abdullah's picture
Add files using upload-large-folder tool
4b6d5de verified
1
00:00:04,520 --> 00:00:06,480
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุฑุณูˆู„
2
00:00:06,480 --> 00:00:11,160
ุงู„ู„ู‡ ุฃู‡ู„ุง ูˆุณู‡ู„ุง ุจูƒู… ููŠ ู„ู‚ุงุกู ู…ู† ุฌุฏูŠุฏ ู…ู† ู„ู‚ุงุกุงุช
3
00:00:11,160 --> 00:00:16,280
ู…ุณุงู‚ ุชู†ู‚ูŠุจ ุงู„ุจูŠุงู†ุงุชุŒ ูˆุฅู† ุดุงุก ุงู„ู„ู‡ ุงู„ูŠูˆู… ุณุฃุชูƒู„ู…
4
00:00:16,280 --> 00:00:21,680
ู…ุนูƒู… ุนู† .. ุณุฃุดุชุบู„ ู…ุนูƒู… ุนู…ู„ูŠู‹ุง ุฒูŠ ู…ุง ุงุดุชุบู„ุช ููŠ ุงู„ู€
5
00:00:21,680 --> 00:00:25,520
preprocessing ุณุฃุนู…ู„ ููŠุฏูŠูˆ ู‚ุตูŠุฑู‹ุง ุนู† ุงู„ู€
6
00:00:25,520 --> 00:00:28,120
classification ูˆู…ุงุฐุง ุฃุฑูŠุฏ ุฃู† ุฃูุนู„ ููŠ ุนู…ู„ ุงู„ู€
7
00:00:28,120 --> 00:00:32,800
classificationุŒ ูˆุดูƒู„ู‡ ุนู„ู‰ ุงู„ูƒุงุฌู„ ูƒู€ Environment ู…ู…ูƒู†
8
00:00:32,800 --> 00:00:37,740
ุฃู†ุชู… ุชุณุชุฎุฏู…ูˆู‡ุง ููŠ ู…ูˆุถูˆุน ุงู„ู€ Data Mining ุฃูˆ ุงู„ู€
9
00:00:37,740 --> 00:00:41,800
Data Science ูˆุญุงุฌุงุช ูƒุชูŠุฑุฉ ูู‚ุท ุจู€ Classifier ุฑุงุญ
10
00:00:41,800 --> 00:00:44,920
ูˆุงู„ู€ Classifier ู‡ุฐุง ู„ู‡ ุฎุตูˆุตูŠุฉ ุดูˆูŠุฉ ุถู…ู† ูƒู„ ููŠุฏูŠูˆ
11
00:00:44,920 --> 00:00:48,040
ู‡ุฐู‡ ุชุณุงุนุฏูƒู… ููŠ ูู‡ู… ุฃูˆ ููŠ ุนู…ู„ ุงู„ูˆุงุฌุจ ุจุดูƒู„ ุตุญูŠุญ
12
00:00:48,040 --> 00:00:52,300
ุฃุชู…ู…ู†ู‰ ููŠ ุงู„ูˆุงุฌุจ ุชุณุชุฎุฏู…ูˆุง ุงู„ู€ data set ุชุจุนูƒู…
13
00:00:52,300 --> 00:00:57,290
ูˆุชู‚ุงุฑู†ูˆุง ุงู„ู€ performance ุชุจุน ุงู„ู€ three classifiers ู…ู†
14
00:00:57,290 --> 00:01:02,050
ุงู„ุฃุฑุจุนุฉุŒ ุฃุฎุฐู†ุง ุงู„ู€ Canary Sniper ูˆุงู„ู€ Naive Bison
15
00:01:02,050 --> 00:01:04,890
ูˆุงู„ู€ Neural Network ูˆุงู„ู€ Decision TreeุŒ ู‡ุฏูˆู„
16
00:01:04,890 --> 00:01:07,650
ุงู„ุฃุฑุจุนุฉุŒ ุฃู†ุง ุดุฑุญุชู‡ู… ููŠ ุชุณุฌูŠู„ุงุช ุณุงุจู‚ุฉุŒ ุงู„ู…ุถู…ูˆู† ุฃู†ูƒู…
17
00:01:07,650 --> 00:01:10,210
ุชุฎุชุงุฑูˆุง ุงู„ุซู„ุงุซุฉ ูˆุชุทุจู‚ูˆู‡ู… ุนู„ู‰ ุงู„ู€ data set ุงู„ู„ูŠ
18
00:01:10,210 --> 00:01:15,770
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒู…ุŒ ุงู„ุขู† ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ู‡ุจุฏุฃ ุฃุนู…ู„
19
00:01:15,770 --> 00:01:19,160
sharing ู„ู„ุดุงุดุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠุŒ ุฃุญุงูˆู„ ููŠ ุงู„ููŠุฏูŠูˆ
20
00:01:19,160 --> 00:01:23,460
ุฃู†ุชู‚ู„ ู„ู…ูˆุถูˆุน ุงู„ู€ Sharing ูˆุฃุชูƒู„ู… ุนู„ู‰ ุงู„ู€ Data Set
21
00:01:23,460 --> 00:01:29,580
ุฃูˆ ุนู„ู‰ ุงู„ู€ Element ุงู„ู„ูŠ ุฃู†ุง .. ุงู„ุจุฑู†ุงู…ุฌ
22
00:01:29,580 --> 00:01:35,640
ุงู„ู„ูŠ ุฃู†ุง ุจุฏุฃ ุฃุดุชุบู„ ุนู„ูŠู‡ุŒ ุจุฏุงูŠุฉ ุฎู„ูŠู†ูŠ ุฃู†ุง ุฃุฑูˆุญ ุฃุนู…ู„
23
00:01:35,640 --> 00:01:40,900
Share ู„ู„ู€ DesktopุŒ ู‡ูŠ
24
00:01:40,900 --> 00:01:44,300
Share ู„ู„ู€ Desktop ุจุงู„ูƒุงู…ู„ุŒ ูˆุจุนุฏ ุงู„ุชุณุฌูŠู„ ุงู„ู…ูุฑูˆุถ ู„ู„ู€
25
00:01:44,300 --> 00:01:45,700
Desktop ูˆุฃู†ุง ุงู„ุขู†
26
00:02:07,030 --> 00:02:12,390
ุจุณู… ุงู„ู„ู‡ุŒ ู‡ูŠ kaggle.comุŒ ุฃู†ุง ุฃูŠู‡ ุงู„ุญุณุงุจ ุนู„ู‰ ุงู„ูƒุงุฌู„ุŸ
27
00:02:12,600 --> 00:02:16,280
ุงู„ู„ูŠ ุฃู†ุดุฃุชู‡ุŒ ู…ู† ุชุจู‚ู‰ ุงู„ุฅุญุณุงุจ ุขุฎุฑุŒ ู„ูƒู† ู‡ุฐุง ุฃู†ุง ุฃู†ุดุฃุชู‡
28
00:02:16,280 --> 00:02:25,400
ู…ู† ูุชุฑุฉุŒ ุจุฎุตูˆุต ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
29
00:02:25,400 --> 00:02:25,680
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
30
00:02:25,680 --> 00:02:25,740
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
31
00:02:25,740 --> 00:02:26,100
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
32
00:02:26,100 --> 00:02:26,620
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
33
00:02:26,620 --> 00:02:26,900
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
34
00:02:26,900 --> 00:02:27,000
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
35
00:02:27,000 --> 00:02:27,040
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
36
00:02:27,040 --> 00:02:32,220
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
37
00:02:32,220 --> 00:02:38,740
ุงู„ู€ ุงู„ู€ ุงู„ู€ ุงู„ู€
38
00:02:38,740 --> 00:02:42,760
ุงู„ู€ ุงู„ู€ุŒ ุฃูุญุฏุฏ ุงู„ู€ database ู‡ูŠ Pima Indians Diabetes
39
00:02:42,760 --> 00:02:46,120
ุงู„ู€ database ู‡ูŠ ู…ุดู‡ูˆุฑุฉ ุนุงู„ู…ูŠู‹ุงุŒ ุฃู†ุง ู…ุด ู‡ุฑูˆุญ ุฃุญู…ู„ู‡ุง
40
00:02:46,120 --> 00:02:50,880
ูƒู…ุงู† ู…ุฑุฉุŒ ูุงู„ู„ูŠ already ุฅุฐุง ุญู…ู„ุชู‡ุง ุจูƒูˆู† ุงู†ุชู‡ูŠุช ู…ู†
41
00:02:50,880 --> 00:02:55,620
ุงู„ู…ู„ู ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠุŒ ูˆู‡ู†ุชู‚ู„ ู„ู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉุŒ ู‡ุฑูˆุญ
42
00:02:55,620 --> 00:03:01,840
ุฃู†ุง ุฃู‚ูˆู„ู‡ ููŠ ุงู„ู€ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ูŠ Pima
43
00:03:01,840 --> 00:03:02,680
Indians Diabetes
44
00:03:07,480 --> 00:03:16,400
ูˆุฃู†ุง ุจุฏูŠ ุฃุณุชุฎุฏู… ุงู„ู€ DatasetุŒ ุทุจุนู‹ุง ุงู„ู€
45
00:03:16,400 --> 00:03:18,840
ุงู„ู€ Dataset ุฌู…ูŠู„ุฉ ุฌุฏู‹ุงุŒ ุนุดุงู† ู†ูู‡ู…ู‡ุง ุจุดูƒู„ ุณุฑูŠุนุŒ ุงู„ู€
46
00:03:18,840 --> 00:03:23,280
Dataset ู‡ูŠ ู†ุงุชุฌุฉ ุนู† ุงู„ู…ุฑูƒุฒ ุงู„ูˆุทู†ูŠ ู„ุฃู…ุฑุงุถ ุงู„ุณูƒุฑูŠ
47
00:03:23,280 --> 00:03:30,540
ูˆุงู„ุญู…ูŠุฉ ูˆุงู„ุฃู…ุฑุงุถ ุงู„ู…ุฒู…ู†ุฉุŒ ุงู„ู‡ุฏู ู…ู†ู‡ุง ุฅู†ู‡ ูุนู„ูŠู‹ุง
48
00:03:30,540 --> 00:03:33,860
ูŠุญุงูˆู„ูˆุง ูŠุชู†ุจุคูˆุง ู‡ู„ ุงู„ู…ุฑูŠุถ ู‡ุฐุง ู‡ูˆ ู…ุตุงุจ ุจุณูƒุฑูŠ ุฃูˆ ู„ุง
49
00:03:33,860 --> 00:03:36,980
ุจู†ุงุกู‹ ุนู„ู‰ ุงู„ุชุดุฎูŠุตุงุช ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ู€ database
50
00:03:36,980 --> 00:03:39,800
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‚ุฏุงู…ู†ุงุŒ ู‡ูŠ ู…ูˆุฌูˆุฏุฉุŒ ู…ูƒูˆู‘ู†ุฉ ู…ู† ุซู…ุงู†ูŠุฉ
51
00:03:39,800 --> 00:03:42,780
attributes ุฒูŠ ุงู„ู„ูŠ ู‡ู†ุดูˆูู‡ุง ูƒู…ุงู† ุดูˆูŠุฉุŒ "several
52
00:03:42,780 --> 00:03:44,920
constraints were placed on the solution of the
53
00:03:44,920 --> 00:03:50,400
ice"ุŒ ูˆู‡ุฐู‡ ุงู„ู€ database ู…ูƒูˆู‘ู†ุฉุŒ ุจุชุชู†ุงูˆู„ ุงู„ู€ female
54
00:03:50,400 --> 00:03:54,220
patients onlyุŒ all the patients here are females at
55
00:03:54,220 --> 00:04:03,460
leastุŒ ุนู„ู‰ ุงู„ุฃู‚ู„ ูŠูƒูˆู†ูˆุง 21 ุณู†ุฉุŒ ูŠุนู†ูŠ 21 ุณู†ุฉ ู…ู† Pima
56
00:04:03,460 --> 00:04:07,860
ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠู‡ุงุŒ ุทุจุนู‹ุง ู‡ุฐุง ูƒู„ ุงู„ูƒู„ุงู… ุฃู†ุง ู…ุง
57
00:04:07,860 --> 00:04:11,300
ุฅู„ุง ุงู„ู„ูŠ ุดูุชู‡ ุนู†ุฏู…ุง ุชุนุฑูุช ุนู„ู‰ ุงู„ู€ database
58
00:04:11,300 --> 00:04:16,980
ูˆุงู„ุขู† ุจุฏูŠ ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ New Notebook
59
00:04:22,650 --> 00:04:26,450
ุงู„ุขู† ุงู„ู€ New Notebook ู‡ูˆ Jupyter NotebookุŒ ุฃู†ุดุฃุชู‡
60
00:04:26,450 --> 00:04:30,910
ุนู„ู‰ ุงู„ู€ KaggleุŒ ูˆุงู„ุขู† ุฌุงุจ ู„ูŠ ู‡ุฐุง ุงู„ูƒูˆุฏ ุนุดุงู† ูŠุนู…ู„
61
00:04:30,910 --> 00:04:35,490
import ู„ู„ู€ database ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠุŒ ุทุจุนู‹ุง
62
00:04:35,490 --> 00:04:40,590
ู‡ุฐุง ุงู„ูุฑู‚ ุงู„ูˆุญูŠุฏ ู…ุง ุจูŠู† ุงู„ู€ OnlineุŒ ุงู„ู€ Python
63
00:04:40,590 --> 00:04:46,370
Jupyter Notebook ุฃูˆ ุงู„ู€ LocalุŒ ุงู„ู„ูŠ ููŠ ุงู„ุขุฎุฑ ุฃู†ุช ู„ู…ุง
64
00:04:46,370 --> 00:04:49,210
ุจู†ุนู…ู„ import ูƒู†ุง ุจู†ุถูŠู ู„ู‡ ุงู„ู…ุณุงุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุŒ ุทุจ ู…ู†
65
00:04:49,210 --> 00:04:53,790
ูŠุญุฏุฏ ุงู„ู…ุณุงุฑุŸ ู‡ุฐุง ู…ูˆุฌูˆุฏ ุนู„ู‰ cloud ุฃูˆ ุนู„ู‰ driver
66
00:04:56,070 --> 00:04:59,490
ูุงุญู†ุง ุจู†ุฎุชุงุฑู‡ ุจูƒู„ ุจุณุงุทุฉ ุจุฏูˆู† ุฅูŠุดุŸ ุจุฏูˆู† ู…ุง ูŠูƒูˆู† ููŠ
67
00:04:59,490 --> 00:05:02,650
ุนู†ุฏู†ุง ุงู„ู€ .. ุนููˆุงู‹ุŒ ูุจุชุฑูˆุญ ุจุชุฒูˆู‘ุฏู†ุง ุฅูŠุงู‡ ุนู„ู‰ Kaggle
68
00:05:02,650 --> 00:05:05,090
ุจุฏูˆู† ู…ุง ูŠูƒูˆู† ููŠ ุนู†ุฏู†ุง ู…ุดุงูƒู„ุŒ ุงู„ุฃุตู„ ุฅุญู†ุง ู‡ุฐุง ุงู„ู€ code
69
00:05:05,090 --> 00:05:09,710
ุฅุฐุง ุจุฏู†ุง ู†ุดุชุบู„ Online ู†ุฑูุนู‡ ุฃูˆ ู†ุชุนู„ู…ู‡ ุฃูˆ ู†ุญูุธู‡ ู„ุฃู†ู‡
70
00:05:09,710 --> 00:05:12,250
ู‡ุฐุง ุงู„ู€ code ู‡ูŠู„ุฒู…ู†ุง ู…ุน ุงู„ูƒุงุฌู„ุŒ ูˆุบุงู„ุจุงู‹ ู‡ูˆ ู†ูุณู‡
71
00:05:12,250 --> 00:05:16,350
ู…ูˆุฌูˆุฏ ู…ุน ุงู„ู€ colabุŒ ู…ุง ุนู„ูŠู†ุงุŒ ุงู„ุขู† ู„ูˆ ุฃู†ุง ุทุจุนู‹ุง
72
00:05:16,350 --> 00:05:19,190
ู„ุงุญุธุช ุฃู†ู‡ ุนู…ู„ ูƒู…ุงู† import ู„ุฃู‡ู… two libraries ุงู„ู„ูŠ
73
00:05:19,190 --> 00:05:22,740
ู‡ู… ุนู„ู‰ ุงู„ู€ database ุฃูˆ ููŠ ุงู„ู€ datasetุŒ ุงู„ู€ numpy
74
00:05:22,740 --> 00:05:26,320
ูˆุงู„ู€ pandasุŒ ุทุจุนู‹ุง ุฅุญู†ุง ู…ุนุธู… ุดุบู„ู†ุง ู…ู† ุฎู„ุงู„ ุงู„ู€ pandas
75
00:05:26,320 --> 00:05:31,280
ู„ูƒู† ููŠ ู…ุซุงู„ ุงู„ูŠูˆู… ู‡ูŠู„ุฒู…ู†ุง ุงู„ู€ numpy ูƒุฐู„ูƒ ู„ู…ุฑุฉ ูˆุงุญุฏุฉ
76
00:05:31,280 --> 00:05:35,550
ุฃูˆ ู„ู…ุฑุชูŠู†ุŒ ุฎู„ูŠู†ุง ู†ุนู…ู„ run ู„ู„ู€ code ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ
77
00:05:35,550 --> 00:05:39,750
ุนู…ู„ runุŒ ุทุจุนู‹ุง ุณุฑุนุฉ ุงู„ุงุณุชุฌุงุจุฉ ุจุชุนุชู…ุฏ ุนู„ู‰ ุณุฑุนุฉ ุงู„ู€
78
00:05:39,750 --> 00:05:42,950
connection ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูƒุŒ ุทุจุนู‹ุง ู‡ู†ุง ุจูŠู‚ูˆู„ ู„ูƒ ู‚ุฏ ุงูŠุด
79
00:05:42,950 --> 00:05:46,050
ุฃู†ุช ุงุณุชุฎุฏู…ุช ู…ู† ุงู„ู€ hardestุŒ ู‚ุฏ ุงูŠุด ุนู†ุฏูƒ CPU ุฃูˆ ุฅุดุบุงู„
80
00:05:46,050 --> 00:05:48,930
ู„ู„ู€ CPUุŒ ู‚ุฏ ุงูŠุด ุฅุฐุง ูƒุงู† ุนู†ุฏูƒ ุฅุดุบุงู„ ู„ู„ู€ ุฑุงุจุท ู…ู…ูƒู† ุชุทููŠู‡
81
00:05:48,930 --> 00:05:51,210
ู…ู…ูƒู† ุชุนู…ู„ restart ู„ู„ุฌู‡ุฉ ุจุชุงุนุช ุงู„ู€ notebook ู‡ุฐุง
82
00:05:51,210 --> 00:05:59,030
ุงู„ู€ ุฑุงุจุทุŒ ุจุนุฏ ู…ุง ุนู…ู„ุช run ุฃุฏุงู†ูŠ ุฑุงุจุท ููŠ diabetes.csv
83
00:05:59,030 --> 00:06:02,070
ุทุจุนู‹ุง ุฎู„ูŠู†ูŠ ุฃู†ุง ุฃุณู…ูŠ ุงู„ู€ notebook ุชุจุนูŠ diabetes
84
00:06:06,170 --> 00:06:10,510
ุนู†ุฏ ุงู„ู€ score specification
85
00:06:12,560 --> 00:06:15,840
ูˆุฃุฌูŠ ุขุฎุฐ Notebook ุฌุฏูŠุฏุฉุŒ ูˆุฃุฑูˆุญ ุฃู†ุง ุฃู‚ูˆู„ ู„ู‡ ุงู„ู€
86
00:06:15,840 --> 00:06:19,240
DataFrameุŒ ุทุจ ุฃู†ุง ุฎู„ุงุต ุจุฏูŠ ุฃู‚ุฑุฃ ุงู„ู€ database ุจู€ pandas
87
00:06:19,240 --> 00:06:27,080
.read_csv ุงู„ู„ูŠ ุฒูŠ ู…ุง ุฅุญู†ุง ุจู†ู‚ุฑุฃุŒ ูˆู‡ูŠ ุงู„ู€
88
00:06:27,080 --> 00:06:31,220
single quotationุŒ ูˆู‡ูŠ ุงู„ู…ุณุงุฑ ุงู„ู„ูŠ ุฃู†ุง ู†ุณุฎุชู‡ุŒ ู‡ูŠ ูƒุฏู‡
89
00:06:31,220 --> 00:06:34,620
ุงู„ุฃู…ูˆุฑ ุชู…ุชุŒ ุนู…ู„ูŠุฉ ุงู„ู…ูุฑูˆุถ ุชู…ุช ุนู…ู„ูŠุฉ ุงู„ู‚ุฑุงุกุฉ ุนุดุงู† ุฃู†ุง
90
00:06:34,620 --> 00:06:38,920
ุฃุชุฃูƒุฏุŒ ูˆุฑุงุญ ุฃู‚ูˆู„ DataFrame.headุŒ ูˆุงู„ู€ head ู…ู…ูƒู† ุฃู†ุง
91
00:06:38,920 --> 00:06:44,470
ุฃุฒูˆุฏู‡ุง ุฒูŠ ู…ุง ู‚ู„ู†ุง ุณุงุจู‚ุงู‹ุŒ ุจุชุนุฑุถ ุฃูˆู„ ุตููˆู ู…ู† ุงู„ู€
92
00:06:44,470 --> 00:06:48,450
DataFrame ุงู„ู„ูŠ ุฃู†ุง ู‚ุฑูŠุชู‡ุŒ ุงู„ู€ DataFrame ู‡ุฐุง ู…ูƒูˆู‘ู†
93
00:06:48,450 --> 00:06:53,130
ู…ู† ุญูˆุงู„ูŠ ุงู„ู€ 768 ุตูุŒ ุงู„ู€ By default
94
00:06:53,130 --> 00:06:56,490
ุงู„ู€ head ุจุชุฌูŠุจ ุนุดุฑุฉุŒ ุนููˆุงู‹ุŒ ุจุชุฌูŠุจ ุฎู…ุณุฉุŒ ุฅุฐุง ุฃู†ุง ุจุฏูŠ
95
00:06:56,490 --> 00:06:59,830
ุนุดุฑุฉ ุฃูˆ ุจุฏูŠ ุฎู…ุณุฉ ุฃูˆ ุจุฏูŠ ุซู„ุงุซุฉ ุฃูˆ ุจุฏูŠ ุฎู…ุณุฉ ุนุดุฑ ู…ู…ูƒู†
96
00:06:59,830 --> 00:07:05,350
ุฃู†ุง ุฃุฑูˆุญ ุฃุบูŠุฑู‡ ู…ุฑุฉ ุซุงู†ูŠุฉุŒ ูู‡ูŠ ุฑุงุญ ู‚ุฑุฃ ู„ูŠ ุฅูŠุงู‡ุงุŒ ุงู„ู„ูŠ
97
00:07:05,350 --> 00:07:08,840
ู‚ุงู„ ู„ูŠ ู‡ูŠ ุงู„ุจูŠุงู†ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒุŒ ุจุณ ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„
98
00:07:08,840 --> 00:07:14,740
ู„ูƒู… ู‚ุฏุฑุฉ ุงู„ู€ Pima Indians ClassificationุŒ ุงู„ุขู† ุชุนุฑููˆุง
99
00:07:14,740 --> 00:07:18,900
ุนู„ู‰ ุงู„ู€ Attributes ุจุดูƒู„ ุณุฑูŠุน ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ู‡ู…ุŒ ุจู…ุง
100
00:07:18,900 --> 00:07:23,120
ุฃู† ูƒู„ ุงู„ู€ Database ุฃูˆ ูƒู„ ุงู„ู€ Data Sets ู…ูƒูˆู‘ู†ุฉ ู…ู†
101
00:07:23,120 --> 00:07:27,680
ุงู„ู€ุŒ ูุนู„ุงู‹ ุจูŠุณุฃู„ู†ูŠ ุนู† ุงู„ู€ PregnancyุŒ ุนุฏุฏ ู…ุฑุงุช
102
00:07:27,680 --> 00:07:34,600
ุงู„ุญู…ู„ุŒ ู†ุณุจุฉ ุงู„ุฌู„ูˆูƒูˆุฒ ููŠ ุงู„ุฏู…ุŒ ุถุบุท ุงู„ุฏู…ุŒ ูƒู… ูƒุงู†ุŒ
103
00:07:34,600 --> 00:07:37,420
ุณู…ุงูƒุฉ ุงู„ุฌู„ุฏุŒ ุทุจุนู‹ุง ุณู…ุงูƒุฉ ุงู„ุฌู„ุฏ ู…ู‡ู…ุฉ ุฌุฏู‹ุง
104
00:07:37,420 --> 00:07:44,580
ู„ุฃู†ู‡ ุจูŠู…ุซู„ ู„ูŠ ุทุจู‚ุฉ ุงู„ุฏู‡ูˆู†ุŒ ูƒู…ูŠุฉ ู†ุณุจุฉ ุงู„ุฃู†ุณูˆู„ูŠู†
105
00:07:44,580 --> 00:07:48,480
ุฃูˆ ูƒู…ูŠุฉ ุงู„ุฃู†ุณูˆู„ูŠู† ุงู„ู…ูˆุฌูˆุฏุฉุŒ ุงู„ู€ Body Mass Index
106
00:07:48,480 --> 00:07:52,600
ู…ุคุดุฑ ูƒุชู„ุฉ ุงู„ุฌุณู…ุŒ ู‚ุฏ ุงูŠุดุŸ ุทุจุนู‹ุง ุงู„ู…ูุฑูˆุถ ูƒู„ ุงู„ู†ุงุณ ุงู„ู„ูŠ
107
00:07:52,600 --> 00:07:55,880
ููˆู‚ ุงู„ู€ 30 ุฃูˆ ููˆู‚ ุงู„ู€ 32 ุฃูˆ 35ุŒ ุฃุนุชู‚ุฏุŒ ุฅุฐุง ุฃู†ุง ู…ุด
108
00:07:55,880 --> 00:08:01,920
ุบู„ุทุงู† ูŠุนู†ูŠุŒ ุจู‚ูˆู„ ุนู†ู‡ู… ุฃุตุญุงุจ ุณู…ู†ุฉุŒ ุงู„ู€ DiabetesPedigreeFunction
109
00:08:01,920 --> 00:08:05,260
ูˆ High Function ุจุชู‚ูŠุณ ู„ูŠู‡ุŸ ู‡ู„
110
00:08:05,260 --> 00:08:09,120
ุงู„ู…ุฑุถ ู‡ุฐุง ู…ุฑุชุจุท ุจุนุงู…ู„ ูˆุฑุงุซูŠ ู…ู† ุงู„ุฃุจูˆูŠู† ุฃูˆ ู…ู† ุฃุญุฏ
111
00:08:09,120 --> 00:08:14,080
ู…ู† ุงู„ุนุงุฆู„ุฉุŸ ู‚ุฏ ุงูŠุด ู†ุณุจุฉ ุงู„ู†ุงุณ ุงู„ู„ูŠ ููŠ ุงู„ุนุงุฆู„ุฉ ู…ูˆุฌูˆุฏูŠู†
112
00:08:14,080 --> 00:08:19,540
ุฃูˆ ู…ุตุงุจูŠู† ุจุงู„ู…ุฑุถุŒ ุงู„ู…ุฑุถ ุงู„ุณูƒุฑูŠุŒ ูˆุงู„ู€ Age ุงู„ุฃุนู…ุงุฑ ุฒูŠ
113
00:08:19,540 --> 00:08:22,320
ู…ุง ู‚ู„ู†ุงุŒ ูˆุงู„ู€ Outcome ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ label ุฃูˆ ุงู„ู€ target
114
00:08:22,320 --> 00:08:25,800
ุชุจุนู†ุงุŒ The binary classification ุตูุฑ ูˆุงุญุฏุŒ ูˆุงุญุฏ
115
00:08:25,800 --> 00:08:29,380
ู…ุตุงุจุŒ ุตูุฑ ุบูŠุฑ ู…ุตุงุจุŒ ูˆุฅุญู†ุง ุจุฏู†ุง ู†ุนู…ู„ prediction
116
00:08:29,380 --> 00:08:32,660
ู†ุดูˆู ู‡ู„ ูุนู„ูŠู‹ุง ุงู„ู„ูŠ ู‡ูˆ ุฃู†ุง ุฒูˆุฏุชู‡ ุจุจูŠุงู†ุงุช ู…ุนูŠู†ุฉ
117
00:08:32,660 --> 00:08:37,530
ู‡ูŠู‚ูˆู„ ุฅู†ู‡ ู‡ุฐุง ู…ุตุงุจ ุฃูˆ ุบูŠุฑ ู…ุตุงุจุŒ ุชู…ุงู…ุŒ ุงู„ุขู† ุนุดุงู†
118
00:08:37,530 --> 00:08:41,590
ุฃุชุนุฑู ุนู„ู‰ ุงู„ู€ Database ุจุดูƒู„ ูƒูˆูŠุณ ุจู‚ูˆู„ ู…ู…ูƒู† ุฃู†ุง
119
00:08:41,590 --> 00:08:49,230
ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ุงู„ู€ DataFrame.describeุŒ ูˆุงู„ู€
120
00:08:49,230 --> 00:08:51,510
Describe ุจู‚ูˆู„ ู„ู†ุง ู‡ุฐุง ุจุชุฏูŠู†ุง Simple StatisticsุŒ ู„ูƒู†
121
00:08:51,510 --> 00:08:55,330
ุงู„ู…ุฑุญู„ุฉ ู‡ุฐู‡ ุจุฏูŠ TransposeุŒ ูˆุงู„ู†ุงุณ ุงู„ู„ูŠ ุฏุฑุณุช
122
00:08:55,330 --> 00:08:58,590
ุฑูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ุจุชุนุฑู ุฅู† ุงู„ู€ Transpose ุฃูˆ ุฏุฑุงุณุฉ
123
00:08:58,590 --> 00:09:02,630
ู…ุตููˆูุงุช ุจุชุนุฑู ุฅู† ุงู„ู€ Transpose ุจุนู…ู„ ุชุจุฏูŠู„ ู„ู„ุตููˆู
124
00:09:02,630 --> 00:09:07,570
ูˆุงู„ุฃุนู…ุฏุฉุŒ ุฃุฎูŠุฑู‹ุง ู‡ูŠ ุฑุงุญ ุฌุงุจ ู„ูŠ ุฅูŠุงู‡ุง ู‡ูˆู†ุŒ ูˆุจุญูŠุซ ุฅู† ุงู„ู€
125
00:09:07,570 --> 00:09:11,790
statistics ุงู„ู€ count ุจุชู…ุซู„ ุนุฏุฏ ุงู„ุตููˆู ุงู„ู„ูŠ ููŠู‡ุง
126
00:09:11,790 --> 00:09:18,310
valuesุŒ ุทุจุนู‹ุง ูƒู„ู‡ ููŠู‡ values ุนู†ุฏูŠ ู‡ูˆู† 768 ุนุฏุฏ ุงู„ู€
127
00:09:18,310 --> 00:09:21,310
valuesุŒ ุงู„ู€ mean ุงู„ู…ุชูˆุณุท ุงู„ุญุณุงุจูŠุŒ ุงู„ู€ standard
128
00:09:21,310 --> 00:09:24,330
deviationุŒ ุงู„ู€ minimum valueุŒ ุทุจุนู‹ุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุงู„ู€
129
00:09:24,330 --> 00:09:28,920
minimum value ุฒูŠ ุงู„ุฌู„ูˆูƒูˆุฒ ูˆุถุบุท ุงู„ุฏู…ุŒ ุงู„ู€ skin
130
00:09:28,920 --> 00:09:33,280
thicknessุŒ ูˆุงู„ุฃู†ุณูˆู„ูŠู†ุŒ ูˆุงู„ู€ body mass indexุŒ ู‡ุฐู‡
131
00:09:33,280 --> 00:09:38,320
ูƒู„ู‡ุง ุจุงู„ู†ุณุจุฉ ู„ู†ุง ุงู„ู…ูุฑูˆุถ ุชูƒูˆู† ู‡ุฐู‡ missing values
132
00:09:38,320 --> 00:09:41,200
ุจุณ ุจุฏู‡ุง ู…ุนุงู„ุฌุฉุŒ ู„ุฃู† ู…ุณุชุญูŠู„ ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ู€ body mass
133
00:09:41,200 --> 00:09:44,040
index ุตูุฑุŒ ู…ุณุชุญูŠู„ ูŠูƒูˆู† ุงู„ุฌู„ูˆูƒูˆุฒ ููŠ ุงู„ุฏู… ุตูุฑุŒ
134
00:09:44,040 --> 00:09:48,490
ู…ุณุชุญูŠู„ blood pressure ูŠูƒูˆู† ุตูุฑุŒ ุจุณ ุฃู†ุง ุงู„ุขู† ู…ุด ู‡ุดุชุบู„
135
00:09:48,490 --> 00:09:51,190
ุนู„ู‰ ุงู„ู€ databaseุŒ ู…ุด ู‡ุนู…ู„ู‡ุง pre-processingุŒ ุจูŠู†ู…ุง ุฃู†ุช
136
00:09:51,190 --> 00:09:54,490
ู…ู„ุฒู… ุฅู†ูƒ ุชุนู…ู„ pre-processing ู„ู„ู€ databaseุŒ ุงู„ู€
137
00:09:54,490 --> 00:09:57,010
database ุฏู‡ ู…ุด ู…ู†ุงุณุจุŒ ุฃู‚ูˆู„ ู„ูƒ ุฎุฐ database ุซุงู†ูŠุฉ ุฅุฐุง
138
00:09:57,010 --> 00:10:01,260
ููŠ ุญุฏ ู…ุฎุชุงุฑ ู‚ุฏุฑ ุงู„ู„ู‡ุŒ ุทูŠุจุŒ ุงู„ุขู† ุฃู†ุง ุจุญุงุฌุฉ ุฒูŠ ู…ุง ู‚ู„ู†ุง
139
00:10:01,260 --> 00:10:06,380
ุนู† ุงู„ู€ Database ู‡ุฐู‡ุŒ ุนู„ู‰ ุนู„ุงุชู‡ุง ูˆุญุงูุธู‡ุงุŒ ุฃุฑูˆุญ ุฃุฌู‡ุฒ
140
00:10:06,380 --> 00:10:11,500
ุงู„ู€ Data Set ู„ู„ู€ ClassificationุŒ ูˆุฃู‡ู… ุดุบู„ุฉ
141
00:10:11,500 --> 00:10:14,660
ููŠ ุงู„ู€ Classification ุฅู†ู‡ ุฃู†ุง ุฃุนู…ู„ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ
142
00:10:14,660 --> 00:10:18,320
Split ู…ุง ุจูŠู† ุงู„ู€ Data SetุŒ AttributeุŒ ุขุฎุฐ ุงู„ู€
143
00:10:18,320 --> 00:10:21,040
Attributes ุฃูˆ ุงู„ู€ Data Attributes ู„ุญุงู„ุŒ ูˆุขุฎุฐ ุงู„ู€
144
00:10:21,040 --> 00:10:25,480
Target Attribute ู„ุญุงู„ูŠุŒ ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ
145
00:10:25,480 --> 00:10:34,910
ุฃุณู…ูŠู‡ ุชุญุช "Data" ุฃูˆ "Data Set" "Splitting"
146
00:10:34,910 --> 00:10:41,750
"Splitting" ุฃูˆ "Splitting"
147
00:10:41,750 --> 00:10:43,450
"Splitting" "Splitting" "Splitting" "Splitting"
148
00:10:43,450 --> 00:10:43,610
"Splitting" "Splitting" "Splitting" "Splitting"
149
00:10:43,610 --> 00:10:44,590
"Splitting" "Splitting" "Splitting" "Splitting"
150
00:10:44,590 --> 00:10:44,610
"Splitting" "Splitting" "Splitting" "Splitting"
151
00:10:44,610 --> 00:10:44,650
"Splitting" "Splitting" "Splitting" "Splitting"
152
00:10:44,650 --> 00:10:44,730
"Splitting" "Splitting" "Splitting" "Splitting"
153
00:10:44,730 --> 00:10:44,750
"Splitting" "Splitting" "Splitting" "Splitting"
154
00:10:44,750 --> 00:10:56,130
"Splitting" "Splitting" "Splitting" "Spl
155
00:10:59,800 --> 00:11:05,500
Target_AttributeุŒ ูƒูŠู ุฃู†ุง ุจุฏูŠ ุฃุนู…ู„ ุงู„ู€
156
00:11:05,500 --> 00:11:08,140
Splitting ุงู„ุขู†ุŸ ุนู…ู„ูŠุฉ ุงู„ู€ Splitting ู‡ูŠ ุนุจุงุฑุฉ ุนู†
157
00:11:08,140 --> 00:11:11,180
ุขุฎุฐ ู†ุณุฎุฉ ู…ู† ุงู„ู€ AttributesุŒ ุฃู†ุง ู…ุง ุจุฏูŠ ุฃุฎุฑู‘ุจ ููŠ
158
00:11:11,180 --> 00:11:13,640
ุงู„ู€ DataFrame ุงู„ุฃุตู„ูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ู†ุงุŒ ูุจุฃุฎุฐ
159
00:11:13,640 --> 00:11:19,760
ู†ุณุฎุฉ ู…ู†ู‡ุŒ ูˆุฑุงุญ ุฃู‚ูˆู„ ู„ู‡ ุฃู†ุง ู‡ู†ุง ุงู„ู€ Data ุฃูˆ ู…ู…ูƒู† ุฃุณู…ูŠู‡ุง ุงู„ู€
160
00:11:19,760 --> 00:11:25,480
Attributes ู…ุจุงุดุฑุฉุŒ Attribute
161
00:11:25,480 --> 00:11:31,770
DataFrame.copy()
162
00:11:31,770 --> 00:11:39,270
ุจุฏูŠ ุฃุญุฏุซ ุงู„ู€ Outcome
163
00:11:39,270 --> 00:11:45,570
ูˆู‡ุฐุง ู…ูˆุฌูˆุฏ ุนู„ู‰ ุงู„ู€ Axis ุฑู‚ู… ูˆุงุญุฏุŒ ูุนู„ูŠุงู‹ ู…ุด ู‡ูŠุญุฏุซู‡
164
00:11:45,570 --> 00:11:48,570
ู„ุฃู†ู‡ ู…ุง ู‚ู„ุช ู„ู‡ ุฅู†ู‡ copyุŒ ูุจุฏูŠ ุขุฎุฐ ู†ุณุฎุฉ ู…ู† ุงู„ู€
165
00:11:48,570 --> 00:11:51,470
DataFrame ู‡ุฐุง ูˆุฃุญุฏุซ ุงู„ู€ OutcomeุŒ ูˆุจุฏูŠ ุขุฎุฐ ู…ู†ู‡
166
00:11:51,470 --> 00:11:56,930
ู…ูŠู†ุŸ ุงู„ู„ูŠ ู‡ู… ููŠ ุงู„ู€ Attributes ุชู…ุงู…ุŸ ูˆููŠ ุนู†ุฏูŠ Target
167
00:11:59,700 --> 00:12:06,340
"attribute = DataFrame.drop(the outcome)", ูˆู‡ูƒุฐุง ุฃุตุจุญ ู„ุฏูŠ two arrays ุชู…ุซู„
168
00:12:06,340 --> 00:12:15,140
ุงู„ู€ "attributes" ู…ู† ุงู„ู€ "age" ุฅู„ู‰ ุงู„ู€ "pregnancy"
169
00:12:20,390 --> 00:12:24,550
ูˆุงู„ุฃุฎูŠุฑ ุจูŠู…ุซู„ ุงู„ู€ OutcomeุŒ ุฃู†ุง ุณู…ูŠุชู‡ ุงูŠุดุŸ ุงู„ู€ Target
170
00:12:24,550 --> 00:12:28,690
ู‡ุฐุง ุงู„ูุตู„ ู…ู‡ู… ุฌุฏู‹ุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุจุงู„ู†ุณุจุฉ ู„ู†ุง ู„ุฃู†ู‡
171
00:12:28,690 --> 00:12:34,710
ู…ู† ุฎู„ุงู„ู‡ ุฃู†ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ูˆุงู„ู„ู‡ ุฅู† ุงู„ู€ data ุชุจุนุชูŠ ุชู…ุช
172
00:12:34,710 --> 00:12:38,570
ุทุจุนู‹ุง ุฃู†ุง ุงู„ุขู† ุงู„ุจุฑู†ุงู…ุฌ ุฌุงุจ ู„ูŠ ุฅู†ู‡ okayุŒ ุฃุฎุฐุช ุฑู‚ู…
173
00:12:38,570 --> 00:12:43,890
ุฃุฑุจุนุฉุŒ ู‡ุฐู‡ ู†ูุฐุช ุจุฏูˆู† ุฃูŠ ู…ุดุงูƒู„ุŒ ุฅุฐุง ุญุงุจุจ ุฃู†ุช ุชุนู…ู„
174
00:12:43,890 --> 00:12:48,070
ุงู„ู€ attribute describe ุฃูˆ ุชุดูˆู
175
00:12:56,430 --> 00:12:59,030
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุฃุณูˆูŠู‡ุง ููŠ ุงู„ู€
176
00:12:59,030 --> 00:13:01,630
preparationุŒ ุจุฑุถู‡ ู…ู† ุชุญุช ุงู„ู€ preparationุŒ ุงู„ู„ูŠ ุฃู†ุง
177
223
00:17:11,250 --> 00:17:16,170
ุฃูˆ ู„ู€ train size 70 ุชู…ุงู…ุŸ ูˆุจูŠู…ุดูŠ ุงู„ุญุงู„ุŒ ุงู„ุขู† ุงู„ู€ Y
224
00:17:16,170 --> 00:17:21,530
train ู‡ูŠ ุนุจุงุฑุฉ ุนู† 70% ู…ู† ุงู„ู€ target ุจู†ุงุก ุนู„ู‰ ุงู„ู€
225
00:17:21,530 --> 00:17:25,620
index ุงู„ู„ูŠ ุชู… ุฃุฎุฐู‡ุงุŒ ูˆุงู„ู€ Y-test ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€
226
00:17:25,620 --> 00:17:29,700
sample ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง ุทุจุนุงู‹ ุนุดุงู† ู†ุชุฃูƒุฏ ุฃู† ุงู„ุฃู…ูˆุฑ
227
00:17:29,700 --> 00:17:33,620
ุชู…ุงู…ุŒ ูˆุงู„ู€ splitting ุตุญ ุชู…ุชุŒ ุณุฃุฑูˆุญ ุฃู†ุง ุฃู‚ูˆู„ ู„ู‡ X
228
00:17:33,620 --> 00:17:40,060
train.
229
00:17:40,060 --> 00:17:44,760
headุŒ ูˆุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡ ุจุณ ูŠุนุฑุถ ุงู„ุฃูˆู„ ุซู„ุงุซุฉ ู…ู†ู‡ู… ุฃูˆ ู…ุด
230
00:17:44,760 --> 00:17:47,620
ู‚ุถูŠุฉุŒ ู‡ูŠ ุงู„ุฃูˆู„ ุนุดุฑุฉ ุจุณ ุนุดุงู† ู†ุดูˆู ุงู„ู€ indices ุงู„ู„ูŠ
231
00:17:47,620 --> 00:17:53,740
ู…ูˆุฌูˆุฏุฉ ููŠู‡ุงุŒ ูˆู„ุงุญุธูˆุง ุฒูŠ ู…ุง ุญูƒูŠู†ุง ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€
232
00:17:53,740 --> 00:18:01,180
index. ุงู„ุขู† ููŠ ุงู„ู…ู‚ุงุจู„ุŒ ู„ูˆ ุฃู†ุง ุฑูˆุญุช ุนุฑุถุช ุงู„ู€ Y
233
00:18:01,180 --> 00:18:06,600
-TrainุŒ ูˆู‚ู„ุช ู„ู‡ ู‡ูŠ ููŠ ุงู„ุณู„ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุงุŒ ุจุณ ุนุดุงู†
234
00:18:06,600 --> 00:18:14,000
ุฃุคูƒุฏ ู„ูƒู… ุงู„ู€ Ytrain.head
235
00:18:14,000 --> 00:18:21,550
ูˆุฎู„ูŠู†ูŠ ุนู„ู‰ ุนุดุฑุฉ ูƒุฐู„ูƒุŒ RunุŒ ุทู„ุน ู…ุนูŠ ููŠ ุงู„ู€ index
236
00:18:21,550 --> 00:18:29,230
ูˆ Y train
237
00:18:29,230 --> 00:18:29,770
ูˆ Y train
238
00:18:46,050 --> 00:18:50,710
ุฃู†ุง ุฃุฎุทุฃุช ุซุงู†ูŠุฉ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ููŠ ุงู„ุชุณู…ูŠุฉุŒ ู‡ูŠ ุงู„ู…ูุฑูˆุถ
239
00:18:50,710 --> 00:18:57,310
X testุŒ X test
240
00:18:57,310 --> 00:19:07,870
thirty three five greenุŒ ุณูŠุนู…ู„ run ู…ุฑุฉ ุซุงู†ูŠุฉ.
241
00:19:07,870 --> 00:19:15,090
ุณูŠุนู…ู„ run ู„ู„ู€ high ุฃู‡ุŒ ู‡ูŠูƒ ุชู…ุงู…. ุฃู†ุง ุงู„ู„ูŠ ุฃุฎุชุงุฑ ููŠ
242
00:19:15,090 --> 00:19:19,490
ุชุฑูƒูŠุจ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููˆู‚ุŒ ุฃุจุฏุฃ ุจุงู„ู€ X testุŒ ุจุงู„ู€
243
00:19:19,490 --> 00:19:24,250
attributesุŒ ูˆุจุงู„ู€ YุŒ ุงู„ู€ target ุทุจุนุงู‹ุŒ ู‡ูŠ ู…ูŠุฒุฉ ุฃู†ู‡
244
00:19:24,250 --> 00:19:27,990
ุฃู†ุง ูุนู„ูŠุงู‹ ุจุถู„ ุฃุชุจู‘ุน ุงู„ู€ data ุดูˆ ุตุงุฑ ููŠู‡ุงุŒ ู…ุง ุจุฎุทุฆุดุŒ
245
00:19:27,990 --> 00:19:32,690
ู„ุงุญุธูˆุง 155ุŒ 155 ู‡ูŠ ู†ูุณ ุงู„ู€ index ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ูŠุนู†ูŠุŒ
246
00:19:32,690 --> 00:19:34,750
ูุฃู†ุง ุฃู…ูˆุฑูŠ ู…ู† ู†ุงุญูŠุฉ ุงู„ู€ database ุงู„ุขู† ุฃูˆ ุงู„ู€
247
00:19:34,750 --> 00:19:38,490
splitting ู„ู„ู€ data ุฌุงู‡ุฒุฉุŒ ุจุญูŠุซ ุฃู†ู‡ ุฃู†ุง ุฌุณู…ุช ุงู„ู€
248
00:19:38,490 --> 00:19:41,450
dataุŒ ูุตู„ุช ุงู„ู€ attributesุŒ ุงู„ู€ data attributes
249
00:19:41,450 --> 00:19:45,030
ูˆุงู„ู€ target attributesุŒ ูุตู„ุช ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ููŠ data
250
00:19:45,030 --> 00:19:48,810
fileุŒ ู‡ูˆ ุฑูˆุญุช ู„ู„ู€ data set ุฃูˆ ุงู„ู€ two data frames
251
00:19:48,810 --> 00:19:55,210
ุฏูˆู„ ูุตู„ุชู‡ู… ูƒู…ุงู† ู„ู€ test set ูˆููˆู‚ู‡ train setุŒ ูˆู‡ุฃุจุฏุฃ
252
00:19:55,210 --> 00:20:00,370
ุฃุณุชุฎุฏู… train set ููŠ ู…ูˆุถูˆุน ุงู„ู€ classification ุงู„ุขู†.
253
00:20:00,370 --> 00:20:06,830
ุณุฃุจุฏุฃ ุฃุณุชุฎุฏู… ุงู„ู€ K nearest neighbor (KNN)
254
00:20:06,830 --> 00:20:15,070
ุฃูˆ ู…ุง ูŠุนุฑู ุจุงู„ู€ K nearest neighbor
255
00:20:22,150 --> 00:20:25,250
ู‡ู†ุงุŒ ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŒ ููŠ ุงู„ู€ K nearest neighbor model
256
00:20:25,250 --> 00:20:28,950
ูŠู‚ูˆู„ ุฅู†ู‡ุง ุฃู‡ู… ุดุบู„ุฉ ุชุฑูŠุฏ ุงู„ุชุนุฑู ุนู„ูŠู‡ุงุŒ ู…ู† ุฃูŠู† ุชุฑูŠุฏ
257
00:20:28,950 --> 00:20:39,370
ุฃู† ุชุนู…ู„ ุงู„ู€ importุŸ ู„ุฃู† ู…ู† ุงู„ู€ scikit-learn.
258
00:20:39,370 --> 00:20:43,530
ุทุจุนุงู‹ ู‡ู†ุง ุนู†ุฏูŠ ุนุงุฆู„ุฉ ุงุณู…ู‡ุง neighbors ุฃูˆ ุงู„ู€
259
00:20:43,530 --> 00:20:47,750
libraryุŒ ุนุดุงู† ู…ุง ุฃุญุฏ ูŠู‚ูˆู„ ู„ูŠู‡ ุนุงุฆู„ุฉ neighborsุŒ ุณุฃุฑูˆุญ
260
00:20:47,750 --> 00:20:48,590
ุฃู‚ูˆู„ ู„ู‡ import
261
00:20:54,790 --> 00:21:06,810
from sklearn.neighbors import KNeighborsClassifier as KN
262
00:21:06,810 --> 00:21:10,870
as KN
263
00:21:10,870 --> 00:21:17,930
ุงู„ุขู† ู‡ุฐุง ุงู„ู…ูˆุฏูŠู„ ุฃู†ุง ู…ู…ูƒู† ุฃู†ุดุฆู‡ ู…ุจุงุดุฑุฉ KNN
264
00:21:42,660 --> 00:21:46,440
ูˆุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ุจุนุฏ ู‡ูŠูƒ ุฃู†ุง ู…ู…ูƒู† ุฃุญุฏุฏ ู„ู‡
265
00:21:50,220 --> 00:21:53,040
ุงู„ู€ model ุฃูˆ ุฃุฑูˆุญ ุฃุนู…ู„ู‡ fit ุงู„ู„ูŠ ูƒุงู† ุงู„ู…ูุฑูˆุถ
266
00:21:53,040 --> 00:21:57,460
ุฃุญุฏุฏ ู„ู‡ ุงู„ู€ dataset ุงู„ู„ูŠ ุจุฏู‡ ูŠุนู…ู„ ุนู„ูŠู‡ุง training
267
00:21:57,460 --> 00:22:02,180
ุฃูˆ ู…ู‚ุงุฑู†ุฉุŒ ู‡ูŠ ุงู„ู…ูุฑูˆุถ ุงู„ู€ train dataset ู„ูƒู† ููŠ
268
00:22:02,180 --> 00:22:07,800
ู…ู„ุงุญุธุฉ ู…ู‡ู…ุฉ ุฌุฏุงู‹ ู‚ุจู„ ู…ุง ู†ูƒู…ู„ุŒ ุทุจุนุงู‹ ุจุฅู…ูƒุงู†ูŠ ุฃู†ุง ุฃูˆู‚ู
269
00:22:07,800 --> 00:22:11,620
ู‡ุฐู‡ ูˆุฃุนู„ู‚ู‡ุง.
270
00:22:17,090 --> 00:22:21,130
ุงู„ุฃุณู…ุงุกุŒ ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŒ ู‡ูŠ ู…ู† ุฃุฌู„ ุงู„ุงุฎุชุตุงุฑุŒ ุงู„ู€ AS ู…ู† ุฃุฌู„
271
00:22:21,130 --> 00:22:24,470
ุงู„ุงุฎุชุตุงุฑ ุนุดุงู† ู…ุง ุฃุถุทุฑ ุฃูƒุชุจ ุงู„ุงุณู… ุจุงู„ูƒุงู…ู„ุŒ ูŠุนู†ูŠ ู„ูˆ
272
00:22:24,470 --> 00:22:29,750
ุฃู†ุง ุจุฏูŠ ุฃูƒุชุจู‡ุงุŒ ุณุฃุฑูˆุญ ุฃู‚ูˆู„ KN_model
273
00:22:29,750 --> 00:22:33,670
equals
274
00:22:33,670 --> 00:22:43,610
KNeighborsClassifierุŒ ูˆKN_model equals
275
00:22:43,610 --> 00:22:48,470
ุฎู…ุณุฉุŒ ุนููˆุงู‹ุŒ ุฎู…ุณุฉุŒ ุฎู„ูŠู†ูŠ ุฃุนู…ู„ ู†ูุณูŠุŒ ุฃู…ุดูŠ ุนู„ู‰ ู†ูุณ
276
00:22:48,470 --> 00:22:51,230
ุงู„ู€ style ู‡ุฐู‡ุŒ ูˆุงู„ู„ูŠ ููˆู‚ ู†ูุณ ุงู„ู…ุนู†ู‰ุŒ ุจุณ ุฃู†ุง ู‡ู†ุง
277
00:22:51,230 --> 00:22:55,530
ุฃุฎุชุตุฑ ููŠ ุงู„ูƒุชุงุจุฉ ุจู†ุงุกู‹ ุนู„ู‰... ุจุนู…ู„ alias name
278
00:22:55,530 --> 00:22:59,210
ูˆุจุฃุณุชุฎุฏู… ุงู„ู€ alias nameุŒ ุงู„ุขู† ุจุถู„ ุฃู‚ูˆู„ ู„ู‡ู… ุงู„ู€ KNN
279
00:22:59,210 --> 00:23:06,010
_model.fit
280
00:23:06,010 --> 00:23:12,710
ูˆููŠ ุงู„ู€ trainingุŒ ุดูˆ ุจูŠุงุฎุฏุŸ ุจูŠุงุฎุฏ ุงู„ู€ X_train ูˆุงู„ู€ Y
281
00:23:12,710 --> 00:23:18,620
trainุŒ ู„ุฃู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ data ุงู„ู„ูŠ ุฃู†ุง ุจุนู…ู„ ุนู„ูŠู‡ุง ุฃูˆ
282
00:23:18,620 --> 00:23:22,260
ู…ู† ุฎู„ุงู„ู‡ุง ุงู„ู€ training. ู„ูˆ ุฃู†ุง ุงุดุชุบู„ุชุŒ ุนู…ู„ุช ู„ู‡ run
283
00:23:22,260 --> 00:23:35,620
ูˆุดูƒู„ูŠ
284
00:23:35,620 --> 00:23:37,620
ุฃู†ุง ุฃุฎุทุฃุช ููŠ ุงู„ู€ KNeighborsClassifier
285
00:23:46,470 --> 00:23:51,630
KNeighborsClassifierุŒ ุตุญ ุงู„ุตุญุŒ ุงู„ู€ spelling ุตุญ
286
00:23:51,630 --> 00:24:05,130
"EG", "EI", "GH", "D", "O", "R", "S"
287
00:24:05,130 --> 00:24:08,190
ู„ูŠุดุŸ
288
00:24:21,090 --> 00:24:35,170
ู…ู…ูƒู† ุนุดุงู† ุฃู†ุง ุญุทูŠุช ุงู„ู€ alias name ููˆู‚ุŒ ุนุดุงู†
289
00:24:35,170 --> 00:24:40,270
ุญุทูŠุช ุงู„ู€ alias nameุŒ ุนุดุงู† ุญุทูŠุช ุงู„ู€ alias nameุŒ ู„ุฃู†
290
00:24:40,270 --> 00:24:45,710
ุงู„ู€ alias name ุจุฏูŠู„ู‡ุŒ ู„ูƒู† ู„ูˆ ุฃู†ุง ุตุญุญุช ู‡ุฐุง ูˆุนู„ู‘ู‚ุช
291
00:24:45,710 --> 00:24:46,030
ู‡ุฐู‡
292
00:24:52,850 --> 00:25:00,330
ู…ุด ู‡ูŠูƒูˆู† ููŠ ุฎุทุฃุŒ ูู…ู…ูƒู†
293
00:25:00,330 --> 00:25:03,590
ุฃู†ุง ุฃุณุชุฎุฏู… ู‡ุงูŠ ุฃูˆ ู‡ุงูŠ ุญุณุจ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
294
00:25:03,590 --> 00:25:08,170
ุนู„ูŠู‡ุงุŒ ุชู…ุงู…. ูุงู„ู€ model ุฃุตุจุญ ุฌุงู‡ุฒ ูŠุชุนุฑู ุนู„ู‰ ุงู„ู€
295
00:25:08,170 --> 00:25:10,890
test data ุฃูˆ ุงู„ู€ test set ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุฃุดุชุบู„
296
00:25:10,890 --> 00:25:14,950
ุนู„ูŠู‡ุงุŒ ูˆู‡ูŠ ุจุทุจูŠุนุฉ ุงู„ุญุงู„ ู…ุฌุณู‘ู…ุฉ ู„ู€ attributes ูˆุทุจุนุงู‹
297
00:25:14,950 --> 00:25:19,510
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉุŒ ุฃู†ุง ุนู… ุจุฏูŠ ุฃุฑูˆุญ ุฃุนู…ู„ ุฃูˆ ุจุฏูŠ ุฃุดูˆู
298
00:25:19,510 --> 00:25:23,510
ุงู„ู€ measuresุŒ ุฅูŠุด ู…ู…ูƒู† ูŠุณูˆูŠ ู„ู‡ุงู„ู€ element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
299
00:25:23,510 --> 00:25:27,050
ุฃูˆ ุงู„ู€ model ุงู„ู„ูŠ ุฃู†ุง ุฃู†ุดุฃุชู‡ุŒ ู„ูƒู† ุนุดุงู† ุฃู†ุง ุฃุฎุชุจุฑ ุงู„ู€
300
00:25:27,050 --> 00:25:30,530
modelุŒ ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŒ ุฃูˆ ุจุฏูŠ ุฃุฌุฑุจ ุงู„ู€ modelุŒ ุฎู„ูŠู†ูŠ ุฃุดูˆู
301
00:25:30,530 --> 00:25:35,450
ุฃูˆ ุขุฎุฐ ุนูŠู†ุฉ ู…ู† ุงู„ู€ data ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ููŠ ู…ูˆุถูˆุน
302
00:25:35,450 --> 00:25:39,070
ู…ู†
303
00:25:39,070 --> 00:25:42,450
ุงู„ู€ dataset ุจุดูƒู„ ุนุงู…ุŒ ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ ูˆุฃู‚ูˆู„ ู„ู‡ ุฃู†ุง
304
00:25:42,450 --> 00:25:46,190
ุทุจุนุงู‹ุŒ ุฃูˆู„ ุดูŠุก ู‡ูŠูƒูˆู† ุงุณุชุฎุฏุงู… ุงู„ู€ numpy ุงู„ู„ูŠ
305
00:25:46,190 --> 00:25:56,740
ู…ูˆุฌูˆุฏุฉ ููˆู‚ุŒ ุณุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ T1ุŒ ู‡ุฐู‡ ุงู„ู€ array ู…ูƒูˆู†ุฉ ู…ู†
306
00:25:56,740 --> 00:26:07,640
ู…ุฌู…ูˆุนุฉ ุฃุฑู‚ุงู…ุŒ ูˆู„ูŠูƒู†
307
00:26:07,640 --> 00:26:12,940
ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ุงู„ุตู ุงู„ุฃูˆู„ุŒ ูˆู‡ุฐู‡ ุงู„ู€ class ู…ูˆุฌูˆุฏุฉ
308
00:26:12,940 --> 00:26:13,320
ู‡ู†ุง.
309
00:26:17,220 --> 00:26:21,720
ุงู„ู€ tabs ู‡ุฐู‡ ุจุฏูŠ ุฃุณุชุจุฏู„ู‡ุง ุจู€ commas.
310
00:26:31,800 --> 00:26:35,140
ุทุจุนุงู‹ุŒ ูŠุง ุนุฒูŠุฒูŠุŒ ููŠ ุดุบู„ ู…ู‡ู… ู„ุงุฒู… ู†ู‚ูˆู„ู‡ ุงู„ุขู†ุŒ ุฃู†ู‡
311
00:26:35,140 --> 00:26:38,300
ู…ุด ุถุฑูˆุฑูŠ ุงู„ู€ prediction ุฏุงุฆู…ุงู‹ุŒ ูŠุนู†ูŠ ู…ุง ุฃุญุฏ ุจูŠู‚ูˆู„
312
00:26:38,300 --> 00:26:40,800
ุงู„ู€ prediction ุจูŠูƒูˆู† ุตุญูŠุญ ุฃูˆ ุจูŠูƒูˆู† ุญู‚ูŠู‚ูŠ 100%ุŒ
313
00:26:40,800 --> 00:26:43,720
ู„ุงุฒู… ูŠูƒูˆู† ููŠ ุฃุฎุทุงุก ุนู†ุฏูŠ ุฏุงุฆู…ุงู‹ ุฃูˆ ููŠ ู…ุนุธู… ุงู„ุฃุญูŠุงู†ุŒ
314
00:26:43,720 --> 00:26:47,160
ูŠูƒูˆู† ููŠ ุนู†ุฏูƒ ุฃุฎุทุงุกุŒ ูˆูƒู„ ู…ุง ุงุฑุชูุน ุฃูˆ ูƒู„ ู…ุง ูƒุงู†ุช ุงู„ู€
315
00:26:47,160 --> 00:26:50,520
prediction ุชุจุนุชู‡ุŒ ุงู„ู€ score ุชุจุนู‡ุง ุฃุนู„ู‰ ุจูŠูƒูˆู† ูƒูˆูŠุณุฉ.
316
00:26:50,520 --> 00:26:57,720
Doc reshapingุŒ ูƒู„ ู‡ุฐุง ุงุนุชู…ุฏ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุนู„ู‰ ุฅูŠ ูˆุงุญุฏ
317
00:26:57,720 --> 00:27:06,120
ุณุงู„ุจ ูˆุงุญุฏุŒ ูˆุทุจุนุงู‹ ู‡ุงูŠ ุงู„ู€ targetุŒ ุณุฃุญุท ู‡ู†ุง target equals
318
00:27:06,120 --> 00:27:14,720
oneุŒ ูˆุฎู„ูŠู†ูŠ ุฃู†ุง ุฃู†ุณุฎ ู‡ุฐู‡ุŒ ู‡ูŠูƒ Ctrl VุŒ ูˆุงุจุฏุฃ ุฃุฌูŠ ุนู„ู‰
319
00:27:14,720 --> 00:27:20,760
ุงู„ู€ raw ุงู„ู„ูŠ ุฑู‚ู…ู‡ ุฎู…ุณุฉุŒ ุฃู†ุณุฎู‡ุŒ ูˆุงู„ู€ target ุชุจุนุชู‡ ุตูุฑุŒ
320
00:27:20,760 --> 00:27:23,200
ู‡ุฐุง ุจุฏูŠ ุฃุณู…ูŠู‡ T5.
321
00:27:33,150 --> 00:27:38,710
ุจู†ูุณ ุงู„ูƒู„ุงู… ุงู„ู€
322
00:27:38,710 --> 00:27:47,030
rows ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ุจูƒู…ู‘ุณ ุนุดุงู† ุชุชุญูˆู„ ุงู„ู€ rows ุงู„ู„ูŠ ุนู†ุฏูŠ ู„ู€
323
00:27:47,030 --> 00:27:53,370
ู…ุตููˆูุฉุŒ ุชู…ุงู…ุŒ ุจู†ูุณ ุงู„ุนุฏุฏ.
324
00:28:01,810 --> 00:28:08,410
ุชู…ุงู…ุŒ ู„ูŠุณ ู…ุดูƒู„ุฉ ู„ุฃู† ุนู†ุฏู…ุง ุฃู†ุง ุฃุนู…ู„ train ู„ู„ู€ model
325
00:28:08,410 --> 00:28:11,130
ุงู„ู„ูŠ ุฃู†ุง ุฃู†ุดุฃุชู‡ุŒ model.kneighbors ู„ุฏูŠู‡ method
326
00:28:11,130 --> 00:28:17,070
ุงุณู…ู‡ุง model.kneighborsุŒ ุฃู†ุง ู‡ุงูŠู‡ ุงู„ู€ model ุชุจุนูŠ KNN
327
00:28:17,070 --> 00:28:24,430
_model.kneighbors
328
00:28:25,990 --> 00:28:30,270
ูˆู„ุง ู…ูŠู†ุŸ ูˆุฃุนุทูŠู‡ ู…ูŠู†ุŸ ูˆุฃุนุทูŠู‡ ุงู„ู€ test element ุงู„ู„ูŠ
329
00:28:30,270 --> 00:28:37,030
ุฃู†ุง ุจุฏูŠ ุฃูุญุตู‡ุŒ ูˆู„ูŠูƒู† T1 ูƒู…ูุฏุฎู„ุŒ ูˆู…ุน ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ุฌูˆุงุฑ
330
00:28:37,030 --> 00:28:42,430
ุฎู…ุณุฉุŒ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ุฌูˆุงุฑ ุฎู…ุณุฉ. ุจุชุญุณ ููŠ ู„ุญุธุฉ ู…ู† ุงู„ู„ุญุธุงุช
331
00:28:42,430 --> 00:28:47,050
ุฃู† ุงู„ู€ K ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ ุฃู†ุง ุนู†ู‡ุงุŒ ู…ุง ู„ู‡ุง ุนู„ุงู‚ุฉ ุจู‡ุฐู‡ ุงู„ู€
332
00:28:47,050 --> 00:28:50,290
method ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ. ุฎู„ูŠู†ูŠ ุฃุดูˆูุŒ ูˆุฃุฑูˆุญ ุทุจุนุงู‹ ู‡ุฐู‡ ุงู„ู€
333
00:28:50,290 --> 00:28:55,370
method ุจุชุฑุฌุน ู„ูŠ two vectorsุŒ ุงู„ููƒุชูˆุฑ ุงู„ุฃูˆู„ ูŠู…ุซู„ ุงู„ู€
334
00:28:55,370 --> 00:28:59,930
distancesุŒ ูƒู…ุง
335
00:28:59,930 --> 00:29:08,790
ูˆุงู„ููƒุชูˆุฑ ุงู„ุซุงู†ูŠ ุงู„ู€ indicesุŒ ุชู…ุงู…ุŸ ุงู„ู€ indices ุฃูˆ ุงู„ู€
336
00:29:08,790 --> 00:29:15,850
indicesุŒ ู†ูุณ ุงู„ู…ุตุทู„ุญุงุชุŒ indices ู„ู…ู†ุŸ
337
00:29:15,850 --> 00:29:18,550
ู„ู€ indices
338
00:29:22,020 --> 00:29:27,480
ู„ู„ู€ raw ุงู„ู„ูŠ ู‡ูŠ ุตุงุญุจุฉ ุฃู‚ุตุฑ ู…ุณุงูุฉุŒ ูŠุนู†ูŠ ุงู„ู€
339
00:29:27,480 --> 00:29:31,600
kneighbors ู‡ุฏูˆู„ ุจูŠุฑูˆุญูˆุง ุจูŠุฌูŠุจูˆุง ู„ูŠ ุฃู‚ุฑุจ ุฎู…ุณุฉ ู„ู„ู€ element
340
00:29:31,600 --> 00:29:36,760
ู„ู€ T1ุŒ ุฃู‚ุฑุจ ุฎู…ุณุฉ ู„ู€ T1ุŒ ูˆุจู…ุง ุฃู†ู‡ ุงู„ู…ูุฑูˆุถ T1 ูŠู…ุซู„
341
00:29:36,760 --> 00:29:39,480
ุงู„ู€ raw ุงู„ุฃูˆู„ ููŠ ุงู„ู€ dataset ุงู„ู„ูŠ ุนู†ุฏูŠุŒ ูุณูŠุฑูˆุญ
342
00:29:39,480 --> 00:29:43,460
ูŠู‚ูˆู„ ู„ูŠ ุงู„ู€ index ุฑู‚ู… ุตูุฑุŒ ุฃูˆ ุงู„ู€ index ุฑู‚ู… ุตูุฑุŒ ู‡ูŠูƒูˆู†
343
00:29:43,460 --> 00:29:47,680
ู‡ุฐุง ุงู„ู€ distance ุชุจุนูƒ ุตูุฑุŒ ูˆู‡ูŠุฌูŠุจ ู„ูŠ ุงู„ู€ index ููŠ
344
00:29:47,680 --> 00:29:52,680
ู…ุตููˆูุฉ ุซุงู†ูŠุฉ. ุฃู†ุง ุงู„ุขู† ุณุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ eventุŒ ุฎู„ูŠู†ุง
345
00:29:52,680 --> 00:29:58,480
ู†ุดูˆูู‡ุง ููŠ ู…ุฌุงู„ ุขุฎุฑ. ู‡ูŠ runุŒ ุงู„ุขู† ุงู„ู…ูุฑูˆุถ ุชู… ุงู„ุชู†ููŠุฐ.
346
00:29:58,480 --> 00:30:04,580
ุณุขุฎุฐ ูƒูˆุฏ ุฌุฏูŠุฏุŒ ูˆุจุฏูŠ ุฃุฑูˆุญ ุฃุทุจุน ุงู„ู€ distances.
347
00:30:22,010 --> 00:30:26,970
ู„ุงุญุธูˆุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŒ ุตูุฑุŒ ุนุดุฑุฉุŒ ุฎู…ุณุฉ ูˆุฎู…ุณูŠู†ุŒ
348
00:30:26,970 --> 00:30:34,170
ุชุณุนุฉ ูˆุนุดุฑุฉุŒ ุชุณุนุฉ ูˆุนุดุฑุฉุŒ ุนุดุฑูŠู†ุŒ ุนุดุฑุฉ
349
00:30:34,170 --> 00:30:34,270
ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ
350
00:30:34,270 --> 00:30:34,290
ุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ
351
00:30:34,290 --> 00:30:34,350
ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ุนุดุฑุฉ
352
00:30:34,350 --> 00:30:34,570
ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ
353
00:30:34,570 --> 00:30:38,390
ุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ
354
00:30:38,390 --> 00:30:47,440
ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉุŒ ูˆุนุดุฑุฉ ูˆุนุดุฑุฉ. ู‡ุฐู‡
355
00:30:47,440 --> 00:30:51,080
ุฃู‚ุฑุจ distancesุŒ ู„ุฃู†ู‡ ุจูŠุฑุชุจ ู„ูŠ ุฅูŠุงู‡ุง ุชุฑุชูŠุจ ุชุตุงุนุฏูŠ ุญุณุจ
356
00:30:51,080 --> 00:30:54,960
ุงู„ุฃู‚ุฑุจุŒ ูุงู„ุฃู‚ุฑุจ. ุทูŠุจุŒ ุงู„ุขู† ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุดูˆู ุงู„ู€
357
00:30:54,960 --> 00:30:58,900
indices ุชุจุน ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠุŒ ุฃูˆ ุจุฏูŠ ุฃุดูˆู
358
00:30:58,900 --> 00:31:02,100
ุงู„ู€ target ุชุจุน ุงู„ู€ indices ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠุŒ ู…ู…ูƒู†
359
00:31:02,100 --> 00:31:09,960
ุฃู†ุง ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ target of
360
00:31:09,960 --> 00:31:14,080
I from
361
00:31:15,690 --> 00:31:22,530
ุงู„ู€ I ู…ูˆุฌูˆุฏุฉ ุฃูŠู†ุŸ ุฃูˆ ุนููˆุงู‹ุŒ for ุงู„ู€ I for
362
00:31:22,530 --> 00:31:30,390
I inุŒ ุงู„ู€ indicesุŒ ุฃู†ุง
363
00:31:30,390 --> 00:31:34,810
ู‡ุฐู‡ ู…ุตููˆูุฉ ุจุฑุถู‡ ู…ู† ุจุนุฏูŠุŒ ุณุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ุจุนุฏ ุฃูŠุงู…ุŒ
364
00:31:34,810 --> 00:31:35,310
ูุฃุดุฑุญ
365
00:31:52,280 --> 00:32:00,580
target ุบู„ุท ุทุจุนุงู‹.
366
00:32:00,580 --> 00:32:04,760
ู‡ุงู† ู„ู…ุง ูƒู†ุช ุจุญุงูˆู„ ุฃู† ุฃุทุจุน ุงู„ู€ elementุŒ ุจูŠู‚ูˆู„ ู„ูŠ ุฅู†
367
00:32:04,760 --> 00:32:08,140
ู‡ุฐุง ุนุจุงุฑุฉ ุนู† objectุŒ ุทุจ ุงู„ู€ object ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€
368
00:32:08,140 --> 00:32:10,920
contents ุชุจุนุชู‡ุŒ ุฃูˆ ู…ุญุชูˆู‰ ุงู„ู€ object ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงู†.
369
00:32:10,920 --> 00:32:15,300
ูู‡ูŠู†ุทุจุน ู„ูŠ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ุงู†ุŒ ุฌู„ุจู†ุงู‡ุง ุนู„ู‰
370
00:32:15,300 --> 00:32:19,570
ุงู„ุณุจุนุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููˆู‚ุŒ ุงู„ู€ indices ุชุจุนุชู‡ู…ุŒ ุฃูˆ ุงู„ู€
371
00:32:19,570 --> 00:32:22,590
classes ุจู†ุงุกู‹ ุนู„ู‰ ุงู„ู€ indices ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ.
372
00:32:22,590 --> 00:32:26,550
ูŠุนู†ูŠ ุงุญู†ุง ุงุชูู‚ู†ุง ุงู„ู€ indices ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€ index
373
00:32:26,550 --> 00:32:33,910
ุชุจุน ุงู„ู€ train set ุฃูˆ ุงู„ู€ X-train ุงู„ู‚ุฑูŠุจุฉ ู…ู†ุŒ ุฃูˆ
374
00:32:33,910 --> 00:32:39,450
ุงู„ุฃู‚ุฑุจ ู„ู€ T1ุŒ ููƒุงู† ุตูุฑุŒ ูˆุตูุฑุŒ ูˆู‡ุฐู‡ ุงู„ู€ labels ุชุจุนุชู‡ู…
375
00:32:39,450 --> 00:32:43,630
ู„ุฃู† ุฃู†ุง ุจุฏูŠ ุฃุนู…ู„ votingุŒ ุณุฃุฑูˆุญ ุฃุนุฏู‘ ุฃู†ุง ู‡ุฏูˆู„ุŒ ู‡ูŠ ูˆุงุญุฏุŒ
376
00:32:43,630 --> 00:32:48,250
ุงุซู†ูŠู†ุŒ ุซู„ุงุซุฉุŒ ุฃุฑุจุนุฉุŒ ุฎู…ุณุฉุŒ ุฎู…ุณุฉ ู…ู† ุณุจุนุฉ zeroุŒ ูˆุงุซู†ูŠู†
377
00:32:48,250 --> 00:32:53,530
ู…ู† ุณุจุนุฉ oneุŒ ู…ุนู†ุงุชู‡ ุฃู† ุงู„ู€ class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ู†ุง
378
00:32:53,530 --> 00:32:59,290
ุณุจุนุฉ. ุทุจ ู„ูˆ ุฃู†ุง ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฌุฑุจุฉ ู‡ูŠ ู„ุฎู…ุณุฉุŒ ูˆู‡ูŠ run
379
00:32:59,290 --> 00:33:06,780
ุงู„ุณุทุฑ ุงู„ู„ูŠ ุจุนุฏูŠู‡ุงุŒ ูˆู‡ูŠ ุงู„ู€ cell ุงู„ู„ูŠ ุจุนุฏูŠู‡ุงุŒ
380
00:33:06,780 --> 00:33:11,760
ูุฌุงุฆู†ูŠ ุฃู†ู‡ ุงู„ุขู† ุจุฑุถู‡ ุตูุฑุŒ ุจุณ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุนู†ุฏูŠ ููˆู‚
381
00:33:11,760 --> 00:33:15,320
ุงุฎุชู„ูุชุŒ ู…ุด ู‚ุถูŠุฉ ู„ุฃู† ู‡ูŠ ููŠ ุงู„ุขุฎุฑ ุงู„ู€ values ุงู„ู„ูŠ
382
00:33:15,320 --> 00:33:18,720
ุนู†ุฏู‡ุง ุงุฎุชู„ูุช. ุทุจ ู„ูˆ ุฃู†ุง ููƒุฑุช ุฃู†ู‡ ุฃุบูŠุฑ ููŠ ุงู„ู€ values
383
00:33:18,720 --> 00:33:25,840
ุงู„ู„ูŠ ุนู†ุฏู‡ุงุŒ ุญุฃุฑูˆุญ ุฃุนู…ู„ run ุนุดุงู† ุขุฎุฐู‡ุงุŒ okayุŒ ู‡ูŠ
384
00:33:25,840 --> 00:33:32,900
ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ ู‡ู†ุง 30ุŒ ู‡ูŠ runุŒ ู„ุงุญุธูˆุง ุงู„ู€ distance
385
00:33:32,900 --> 00:33:38,070
ุงุฎุชู„ุงูู‡ุงุŒ ุงุฎุชู„ูุช ุงู„ู€ distance ูƒู„ูŠุงู‹ุŒ ุงู„ุขู† ูˆุงู„ุฃุฎูŠุฑ ู‡ูŠ
386
00:33:38,070 --> 00:33:44,910
runุŒ ูˆู‡ูŠูƒูˆู† ููŠ ุนู†ุฏูŠ ุซู„ุงุซุฉ one ูˆุฃุฑุจุนุฉ zeroุŒ ูู‡ูˆ ููŠ
387
00:33:44,910 --> 00:33:47,910
ุงู„ุขุฎุฑ ู‡ูŠุนู…ู„ ุงู„ู€ classification ุนู„ู‰ ุฃู†ู‡ zeroุŒ
388
00:33:47,910 --> 00:33:51,230
ู…ู…ุชุงุฒุŒ ู„ูƒู† ู‡ุฐุง ุจุฑุถู‡ ู…ุด ู‡ูˆ ุงู„ุดุบู„ ุงู„ู„ูŠ ุงุญู†ุง ูุนู„ูŠุงู‹
389
00:33:51,230 --> 00:33:55,450
ู…ุญุชุงุฌูŠู†ู‡ุŒ ุจุณ ู†ุญุท ุจุนุถ ุงู„ู€ comments ู‡ู†ุง.
390
00:34:03,930 --> 00:34:11,170
print target of
391
00:34:11,170 --> 00:34:18,030
the most of
392
00:34:18,030 --> 00:34:23,630
the nearest neighbors
393
00:34:23,630 --> 00:34:24,950
or
394
00:34:49,610 --> 00:34:52,410
"ุงู„ุฃุฒุฏู‡ุงุฑ"ุŒ "ุงู„ุฃุฒุฏู‡ุงุฑ".
395
00:34:56,600 --> 00:35:01,560
ุงู„ุขู† ุณุฃู†ุชู‚ู„ ู„ุฌุฒุฆูŠุฉ ุฃูƒุซุฑ ุฃู‡ู…ูŠุฉ ุนุดุงู† ู†ุชูƒู„ู… ุนู†ู‡ุงุŒ
396
00:35:01,560 --> 00:35:04,920
classificationุŒ ุนุดุงู† ุฃุดุชุบู„ ุนู„ู‰ classification ู…ู†
397
00:35:04,920 --> 00:35:07,640
ู†ูุณ ุงู„ู€ library "from sklearn.neighbors import"
398
00:35:07,640 --> 00:35:13,780
"import" ููŠ ุนู†ุฏูŠ ุงู„ู€ "K nearest neighbor" ุฃูˆ ุงู„ู€
399
00:3
445
00:40:00,150 --> 00:40:05,040
ุงู„ู€ Confusion Matrix ุงู„ู…ูˆุฌูˆุฏุฉ ู‡ู†ุงุŒ ููŠ ุนู†ุฏูŠ
446
00:40:05,040 --> 00:40:15,880
ุงู„ู€ classification model evaluationุŒ ู‡ู†ุจุฏุฃ
447
00:40:15,880 --> 00:40:25,940
ุงู„ุขู†ุŒ ู…ู† ุงู„ู€ ASCII layer import matrix
448
00:40:28,280 --> 00:40:31,460
ุงู„ุขู† ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ MatrixุŒ ุฅูŠุด ุงู„ู€ Matrix ุฌุงู…ุนุฉ
449
00:40:31,460 --> 00:40:34,540
ุงู„ุฎูŠุงุฑุŸ ุชุญุชูˆูŠ ุนู„ู‰ ุฃู†ู‡ ู…ู† ุฎู„ุงู„ู‡ุง ุฃู†ุง ู…ู…ูƒู† ุฃู†ุดุฃ ุงู„ู€
450
00:40:34,540 --> 00:40:37,100
confusion matrixุŒ ุฃุญุณุจ ุงู„ู€ accuracyุŒ ุฃุญุณุจ ุงู„ู€
451
00:40:37,100 --> 00:40:40,240
precisionุŒ ุฃุญุณุจ ุงู„ู€ recallุŒ ุฃุญุณุจ ุงู„ู€ F-measureุŒ ูƒู„ ู‡ุฐู‡
452
00:40:40,240 --> 00:40:44,260
ู„ุฏู‰ ุงู„ู€ attributeุŒ ุนููˆุงู‹ุŒ ู„ู„ูƒู„ุงุณูŠูุงูŠุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
453
00:40:44,260 --> 00:40:49,940
ุนู†ุฏู‡ุงุŒ ูˆุฎู„ูŠู†ูŠ ุฃู†ุง ุฃุจุฏุฃ ู…ุน ุงู„ู€ confusion matrixุŒ
454
00:41:07,520 --> 00:41:13,880
ุงู„ู€ MุŒ ุงู„ู€ CMุŒ ุฅูŠุด ู…ุนู†ู‰ CMุŸ
455
00:41:24,700 --> 00:41:29,180
ู‡ู†ุง ูƒู„ ุงู„ู€ evaluation functions ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง
456
00:41:29,180 --> 00:41:33,420
ู‡ุชุงุฎุฏ ู…ู†ูŠ ุดุบู„ุชูŠู†: ู‡ุชุงุฎุฏ ู…ู†ูŠ ุงู„ู€ y_test ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€
457
00:41:33,420 --> 00:41:37,260
label ุงู„ุญู‚ูŠู‚ูŠุŒ ูˆุงู„ู€ y_predicted ุฃูˆ ุงู„ู€ predicted
458
00:41:37,260 --> 00:41:43,800
ุงู„ู€ y_predictุŒ ูˆู‡ูŠ
459
00:41:43,800 --> 00:41:48,590
ุจุฏูŠ ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ุงุทุจุน ู„ูŠ ุงู„ู€ matrix ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ
460
00:41:48,590 --> 00:41:52,010
ู‡ูŠ ุงู„ู€ Confusion MatrixุŒ ุงู„ู€ Test Set ุญุฌู…ู‡ุง
461
00:41:52,010 --> 00:41:57,450
ู‡ูŠ 120, 25ุŒ True PositiveุŒ True NegativeุŒ False PositiveุŒ False
462
00:41:57,450 --> 00:42:02,570
NegativeุŒ False PositiveุŒ False NegativeุŒ ุจุณ ุฅูŠุด ุงู„ู€
463
00:42:02,570 --> 00:42:08,250
classes ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŸ ุงู„ู€
464
00:42:08,250 --> 00:42:11,270
classes ูŠุง ุฅุฎูˆุงู†ู†ุง ูˆูŠุง ุฃุฎูˆุงุชูŠ ุจูŠูƒูˆู†ูˆุง ุชู†ุชุจู‡ูˆุง
465
00:42:11,270 --> 00:42:13,670
ุจุดูƒู„ ูƒูˆูŠุณุŒ ู„ุฃู†ู‡ ุฃู†ุง ู…ุง ุญุฏุฏุช ู„ู‡ ุฅูŠุด ุงู„ู€ classesุŒ ูุฅูŠุด
466
00:42:13,670 --> 00:42:17,770
ู‡ูˆ ุจูŠุงุฎุฏู‡ู… ู…ุจุงุดุฑุฉู‹ุŒ ุจูŠุฑูˆุญ ุจูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ุขู† ุฃูˆู„ ู…ุง ู‚ุฑุฃุช
467
00:42:17,770 --> 00:42:22,890
data setุŒ ุฃูˆู„ ู…ุง ู‚ุฑุฃุช data setุŒ ุฅูŠุด ุฃูˆู„ class ูˆุงุฌู‡ู‡ุŸ
468
00:42:22,890 --> 00:42:29,870
ุทุจุนุงู‹ ุฃู†ุง ุจุชูƒู„ู… ููŠ ุงู„ู€ test set ู‡ุฐุงุŒ ู„ุฃู† ุฃูˆู„ ู…ุง
469
00:42:29,870 --> 00:42:32,730
ุฒูˆุฏุชู‡ุŒ ุฒูˆุฏุชู‡ ุบู„ุท ููŠ ุงู„ู€ Y_predictุŒ ุฃูˆู„ element ููŠ
470
00:42:32,730 --> 00:42:37,250
ุงู„ู€ Y_test
471
00:42:37,250 --> 00:42:41,870
ุงู„ู€ Y_test
472
00:42:46,220 --> 00:42:49,820
ูƒุงู† ูˆุงุญุฏุŒ ูุฎู„ุงุตุŒ ุจูŠุนุชุจุฑ ุฃู†ู‡ ู‡ุฐุง ู„ู„ู€ Class ุงู„ุฃูˆู„ุŒ
473
00:42:49,820 --> 00:42:53,980
ุชู…ุงู…ุŸ ูˆู‡ุฐุง ู„ู„ู€ Class ุงู„ุซุงู†ูŠุŒ ุทุจุนุงู‹ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ
474
00:42:53,980 --> 00:42:56,240
ู…ุนู†ุงุชู‡ ุฃู†ู‡ุง ุงู„ู€ confusion matrixุŒ ูˆู…ู† ุฎู„ุงู„ู‡ุง ุฃู†ุง
475
00:42:56,240 --> 00:43:00,000
ุจู†ุทู„ู‚ ูˆุจุญุณุจ ูƒู„ ุญุงุฌุฉุŒ ุทุจ ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุญุณุจ ุงู„ู€
476
00:43:00,000 --> 00:43:05,240
accuracy ุงู„ุขู†ุŒ
477
00:43:05,240 --> 00:43:08,260
ุงุฐูƒุฑูˆุงุŒ ุงู„ู€ accuracy ูƒุงู†ุช ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุงู„ู€ true
478
00:43:08,260 --> 00:43:12,360
positive ุฒุงุฆุฏ ุงู„ู€ true negative ุนู„ู‰ ูƒู„ ุงู„ุนู†ุงุตุฑ
479
00:43:12,360 --> 00:43:13,600
ุงู„ู…ุฌู…ูˆุนุฉ ู‡ู†ุง
480
00:43:19,260 --> 00:43:25,360
ุณุฃู‚ูˆู… ุจุฅุนุงุฏุฉ ุงู„ู€ AccuracyุŒ ACC ุจุชุณุงูˆูŠ
481
00:43:25,360 --> 00:43:28,040
(repeating "ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ" is removed)
486
00:43:39,340 --> 00:43:48,690
ุจุชุณุงูˆูŠ 72.72ุŒ ุงู„ู€ Accuracy ู„ู„ู€ Model ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง
487
00:43:48,690 --> 00:43:55,850
ู‡ุงู†ุŒ Matrix.precision (dot instead of underscore)
488
00:43:55,850 --> 00:44:01,430
72.27 ู…ู…ุชุงุฒุŒ ุจุฏูŠ ุฃู†ุชู‚ู„ ู„ู„ุฎุทูˆุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุงุŒ ู„ูˆ ุฃู†ุง ุจุฏูŠ
489
00:44:01,430 --> 00:44:05,330
ุฃุญุณุจ ุงู„ู€ F1-score ุฃูˆ ุงู„ู€ precision ู„ู„ู€ first
490
00:44:05,330 --> 00:44:07,690
class ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุง
491
00:44:15,790 --> 00:44:20,710
ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ู†ุงุŒ ุจุฏูŠ ุฃุณู…ูŠู‡ุง
492
00:44:20,710 --> 00:44:29,190
precision = matrix.precision_score (dot instead of underscore)
493
00:44:29,190 --> 00:44:35,950
ูˆุจุฏูŠ ุฃุนุทูŠู‡ ุงู„ู…ุฌู…ูˆุนุชูŠู†ุŒ ูˆู„ู…ุง ุฃู†ุง ุจุฏูŠ ุฃู‚ูˆู„ ู„ู‡
494
00:44:35,950 --> 00:44:41,010
(Corrected sentence: print(precision))
495
00:44:48,420 --> 00:44:55,240
ุจุชุญู…ู„ูˆู†ูŠุŒ ุดูˆ ุฑุฃูŠูƒู…ุŸ ูŠุนู†ูŠ 65ุŒ ุงู„ู„ูŠ ุจุนุฏู‡ุง ุฃุญุณู† ู…ู† ุงู„ู€
496
00:44:55,240 --> 00:45:01,800
recallุŒ ุงู„ุฃู…ูˆุฑ ูƒู„ู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ุชุชุฌู…ุนุŒ ุทุจุนุงู‹
497
00:45:01,800 --> 00:45:04,560
ู„ุงุญุธูˆุง ุงู„ู€ classification ModelุŒ ูƒูƒู„ุŒ ุงู„ู€ PrecisionุŒ ุงู„ู€
498
00:45:04,560 --> 00:45:07,900
First ClassุŒ ุงู„ู€ Recall ู„ู„ู€ First ClassุŒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ (Repeating "ู‡ูŠูƒ" is removed)
499
00:45:07,900 --> 00:45:11,560
(Repeating "ู‡ูŠูƒ" is removed)
501
00:45:29,740 --> 00:45:38,460
ุจุงู„ู†ุณุจุฉุŒ ุฑุฃูŠูŠ ุตุงุฑุช ุจุฏู„ุนุฉ ูˆุฏู†ูŠุงุŒ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŒ No
502
00:45:38,460 --> 00:45:43,740
attribute
503
00:45:43,740 --> 00:45:53,160
recall_score ุฃูˆ
504
00:45:53,160 --> 00:45:53,840
ุงู„ู€ F1-score
505
00:46:04,040 --> 00:46:10,680
F1 = matrix.F1_score (dot instead of underscore)
506
00:46:10,680 --> 00:46:18,160
(underscore added)
507
00:46:21,880 --> 00:46:26,800
ุขุฎุฑ ุดุบู„ุฉุŒ ุฃู†ุง ู…ู…ูƒู† ุฃุฌูŠุจ ูƒู„ ุงู„ู€ values ู…ุน ุจุนุถู‡ุง ู…ู†
508
00:46:26,800 --> 00:46:31,520
ุฎู„ุงู„ ุดุบู„ุฉ ู†ุณู…ูŠู‡ุง ุงู„ู€ Classification Report
509
00:46:31,520 --> 00:46:37,800
ุงู„ู€ Classification Report ู…ู…ูƒู† ูŠุณุงุนุฏู†ูŠ ุจุดูƒู„ ูƒุจูŠุฑ
510
00:46:37,800 --> 00:46:41,520
ุจุญูŠุซ ุฃู†ู‡ ุฃู†ุง ู…ุง ุงุญุชุงุฌุด ุฃู† ุฃูƒุชุจ ูƒู„ ุญุงุฌุฉ ู…ุน ุจุนุถู‡ุง
511
00:46:41,520 --> 00:46:45,400
Classification
512
00:46:45,400 --> 00:46:45,900
Report
513
00:46:50,530 --> 00:46:57,750
ุฃูˆ ุงู„ู€ cls_report = matrix.classification (underscore added and "dot" instead of "underscore")
514
00:46:57,750 --> 00:47:01,430
_report (underscore added)
515
00:47:01,430 --> 00:47:10,310
ุจุฏูŠ ุฃุฏู‘ูŠู„ู‡ ุงู„ู€ method ุฃูˆ ุนููˆุงู‹
516
00:47:10,310 --> 00:47:14,010
ุงู„ู€ to function ุฃูˆ ุฃุฒูˆุฏู‡ ุจุงู„ู€ predictedุŒ ุจุงู„ู€ true
517
00:47:14,010 --> 00:47:18,670
label ูˆุงู„ู€ predicted labelุŒ ูˆุญุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ู‡ู†ุงุŒ ุงุทุจุน ู„ูŠ
518
00:47:18,670 --> 00:47:19,890
ุงู„ู€ classifier
519
00:47:23,050 --> 00:47:26,830
"Classification Report"ุŒ ูˆู‡ู†ุง ุฌุงุจ ู„ูŠ ุงู„ุฑุงุจูˆุฑุช
520
00:47:26,830 --> 00:47:32,290
ุงู„ูƒุงู…ู„ุŒ ุจุฏุฃ ุจุงู„ู€ "Precision"ุŒ ูˆุงู„ู€ "Recall"ุŒ ูˆุงู„ู€ "F1
521
00:47:32,290 --> 00:47:36,090
Score"ุŒ ุฃูŠ ุงู„ู‚ูŠู… ุงู„ุซู„ุงุซ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู„ู„ู€
522
00:47:36,090 --> 00:47:41,470
"Class"ุŒ ุทุจุนุงู‹ ู„ู„ู€ "Class Zero"ุŒ ู„ุฃู† ุงู„ู€ "Report"
523
00:47:41,470 --> 00:47:45,430
ู„ุงุฒู… ูŠุจูŠู† ูƒู„ ุงู„ู‚ูŠู…ุŒ ู„ุงุฒู… ูŠุจูŠู† ูƒู„ ุญุงุฌุฉุŒ ุงู„ุขู† ุงู„ู€
524
00:47:45,430 --> 00:47:51,210
"Recall"ุŒ ุงู„ู€ "Precision"
525
00:47:51,210 --> 00:47:55,870
83ุŒ ุงู„ู€ Recall 78ุŒ ุงู„ู€ F1-score
526
00:47:55,870 --> 00:48:07,230
ูˆุงู„ู€ Accuracy ูˆูŠู†ู‡ุงุŸ ู„ูŠุด ู‡ูŠ ูƒุชุฑุช ุฏุงุฎู„ุงุช ู…ุน ุจุนุถุŸ
527
00:48:15,290 --> 00:48:21,970
ุงู„ู€ Accuracy ุจุดูƒู„ ุนุงู… ู‡ูŠ 73ุŒ ู„ู…ุงุฐุง
528
00:48:21,970 --> 00:48:26,930
72.72ุŸ ู‡ู†ุง ููŠ ุงู„ู€ robot ุนู…ู„ ุงู„ู€ rounding ุฃูˆ
529
00:48:26,930 --> 00:48:32,090
ุงู„ู‚ูŠู… ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒ ู‡ู†ุงุŒ ูู‡ูŠ ูุนู„ูŠุงู‹ 72.72ุŒ ูุจุนู…ู„
530
00:48:32,090 --> 00:48:34,950
ุงู„ู€ roundingุŒ ุงู„ุขู† ุงู„ู€ Recall ู„ู„ู€ Zero ุฒูŠ ู…ุง ู‚ู„ู†ุง
531
00:48:34,950 --> 00:48:38,090
83ุŒ ุงู„ู€ Precision ูˆุงู„ู€ Recall ู„ู„ู€ Class ุงู„ุฃูˆู„
532
00:48:43,190 --> 00:48:49,230
ู‡ูŠ ุงู„ู€ Class number one ู„ู…ุง
533
00:48:49,230 --> 00:48:56,040
ู‚ู„ุช ู„ู‡ ุงุญุณุจ ุงู„ู€ precisionุŒ ุฌุงู„ูŠ 66ุŒ ู‡ุฐู‡ ู‡ูŠ ุชู‚ุฑูŠุจุงู‹ ุงู„ู€
534
00:48:56,040 --> 00:49:03,800
55.ูƒุฐุงุŒ ุงู„ู€ 56ุŒ ุงู„ู€ recall ุงู„ู„ูŠ ู‡ูŠ 55.8ุŒ ุจุนู…ู„ู‡ุง
535
00:49:03,800 --> 00:49:10,240
ุชู‚ุฑูŠุจุงู‹ุŒ ุงู„ู€ F1-score ุงู„ู„ูŠ ูƒุงู†ุช ุจุชู…ุซู„ ุงู„ู€ 60ุŒ ุชู…ุงู…ุŸ
536
00:49:10,240 --> 00:49:13,960
ูˆุงู„ู€ support ู„ู€ values ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ูู‡ูŠ ููŠ ุงู„ู€
537
00:49:13,960 --> 00:49:16,880
report ู‡ุฐุงุŒ ุฃู†ุง ุฌูŠุจุช ูƒู„ ุงู„ู€ values ุจุงู„ู†ุณุจุฉ ู„ูŠ ู„ู…ุฑุฉ
538
00:49:17,890 --> 00:49:23,690
ูˆุงุญุฏุฉุŒ ุจุชู…ู†ู‰ ูŠูƒูˆู† ุงู„ููŠุฏูŠูˆ ู‡ุฐุง ูŠูˆุถุญ ู„ูƒู… ูุนู„ูŠุงู‹ ุฅูŠุด
539
00:49:23,690 --> 00:49:27,590
ุฃู†ุง ู…ุญุชุงุฌ ููŠ ุงู„ู€ classificationุŒ ุทุจุนุงู‹ ู‡ุฐุง ุงู„ูƒู„ุงู…
540
00:49:27,590 --> 00:49:32,170
ุจูŠุทุจู‚ ู…ุน ูƒู„ data set ุฃูˆ ู…ุน ูƒู„ classification
541
00:49:32,170 --> 00:49:36,630
modelุŒ ูˆูƒู„ classification model ููŠู‡ ุฎุงุตูŠุฉ ู…ุนูŠู†ุฉุŒ
542
00:49:36,630 --> 00:49:40,210
ูŠู…ูƒู† ูŠูƒูˆู† ุงู„ุดุบู„ ุงู„ูˆุญูŠุฏ ุงู„ุขู† ููŠ ุงู„ุงุฎุชู„ุงู ุนู†ุฏูƒู… ุงู„ู„ูŠ
543
00:49:40,210 --> 00:49:42,770
ู‡ูˆ ุงุณุชุฏุนุงุก ุงู„ู€ classifierุŒ ุจุงุฑูŠุฎ ุงู„ุงุณุชูุนุงู„ ุงู„ู€
544
00:49:42,770 --> 00:49:47,870
classifierุŒ ุจูŠู†ู…ุง ุงู„ู€ fit ุญุชุธู„ ุซุงุจุชุฉ ู„ู„ุฌู…ูŠุนุŒ ุงู„ู€
545
00:49:47,870 --> 00:49:51,270
predict ุญุชุธู„ ุซุงุจุชุฉ ู„ู„ุฌู…ูŠุนุŒ ูˆุงู„ู€ measurement ุญุชุธู„
546
00:49:51,270 --> 00:49:56,590
ู…ูˆุฌูˆุฏุฉ ู„ูƒู„ ุงู„ุนู†ุงุตุฑุŒ ู„ูƒู„ ุงู„ู€ classifiers ุจู†ูุณ
547
00:49:56,590 --> 00:50:00,910
ุงู„ุทุฑูŠู‚ุฉุŒ ุฃู†ุง ู‡ูŠูƒ ุฎู„ุตุชุŒ ุจุชู…ู†ู‰ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰
548
00:50:04,250 --> 00:50:07,330
ุฃุชู…ู†ู‰ ู…ู† ุงู„ู„ู‡ ุชุจุงุฑูƒ ูˆุชุนุงู„ู‰ ุฃู† ุฃูƒูˆู† ูุนู„ุงู‹ ูˆูู‚ุช
549
00:50:07,330 --> 00:50:10,850
ููŠ ุฃู†ูŠ ุฎู„ุงู„ ุงู„ุชุณุฌูŠู„ ู‡ุฐุง ุฃู†ูŠ ุฃูˆุถุญ ู„ูƒู… ู…ูˆุถูˆุน
550
00:50:10,850 --> 00:50:16,390
ุงู„ู€ classificationุŒ ูˆู…ู† ุฎู„ุงู„ู‡ ุงุณุชุฎุฏู…ุช ุงู„ู€ Canary
551
00:50:16,390 --> 00:50:20,370
Snapper ูˆุงุณุชุฎุฏู…ุช ุงู„ู€ Kaggle ูƒู€ Tool ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€
552
00:50:20,370 --> 00:50:24,770
IPython ููŠ ุงู„ู€ local machine ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠุŒ ุฅุฐุง ููŠ
553
00:50:24,770 --> 00:50:29,270
ุฃูŠ ุณุคุงู„ุŒ ุงุญูุธูˆู‡ ู„ู€ next sessionุŒ ุงู„ู€ online session
554
00:50:29,270 --> 00:50:33,690
of the discussionุŒ ูˆุนุณู‰ ุฃู† ู†ูƒูˆู† ูˆูู‚ู†ุง
555
00:50:33,690 --> 00:50:36,530
ุฏุงุฆู…ุงู‹ ูˆุฃุจุฏุงู‹ุŒ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡