ุฌุฑุงู
ุ ูู
ุน ูู
ููู
ุฉ ู
ูุฌูุฏุฉ ุจูููู
ุ |
|
|
|
80 |
|
00:08:25,810 --> 00:08:31,630 |
|
how many values ุงููุง |
|
|
|
81 |
|
00:08:31,630 --> 00:08:37,610 |
|
ูู ุญููุช ูุฒููุง ู
ู 60 ู 75 ู
ู
ูู ูุงุญุฏ ูููู ูุฒูู 63.5 |
|
|
|
82 |
|
00:08:37,610 --> 00:08:47,190 |
|
ู
ู
ูู ูุงุญุฏ ูููู ูุฒูู 69.980 ูุนูู ูุชูุฑ ูุนูู ู
ุน ูุฏู |
|
|
|
83 |
|
00:08:47,190 --> 00:08:51,710 |
|
there are infinite values |
|
|
|
84 |
|
00:08:51,710 --> 00:08:57,270 |
|
in this case ุนุฏุฏ ูุงููู ุจุงูููุงู
ูู ุญููุชูู ุงู |
|
|
|
85 |
|
00:08:57,270 --> 00:09:00,350 |
|
cellphone ุงููู ู
ุนูุงู ุงูุฌูุงูุงุช ุงูุณู
ู ุชุจุนูุง |
|
|
|
86 |
|
00:09:00,350 --> 00:09:06,870 |
|
thickness ู
ูุชุฑุถ ู
ู one centimeter to three |
|
|
|
87 |
|
00:09:06,870 --> 00:09:11,490 |
|
centimeters how many values are between one and |
|
|
|
88 |
|
00:09:11,490 --> 00:09:15,830 |
|
three infinite numbers suppose we are talking |
|
|
|
89 |
|
00:09:15,830 --> 00:09:20,310 |
|
about temperature from |
|
|
|
90 |
|
00:09:20,310 --> 00:09:27,460 |
|
suppose 36 up to 40it could be 36.1.2.3 and so on |
|
|
|
91 |
|
00:09:27,460 --> 00:09:31,200 |
|
so there are infinite number of values so a |
|
|
|
92 |
|
00:09:31,200 --> 00:09:33,960 |
|
continuous variable is a variable can take or can |
|
|
|
93 |
|
00:09:33,960 --> 00:09:38,060 |
|
assume any value ุงูู ูู ุงู ููู
ุฉ for example |
|
|
|
94 |
|
00:09:38,060 --> 00:09:42,900 |
|
thickness of an item ุณู
ู ูุดุบู ู
ุนููุฉ time required |
|
|
|
95 |
|
00:09:42,900 --> 00:09:46,320 |
|
to complete a task ุงูููุช ุงููู ูุงุฒู
ุฃู ุงูููุช ุงููู |
|
|
|
96 |
|
00:09:46,320 --> 00:09:50,100 |
|
ูุงุฒู
ุชุฎูุต ู
ูู
ุฉ ุงู ุงูุฌุงุฒ ู
ูู
ุฉ ู
ู
ูู ุงูุฒู
ู could be |
|
|
|
97 |
|
00:09:50,100 --> 00:09:58,600 |
|
ุจุชุนุฑู ูู ุงู runningู
ุณุงุจูุงุช ุงูุฌุฑู ู
ู
ูู ูุฎูุต ุงูู
ุณุงูุฉ |
|
|
|
98 |
|
00:09:58,600 --> 00:10:03,900 |
|
ูู 10 second ูุนูู |
|
|
|
99 |
|
00:10:03,900 --> 00:10:10,260 |
|
10.4 ู
ุน ูุฏู ุฏู ุนุจุงุฑุฉ ุนู fraction ู
ู
ูู 3.6 and so |
|
|
|
100 |
|
00:10:10,260 --> 00:10:15,340 |
|
on so if we have a fraction it means we are |
|
|
|
101 |
|
00:10:15,340 --> 00:10:17,800 |
|
talking about continuous |
|
|
|
102 |
|
00:10:19,670 --> 00:10:23,190 |
|
height of a solution height in inches temperature |
|
|
|
103 |
|
00:10:23,190 --> 00:10:27,550 |
|
of a solution these are values these values are |
|
|
|
104 |
|
00:10:27,550 --> 00:10:31,450 |
|
infinite number I mean uncountable we cannot count |
|
|
|
105 |
|
00:10:31,450 --> 00:10:34,230 |
|
these values ูุงุถุญ ูุนูู ุงู variable ุงููู ุจูุงุฎุฏ ุฃู |
|
|
|
106 |
|
00:10:34,230 --> 00:10:40,470 |
|
ููู
ูุณู
ูู continuous ู
ุชุตู ุงู type two ู
ุด ูุชููู
|
|
|
|
107 |
|
00:10:40,470 --> 00:10:45,950 |
|
ุนููู ููุง ุงููู ูู discrete discrete |
|
|
|
108 |
|
00:10:45,950 --> 00:10:53,100 |
|
variable ู
ุด ูุนูู discretediscrete ู
ุนูุงู ู
ููุตู ุงู |
|
|
|
109 |
|
00:10:53,100 --> 00:11:00,340 |
|
ู
ุชูุทุน ูู ุงู discrete ุจูุงุฎุฏ whole number whole |
|
|
|
110 |
|
00:11:00,340 --> 00:11:05,540 |
|
number ูุนูู ุนุฏุฏ ุตุญูุญ ูู ุญููุช there are sixty |
|
|
|
111 |
|
00:11:05,540 --> 00:11:10,040 |
|
students in this class we cannot say there are |
|
|
|
112 |
|
00:11:10,040 --> 00:11:13,620 |
|
sixty point five students in this class ุงุฐุง |
|
|
|
113 |
|
00:11:13,620 --> 00:11:17,360 |
|
ุจูุงุฎุฏุงุด whole number another example suppose there |
|
|
|
114 |
|
00:11:17,360 --> 00:11:26,390 |
|
arebetween zero to six accidents per |
|
|
|
115 |
|
00:11:26,390 --> 00:11:31,150 |
|
week ู
ู ุงูุตูุฑ ุงูุณุช ุญููุช ูู ุงูุฃุณุจูุนู ู
ูุฌูุฏ ุงูุชุฑุถ ูู |
|
|
|
116 |
|
00:11:31,150 --> 00:11:35,230 |
|
intersection ู
ุนูู suppose now you want to guess |
|
|
|
117 |
|
00:11:35,230 --> 00:11:40,230 |
|
number between zero and six for |
|
|
|
118 |
|
00:11:40,230 --> 00:11:44,490 |
|
example maybe four accidents maybe three accidents |
|
|
|
119 |
|
00:11:44,490 --> 00:11:48,010 |
|
maybe five but you cannot say there are five point |
|
|
|
120 |
|
00:11:48,010 --> 00:11:54,770 |
|
six accidentsper week ู
ุธุจูุท ุจูุฏุฑุด ุงุญูู ุฎู
ุณุฉ ู ุณุชุฉ |
|
|
|
121 |
|
00:11:54,770 --> 00:11:58,930 |
|
ุจุชุงุฎุฏ ุนุฏุฏ ุตุญูุญ now suppose we are talking about |
|
|
|
122 |
|
00:11:58,930 --> 00:12:04,530 |
|
number of calls you received everyday ุนุฏุฏ |
|
|
|
123 |
|
00:12:04,530 --> 00:12:09,370 |
|
ุงูู
ูุงูู
ุงุช ุงููู ุจุณุชูุจููุง ูู ุงูููู
ู
ุซูุง ranges from |
|
|
|
124 |
|
00:12:09,370 --> 00:12:14,730 |
|
zero to twenty calls ุจุฑุถู ููุงุฎุฏ whole number for |
|
|
|
125 |
|
00:12:14,730 --> 00:12:19,490 |
|
instance suppose ten calls you cannot say nine |
|
|
|
126 |
|
00:12:19,490 --> 00:12:20,370 |
|
point six calls |
|
|
|
127 |
|
00:12:23,190 --> 00:12:27,070 |
|
ุจุดูู ุนุงู
ููุฌุฏ ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช |
|
|
|
128 |
|
00:12:27,070 --> 00:12:29,970 |
|
ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช |
|
|
|
129 |
|
00:12:29,970 --> 00:12:34,050 |
|
ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช ุงุชุฌุงุฑุงุช |
|
|
|
130 |
|
00:12:34,050 --> 00:12:41,910 |
|
ุงุชุฌุงุฑุงุช |
|
|
|
131 |
|
00:12:42,800 --> 00:12:45,760 |
|
ุงููู ุงูุง ูู ุจุญูู ุฌู
ูุฉ ู
ูู
ุฉ ูู ุงูุขุฎุฑ this can |
|
|
|
132 |
|
00:12:45,760 --> 00:12:49,700 |
|
potentially take on any value depending only on |
|
|
|
133 |
|
00:12:49,700 --> 00:12:52,400 |
|
the ability to precisely and accurately measure |
|
|
|
134 |
|
00:12:52,400 --> 00:12:56,800 |
|
ุชุนุชู
ุฏ ุนูู ุฌุฏุงุด ุนูุฏู ุฏูุฉ ุงูููุงุณ ูู ูุงุญุฏ ุจุฌูุณ ุทููู |
|
|
|
135 |
|
00:12:56,800 --> 00:13:08,380 |
|
ู
ูุฉ ููุชุฑุถ ุจุฌูุณ ุตุญ ูุญูู ุทููู 160.75 cm it means |
|
|
|
136 |
|
00:13:08,380 --> 00:13:08,900 |
|
height |
|
|
|
137 |
|
00:13:11,710 --> 00:13:17,910 |
|
ูู ู
ุซุงู ู
ุณุชู
ุฑ ุฃู ู
ุณุชู
ุฑุ ู
ุณุชู
ุฑ ูุงูููุฉ ู
ุณุชู
ุฑุฉุ ู
ุฎุตุตุฉ |
|
|
|
138 |
|
00:13:17,910 --> 00:13:21,010 |
|
ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ |
|
|
|
139 |
|
00:13:21,010 --> 00:13:26,090 |
|
ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ |
|
|
|
140 |
|
00:13:26,090 --> 00:13:27,890 |
|
ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ |
|
|
|
141 |
|
00:13:27,890 --> 00:13:39,050 |
|
ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุตุฉ ู
ุฎุตุต |
|
|
|
142 |
|
00:13:40,870 --> 00:13:46,270 |
|
ุจูู ุดูุจุฏ ุดูู ุงูุฌุฑุณ ู
ุชู
ุซู |
|
|
|
143 |
|
00:13:46,270 --> 00:13:52,970 |
|
ู
ูู ู
ูุฏ ู
ูุฏูุงู ุงู ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ |
|
|
|
144 |
|
00:13:52,970 --> 00:13:53,050 |
|
ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ |
|
|
|
145 |
|
00:13:53,050 --> 00:13:54,970 |
|
ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ |
|
|
|
146 |
|
00:13:54,970 --> 00:13:56,430 |
|
ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ |
|
|
|
147 |
|
00:13:56,430 --> 00:13:58,230 |
|
ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ |
|
|
|
148 |
|
00:13:58,230 --> 00:14:10,470 |
|
ุงูุชุฑ ุงูุชุฑ ุงูุชุฑ ุงูุช |
|
|
|
149 |
|
00:14:11,480 --> 00:14:14,460 |
|
and is a measure of central tendency ู
ููุงุณ ู
ู |
|
|
|
150 |
|
00:14:14,460 --> 00:14:21,300 |
|
ู
ูููุณ ุงููุฒุน ุงูู
ุฑูุฒู ุงููู ุฃุฎุฏูุงู ูู ุงูุฃูู ุฎุงูุต is |
|
|
|
151 |
|
00:14:21,300 --> 00:14:27,060 |
|
a normal distribution has two parameters ู
ูู |
|
|
|
152 |
|
00:14:27,060 --> 00:14:35,560 |
|
this is location is a measure of spread sigma |
|
|
|
153 |
|
00:14:37,880 --> 00:14:44,920 |
|
ูุงูู
ุนูู ูู ู
ุฌู
ูุนุฉ ู
ุฑูุฒูุฉ ุงู ู
ุฌู
ูุนุฉ ู
ุฑูุฒูุฉ ุงู |
|
|
|
154 |
|
00:14:44,920 --> 00:14:47,480 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู |
|
|
|
155 |
|
00:14:47,480 --> 00:14:48,860 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู |
|
|
|
156 |
|
00:14:48,860 --> 00:14:50,020 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู |
|
|
|
157 |
|
00:14:50,020 --> 00:14:53,060 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู |
|
|
|
158 |
|
00:14:53,060 --> 00:14:53,360 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู |
|
|
|
159 |
|
00:14:53,360 --> 00:14:56,200 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู |
|
|
|
160 |
|
00:14:56,200 --> 00:15:05,870 |
|
ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฉ ุงู ู
ุฑูุฒูุฐู ุงูููู
ู
ู
ูู ุชุฃุฎุฐ ุฃู ููู
|
|
|
|
161 |
|
00:15:05,870 --> 00:15:10,790 |
|
ู
ู ููู ุฅูู ููู ุฅุถุงูู ุฅูู ููู ุฅุถุงูู ูุฅูู ุจูุงุฎุฏ ุฃู |
|
|
|
162 |
|
00:15:10,790 --> 00:15:14,790 |
|
ููู
ุณูุจ ูุนูุท plus ูุฃูู ู
ู
ูู ูููู ุนูุฏ ุงู |
|
|
|
163 |
|
00:15:14,790 --> 00:15:20,730 |
|
temperature ุงู temperature could be negative ูู
ุง |
|
|
|
164 |
|
00:15:20,730 --> 00:15:27,230 |
|
ุงุชููู
ุนู ุงู sales is always positive if we are |
|
|
|
165 |
|
00:15:27,230 --> 00:15:32,110 |
|
talking about unemployment unemployment |
|
|
|
166 |
|
00:15:32,110 --> 00:15:33,490 |
|
rates |
|
|
|
167 |
|
00:15:36,240 --> 00:15:40,080 |
|
ุจุงุฒูุชูู ูุนุฏูุงุช ุงูุจุทุงูุฉ ุฏู ูู ุงูู
ูู
ูุฌุฉ ุจูู ู
ุงููุด |
|
|
|
168 |
|
00:15:40,080 --> 00:15:44,560 |
|
ู
ุทุงูุจ ููุฌุงุชูู ููู |
|
|
|
169 |
|
00:15:44,560 --> 00:15:47,720 |
|
ุงุฐุง ุจุญูู ุนูู ู
ุซูุง ุงู temperature could be negative |
|
|
|
170 |
|
00:15:47,720 --> 00:15:50,800 |
|
ุชุบููุฑุงุช |
|
|
|
171 |
|
00:15:50,800 --> 00:15:53,480 |
|
ุงูุญุฑุงุฑุฉ ูุนูู ู
ู
ูู ุงู variable ูุงุฎุฏ plus or |
|
|
|
172 |
|
00:15:53,480 --> 00:15:58,020 |
|
negative values ุงุฐุง random variable has an |
|
|
|
173 |
|
00:15:58,020 --> 00:16:01,040 |
|
infinite theoretical range from minus infinity up |
|
|
|
174 |
|
00:16:01,040 --> 00:16:05,400 |
|
to plus infinity now this is the meanุงูููู
ุฉ ูู |
|
|
|
175 |
|
00:16:05,400 --> 00:16:12,400 |
|
ุงูุฃูุณุท ูุงูุณูุฌู
ุง ููุท ุงูู
ุดุฑูุน ุญูู ุงูู
ุตุทูุญ ุงูุขู ุฅุฐุง |
|
|
|
176 |
|
00:16:12,400 --> 00:16:16,060 |
|
ูุงู ูุฏููุง ูุฐุง ุงูุณูุฌู
ุง ุฑุจู
ุง ุงูุณูุฌู
ุง ู
ุซูุง ูู ูุงุญุฏ |
|
|
|
177 |
|
00:16:16,060 --> 00:16:21,680 |
|
ุฑุจู
ุง ุงูู
ุตุทูุญ ูู 50 ุฃู 70 ูุนุชู
ุฏ ุนูู ุงูุจูุงูุงุช ุงููู |
|
|
|
178 |
|
00:16:21,680 --> 00:16:24,900 |
|
ูุฏููุง |
|
|
|
179 |
|
00:16:24,900 --> 00:16:29,920 |
|
ุงููุถุน |
|
|
|
180 |
|
00:16:29,920 --> 00:16:33,720 |
|
ุนุงุฏู ุงููุถุน ุนุงุฏู ุงููุถุน ุนุงุฏู ุงููุถุน |
|
|
|
181 |
|
00:16:35,250 --> 00:16:41,250 |
|
ูู ูุฐู ุงูุฏุฑุงุณุฉ ูู ูุณุชุฎุฏู
ูุฐู ุงูู
ูุฒุฉ ูุชุญุฏูุซ ุงูู
ูุฒุฉ |
|
|
|
182 |
|
00:16:41,250 --> 00:16:44,970 |
|
ูุนูู ุงูู
ูุฒุฉ ุงููู ุนูุฏู ู
ุด ููุณุชุฎุฏู
ูุง ู
ุฌุฑุฏ ูุญุทูุง ูู |
|
|
|
183 |
|
00:16:44,970 --> 00:16:48,410 |
|
ุงููุชุงุจ ุงูู ุนุฑููุง ุฏู ุนุจุงุฑุฉ ุนู ู
ูุฒุฉ ูููุฑู
ุงู |
|
|
|
184 |
|
00:16:48,410 --> 00:16:53,030 |
|
ุฏุณุชุฑุจููุดู ูุฐูู ูููู ูุฐุง ุงูุตูุญุฉ ูุนูู ู
ุด ููุณุชุฎุฏู
ูุฐุง |
|
|
|
185 |
|
00:16:53,030 --> 00:16:57,390 |
|
ุงูุตูุญุฉ ุงูุตูุญุฉ |
|
|
|
186 |
|
00:16:57,390 --> 00:16:58,530 |
|
ุงููู ูุงุชุช ู
ุด ููุงุฎุฏูุง |
|
|
|
187 |
|
00:17:01,790 --> 00:17:08,710 |
|
ุงูุธุฑูุง ุฅูู ูุฐู ุงูุซูุงุซ ุฃุดูุงู ุฃู ุฃุดูุงู A,B ูC ุงูุธุฑูุง |
|
|
|
188 |
|
00:17:08,710 --> 00:17:14,150 |
|
ุญุฐุฑุงู ูู A ูB ูุงูุธุฑูุง ุฅูู ุงูู
ูุงุฑูุฉ ุจูู ุฃุดูุงู A ูY |
|
|
|
189 |
|
00:17:14,150 --> 00:17:23,290 |
|
ูB ุงูุธุฑูุง ุฅูู ุงุชููู ูุฐูู ููุงูู
ุง ูุฏููู
ููุณ ุงููmean |
|
|
|
190 |
|
00:17:26,820 --> 00:17:31,540 |
|
ู
ุธุจูุท ููุณ ุงู mean ููู ูู ุทูุนุช ุนูู ุงู spread a less |
|
|
|
191 |
|
00:17:31,540 --> 00:17:38,500 |
|
a is less so graph a ุงููู ูู a ุงู higher one is |
|
|
|
192 |
|
00:17:38,500 --> 00:17:45,280 |
|
less spread than b ูู ุทูุนุช ุนูููู
ูุงู a ููุชุฑุถ ูุงู |
|
|
|
193 |
|
00:17:45,280 --> 00:17:50,000 |
|
ุงู spread ุชุจุนู ุจุณ b ู
ุงูู ุฃูุจุฑ ุดููุฉ ูุจุงูุชุงูู ูุฐุง |
|
|
|
194 |
|
00:17:50,000 --> 00:17:55,000 |
|
ุดููุฉ ู
ุน ูุฏู graph a and b have the same mean but |
|
|
|
195 |
|
00:17:55,000 --> 00:17:59,320 |
|
different spreadุฅุฐุงู a ู b ูุฏููุง ููุณ ุงูู
ุนูู ูููู |
|
|
|
196 |
|
00:17:59,320 --> 00:18:08,280 |
|
ู
ุนุงูุงุฉ ู
ุฎุชููุฉ ุทุจ ูู ุทูุนุช ุนูู ุงู b ู ุงู c ุงู |
|
|
|
197 |
|
00:18:08,280 --> 00:18:12,020 |
|
b ูู ุงู b ู ูู ุงู c ุงู c ุงููู ุชุญุช ุฎุงูุต ุงู bottom |
|
|
|
198 |
|
00:18:12,020 --> 00:18:21,960 |
|
one ุงู ู
ุนูู ุงู b ูุฐุง ุงูููู
ุฉ ุงูู
ุนูู ุงู c ุจูุฎุชูู |
|
|
|
199 |
|
00:18:21,960 --> 00:18:28,590 |
|
ูุงุถุญุชูู ุฃุฒุงู ุจุนุฏุุงูุฎุทุฉ a ูb ูุฏููุง ู
ุนููุงุช ู
ุฎุชููุฉ ูู |
|
|
|
200 |
|
00:18:28,590 --> 00:18:35,450 |
|
ุทูุนุช ุนูู ุงู spread ุจุฑุถู ุงู spread ู
ุฎุชูู ูุฃู I ุจู ู |
|
|
|
201 |
|
00:18:35,450 --> 00:18:38,890 |
|
I ุณู ุจู |
|
|
|
202 |
|
00:18:38,890 --> 00:18:46,070 |
|
ู ุณู ูุฏููุง ู
ุนููุงุช ู
ุฎุชููุฉ ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู |
|
|
|
203 |
|
00:18:46,070 --> 00:18:46,210 |
|
ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู |
|
|
|
204 |
|
00:18:46,210 --> 00:18:46,230 |
|
ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู |
|
|
|
205 |
|
00:18:46,230 --> 00:18:50,090 |
|
ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู ุณู ุจู ู |
|
|
|
206 |
|
00:18:54,370 --> 00:18:59,310 |
|
ุฑุจู
ุง ูููู ูุฏููู
ููุณ ุงูู
ุนูู ููู |
|
|
|
207 |
|
00:18:59,310 --> 00:19:03,510 |
|
ู
ุนุงูุงุฉ ู
ุฎุชููุฉ ุฃู ู
ุนุงูุงุฉ ู
ุฎุชููุฉ ูู
ุฎุชููุฉ ุฃูุถูุง |
|
|
|
208 |
|
00:19:03,510 --> 00:19:08,310 |
|
ู
ุนุงูุงุฉ ู
ุฎุชููุฉ ุ ูุฐูู ูุฐุง ูุนูู ุฃููุง ูุณุชุทูุน ุงูุญุตูู |
|
|
|
209 |
|
00:19:08,310 --> 00:19:12,150 |
|
ุนูู ู
ุฌู
ูุนุงุช ุนุงุฏูุฉ ุนุงุฏูุฉ |
|
|
|
210 |
|
00:19:12,150 --> 00:19:15,850 |
|
ูู
ุงุฐุง |
|
|
|
211 |
|
00:19:15,850 --> 00:19:25,010 |
|
ุนุงุฏูุฉุ ูุฃู ุงูู
ุฌู
ูุนุงุช ุงูุนุงุฏูุฉ ุชุนุชู
ุฏ ุนูู ู
ูููุงูู
ุนูู |
|
|
|
212 |
|
00:19:25,010 --> 00:19:29,810 |
|
ูู
ูู ุฃู ูููู positive ุฃู negative ูุนูู ุชุฃุฎุฐ ููู
ุฉ |
|
|
|
213 |
|
00:19:29,810 --> 00:19:33,510 |
|
ู
ุฎุชููุฉ ุฃู ููู
ุฉ ู
ุฎุชููุฉ ู
ู ููู ุฅูู ููู ุฅูู ููู ูู
ุน |
|
|
|
214 |
|
00:19:33,510 --> 00:19:37,830 |
|
ุฐูู ุงููุถุน ุงูุนุงุฏู ูุนุชู
ุฏ ุนูู ุณูุฌู
ุง ูุณูุฌู
ุง ุฏุงุฆู
ุง |
|
|
|
215 |
|
00:19:37,830 --> 00:19:43,090 |
|
positive ู
ู ููู ุฅูู ููู ูู
ูู ุฃู ูููู ููู ุฅูู ููู |
|
|
|
216 |
|
00:19:43,090 --> 00:19:48,850 |
|
ููุฐุง ูุนูู ุฃููุง ูุฏููุง ุนุฏุฏ ุนุงุฏู ู
ู ุงููุถุน ุงูุนุงุฏู ูุนูู |
|
|
|
217 |
|
00:19:48,850 --> 00:19:52,580 |
|
ูู ููุง ุนุฏุฏ ูุจูุฑ ูุฃู ูู ุฃู
ูู ุงูุชูุฒูุน ุงูุทุจูุนููู |
|
|
|
218 |
|
00:19:52,580 --> 00:19:56,740 |
|
ุทุงูู
ุง ุงูู mu ุจุชุงุฎุฏ ุฃู ููู
ุฉ ู ุงู sigma ุจุชุงุฎุฏ |
|
|
|
219 |
|
00:19:56,740 --> 00:20:00,440 |
|
positive ู
ุน ูุฏู ูู ุงูุง ุจุฏู ุงุนู
ู combination ููู
|
|
|
|
220 |
|
00:20:00,440 --> 00:20:05,280 |
|
ู
ู
ูู ุงุญูู normal with mean 50 and sigma 1 ูุฐุง ูู |
|
|
|
221 |
|
00:20:05,280 --> 00:20:10,140 |
|
ู
ุซุงู ู
ู
ูู ูุงุญุฏ ุชุงูู ูุญูู ุงู mean the same the same |
|
|
|
222 |
|
00:20:10,140 --> 00:20:17,200 |
|
mean but different sigma, sigma is twoุฃู ู
ู
ูู ูููู |
|
|
|
223 |
|
00:20:17,200 --> 00:20:22,420 |
|
ู
ุฎุชูู ูุนูู ู
ูู ููู ุณุชุฉ ูุณูุฌู
ุง ููู ุฃุฑุจุนุฉ ููุฐุง A |
|
|
|
224 |
|
00:20:22,420 --> 00:20:27,920 |
|
ู
ุซูุง B ูC ููู ููุท ุซูุงุซุฉ ู
ุซุงู A ูB ุงุฐุง ุชูุธุฑ ููุง A |
|
|
|
225 |
|
00:20:27,920 --> 00:20:35,680 |
|
ูB ูุฏููู
ููุณ ุงูู
ูุงูุจุนุฏ ุฐูู ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC |
|
|
|
226 |
|
00:20:35,680 --> 00:20:39,240 |
|
ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC |
|
|
|
227 |
|
00:20:39,240 --> 00:20:43,600 |
|
ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC |
|
|
|
228 |
|
00:20:43,600 --> 00:20:50,120 |
|
ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ B ูC |
|
|
|
229 |
|
00:20:50,120 --> 00:20:54,860 |
|
ุจุฑูุงู
ุฌ B ูC ุจุฑูุงู
ุฌ |
|
|
|
230 |
|
00:20:56,680 --> 00:20:58,280 |
|
ุจุณูุทุฉ ุนูู ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
231 |
|
00:20:58,280 --> 00:20:59,020 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
232 |
|
00:20:59,020 --> 00:21:00,460 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
233 |
|
00:21:00,460 --> 00:21:03,960 |
|
ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
234 |
|
00:21:03,960 --> 00:21:07,200 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
235 |
|
00:21:07,200 --> 00:21:08,500 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
236 |
|
00:21:08,500 --> 00:21:15,580 |
|
ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ ุนู
ููุฉ |
|
|
|
237 |
|
00:21:15,580 --> 00:21:22,660 |
|
ุนู
ู |
|
|
|
238 |
|
00:21:22,750 --> 00:21:25,110 |
|
ุฅุฐุง ูุฏู ุงู standard .. ุงู normal ุดููุฉ ุตุนุจ |
|
|
|
239 |
|
00:21:25,110 --> 00:21:31,270 |
|
ุจุงููุณุจุงููุง ูุฃูู ุจูุงุฎุฏ ู
ููุฒ ู ุณูุฌู
ุงุฒ ู
ุฎุชููุฉ ุจุงููุญุงู |
|
|
|
240 |
|
00:21:31,270 --> 00:21:35,150 |
|
ุฃุณูู ูู ุงูุชุนุงู
ู ูุณู ุงููู ุงุญูุง ูุญูู ุนููู ุงุณู
ู |
|
|
|
241 |
|
00:21:35,150 --> 00:21:41,370 |
|
standardized normal ุฅูุด ูุนูู standardized ู
ุนูุงุฑู |
|
|
|
242 |
|
00:21:41,370 --> 00:21:50,090 |
|
ูุชููู
ุนูู standardized normal |
|
|
|
243 |
|
00:21:51,680 --> 00:22:00,060 |
|
ูู ุงูุชูุฒูุน ุงูุทุจูุนู ุงูู
ุนูู Now let's look at the |
|
|
|
244 |
|
00:22:00,060 --> 00:22:04,220 |
|
difference between Normal distribution and this |
|
|
|
245 |
|
00:22:04,220 --> 00:22:07,960 |
|
one Normal The one we just described Normal |
|
|
|
246 |
|
00:22:07,960 --> 00:22:11,940 |
|
distribution Normal has different mean and sigma |
|
|
|
247 |
|
00:22:11,940 --> 00:22:15,000 |
|
But |
|
|
|
248 |
|
00:22:15,000 --> 00:22:20,180 |
|
for standardized normalany normal distribution ูู |
|
|
|
249 |
|
00:22:20,180 --> 00:22:27,100 |
|
ุนุจุงุฑุฉ ุนู ุชูุฒูุน ุทุจูุนู with any mean and standard |
|
|
|
250 |
|
00:22:27,100 --> 00:22:31,280 |
|
deviation combination can be transformed into the |
|
|
|
251 |
|
00:22:31,280 --> 00:22:34,900 |
|
standardized normal ูุนูู ุงูุง ุจุญูู ุงู ุชูุฒูุน normal |
|
|
|
252 |
|
00:22:34,900 --> 00:22:37,500 |
|
ู
ู
ูู ุงุญููู ูู
ููุ ูู standardized ููุฐุง ุงููู ุงูุง |
|
|
|
253 |
|
00:22:37,500 --> 00:22:42,720 |
|
ุนุงูุฒู ุงุฐุง ุงูุงู ุจูุนู
ู convert ู
ู normal |
|
|
|
254 |
|
00:22:42,720 --> 00:22:48,100 |
|
distribution ู standardized normalูู ุชููู
ุจู
ุซุงูุงุช |
|
|
|
255 |
|
00:22:48,100 --> 00:22:50,120 |
|
ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ |
|
|
|
256 |
|
00:22:50,120 --> 00:22:51,240 |
|
ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช |
|
|
|
257 |
|
00:22:51,240 --> 00:22:54,860 |
|
ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ |
|
|
|
258 |
|
00:22:54,860 --> 00:22:55,900 |
|
ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช |
|
|
|
259 |
|
00:22:55,900 --> 00:22:57,380 |
|
ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ |
|
|
|
260 |
|
00:22:57,380 --> 00:23:02,800 |
|
ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช |
|
|
|
261 |
|
00:23:02,800 --> 00:23:03,820 |
|
ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ |
|
|
|
262 |
|
00:23:03,820 --> 00:23:16,280 |
|
ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซุงูุงุช ุนุงุฏูุฉ ุจู
ุซ |
|
|
|
263 |
|
00:23:19,070 --> 00:23:24,310 |
|
ุจุชุญูู ู
ู ุชูุฒูุน ุทุจูุนู ูู
ุนูุงุฑู ุทูุจ ู
ุด ุงูู
ูุฒุฉ ุชุงุจุนุฉ |
|
|
|
264 |
|
00:23:24,310 --> 00:23:26,710 |
|
ุงู standardized ุงู standardized normal |
|
|
|
265 |
|
00:23:26,710 --> 00:23:30,790 |
|
distributions ูู has mean of zero and standard |
|
|
|
266 |
|
00:23:30,790 --> 00:23:35,730 |
|
deviation of one ูุฐุง ูุฌุฏูุฏ ุงู mean ุชุงุจุนู zero ู ุงู |
|
|
|
267 |
|
00:23:35,730 --> 00:23:41,990 |
|
sigma is one ุทูุจ ุงู normal ูุงู ู
ุงูู ุงู mean ุชุงุจุนู |
|
|
|
268 |
|
00:23:41,990 --> 00:23:44,790 |
|
ุฃู value ู
ู ุณูุจ infinity ู plus infinity ู ุงู |
|
|
|
269 |
|
00:23:44,790 --> 00:23:47,490 |
|
sigma ู
ู zero ู infinity ู
ุน ูุฏู ูู ููุงูุฉ ุนูุฏู |
|
|
|
270 |
|
00:23:47,490 --> 00:23:51,530 |
|
infiniteุจุณ ุฏู ุจูุงุฎุฏ ูุงุด just one value, zero and |
|
|
|
271 |
|
00:23:51,530 --> 00:23:59,830 |
|
one ุจุณ |
|
|
|
272 |
|
00:23:59,830 --> 00:24:02,790 |
|
ุฏู ุจูุงุฎุฏ ูุงุด just one value, zero and one ุจุณ ุฏู |
|
|
|
273 |
|
00:24:02,790 --> 00:24:04,170 |
|
ุจูุงุฎุฏ ูุงุด just one value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ |
|
|
|
274 |
|
00:24:04,170 --> 00:24:04,210 |
|
one value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ ูุงุด just one |
|
|
|
275 |
|
00:24:04,210 --> 00:24:04,750 |
|
value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ ูุงุด just one |
|
|
|
276 |
|
00:24:04,750 --> 00:24:06,650 |
|
value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ ูุงุด just one |
|
|
|
277 |
|
00:24:06,650 --> 00:24:12,390 |
|
value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ ูุงุด |
|
|
|
278 |
|
00:24:12,390 --> 00:24:15,530 |
|
just one value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ ูุงุด just |
|
|
|
279 |
|
00:24:15,530 --> 00:24:15,730 |
|
one value, zero and one ุจุณ ุฏู ุจูุงุฎุฏ ูุงุด just one |
|
|
|
280 |
|
00:24:15,730 --> 00:24:19,790 |
|
value, zero and one ุจุณ ุฏูุณุจุจ ุงูุชุญููู ุฃู ุงูู
ุนูุงุฑ |
|
|
|
281 |
|
00:24:19,790 --> 00:24:27,290 |
|
ู
ุงูู ุฃุณู ูุฃูู ููู
ู ู
ุญุฏุฏุฉ ู
ูู ุตูุฑ ู ุณูุฌู
ุง ูุงุญุฏ ููู |
|
|
|
282 |
|
00:24:27,290 --> 00:24:31,450 |
|
ุงู normal ุงูุนุงุฏู ู
ุงูู infinite number of means ู
ู |
|
|
|
283 |
|
00:24:31,450 --> 00:24:34,530 |
|
ุณุงูุจ infinite ู plus infinity ู ุงู sigma ู
ู zero ู |
|
|
|
284 |
|
00:24:34,530 --> 00:24:37,890 |
|
infinity ุงุญูุง ุชุนุจูุง ู
ู ุชูุงุชุฉ ุจุณ ูุงูุชุจููู ูู ูุงู |
|
|
|
285 |
|
00:24:37,890 --> 00:24:41,590 |
|
ุงูุฏูุจุงูุฏุฑ ุชูุงุชุฉ ุชูุงุชู
ูุฉ ูุงุญุฏ ุงูุนู
ููุฉ ุตุนุจุฉ ุนุดุงู ูุฏู |
|
|
|
286 |
|
00:24:41,590 --> 00:24:46,690 |
|
ููุญูู ู
ู normal ู standardized how can we |
|
|
|
287 |
|
00:24:46,690 --> 00:24:53,720 |
|
translateู
ู ุทุจูุนู ุฅูู ุทุจูุนู ูู
ุง ุฐูุฑูุง ูู ุงูุญููุฉ |
|
|
|
288 |
|
00:24:53,720 --> 00:25:04,080 |
|
ุงูุซุงูุซุฉ ูุณุชุทูุน ุงุณุชุฎุฏุงู
ู
ูุงุฑูุฉ ุฒู ุฒู ู
ูุงุฑูุฉ ุฒู |
|
|
|
289 |
|
00:25:04,080 --> 00:25:06,060 |
|
ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
290 |
|
00:25:06,060 --> 00:25:07,020 |
|
ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
291 |
|
00:25:07,020 --> 00:25:07,180 |
|
ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
292 |
|
00:25:07,180 --> 00:25:07,440 |
|
ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
293 |
|
00:25:07,440 --> 00:25:10,180 |
|
ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
294 |
|
00:25:10,180 --> 00:25:13,740 |
|
ุฒู ุฒู |
|
|
|
295 |
|
00:25:13,740 --> 00:25:22,680 |
|
ุฒูุฒู ูุนูู ุงุชุฌุงุฑุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
296 |
|
00:25:22,680 --> 00:25:23,460 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
297 |
|
00:25:23,460 --> 00:25:23,740 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
298 |
|
00:25:23,740 --> 00:25:24,880 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
299 |
|
00:25:24,880 --> 00:25:28,900 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
300 |
|
00:25:28,900 --> 00:25:32,200 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ |
|
|
|
301 |
|
00:25:32,200 --> 00:25:39,960 |
|
ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
ุฉ ุนุงู
|
|
|
|
302 |
|
00:25:41,280 --> 00:25:48,520 |
|
ุงูุฒู ุฏูุณุชุฑุจููุดู ุฏุงุฆู
ูุง ูุฏูู |
|
|
|
303 |
|
00:25:48,520 --> 00:25:54,760 |
|
ู
ูู ุชุจุนูุง 0 ูู
ููุฒูุฑู ู
ููุฒูุฑู ูู
ููุฒูุฑู ู
ููุฒูุฑู |
|
|
|
304 |
|
00:25:54,760 --> 00:26:03,560 |
|
ูู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู |
|
|
|
305 |
|
00:26:03,560 --> 00:26:09,900 |
|
ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู |
|
|
|
306 |
|
00:26:09,900 --> 00:26:10,000 |
|
ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู |
|
|
|
307 |
|
00:26:10,000 --> 00:26:11,200 |
|
ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ููุฒูุฑู ู
ูุฃู ุณุคุงู |
|
|
|
308 |
|
00:26:11,200 --> 00:26:16,400 |
|
ู
ูุฌูุฏุ |
|
|
|
309 |
|
00:26:16,400 --> 00:26:21,000 |
|
ู
ุฑุฉ ุฃุฎุฑู ูุฐู ูู ู
ูููู
ุฉ ุงููุฒูู
ุฉ ูู Standardized |
|
|
|
310 |
|
00:26:21,000 --> 00:26:26,880 |
|
Normal ุงูุถุง ุชูุณู ูุฐู ุงูุตูุญุฉ ูุฐุง ู
ุด ุนุงูุฒููู ุงุฐุง ูู |
|
|
|
311 |
|
00:26:26,880 --> 00:26:31,300 |
|
ูุงุถุญ ุงููู ุนูุฏู two slides ุนู
ููู
skip ุงููู ุจุชุงุนุฉ ุงู |
|
|
|
312 |
|
00:26:31,300 --> 00:26:33,000 |
|
normal ุงููู ุจุชุงุนุฉ ุงู standardized |
|
|
|
313 |
|
00:26:37,600 --> 00:26:44,500 |
|
Standardized Normal Distribution Known as Z ูุนูู |
|
|
|
314 |
|
00:26:44,500 --> 00:26:50,140 |
|
ุจุฏู ู
ุง ุงุญูู Standardized Normal Distribution ููุงุฎุฏ |
|
|
|
315 |
|
00:26:50,140 --> 00:26:55,840 |
|
ุงุฎุชุตุงุฑู ููุง ุจุณ Z Distribution ูุงู Z ูู ุงู |
|
|
|
316 |
|
00:26:55,840 --> 00:27:01,380 |
|
statistics ู
ุนูุงูุง Standardized |
|
|
|
317 |
|
00:27:01,380 --> 00:27:05,010 |
|
Normalูุนูู ุจุฏู ู
ุง ุงุญูู standardized normal ูุญูู z |
|
|
|
318 |
|
00:27:05,010 --> 00:27:11,110 |
|
ุงุฐุง and always we just use z instead of |
|
|
|
319 |
|
00:27:11,110 --> 00:27:15,990 |
|
standardized normal now this z has mean of zero |
|
|
|
320 |
|
00:27:15,990 --> 00:27:19,950 |
|
and standard deviation of one this is the mean and |
|
|
|
321 |
|
00:27:19,950 --> 00:27:25,210 |
|
this is sigma, sigma is one now value for z we |
|
|
|
322 |
|
00:27:25,210 --> 00:27:28,410 |
|
have negative and plus values so we have negative |
|
|
|
323 |
|
00:27:28,410 --> 00:27:34,060 |
|
values and positive valuesValues above the mean |
|
|
|
324 |
|
00:27:34,060 --> 00:27:39,420 |
|
have positive z ุงูููู
ุงูุฃุนูู ู
ู ุงููmean in this |
|
|
|
325 |
|
00:27:39,420 --> 00:27:43,920 |
|
direction Zero and above we have positive z |
|
|
|
326 |
|
00:27:43,920 --> 00:27:49,140 |
|
Negative z it means to the left side of zero So |
|
|
|
327 |
|
00:27:49,140 --> 00:27:52,780 |
|
values above the mean have positive z values while |
|
|
|
328 |
|
00:27:52,780 --> 00:27:58,990 |
|
values below the mean have negative z valuesุจุชููู |
|
|
|
329 |
|
00:27:58,990 --> 00:28:03,150 |
|
ู
ูุฌุฉ ุจุงู z score ุชุจุนูุง ุทุจูุนู ู
ุดุงูู ูู
ุง ูุงูุช ุงู x |
|
|
|
330 |
|
00:28:03,150 --> 00:28:06,750 |
|
ุฃูุจุฑ ู
ู ุงู mean ุชุฐูุฑ ุงู x is greater than the mean |
|
|
|
331 |
|
00:28:06,750 --> 00:28:10,810 |
|
then z is positive ู ุงูุนูุณ ูู ูุงูุช x ุฃูู ู
ู ุงู |
|
|
|
332 |
|
00:28:10,810 --> 00:28:16,110 |
|
mean ููุฌุงุชูู I think we discussed this issue in |
|
|
|
333 |
|
00:28:16,110 --> 00:28:22,410 |
|
chapter 3 when we said z is positive if x is |
|
|
|
334 |
|
00:28:22,410 --> 00:28:26,450 |
|
greater than the meanูุฐูู ุฅุฐุง ููู
ุฉ ุฃูุชุฑ ู
ู ุงูู
ุนููุ |
|
|
|
335 |
|
00:28:26,450 --> 00:28:31,270 |
|
ูู z ูู ุงูุชุฑ ู
ู ุงูู
ุนูู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
336 |
|
00:28:31,270 --> 00:28:33,050 |
|
ุฒู ุฒู ุฒู ุฒู ุฒู |
|
|
|
337 |
|
00:28:56,960 --> 00:29:12,060 |
|
ุณุฃุนุทู ุจุนุถ ุงูุฃู
ุซูุฉ ููุง ุฅุฐุง |
|
|
|
338 |
|
00:29:12,060 --> 00:29:21,960 |
|
X ูุงู ุนุงู
ูุง ู
ุฌุชู
ุนูุง ูู ูุฐุง ุงูู
ุซุงู X ูุฏูู ุนุงู
ุฉ ู
ุน |
|
|
|
339 |
|
00:29:27,330 --> 00:29:36,230 |
|
ู
ุนูู 100 ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู |
|
|
|
340 |
|
00:29:36,230 --> 00:29:37,770 |
|
ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ |
|
|
|
341 |
|
00:29:37,770 --> 00:29:38,450 |
|
ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 |
|
|
|
342 |
|
00:29:38,450 --> 00:29:40,730 |
|
ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู |
|
|
|
343 |
|
00:29:40,730 --> 00:29:40,890 |
|
ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู |
|
|
|
344 |
|
00:29:40,890 --> 00:29:42,170 |
|
ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ |
|
|
|
345 |
|
00:29:42,170 --> 00:29:46,070 |
|
ุนู
ูู ุงุจููุฉ ูู
ุนูู |
|
|
|
346 |
|
00:29:46,070 --> 00:29:49,370 |
|
50 |
|
|
|
347 |
|
00:29:49,370 --> 00:29:59,660 |
|
ุฏููุงุฑ ุนู
ูู ุงุจููุฉ ูู
ุนูู 50 ุฏููุงุฑ ุนูุงูุณุนุฑ ูุฏูู |
|
|
|
348 |
|
00:29:59,660 --> 00:30:03,680 |
|
ุงุชุฌุงุฑุฉ ุนุงุฏูุฉ ุนูู ุณุจูู ุงูู
ุซุงู 100 ุฏููุงุฑ ูุณูุฌู
ุง 50 |
|
|
|
349 |
|
00:30:03,680 --> 00:30:12,280 |
|
ุฏููุงุฑ ุงุฐุง ุณุนุฑู 200 ุฏููุงุฑ ู
ุงุฐุง |
|
|
|
350 |
|
00:30:12,280 --> 00:30:20,020 |
|
ูุนูู ุฒู ุณุฌูู ูู ูุฐู ุงูุญุงูุฉ ุฏุนููุง ุฃููุง ูุฌุฑุญ ุฒู |
|
|
|
351 |
|
00:30:20,020 --> 00:30:24,080 |
|
ูุนูู ุงูุณ ู
ูู ุนุจุฑ ุณูุฌู
ุง |
|
|
|
352 |
|
00:30:27,760 --> 00:30:40,080 |
|
X ูู 200 ู
ูู ูู 1 ุณูุฌู
ุน ูู 50 ูุฐุง ูุนูู 2 ุงูุขู |
|
|
|
353 |
|
00:30:40,080 --> 00:30:47,980 |
|
ููู
ุฉ 2 ู
ุงุฐุง ูุนูู ููู
ุฉ 2ุ ูุนูู X ูู 200 ุงูู 2 |
|
|
|
354 |
|
00:30:47,980 --> 00:30:52,220 |
|
ู
ูุงุฑูุฉ ุนุงุฏูุฉ ุฃุนูู ู
ูู ูููุณุ ุงุฐุง ูุฐุง ูููู ุฃู ููุฉ |
|
|
|
355 |
|
00:30:52,220 --> 00:30:55,560 |
|
200ุงูุชูู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
356 |
|
00:30:55,560 --> 00:30:58,260 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
357 |
|
00:30:58,260 --> 00:31:02,980 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
358 |
|
00:31:02,980 --> 00:31:03,380 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
359 |
|
00:31:03,380 --> 00:31:03,400 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
360 |
|
00:31:03,400 --> 00:31:03,480 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
361 |
|
00:31:03,480 --> 00:31:06,040 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
362 |
|
00:31:06,040 --> 00:31:09,080 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
363 |
|
00:31:09,080 --> 00:31:10,920 |
|
ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู ุงูุงูุชูุงู |
|
|
|
364 |
|
00:31:22,660 --> 00:31:28,580 |
|
your wage and the mean is twice sigma ุงูุง ุจุฒูุฏูุง |
|
|
|
365 |
|
00:31:28,580 --> 00:31:34,400 |
|
ุนู ุงูู
ุชูุณุท ุจุงูู
ูุฉ ุงูู
ูุฉ ู
ุด ุนูุงูุฉ ุจุงูุฎู
ุณูู ุถุนููุง |
|
|
|
366 |
|
00:31:34,400 --> 00:31:38,900 |
|
ุนุดุงู ูุฏู ุทูุนุช ุงุชููู ู
ุน ูุฏู this is wage of two |
|
|
|
367 |
|
00:31:38,900 --> 00:31:42,020 |
|
hundred is two standard deviation above that one |
|
|
|
368 |
|
00:31:42,020 --> 00:31:49,660 |
|
more example for z negative for instance suppose |
|
|
|
369 |
|
00:31:49,660 --> 00:31:59,800 |
|
your wage150 ุฏููุงุฑ ู
ุงุฒุงู ุฌูุฏ ูุฃู |
|
|
|
370 |
|
00:31:59,800 --> 00:32:05,640 |
|
ูุฐุง ุงููุงุฌูุฉ ุฃูุจุฑ ู
ู 100 ุงูุขู ููู ุฃููู
ุจู
ุนุฑูุฉ ุฒู |
|
|
|
371 |
|
00:32:05,640 --> 00:32:15,040 |
|
150 ู
ุงููุณ 100 ู
ูุงู 50 ูู ูุงุญุฏ ูู
ุนุฑูุฉ ุฒู ูุงุญุฏ ูุนูู |
|
|
|
372 |
|
00:32:15,040 --> 00:32:21,470 |
|
ุฃู ูุงุฌูุชู ูุงุญุฏุฉ ู
ูุงุฑูุฉ ุฃุนูู ุงูู
ูุงูู
ุฉูุฃู ุงููุฑู |
|
|
|
373 |
|
00:32:21,470 --> 00:32:27,890 |
|
ุฎู
ุณูู ู
ุด ููู ู ุงูุฎู
ุณูู ูู ุงู sigma suppose your |
|
|
|
374 |
|
00:32:27,890 --> 00:32:31,770 |
|
wage is fifty now |
|
|
|
375 |
|
00:32:31,770 --> 00:32:37,370 |
|
this one in this case negative |
|
|
|
376 |
|
00:32:37,370 --> 00:32:46,710 |
|
one negative means your wage of ุฎู
ุณูู ุฃูู ู
ู ุงู |
|
|
|
377 |
|
00:32:46,710 --> 00:32:55,080 |
|
mean of one standard deviationู
ุงุฐุง ุนู X ูู 100ุ |
|
|
|
378 |
|
00:32:55,080 --> 00:33:00,540 |
|
Z ููู 0ุ ููุฐุง ูุนูู ุฃู ููู
ุชู ูู ููุณูุง ู
ุง ูุนูู |
|
|
|
379 |
|
00:33:00,540 --> 00:33:01,180 |
|
ุงูู
ุฌุชู
ุน. |
|
|
|
380 |
|
00:33:04,660 --> 00:33:14,220 |
|
ุฏุนููุง ููุงุฑู X ู Z. ุงูุขูุ ููู
ุซุงู ูุฐุงุ ุงูู
ุนูู 100 ู |
|
|
|
381 |
|
00:33:14,220 --> 00:33:15,000 |
|
Sigma ูู 50. |
|
|
|
382 |
|
00:33:17,880 --> 00:33:18,340 |
|
ุงูุขูุ ูู |
|
|
|
383 |
|
00:33:30,670 --> 00:33:44,390 |
|
ุนู ุทุฑูู ุงูุงุณุชุฎุฏุงู
ุงูุงุณุชุฎุฏุงู
ุงูุงุณุชุฎุฏุงู
ุงูุงุณุชุฎุฏุงู
|
|
|
|
384 |
|
00:33:44,390 --> 00:33:50,250 |
|
ุงูุงุณุชุฎุฏุงู
ุงูุงุณุชุฎุฏุงู
ุงูุงุณุชุฎุฏุงู
ุงูุงุณุชุฎุฏุงู
only the |
|
|
|
385 |
|
00:33:50,250 --> 00:33:54,470 |
|
scale has changed ูุนูู ููุณ ุงูุชูุฒูุน ุณูุงุก normal |
|
|
|
386 |
|
00:33:54,470 --> 00:33:58,470 |
|
distribution ุฃู standardized ูุนูู ุงูุชูุฒูุน ุงูุทุจูุนู |
|
|
|
387 |
|
00:33:58,470 --> 00:34:04,610 |
|
ู ุงูู
ุนูุงุฑ ู
ุง ููู
ููุณ ุงูุดูู ุจุณ ุงู scale ุงุฎุชูู ุจุนุฏ |
|
|
|
388 |
|
00:34:04,610 --> 00:34:11,630 |
|
ู
ุง ูุงู ููุง 100 ู 200 ุตุงุฑุช 02 ู ููุฐุงูุณุชุทูุน ุฃู ูุนุฑู |
|
|
|
389 |
|
00:34:11,630 --> 00:34:15,990 |
|
ุงูู
ุดููุฉ ูู ุงูู
ุฌู
ูุนุงุช ุงูุฃุตููุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ |
|
|
|
390 |
|
00:34:15,990 --> 00:34:16,630 |
|
ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
391 |
|
00:34:16,630 --> 00:34:16,710 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
392 |
|
00:34:16,710 --> 00:34:17,770 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
393 |
|
00:34:17,770 --> 00:34:19,970 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
394 |
|
00:34:19,970 --> 00:34:20,670 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
395 |
|
00:34:20,670 --> 00:34:21,330 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
396 |
|
00:34:21,330 --> 00:34:22,990 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
397 |
|
00:34:22,990 --> 00:34:30,790 |
|
ุงูู
ุฌู
ูุนุงุช ุงูุตุญูุญุฉ ุฃู |
|
|
|
398 |
|
00:34:30,790 --> 00:34:31,710 |
|
ุงูู
ุฌู
ูุน |
|
|
|
399 |
|
00:34:37,620 --> 00:34:40,500 |
|
ุงูุณุคุงู ุงูุขู ูู ููู ูู
ูููุง ุฃู ูุฌุฏ ุงููุงูุนุงุช ุงูุทุจูุนูุฉ |
|
|
|
400 |
|
00:34:40,500 --> 00:34:47,600 |
|
ูุฐู ูู ุงููุฏู ุงูุฃูู ุงูุขู ุฅุฐุง ูุงู ูุฏููุง ุทุจูุนูุฉ |
|
|
|
401 |
|
00:34:47,600 --> 00:34:51,020 |
|
ุทุจูุนูุฉ ููุญู |
|
|
|
402 |
|
00:34:51,020 --> 00:34:57,060 |
|
ู
ูุชู
ูู ุจุงูู
ูุทูุฉ ุจูู a ู b ุณูุณุชุฎุฏู
ูุฐู ุงูุชุตู
ูู
ุจู |
|
|
|
403 |
|
00:34:57,060 --> 00:35:02,080 |
|
ุจู ุชุนูู ุงููุงูุน |
|
|
|
404 |
|
00:35:02,080 --> 00:35:12,680 |
|
X ุจูู a ู b ุฅู
ุง ูู
ููู ูุชุงุจุฉx โฅ b โฅ b ุฃู ููุท ุจุฏูู |
|
|
|
405 |
|
00:35:12,680 --> 00:35:19,240 |
|
ุฅูู ุตูู x โฅ a โค b ูุฃู ู
ูุฑูุถ ุฃู ููู
ุฉ ู
ุญุฏุฏุฉ ูุงุฑูุฉ |
|
|
|
406 |
|
00:35:19,240 --> 00:35:33,900 |
|
ูุงุฑูุฉ ูุงุฑูุฉ ูุงุฑูุฉ ูุงุฑูุฉ |
|
|
|
407 |
|
00:35:33,900 --> 00:35:39,670 |
|
ูุงุฑูุฉ ูุงุฑูุฉ ูุงุฑูุฉุจุนู ุทุฑูู ุจู ุงู ุงูุณ ุงุฐุง ูุงู ูุฏููุง |
|
|
|
408 |
|
00:35:39,670 --> 00:35:44,470 |
|
ุงููุงู ุตูู ุงู ูุง ุงููุงู ุตูู ุจูุฑ ููุฑ ูู
ููุณ ุงูุงุดูุงุก |
|
|
|
409 |
|
00:35:44,470 --> 00:35:48,290 |
|
ูุนูู ุณูุงุก ูู ุนูุงู
ุฉ ููุณุงูุฉ ู
ุงููุด ุงูุงุชููู ู
ุงููู
ููุณ |
|
|
|
410 |
|
00:35:48,290 --> 00:35:55,430 |
|
ุงูุดูุก ูุนูู ูู ุจูุชุจ ุจู ุงู ุงู ุงูู ู
ู ุงู ุงููุงู ููุณ ูู |
|
|
|
411 |
|
00:35:55,430 --> 00:35:58,110 |
|
ูุชุจุช ู
ู ุบูุฑ ุงูู
ุณุงูุฉ ู
ู ุบูุฑ ุงููุณุงูุฉ |
|
|
|
412 |
|
00:36:14,900 --> 00:36:19,180 |
|
ูุนูู equal sign ู
ุด ู
ูู
ุฉ ูู ุงูุชูุฒูุน ุงูุทุจูุนู ูู
ุง |
|
|
|
413 |
|
00:36:19,180 --> 00:36:22,580 |
|
ุจุญูู greater than or equal they have the same |
|
|
|
414 |
|
00:36:22,580 --> 00:36:28,220 |
|
meaning now |
|
|
|
415 |
|
00:36:28,220 --> 00:36:32,480 |
|
since we have symmetric distribution it means the |
|
|
|
416 |
|
00:36:32,480 --> 00:36:38,120 |
|
area to the right equals the area to the left now |
|
|
|
417 |
|
00:36:38,120 --> 00:36:41,780 |
|
the total area under the curve is one ู
ุณุงุญุฉ ุชุญุช |
|
|
|
418 |
|
00:36:41,780 --> 00:36:47,940 |
|
ุงูู
ุฑุญูุฉ ุจูุงุญุฏ ูู ุงูู
ุณุงุญุฉูู
ุนูู ูุฏู ููุฑุจ ู
ุชุณุงูู
ุ |
|
|
|
419 |
|
00:36:47,940 --> 00:36:52,200 |
|
ูุฐูู ูุตู ุฃุนูู ุงูู
ุตุทูุญ ู ูุตู ุชุญุชู ูุฃู ููุง 50% ู ููุง |
|
|
|
420 |
|
00:36:52,200 --> 00:36:57,020 |
|
50%ุ ุฃูุ ูุฐู 50% ู ูุฐู 50%ุ ู
ุน ูุฏู ุงู .. ุงู .. ุงู |
|
|
|
421 |
|
00:36:57,020 --> 00:36:57,580 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
422 |
|
00:36:57,580 --> 00:36:57,600 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
423 |
|
00:36:57,600 --> 00:36:58,880 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
424 |
|
00:36:58,880 --> 00:37:00,220 |
|
ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู |
|
|
|
425 |
|
00:37:00,220 --> 00:37:01,740 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
426 |
|
00:37:01,740 --> 00:37:02,800 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
427 |
|
00:37:02,800 --> 00:37:08,240 |
|
.. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. ุงู .. |
|
|
|
428 |
|
00:37:08,240 --> 00:37:13,840 |
|
ุงู .. ุงู .. |
|
|
|
429 |
|
00:37:16,480 --> 00:37:19,380 |
|
ุฅุฐุง ุงู area ุนูู ูู
ูู ูู
ูู ุจุชุณุงูู ุงู area to the |
|
|
|
430 |
|
00:37:19,380 --> 00:37:25,180 |
|
left of ู
ูู and each one equals one half ููุดุ ูุฃู |
|
|
|
431 |
|
00:37:25,180 --> 00:37:31,580 |
|
ุงูุชูุฒูุน ุงูุณูู
ุชุฑูู ุฌุงู ูู ุงููุต ุงู mean ุงู area ูููุง |
|
|
|
432 |
|
00:37:31,580 --> 00:37:35,700 |
|
under the curve is one ูุฌุณู
ูุง ุฌุณู
ูู ูุต ุนูู ูู
ูู ู |
|
|
|
433 |
|
00:37:35,700 --> 00:37:38,160 |
|
ูุต ุนูู ุงูุดู
ุงู ุฅุฐุง ุงู area to the right of the mean |
|
|
|
434 |
|
00:37:38,160 --> 00:37:41,540 |
|
is one half and equals the area to the left of the |
|
|
|
435 |
|
00:37:41,540 --> 00:37:44,880 |
|
mean is also one half ุฅุฐุง ุงูู
ุณุงุญุงุช ุนูู ูู
ูู ู ุนูู |
|
|
|
436 |
|
00:37:44,880 --> 00:37:51,880 |
|
ุงูุดู
ุงู ู
ุง ูู
ุุฒู ุจุนุถ ููู ู
ุณุงุญุฉ ุงูุด ุจุชุณุงูู ูุงุญุฏ ุงุฐุง |
|
|
|
437 |
|
00:37:51,880 --> 00:37:55,160 |
|
ูู ู
ุณุงุญุฉ equal one ู ุงู left ุจูุณุงูู ุงู right |
|
|
|
438 |
|
00:37:55,160 --> 00:38:00,140 |
|
ุจูุณุงูู one half next time ุงู ุดุงุก ุงููู we will |
|
|
|
439 |
|
00:38:00,140 --> 00:38:04,760 |
|
continue and see how can we compute the |
|
|
|
440 |
|
00:38:04,760 --> 00:38:07,800 |
|
probabilities using the standardized normal table |
|
|
|
441 |
|
00:38:07,800 --> 00:38:12,380 |
|
ุงูุชุงุจู ุงูู
ูุฌูุฏ ูู ููุงูุฉ ุงููุชุงุจ ู
ุนุงู ูุงูููุงุก ุฌุงูุจ |
|
|
|
442 |
|
00:38:12,380 --> 00:38:13,060 |
|
ููู
ู ุงู ุดุงุก ุงููู |
|
|
|
|