abdullah's picture
Add files using upload-large-folder tool
25b5648 verified
1
00:00:04,520 --> 00:00:06,480
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู„ุตู„ุงุฉ ูˆุงู„ุณู„ุงู… ุนู„ู‰ ุฑุณูˆู„
2
00:00:06,480 --> 00:00:11,160
ุงู„ู„ู‡ ุฃู‡ู„ุง ูˆุณู‡ู„ุง ุจูƒู… ููŠ ู„ู‚ุงุกุฉ ู…ู† ุฌุฏูŠุฏ ู…ู† ู„ู‚ุงุกุงุช
3
00:00:11,160 --> 00:00:16,280
ู…ุณุงู‚ุฉ ุชู†ู‚ูŠุจ ุงู„ุจูŠุงู†ุงุช ูˆุงู† ุดุงุก ุงู„ู„ู‡ ุงู„ูŠูˆู… ุณุฃุชูƒู„ู…
4
00:00:16,280 --> 00:00:21,680
ู…ุนุงูƒู… ุนู† .. ุณุฃุดุชุบู„ ู…ุนุงูƒู… ุนู…ู„ูŠ ุฒูŠ ู…ุง ุฃุดุชุบู„ุช ููŠ ุงู„ู€
5
00:00:21,680 --> 00:00:25,520
preprocessing ุณุฃุนู…ู„ ููŠุฏูŠูˆ ู‚ุตูŠุฑ ุนู† ุงู„
6
00:00:25,520 --> 00:00:28,120
classification ูˆู…ุงุฐุง ุฃุฑูŠุฏ ุฃู† ุฃูุนู„ ููŠ ุนู…ู„ ุงู„
7
00:00:28,120 --> 00:00:32,800
classificationูˆุญุดูƒู„ ุนู„ู‰ ุงู„ูƒุฌู„ ูƒู€ Environment ู…ู…ูƒู†
8
00:00:32,800 --> 00:00:37,740
ุฃู†ุชู… ุชุณุชุฎุฏู…ูˆู‡ุง ููŠ ู…ูˆุถูˆุน ุงู„ู€ Data Mining ุฃูˆ ุงู„ู€
9
00:00:37,740 --> 00:00:41,800
Data Science ูˆุญุงุฌุงุช ูƒุชููŠ ูู‚ุท ุจู€ Classifier ุฑุงุญู„
10
00:00:41,800 --> 00:00:44,920
ูˆุงู„ู€ Classifier ู‡ุฐุง ู„ู‡ ุฎุตูˆุตูŠุฉ ุดูˆูŠุฉ ุถู…ู† ูƒู„ ููŠุฏูŠูˆ
11
00:00:44,920 --> 00:00:48,040
ู‡ุฐู‡ ุณุงุนุฏูƒู… ููŠ ูู‡ู… ุฃูˆ ููŠ ุนู…ู„ ุงู„ูˆุงุฌุจ ุจุดูƒู„ ุตุญูŠุญ
12
00:00:48,040 --> 00:00:52,300
ุชู…ุถุจู†ูƒู… ููŠ ุงู„ูˆุงุฌุจ ุชุณุชุฎุฏู…ูˆุง ุงู„ data set ุชุจุนูƒู…
13
00:00:52,300 --> 00:00:57,290
ูˆุชู‚ุงุฑู†ูˆุง ุงู„ performance ุชุจุน ุงู„ three classifiersู…ู†
14
00:00:57,290 --> 00:01:02,050
ุฃุฑุจุนุฉ ุงุญู†ุง ุฎุฏู†ุง ุงู„ู€ Canary Sniper ูˆุงู„ู€ Naive Bison
15
00:01:02,050 --> 00:01:04,890
ูˆุงู„ู€ Neural Network ูˆุงู„ู€ Decision Tree ู‡ุฏูˆู„
16
00:01:04,890 --> 00:01:07,650
ุงู„ุฃุฑุจุนุฉ ุงู†ุง ุดุฑุญุชู‡ู… ููŠ ุชุณุฌูŠู„ุงุช ุงู„ุณุงุจู‚ุฉ ุงู„ู…ุถู…ูˆู† ุงู†ูƒู…
17
00:01:07,650 --> 00:01:10,210
ุชุฎุชุงุฑูˆุง ุงู„ุชู„ุงุชุฉ ูˆ ุชุทุจู‚ูˆู‡ู… ุนู„ู‰ ุงู„ data set ุงู„ู„ูŠ
18
00:01:10,210 --> 00:01:15,770
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒู…ุŒ ุงู„ุขู† ุงู†ุง ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ู‡ุจุฏุฃ ุงุนู…ู„
19
00:01:15,770 --> 00:01:19,160
sharing ู„ู„ุดุงุดุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุงุฃุญุงูˆู„ ููŠ ุงู„ููŠุฏูŠูˆ
20
00:01:19,160 --> 00:01:23,460
ุฃู†ุชู‚ู„ ู„ู…ูˆุถูˆุน ุงู„ู€ Sharing ูˆุฃุชูƒู„ู… ุนู„ู‰ ุงู„ู€ Data Set
21
00:01:23,460 --> 00:01:29,580
ุฃูˆ ุนู„ู‰ ุงู„ู€ Element ุงู„ู„ูŠ ุฃู†ุง .. ุงู„ุจุฑู†ุงู…ุฌ
22
00:01:29,580 --> 00:01:35,640
ุงู„ู„ูŠ ุฃู†ุง ุจุฏุฃ ุฃุดุชุบู„ ุนู„ูŠู‡ ุจุฏุงูŠุฉ ุฎู„ูŠู†ูŠ ุฃู†ุง ุฃุฑูˆุญ ุฃุนู…ู„
23
00:01:35,640 --> 00:01:40,900
Share ู„ู„ู€ Desktop ู‡ูŠ
24
00:01:40,900 --> 00:01:44,300
Share ู„ู„ู€ Desktop ุจุงู„ูƒุงู…ู„ ูˆุจุนุฏ ุงู„ุชุณุฌูŠู„ ุงู„ู…ูุฑูˆุถ ู„ู„ู€
25
00:01:44,300 --> 00:01:45,700
Desktop ูˆุฃู†ุง ุงู„ุขู†
26
00:02:07,030 --> 00:02:12,390
ุจุณู… ุงู„ู„ู‡ ู‡ูŠุงู„ูƒุงุฌู„.com ุฃู†ุง ุฃูŠู‡ ุงู„ุญุณุงุจ ุนู„ู‰ ุงู„ูƒุงุฌู„ุŸ
27
00:02:12,600 --> 00:02:16,280
ุงู„ู„ูŠ ุงู†ุดุฃุชู‡ ู…ู† ุชุจู‚ู‰ ุงู„ุฅุญุณุงุจ ุขุฎุฑ ู„ูƒู† ู‡ุฐุง ุฃู†ุง ุฃู†ุดุฃุชู‡
28
00:02:16,280 --> 00:02:25,400
ู…ู† ูุชุฑุฉ ุจุฎุตูˆุต ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
29
00:02:25,400 --> 00:02:25,680
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
30
00:02:25,680 --> 00:02:25,740
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
31
00:02:25,740 --> 00:02:26,100
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
32
00:02:26,100 --> 00:02:26,620
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
33
00:02:26,620 --> 00:02:26,900
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
34
00:02:26,900 --> 00:02:27,000
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
35
00:02:27,000 --> 00:02:27,040
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
36
00:02:27,040 --> 00:02:32,220
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
37
00:02:32,220 --> 00:02:38,740
ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ ุงู„ู„ูŠ
38
00:02:38,740 --> 00:02:42,760
ุงู„ู„ูŠ ุงู„ู„ูˆุจุญุฏุฏ ุงู„ database ู‡ูŠ ุจูŠู…ุง ุงู†ุฏูŠุงู… ุฏูŠุงุจูŠุชุงุณ
39
00:02:42,760 --> 00:02:46,120
ุงู„ database ู‡ูŠ ู…ุดู‡ูˆุฑุฉ ุนุงู„ู…ูŠุงู‹ ุฃู†ุง ู…ุด ู‡ุฑูˆุญ ุฃุญู…ู„ู‡ุง
40
00:02:46,120 --> 00:02:50,880
ูƒู…ุงู† ู…ุฑุฉ ูุงู„ู„ูŠ already ุงุฐุง ุญู…ู„ุชู‡ุง ุจูƒูˆู† ุงู†ุชู‡ูŠุช ู…ู†
41
00:02:50,880 --> 00:02:55,620
ุงู„ู…ู„ู ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ูˆ ู‡ู†ุชู‚ู„ ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ู‡ุฑูˆุญ
42
00:02:55,620 --> 00:03:01,840
ุงู†ุง ุฃู‚ูˆู„ู‡ ููŠ ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ูŠ ุจูŠู…ุง
43
00:03:01,840 --> 00:03:02,680
ุฏูŠุงุจูŠุชุงุณ
44
00:03:07,480 --> 00:03:16,400
ูˆุฃู†ุง ุจุฏูŠ ุฃุณุชุฎุฏู… ุงู„ู€ Dataset Hi ุทุจุนุง
45
00:03:16,400 --> 00:03:18,840
ุงู„ู€ Dataset ุฌู…ุงู„ ุงู„ุบูŠุฑ ุนุดุงู† ู†ูู‡ู…ู‡ุง ุจุดูƒู„ ุณุฑูŠุน ุงู„ู€
46
00:03:18,840 --> 00:03:23,280
Dataset ู‡ูŠ ู†ุงุชุฌุฉ ุนู† ุงู„ู…ุฑูƒุฒ ุงู„ูˆุทู†ูŠ ู„ุฃู…ุฑุงุถ ุงู„ุณูƒุฑูŠ
47
00:03:23,280 --> 00:03:30,540
ูˆุงู„ุญู…ูŠุฉ ูˆุงู„ุฃู…ุฑุงุถ ุงู„ูƒู„ุฉุงู„ู‡ุฏู ู…ู†ู‡ุง ุฅู†ู‡ ูุนู„ูŠู‹ุง
48
00:03:30,540 --> 00:03:33,860
ูŠุญุงูˆู„ูˆุง ูŠุชู†ุจุฃูˆุง ู‡ู„ ุงู„ู…ุฑูŠุถ ู‡ุฐุง ู‡ูˆ ู…ุคุตุงุจ ุณูƒุฑูŠ ุฃูˆ ู„ุง
49
00:03:33,860 --> 00:03:36,980
ุจู†ุงุกู‹ ุนู„ู‰ ุงู„ุชุดุฎูŠุตุงุช ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ููŠ ุงู„ database
50
00:03:36,980 --> 00:03:39,800
ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‚ุฏุงู…ู‡ุง ู‡ูŠ ู…ูˆุฌูˆุฏุฉ ุฃุนุธู… ู…ูƒูˆู‘ู†ุฉ ู…ู† ุชู…ุงู†ูŠุฉ
51
00:03:39,800 --> 00:03:42,780
attributes ุฒูŠ ุงู„ู„ูŠ ู‡ู†ุดูˆูู‡ุง ูƒู…ุงู† ุดูˆูŠุฉ ยซseveral
52
00:03:42,780 --> 00:03:44,920
constraints were placed on the solution of the
53
00:03:44,920 --> 00:03:50,400
iceยป ูˆู‡ุฐู‡ ุงู„ database ู…ูƒูˆู‘ู†ุฉ ุจุชุชู†ุงูˆู„ ุงู„ female
54
00:03:50,400 --> 00:03:54,220
patients only all the patients here are females at
55
00:03:54,220 --> 00:04:03,460
leastุนู„ู‰ ุงู„ุฃู‚ู„ ูŠูƒูˆู†ูˆุง 21 ุณู†ุฉ ูŠุนู†ูŠ 21 ุณู†ุฉ ู…ู† ุจูŠู…ุง
56
00:04:03,460 --> 00:04:07,860
ุงู„ู…ู†ุทู‚ุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ููŠู‡ุง ุทุจุนุง ู‡ุฐุง ูƒู„ ุงู„ูƒู„ุงู… ุงู†ุง ู…ุง
57
00:04:07,860 --> 00:04:11,300
ุงู„ุงุตู„ ุงู„ู„ูŠ ุดูุชู‡ ุนู†ุฏู…ุง ุงุชุนุฑูุชู‡ ุนู„ู‰ ุงู„ database
58
00:04:11,300 --> 00:04:16,980
ูˆุงู„ุงู† ุจุฏู‡ ุงุฑูˆุญ ุญู‚ูˆู„ู‡ new notebook
59
00:04:22,650 --> 00:04:26,450
ุงู„ุขู† ุงู„ู€ New Notebook ู‡ูˆ Jupiter Notebook ุฅู†ุดุฃู„ูŠู‡
60
00:04:26,450 --> 00:04:30,910
ุงู„ู€ KaggleุŒ ูˆุงู„ุขู† ุฌุงุจ ู„ูŠ ู‡ุฐู‡ ูƒู„ ุงู„ูƒูˆุฏ ุนุดุงู† ูŠุนู…ู„
61
00:04:30,910 --> 00:04:35,490
import ู„ู…ูŠู† ู„ู„ database ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠู‡ุงุŒ ุทุจุนุงู‹
62
00:04:35,490 --> 00:04:40,590
ู‡ุฐุง ุงู„ูุฑู‚ ุงู„ูˆุญูŠุฏ ู…ุง ุจูŠู† ุงู„ู€ OnlineุŒ ุงู„ู€ Python
63
00:04:40,590 --> 00:04:46,370
Jupiter Notebook ุฃูˆ ุงู„ู€ Localุงู„ู„ูŠ ููŠ ุงู„ุขุฎุฑ ุงู†ุช ู„ู…ุง
64
00:04:46,370 --> 00:04:49,210
ุจู†ุนู…ู„ import ูƒู†ุง ุจู†ุฒูˆุฏู‡ ุจุงู„ู…ุณุงุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุŒ ุทุจ ู…ูŠู†
65
00:04:49,210 --> 00:04:53,790
ุจูŠุญุฏุฏ ุงู„ู…ุณุงุฑุŸ ู‡ุฐู‡ ู…ูˆุฌูˆุฏุฉ ุนู„ู‰ cloud ุฃูˆ ุนู„ู‰ driver
66
00:04:56,070 --> 00:04:59,490
ูุงุญู†ุง ุจู†ุฎุชุงุฑู‡ุง ุจูƒู„ ุจุณุงุทุฉ ุจุฏูˆู† ุฅูŠุด ุจุฏูˆู† ู…ุง ูŠูƒูˆู† ููŠ
67
00:04:59,490 --> 00:05:02,650
ุนู†ุฏู†ุง ุงู„ .. ุนููˆุง ูุจุชุฑูˆุญ ุจุชุฒูˆู‘ุฏู†ุง ุฅูŠู‡ ุฃุบู„ู‰ ูƒุงุฌู„
68
00:05:02,650 --> 00:05:05,090
ุจุฏูˆู† ู…ุง ุชูƒูˆู† ููŠ ุนู†ุฏู†ุง ู…ุดุงูƒู„ ุงู„ุฃุตู„ ุฅุญู†ุง ู‡ุฐุง ุงู„ code
69
00:05:05,090 --> 00:05:09,710
ุฅุฐุง ุจุฏู†ุง ู†ุดุชุบู„ online ู†ุฑูุนู‡ ุฃูˆ ู†ุชุนู„ู…ู‡ ุฃูˆ ู†ุญูุธู‡ ู„ุฃู†
70
00:05:09,710 --> 00:05:12,250
ู‡ุฐุง ุงู„ code ู‡ูŠู„ุฒู…ู†ุง ู…ุน ุงู„ูƒุงุฌู„ ูˆ ุบุงู„ุจุง ู‡ูˆ ู†ูุณู‡
71
00:05:12,250 --> 00:05:16,350
ู…ูˆุฌูˆุฏ ู…ุน ุงู„ collab ู…ุง ุนู„ูŠู†ุง ุฃู† ุงู„ุฃู† ู„ูˆ ุฃู†ุง ุทุจุนุง
72
00:05:16,350 --> 00:05:19,190
ู†ุงุญุธ ุฃู†ู‡ ุนู…ู„ ูƒู…ุงู† import ู„ุฃู‡ู… two libraries ุงู„ู„ูŠ
73
00:05:19,190 --> 00:05:22,740
ู‡ู… ุนู„ู‰ ุงู„ databaseุฃูˆ ููŠ ุงู„ู€ dataset ุงู„ู€ numpy
74
00:05:22,740 --> 00:05:26,320
ูˆุงู„ุจุงู†ุฏุงุฒ ุทุจุนุงู‹ ุฃุญู†ุง ู…ุนุธู… ุดุบู„ู†ุง ู…ู† ุฎู„ุงู„ ุงู„ุจุงู†ุฏุงุฒ
75
00:05:26,320 --> 00:05:31,280
ู„ูƒู† ููŠ ู…ุซุงู„ ุงู„ูŠูˆู… ู‡ูŠู„ุฒู…ู†ุง ุงู„ numpy ูƒุฐู„ูƒ ู„ู…ุฑุฉ ูˆุงุญุฏ
76
00:05:31,280 --> 00:05:35,550
ุฃูˆ ู„ู…ุฑุชูŠู† ุฎู„ูŠู†ุง ู†ุนู…ู„ runู„ู„ู€ code ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง
77
00:05:35,550 --> 00:05:39,750
ุนู…ู„ run ุทุจุนุงู‹ ุณุฑุนุฉ ุงู„ุงุณุชุฌุงุจุฉ ุจุชุนุชู…ุฏ ุนู„ู‰ ุณุฑุนุฉ ุงู„
78
00:05:39,750 --> 00:05:42,950
connection ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูƒ ุทุจุนุงู‹ ู‡ู†ู ูŠู‚ูˆู„ูƒ ุฌุฏูŠุด
79
00:05:42,950 --> 00:05:46,050
ุงู†ุช ุงุณุชุฎุฏู…ุช ู…ู† ุงู„ hardest ุฌุฏูŠุด ุนู†ุฏูƒ CPU ุงูˆ ุฅุดุบุงู„
80
00:05:46,050 --> 00:05:48,930
ู„ู„ู€ CPU ุฌุฏูŠุด ุฅุฐุง ูƒุงู† ุนู†ุฏูƒ ุฅุดุบุงู„ ู„ู„ุฑุงุจุท ู…ู…ูƒู† ุชุทููˆ
81
00:05:48,930 --> 00:05:51,210
ู…ู…ูƒู† ุชุนู…ู„ restart ู„ู„ุฌู‡ุฉ ุจุชุงุน ุงู„ notebook ู‡ุฐุง
82
00:05:51,210 --> 00:05:59,030
ุงู„ุฑุงุจุท ุจุนุฏ ู…ุง ุนู…ู„ุช run ุฃุฏุงู†ูŠ ุฑุงุจุท ููŠ diabetes.csv
83
00:05:59,030 --> 00:06:02,070
ุทุจุนุง ุฎู„ูŠู†ูŠ ุฃู†ุง ุฃุณู…ูŠ ุงู„ notebook ุชุจุนูŠ diabetes
84
00:06:06,170 --> 00:06:10,510
ุนู†ุฏ ุงู„ู€ score specification
85
00:06:12,560 --> 00:06:15,840
ูˆุฃุฌูŠ ุฃุฎุฏ Notebook ุฌุฏูŠุฏุฉ ูˆุญุฑูˆุญ ุฃู†ุง ุฃู‚ูˆู„ ู„ู‡ ุงู„ู€
86
00:06:15,840 --> 00:06:19,240
DataFrame ุทุจ ุฃู†ุง ุฎู„ุงุต ุจุฏูŠ ุฃู‚ุฑุฃ ุงู„ database pandas
87
00:06:19,240 --> 00:06:27,080
.read underscore csv ุงู„ู„ูŠ ุฒูŠ ู…ุง ุฃุญู†ุง ุจู†ู‚ุฑุฃ ูˆู‡ูŠ ุงู„
88
00:06:27,080 --> 00:06:31,220
single quotation ูˆู‡ูŠ ุงู„ู…ุณุงุฑ ุงู„ู„ูŠ ุฃู†ุง ู†ุณุฎุชู‡ ู‡ูŠ ูƒุฏู‡
89
00:06:31,220 --> 00:06:34,620
ุงู„ุฃู…ูˆุฑ ุชู…ุช ุนู…ู„ูŠุฉ ุงู„ู…ูุฑูˆุถ ุชู… ุนู…ู„ูŠุฉ ุงู„ู‚ุฑุงุกุฉ ุนุดุงู† ุฃู†ุง
90
00:06:34,620 --> 00:06:38,920
ุฃุชุฃูƒุฏ ูˆุฑุญ ุฃู‚ูˆู„ ุงู„ DataFrame.head ูˆุงู„head ู…ู…ูƒู† ุฃู†ุง
91
00:06:38,920 --> 00:06:44,470
ุฃุฒูˆุฏู‡ุง ุฒูŠ ู…ุง ู‚ูˆู„ู†ุง ุณุงุจู‚ุงู‹ุจุชุนุฑุถ ุงู„ุฃูˆู„ ุตููˆู ู…ู† ุงู„ู€
92
00:06:44,470 --> 00:06:48,450
DataFrame ุงู„ู„ูŠ ุฃู†ุง ู‚ุฑุฃุชู‡ ุงู„ู€ DataFrame ู‡ุฐุง ู…ูƒูˆู‘ู†
93
00:06:48,450 --> 00:06:53,130
ู…ู† ุญูˆุงู„ูŠ ุงู„ู€ 708 ุงู„ู€ ูˆ ุณุจุชูŠู† row ุงู„ู€ By default
94
00:06:53,130 --> 00:06:56,490
ุงู„ู€ head ุจุชุฌูŠุจ ุนุดุฑุฉุŒ ุนููˆุงุŒ ุจุชุฌูŠุจ ุฎู…ุณุฉุŒ ุฅุฐุง ุฃู†ุง ุจุฏูŠ
95
00:06:56,490 --> 00:06:59,830
ุนุดุฑุฉ ุฃูˆ ุจุฏูŠ ุฎู…ุณุฉ ุฃูˆ ุจุฏูŠ ุชู„ุงุชุฉ ุฃูˆ ุจุฏูŠ ุฎู…ุณุชุงุดุฑ ู…ู…ูƒู†
96
00:06:59,830 --> 00:07:05,350
ุฃู†ุง ุฃุฑูˆุญ ุฃุบูŠุฑู‡ ู…ุฑุฉ ุชุงู†ูŠุฉุŒ ูู‡ูŠ ุฑุงุญ ู‚ุฑุฃู„ูŠู‡ุง ุงู„ู„ูŠ
97
00:07:05,350 --> 00:07:08,840
ู‚ุงู„ู„ูŠ ู‡ูŠ ุงู„ุจูŠุงู†ุงุช ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒุจุณ ุฎู„ู‘ูŠู†ูŠ ุฃู‚ูˆู„
98
00:07:08,840 --> 00:07:14,740
ู„ูƒู… ู‚ุฏุฑุฉ ุงู„ู€ Pages Classification 1 ุงู„ุฃู† ุชุนุฑููˆุง
99
00:07:14,740 --> 00:07:18,900
ุนู„ู‰ ุงู„ู€ Attributes ุจุดูƒู„ ุณุฑูŠุน ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ู‡ู… ุจู…ุง
100
00:07:18,900 --> 00:07:23,120
ุฃู† ูƒู„ ุงู„ู€ Database ุฃูˆ ูƒู„ ุงู„ู€ Data Sets ู…ูƒูˆู‘ู†ุฉ ู…ู†
101
00:07:23,120 --> 00:07:27,680
ุงู„ู€ Gmail ูุนู„ุง ุจูŠุณุฃู„ู†ูŠ ุนู† ุงู„-Pregnancyุนุฏุฏ ู…ุฑุงุช
102
00:07:27,680 --> 00:07:34,600
ุงู„ุญู…ู„ุŒ ู†ุณุจุฉ ุงู„ุฌู„ูˆูƒูˆุฒ ููŠ ุงู„ุฏู…ุŒ ุถุบุท ุงู„ุฏู…ุŒ ูƒู… ูƒุงู†ุŒ
103
00:07:34,600 --> 00:07:37,420
ุณู…ุงูƒุฉ ุงู„ุฌู„ุฏุŒ ุทุจุนุงู‹ ุณู…ุงูƒุฉ ุงู„ุฌู„ุฏ ุฌุงู…ุนุฉ ุงู„ุฎูŠุฑ ู…ู‡ู…ุฉ
104
00:07:37,420 --> 00:07:44,580
ู„ุฃู†ู‡ ุจูŠู…ุซู„ู‡ุง ููŠ ุทุจู‚ุฉ ุงู„ุฏู‡ูˆู†ุŒ ูƒู…ูŠุฉ ู†ุณุจุฉ ุงู„ุฃู†ุณูˆู„ูŠู†
105
00:07:44,580 --> 00:07:48,480
ุฃูˆ ูƒู…ูŠุฉ ุงู„ุฃู†ุณูˆู„ูŠู† ุงู„ู…ูˆุฌูˆุฏุฉ ุงู„ู€ Body Mass Index
106
00:07:48,480 --> 00:07:52,600
ู…ุคุดุฑ ูƒุชู„ุฉ ุงู„ุฌุณุฏ ุงู„ุฌุฏุด ุทุจุนุง ุงู„ู…ูุฑูˆุถ ูƒู„ ุงู„ู†ุงุณ ุงู„ู„ูŠ
107
00:07:52,600 --> 00:07:55,880
ููˆู‚ ุงู„ู€30 ุฃูˆ ููˆู‚ ุงู„ู€32 ุฃูˆ 35ุŒ ุฃุนุชู‚ุฏ ุฅุฐุง ุฃู†ุง ู…ุด
108
00:07:55,880 --> 00:08:01,920
ุฃูˆุทุงู†ูŠ ูŠุนู†ูŠุจู‚ูˆู„ ุนู†ู‡ู… ุฃุตุญุงุจ ุณู…ู†ุฉุŒ ุงู„ู€ diabetes ุจู€
109
00:08:01,920 --> 00:08:05,260
degree function ูˆ high function ุจุชุฌูŠุณ ู„ูŠู‡ุŸ ู‡ู„
110
00:08:05,260 --> 00:08:09,120
ุงู„ู…ุฑุถ ู‡ุฐุง ู…ุฑุชุจุท ุจุงู„ุนุงู…ู„ ูˆุฑุงุชูŠ ู…ู† ุงู„ุฃุจูˆูŠู† ุฃูˆ ู…ู† ุฃุญุฏ
111
00:08:09,120 --> 00:08:14,080
ู…ู† ุงู„ุนุงุฆู„ุฉุŸ ุฌุฏุด ู†ุณุจุฉ ุงู„ู†ุงุณ ุงู„ู„ูŠ ููŠ ุงู„ุนุงุฆู„ุฉู…ูˆุฌูˆุฏูŠู†
112
00:08:14,080 --> 00:08:19,540
ุฃูˆ ู…ุตุงุจูŠู† ุจุงู„ู…ุฑุถุŒ ุงู„ู…ุฑุถ ุงู„ุณูƒุฑูŠ ูˆุงู„ู€ Age ุงู„ุฃุนู…ุงุฑ ุฒูŠ
113
00:08:19,540 --> 00:08:22,320
ู…ุง ู‚ู„ู†ุง ูˆุงู„ู€ Outcome ุงู„ู„ูŠ ู‡ูˆ ุงู„ label ุฃูˆ ุงู„ target
114
00:08:22,320 --> 00:08:25,800
ุชุจุนุชู†ุง The binary classification ุตูุฑ ูˆุงุญุฏุŒ ูˆุงุญุฏ
115
00:08:25,800 --> 00:08:29,380
ู…ุตุงุจุŒ ุตูุฑ ุบูŠุฑ ู…ุตุงุจุŒ ูˆุงุญู†ุง ุจุฏู†ุง ู†ุนู…ู„ prediction
116
00:08:29,380 --> 00:08:32,660
ู†ุดูˆู ู‡ู„ ูุนู„ูŠุง ุงู„ู„ูŠ ู‡ูˆ ุฃู†ุง ุฒูˆุฏุชู‡ ุจุจูŠุงู†ุงุช ู…ุนูŠู†ุฉ
117
00:08:32,660 --> 00:08:37,530
ู‡ูŠู‚ูˆู„ ุฅู†ู‡ ู‡ุฐุง ู…ุตุงุจ ุฃูˆ ุบูŠุฑ ู…ุตุงุจุŒ ุชู…ุงู…ุงู„ุขู† ุนุดุงู†
118
00:08:37,530 --> 00:08:41,590
ุฃุชุนุฑู ุนู„ู‰ ุงู„ู€ Database ุจุดูƒู„ ูƒูˆูŠุณ ุจู‚ูˆู„ู†ุง ู…ู…ูƒู† ุงู†ุง
119
00:08:41,590 --> 00:08:49,230
ุฃุฑูˆุญ ุฃู‚ูˆู„ู‡ ุงู„ู€ DataFrame.Describe ูˆุงู„ู€
120
00:08:49,230 --> 00:08:51,510
Describe ุจู‚ูˆู„ู†ุง ู‡ุฐุง ุจุชุฏูŠู†ุง Simple Statistics ู„ูƒู†
121
00:08:51,510 --> 00:08:55,330
ุงู„ู…ุฑุญู„ุฉ ู‡ุง ุฏูŠ ุจุฏูŠ Transpose ูˆุงู„ู†ุงุณ ุงู„ู„ูŠ ุฏุฑุณุช
122
00:08:55,330 --> 00:08:58,590
ุฑูŠุงุถูŠุงุช ู…ู†ูุตู„ุฉ ุจุชุนุฑู ุงู† ุงู„ Transpose ุฃูˆ ุฏุฑุงุณุฉ
123
00:08:58,590 --> 00:09:02,630
ู…ุตููˆูุงุช ุจุชุนุฑู ุงู† ุงู„ Transpose ุจุนู…ู„ ุชุจุฏูŠู„ ู„ู„ุตููˆู
124
00:09:02,630 --> 00:09:07,570
ูˆุงู„ุฃุนู†ูŠู„ุฉุฃุฎูŠุฑู‹ุง ู‡ูŠ ุฑุงุญ ุฌุงุจู„ูŠู‡ู… ู‡ุงู† ูˆุจุญูŠุซ ุงู† ุงู„
125
00:09:07,570 --> 00:09:11,790
statistics ุงู„ count ุจุชู…ุซู„ ุนุฏุฏ ุงู„ุตููˆู ุงู„ู„ูŠ ููŠู‡ุง
126
00:09:11,790 --> 00:09:18,310
values ุทุจุนู‹ุง ูƒู„ู‡ ููŠู‡ values ุนู†ุฏูŠ ู‡ุงู† 678 ุนุฏุฏ ุงู„
127
00:09:18,310 --> 00:09:21,310
values ุงู„ main ุงู„ู…ุชูˆุณุท ุงู„ุญุณุงุจูŠ ุงู„ standard
128
00:09:21,310 --> 00:09:24,330
deviation ุงู„ minimum value ุทุจุนู‹ุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุงู„
129
00:09:24,330 --> 00:09:28,920
minimum value ุฒูŠ ุงู„ุฌู„ูŠูƒูˆุฒ ูˆุถุบุท ุงู„ุฏู…ูˆ ุงู„ู€ skin
130
00:09:28,920 --> 00:09:33,280
thickness ูˆ ุงู„ุงู†ุณูˆู„ูŠู† ูˆ ุงู„ body mass indexุŒ ู‡ุฐู‡
131
00:09:33,280 --> 00:09:38,320
ูƒู„ู‡ุง ุจุงู„ู†ุณุจุฉ ู„ู†ุง ุงู„ู…ูุฑูˆุถ ุชูƒูˆู† ู‡ุฐู‡ missing values
132
00:09:38,320 --> 00:09:41,200
ุจุณ ุจุฏู‡ุง ู…ุนุงู„ุฌุฉุŒ ู„ุฃู† ู…ุณุชุญูŠู„ ูŠูƒูˆู† ุนู†ุฏูŠ ุงู„ body mass
133
00:09:41,200 --> 00:09:44,040
index ุตูุฑุŒ ู…ุณุชุญูŠู„ ูŠูƒูˆู† ุงู„ุฌู„ูŠูƒูˆุฒ ููŠ ุงู„ุฏู… ุตูุฑุŒ
134
00:09:44,040 --> 00:09:48,490
ู…ุณุชุญูŠู„ blood pressure ูŠูƒูˆู† ุตูุฑุจุณ ุฃู†ุง ุงู„ุงู† ู…ุด ู‡ุดุบู„
135
00:09:48,490 --> 00:09:51,190
ุนู„ู‰ ุงู„ database ู…ุด ู‡ุนู…ู„ู‡ุง pre-processing ุจูŠู†ู…ุง ุงู†ุช
136
00:09:51,190 --> 00:09:54,490
ู…ู„ุฒู… ุงู†ูƒ ุชุนู…ู„ pre-processing ู„ู„ database ุงู„
137
00:09:54,490 --> 00:09:57,010
database ุฏู‡ ู…ุด ู…ู†ุงุณุจ ุฃู‚ูˆู„ูƒ ุฎุฏ database ุชุงู†ูŠุฉ ุฅุฐุง
138
00:09:57,010 --> 00:10:01,260
ููŠ ุญุฏ ู…ุฎุชุงุฑ ู‚ุฏุฑ ุงู„ู„ู‡ุทูŠุจุŒ ุงู„ุขู† ุฃู†ุง ุจุญุงุฌุฉ ุฒูŠ ู…ุง ู‚ู„ู†ุง
139
00:10:01,260 --> 00:10:06,380
ุนู† ุงู„ู€ Database ู‡ุฐู‡ ุนู„ู‰ ุนู„ุงุชู‡ุง ูˆุญุงูุธุฉ ุฃุฑูˆุญ ุฃุฌู‡ุฒ
140
00:10:06,380 --> 00:10:11,500
ุงู„ู€ Data Set ู„ู„ุชุฑุงู†ุณูŠ ู„ู„ู€ Classification ูˆุฃู‡ู… ุดุบู„ุฉ
141
00:10:11,500 --> 00:10:14,660
ููŠ ุงู„ู€ Classification ุฃู†ู‡ ุฃู†ุง ุฃุนู…ู„ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ
142
00:10:14,660 --> 00:10:18,320
Split ู…ุง ุจูŠู† ุงู„ู€ Data Set Attribute ุฃุฎุฏ ุงู„ู€
143
00:10:18,320 --> 00:10:21,040
Attributes ุฃูˆ ุงู„ู€ Data Attributes ู„ุญุงู„ ูˆุฃุฎุฏ ุงู„ู€
144
00:10:21,040 --> 00:10:25,480
Target Attribute ู„ุญุงู„ูŠ ูˆู‡ุฐุง ุงู„ูƒู„ุงู… ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ
145
00:10:25,480 --> 00:10:34,910
ุฃุณู…ูŠู‡ุง ุชุญุชยซDataยป ุฃูˆ ยซData Setยป ยซSplittingยป
146
00:10:34,910 --> 00:10:41,750
ยซSplittingยป ุฃูˆ ยซSplittingยป
147
00:10:41,750 --> 00:10:43,450
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
148
00:10:43,450 --> 00:10:43,610
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
149
00:10:43,610 --> 00:10:44,590
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
150
00:10:44,590 --> 00:10:44,610
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
151
00:10:44,610 --> 00:10:44,650
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
152
00:10:44,650 --> 00:10:44,730
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
153
00:10:44,730 --> 00:10:44,750
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSplittingยป
154
00:10:44,750 --> 00:10:56,130
ยซSplittingยป ยซSplittingยป ยซSplittingยป ยซSpl
155
00:10:59,800 --> 00:11:05,500
Target Underscore Attribute ูƒูŠู ุฃู†ุง ุจุฏูŠ ุฃุนู…ู„ ุงู„ู€
156
00:11:05,500 --> 00:11:08,140
Splitting ุงู„ุขู†ุŸ ุนู…ู„ูŠุฉ ุงู„ู€ Splitting ู‡ูŠ ุนุจุงุฑุฉ ุนู†
157
00:11:08,140 --> 00:11:11,180
ุฃุฎุฏ ู†ุตุฎุฉ ู…ู† ุงู„ู€ Attributes ุฃู†ุง ู…ุง ุจุฏูŠุด ุฃุฎุฑู‘ุจ ููŠ
158
00:11:11,180 --> 00:11:13,640
ุงู„ู€ Data Frame ุงู„ุฃุตู„ูŠ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ู†ุง ูุจุชุญุชู‚ุท
159
00:11:13,640 --> 00:11:19,760
ููŠู‡ ูˆ ู‡ุฑูˆุญ ุฃู‚ูˆู„ู‡ ุฃู†ุง ู‡ู†ุง ุงู„ Data ุฃูˆ ู…ู…ูƒู† ุฃุณู…ูŠู‡ุง ุงู„
160
00:11:19,760 --> 00:11:25,480
Attributes ู…ุจุงุดุฑุฉ Attribute
161
00:11:25,480 --> 00:11:31,770
Equalุงู„ู€ DataFrame.prop
162
00:11:31,770 --> 00:11:39,270
ุจุฏูŠ ุฃุญุฏุซ ุงู„ู€ Outcome
163
00:11:39,270 --> 00:11:45,570
ูˆู‡ุฐุง ู…ูˆุฌูˆุฏ ุนู„ู‰ ุงู„ู€ Axis ุฃุฑู‚ู… ูˆุงุญุฏ ูุนู„ูŠู‡ ู…ุด ู‡ูŠุญุฏุซู‡
164
00:11:45,570 --> 00:11:48,570
ู„ุฃู†ู‡ ู„ู… ุฃู‚ูˆู„ ู„ู‡ ุฅู†ู‡ Blast ูุจุฏูŠ ุฃุฎุฏ ู†ุณุฎุฉ ู…ู† ุงู„
165
00:11:48,570 --> 00:11:51,470
DataFrame ู‡ุฐุง ูˆ ุจูŠุญุฏุซ ุงู„ Outcome ูˆุจุฏูŠ ุฃุฎุฐู„ู†ูŠ ููŠู‡
166
00:11:51,470 --> 00:11:56,930
ู…ูŠู† ุจุญู‚ู„ูŠู‡ู… ููŠ ุงู„ Attributes ุชู…ุงู…ุŸ ูˆููŠ ุนู†ุฏูŠ Target
167
00:11:59,700 --> 00:12:06,340
ยซattribute equals dataFrame dot ุฃูˆ dataFrame of
168
00:12:06,340 --> 00:12:15,140
the outcomeยป ูˆู‡ูƒุฐุง ุฃุตุจุญ ู„ุฏูŠ two arrays ุชู…ุซู„
169
00:12:15,140 --> 00:12:20,140
ุงู„ู€ ยซattributesยป ู…ู† ุงู„ู€ ยซageยป ุฅู„ู‰ ุงู„ู€ ยซpregnancyยป
170
00:12:20,390 --> 00:12:24,550
ูˆุงู„ุฃุฎูŠุฑ ุจูŠู…ุซู„ ุงู„ู€ Outcome ุฃู†ุง ุณู…ูŠุชู‡ ุฅูŠุด ุงู„ู€ Target
171
00:12:24,550 --> 00:12:28,690
ู‡ุฐุง ุงู„ูุตู„ ู…ู‡ู… ุฌุฏู‹ุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุจุงู„ู†ุณุจุฉ ู„ู†ุง ู„ุฃู†ู‡
172
00:12:28,690 --> 00:12:34,710
ู…ู† ุฎู„ุงู„ู‡ ุฃู†ุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ูˆุงู„ู„ู‡ ุฃู†ู‡ ุงู„ data ุชุจุนุชูŠ ุชู…ุช
173
00:12:34,710 --> 00:12:38,570
ุทุจุนู‹ุง ุฃู†ุง ุงู„ุขู† ุนู…ู„ูŠ ุชุฑู†ู…ุฌ ุฌุงุจู„ูŠ ุฅู†ู‡ okay ุฃุฎุฏุช ุฑู‚ู…
174
00:12:38,570 --> 00:12:43,890
ุฃุฑุจุนุฉ ุณู„ ู‡ุฐู‡ ู†ูุฐุช ุจุฏูˆู† ุฃูŠ ู…ุดุงูƒู„ ุฅุฐุง ุญุงุจุจ ุฃู†ุช ุชุนู…ู„
175
00:12:43,890 --> 00:12:48,070
ุงู„ attribute describe ุฃูˆ ุชุดูˆู
176
00:12:56,430 --> 00:12:59,030
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุฃุณูˆูŠู‡ุง ููŠ ุงู„ู€
177
00:12:59,030 --> 00:13:01,630
preparationุŒ ุจุฑุถู‡ ู…ู† ุชุญุช ุงู„ู€ preparationุŒ ุงู„ู„ูŠ ุฃู†ุง
178
00:13:01,630 --> 00:13:04,870
ุจุฏูŠ ุฃุฌุณู… ุงู„ data set ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ุงู„ุขู†ุŒ ุงู„ู„ูŠ
179
00:13:04,870 --> 00:13:13,140
ู‡ูŠ ุงู„ attributesุงู„ู€ Data Attributes ูˆุงู„ู€ Target
180
00:13:13,140 --> 00:13:17,480
Attributes ุจุฏูŠ ุฃุฌุณู…ู‡ู… ุนู„ู‰ ู…ุณุชูˆู‰ ุงู„ู€ Rows ุจุญูŠุซ ุฃู†ู‡
181
00:13:17,480 --> 00:13:20,700
ุฃุฌู‡ุฒ ุงู„ู€ Training Set ูˆุงู„ู€ Testing Set ุฒูŠ ู…ุง ุฃุญู†ุง
182
00:13:20,700 --> 00:13:29,740
ุฃุจู†ูŠ ุนู„ู‰ู‡ุง ุฅูŠู‡ ู‡ุงู†ุŸ Splitting The
183
00:13:29,740 --> 00:13:34,080
Data Set
184
00:13:34,080 --> 00:13:45,000
ูˆุงุญู†ุง ุจูŠู† ุฌู„ุณูŠู†ุญูƒู‘ู… ุงู„ู€ Attribute ูˆ
185
00:13:45,000 --> 00:13:59,550
Target into Training and Test Setุนุดุงู† ุฃู†ูุฐ ุงู„ูƒู„ุงู…
186
00:13:59,550 --> 00:14:03,850
ู‡ุฐุง ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ ู…ู† ุงู„ AsciiLab.model ุทุจุนุงู‹ ู‡ู†ุง
187
00:14:03,850 --> 00:14:07,090
ุจุฏูŠ ุฃุจุฏุฃ ุฃูˆู„ ุฃุณุชุฎุฏู… ุฃูˆู„ ู…ูƒุชุจุฉ ุจุนุฏ ุงู„ู€Bandas ุงู„ู„ูŠ
188
00:14:07,090 --> 00:14:12,730
ู…ูˆุฌูˆุฏุฉ ููˆู‚ ูู‡ุงุฌู„ู‡ from AsciiLab ูˆุงู„ู€ AsciiLab ูŠุง
189
00:14:12,730 --> 00:14:16,350
ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ุฃู‡ู… ู…ูƒุชุจุฉ ุจุงู„ู†ุณุจุฉ ู„ุฅู„ู†ุง ู…ูˆุฌูˆุฏุฉ ู…ู…ูƒู†
190
00:14:16,350 --> 00:14:23,650
ุฃู†ุง ุฃุณุชุฎุฏู…ู‡ุง model underscore selection model
191
00:14:23,650 --> 00:14:24,530
selection
192
00:14:29,600 --> 00:14:31,180
ู…ุงุฐุง ุฃุฑูŠุฏ ุฃู† ุฃุณุชุฎุฏู… ู…ู† ุงู„ู€ Modeling ูˆ ุงู„ู€
193
00:14:31,180 --> 00:14:36,860
SelectionุŸ ุณุฃุณุชุฎุฏู… crane underscore test
194
00:14:36,860 --> 00:14:43,660
underscore split function ุฃูˆ ู…ูŠุซูˆุฏ ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ
195
00:14:43,660 --> 00:14:49,100
ุฏุงุฎู„ู‡ุง ุงู„ู…ูŠุซูˆุฏ ู‡ุงูŠุจุชุด ุจุชุงุฎุฏ ู…ู†ูŠ argument ู‡ุฐู‡
196
00:14:49,100 --> 00:14:55,860
ุงู„ู…ูŠุซูˆุฏ ุจุชุงุฎุฏ ู…ู†ูŠ argument ุฃู‡ู…ู‡ุง ุชู„ู‚ู‰ ุดุบู„ุงุช ุงู„ู€
197
00:14:55,860 --> 00:14:59,140
attributes ุงู„ data set ุงู„ู„ูŠ ุฃู†ุง
198
00:15:02,640 --> 00:15:07,240
ุฃุดุบู„ ุนู„ูŠู‡ุง ุงู„ู€ Attributes ูƒุฃุฎุฏ ู…ู†ูŠ ุงู„ู€ TargetุŒ
199
00:15:07,240 --> 00:15:14,080
ุชู…ุงู…ุŸ ุฏุนู†ูŠ ุฃุชุฃูƒุฏ ุฅู† ูƒู†ุช ุจุงู„ู€ Target ุตุญ ู‡ู…ุงุŒ ูˆุงู„ู€
200
00:15:14,080 --> 00:15:19,740
Test ุฃูˆ ุงู„ู€ Train Size Test underscore Size ุจุฏู‡ุง
201
00:15:19,740 --> 00:15:26,640
ุชุณุงูˆูŠ 30% ุงู„ุขู† ุดูˆู ุจุณู‡ูˆู„ุฉุŒ ูุนู„ูŠู‹ุง ุจุฑูˆุญ ุจุฌุณู… ุงู„ู€
202
00:15:26,640 --> 00:15:31,340
Attributes ูˆุงู„ู€ Targets ู‡ู…ุง as one data frame
203
00:15:31,340 --> 00:15:36,000
ูุนู„ูŠู‹ุงุงู„ู€ Index ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Attribute ุงู„ุฃูˆู„
204
00:15:36,000 --> 00:15:39,760
ุฃูˆ ู…ุน ุงู„ู€ Attributes ู‡ูˆ ู†ูุณ ุงู„ู€ Index ุงู„ู…ูˆุฌูˆุฏ ุนู„ู‰
205
00:15:39,760 --> 00:15:44,180
ุงู„ู€ Target ุจุณ ุฃู†ุง ูุตู„ุชู‡ู… ูƒุฃุนู„ู‰ ุฏู‡ ุนู† ุจุนุถู‡ู… ู„ูƒู† ุงู„ู€
206
00:15:44,180 --> 00:15:48,140
Index ุจู‚ู‰ ู†ูุณ ุงู„ุชุฑุชูŠุจุŒ ู…ุงุตุงุฑุด ููŠู‡ ุนู„ูŠู‡ ุงู„ุดุบู„ ุทูŠุจุŒ
207
00:15:48,140 --> 00:15:52,520
ูˆุจุงู„ุชุงู„ูŠ ู‡ูˆ ู‡ูŠุงุฎุฏ Random Sample ู†ุณุจุฉ 30% ู…ู† ุงู„ู€
208
00:15:52,520 --> 00:15:57,260
Indices ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ู‡ู†ุง ูˆูŠุนู…ู„ ุงู„ู€ Reaction 30% ู‡ุฐู‡
209
00:15:57,260 --> 00:16:04,240
ู‡ุชุฑุฌุน ููŠ ู„ู…ูŠู†ุŸ ู‡ุชุฑุฌุน ู„ู€ X Testูˆุงู„ู€ Y-test ุงู„ู„ูŠ ู‡ูŠ
210
00:16:04,240 --> 00:16:08,980
ุงู„ู€ Attributes ุงู„ุฎุงุตุฉ ุจุงู„ุชุณุช ูˆุงู„ู€ Target ุงู„ุฎุงุต
211
00:16:08,980 --> 00:16:14,340
ุจุงู„ุชุณุช ุฎู„ู‘ูŠู†ูŠ ุฃุณู…ูŠู‡ู… X ูˆY ูˆุงู„ู…ุตุทู„ุญุงุช ู‡ุฐู‡ ุฏุฑุฌุฉ ุฌุฏุงู‹
212
00:16:14,340 --> 00:16:18,800
ููŠ ุงู„ุชุณู…ูŠุงุช ุจุงู„ุฅุถุงูุฉ ู„ู‡ูŠูƒุŒ ุฃู†ุง ููŠู‡ ุนู†ุฏูŠ ุงู„ู€ X
213
00:16:18,800 --> 00:16:22,380
train ูˆุงู„ู€ Y train ุงู„ู„ูŠ ู‡ู… ุงู„ู€ 70% ุงู„ู„ูŠ ุจูŠุธู„ูˆุง ู…ู†
214
00:16:22,380 --> 00:16:26,660
ุงู„ data sets ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูุฃู†ุง ูุนู„ูŠุงู‹ ู‡ูƒูˆู† ููŠู‡
215
00:16:26,660 --> 00:16:32,400
ุนู†ุฏูŠ X train ูƒู…ุงู† Y train
216
00:16:35,840 --> 00:16:45,880
ูƒู…ุง X test ูƒู…ุง Y test ูˆู‡ุฐู‡ ุฃุฑุจุน ู…ุฌู…ูˆุนุงุช ุจุญูŠุซ ุฃู†
217
00:16:45,880 --> 00:16:50,480
ุงู„ู€ procedure ู‡ุฐุง ุฃูˆ ุงู„ู€ function ู‡ุฐู‡ ุฃูˆ ุงู„ู€
218
00:16:50,480 --> 00:16:55,180
constructor ู‡ุฐุง ุจูŠุฑุฌุนู„ูŠ ุจุฃุฑุจุน ู…ุฌู…ูˆุนุงุช X test X
219
00:16:55,180 --> 00:16:59,930
ุฏู„ุงู„ุฉ ุนู„ู‰ ุงู„ู€ attributesุชู…ุงู… ูุงู„ู€ X ู‡ูŠ ุนุจุงุฑุฉ ุนู†
220
00:16:59,930 --> 00:17:03,550
subset ู…ู† ุงู„ู€ attributes X train ูˆ X test X test
221
00:17:03,550 --> 00:17:08,670
ุจุชู…ุซู„ 30% ู…ู† ุงู„ attributes ูˆุงู„ู€ X train ุจุชุงุฎุฏ 70%
222
00:17:08,670 --> 00:17:11,250
ุทุจุนุง ู…ู…ูƒู† ุฃู†ุง ุฃุจุฏู„ ู‡ู†ุงุŒ ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ู„ู€ train test
223
00:17:11,250 --> 00:17:16,170
ุฃูˆ ู„ู€ train size 70 ุชู…ุงู…ุŸ ูˆุจูŠู…ุดูŠ ุงู„ุญุงู„ุŒ ุงู„ุขู† ุงู„ู€ Y
224
00:17:16,170 --> 00:17:21,530
train ู‡ูŠ ุนุจุงุฑุฉ ุนู† 70% ู…ู† ุงู„ target ุจู†ุงุก ุนู„ู‰ ุงู„
225
00:17:21,530 --> 00:17:25,620
index ุงู„ู„ูŠ ุชู… ุฃุฎุฏู‡ุงูˆุงู„ู€ Y-test ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ู€
226
00:17:25,620 --> 00:17:29,700
Sample ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุง ุทุจุนุงู‹ ุนุดุงู† ู†ุชุฃูƒุฏ ุฃู† ุงู„ุฃู…ูˆุฑ
227
00:17:29,700 --> 00:17:33,620
ุชู…ุงู… ูˆ ุงู„ splitting ุตุญ ุชู…ุชุŒ ู‡ุฑูˆุญ ุฃู†ุง ุฃู‚ูˆู„ ู„ู‡ X
228
00:17:33,620 --> 00:17:40,060
train dot
229
00:17:40,060 --> 00:17:44,760
head ูˆ ุจุฏูŠ ุฃู‚ูˆู„ู‡ ุจุณ ูŠุนุฑุถ ุงู„ุฃูˆู„ ุชู„ุงุชุฉ ู…ู†ู‡ู… ุฃูˆ ู…ุด
230
00:17:44,760 --> 00:17:47,620
ู‚ุถูŠุฉุŒ ู‡ูŠ ุงู„ุฃูˆู„ ุนุดุฑุฉ ุจุณ ุนุดุงู† ู†ุดูˆู ุงู„ indices ุงู„ู„ูŠ
231
00:17:47,620 --> 00:17:53,740
ู…ูˆุฌูˆุฏุฉ ููŠู‡ู…ู‡ูŠุŒ ูˆุงุญุธูˆุง ุฒูŠ ู…ุง ุญูƒูŠู†ุง ู‡ุฐุง ุนุจุงุฑุฉ ุนู† ุงู„ู€
232
00:17:53,740 --> 00:18:01,180
Index ุงู„ุขู† ููŠ ุงู„ู…ู‚ุงุจู„ุŒ ู„ูˆ ุฃู†ุง ุฑูˆุญุช ุนุฑุถุฉ ุงู„ู€ Y
233
00:18:01,180 --> 00:18:06,600
-Train ูˆู‚ู„ุช ู„ู‡ ู‡ูŠ ููŠ ุงู„ุณู„ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุงุŒ ุจุณ ุนุดุงู†
234
00:18:06,600 --> 00:18:14,000
ุฃุคูƒุฏู„ูƒู… ุงู„ู€ Ytrain.head
235
00:18:14,000 --> 00:18:21,550
ูˆุฎู„ู‘ูŠู†ูŠ ุนู„ู‰ ุนุดุฑุฉ ูƒุฐู„ูƒุŒ Runุทู„ุน ู…ุนุงูŠุง ููŠ ุงู„ู€ index
236
00:18:21,550 --> 00:18:29,230
ูˆูŠุชุฑูŠู†
237
00:18:29,230 --> 00:18:29,770
ูˆูŠุชุฑูŠู†
238
00:18:46,050 --> 00:18:50,710
ุฃู†ุง ุฃุฎุทุฃ ุชุงู†ูŠ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ ููŠ ุงู„ุชุณู…ูŠุฉ ู‡ูŠ ุงู„ู…ูุฑูˆุถ
239
00:18:50,710 --> 00:18:57,310
X test X test
240
00:18:57,310 --> 00:19:07,870
thirty three five green ู‡ูŠู†ุนู…ู„ run ู…ุฑุฉ ุชุงู†ูŠุฉ
241
00:19:07,870 --> 00:19:15,090
ู‡ูŠู†ุนู…ู„ run ู„ู„ุณู„ high ุฃู‡ุŒ ู‡ูŠูƒ ุชู…ุงู…ุฃู†ุง ุงู„ู„ูŠ ุฃุฎุชุงุฑ ููŠ
242
00:19:15,090 --> 00:19:19,490
ุชุฑูƒูŠุจ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ููˆู‚ ุจุจุฏุฃ ุจุงู„ู€ Exit Test ุจุงู„ู€
243
00:19:19,490 --> 00:19:24,250
Attributes ูˆ ุจุงู„ู€ Yุงู„ู€ Target ุทุจุนู‹ุง ู‡ูŠ ู…ูŠุฒุฉ ุฅู†ู‡
244
00:19:24,250 --> 00:19:27,990
ุฃู†ุง ูุนู„ูŠู‹ุง ุจุถู„ ุจุชุจุน ุงู„ู€ Data ุดูˆ ุตุงุฑ ููŠู‡ุงุŒ ู…ุงุจุฎุทูŠุดุŒ
245
00:19:27,990 --> 00:19:32,690
ู„ุงุญุธูˆุง 155ุŒ 155 ู‡ูŠ ู†ูุณ ุงู„ู€ Index ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ูŠุนู†ูŠุŒ
246
00:19:32,690 --> 00:19:34,750
ูุฃู†ุง ุฃู…ูˆุฑ ู…ู† ู†ุงุญูŠุฉ ุงู„ู€ Database ุงู„ุขู† ุฃูˆ ุงู„ู€
247
00:19:34,750 --> 00:19:38,490
Splitting ู„ู„ู€ Data ุฌุงู‡ุฒุฉุŒ ุจุญูŠุซ ุฅู†ู‡ ุฃู†ุง ุฌุณู…ุช ุงู„ู€
248
00:19:38,490 --> 00:19:41,450
DataุŒ ูุตู„ุช ุงู„ู€ AttributesุŒ ุงู„ู€ Data Attributes
249
00:19:41,450 --> 00:19:45,030
ูˆุงู„ู€ Target AttributesุŒ ูุตู„ุช ูƒู„ ูˆุงุญุฏ ููŠู‡ู… ููŠ Data
250
00:19:45,030 --> 00:19:48,810
fileู‡ูˆ ุฑูˆุญุช ู„ู„ู€ data set ุฃูˆ ุงู„ู€ two data frames
251
00:19:48,810 --> 00:19:55,210
ุฏูˆู„ ูุตู„ุชู‡ู… ูƒู…ุงู† ู„ test set ูˆ ููˆู‚ู‡ train set ูˆ ู‡ุจุฏุฃ
252
00:19:55,210 --> 00:20:00,370
ุงุณุชุฎุฏู… train set ููŠ ู…ูˆุถูˆุน ุงู„ classification ุงู„ุงู†
253
00:20:00,370 --> 00:20:06,830
ุจุฏุฃ ุฃุณุชุฎุฏู… ุงู„ K nearest neighbor KNN
254
00:20:06,830 --> 00:20:15,070
ุฃูˆ ู…ุง ูŠุนุฑู ุจุงู„ู€ K nearest neighbor
255
00:20:22,150 --> 00:20:25,250
ู‡ู†ุง ุชุจุนุช ุงู„ุฎูŠุฑ ููŠ ุงู„ู€ Canary's Neighbour Model
256
00:20:25,250 --> 00:20:28,950
ูŠู‚ูˆู„ ุฅู†ู‡ุง ุฃู‡ู… ุดุบู„ุฉ ุชุฑูŠุฏ ุงู„ุชุนุฑู ุนู„ูŠู‡ุง ู…ู† ุฃูŠู† ุชุฑูŠุฏ
257
00:20:28,950 --> 00:20:39,370
ุฃู† ุชุนู…ู„ ุงู„ู€ ImportุŸ ู„ุฃู† ู…ู† ุงู„ู€ Asciler Dot
258
00:20:39,370 --> 00:20:43,530
ุทุจุนุงู‹ ู‡ู†ุง ุนู†ุฏู†ูŠ ุนุงุฆู„ุฉ ุงุณู…ู‡ุง Neighbours ุฃูˆ ุงู„
259
00:20:43,530 --> 00:20:47,750
library ุนุดุงู† ู…ุงุญุฏุด ูŠู‚ูˆู„ ู„ูŠู‡ ุนุงุฆู„ุฉ Neighbours ู‡ุฑูˆุญ
260
00:20:47,750 --> 00:20:48,590
ุฃู‚ูˆู„ ู„ู‡ Import
261
00:20:54,790 --> 00:21:06,810
ยซnearest neighborยป ยซneighbors
262
00:21:06,810 --> 00:21:10,870
as KNยป
263
00:21:10,870 --> 00:21:17,930
ุงู„ุฃู† ู‡ุฐุง ุงู„ู…ูˆุฏูŠู„ ุฃู†ุง ุจู…ู…ูƒู† ุฃู†ุดุฆู‡ ู…ุจุงุดุฑุฉ ยซKNNยป
264
00:21:42,660 --> 00:21:46,440
ูˆุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุงู„ู„ูŠ ุจุนุฏ ู‡ูŠูƒ ุฃู†ุง ู…ู…ูƒู† ุฃุญุฏุฏ ู„ู‡
265
00:21:50,220 --> 00:21:53,040
ุงู„ู€ Model ุฃูˆ ุฃุฑูˆุญ ุฃุนู…ู„ู‡ Fit ุงู„ู„ูŠ ูƒุงู† ุงู„ู…ูุฑูˆุถ
266
00:21:53,040 --> 00:21:57,460
ุฃุญุฏุฏู„ู‡ ุงู„ู€ Data Set ุงู„ู„ูŠ ุจุฏู‡ ูŠุนู…ู„ ุนู„ูŠู‡ุง Training
267
00:21:57,460 --> 00:22:02,180
ุฃูˆ ู…ู‚ุงุฑู†ุฉ ู‡ูŠ ุงู„ู…ูุฑูˆุถ ุงู„ู€ Train Data Set ู„ูƒู† ููŠ
268
00:22:02,180 --> 00:22:07,800
ู…ู„ุงุญุธุฉ ู…ู‡ู…ุฉ ุฌุฏุง ู‚ุจู„ ู…ุง ู†ูƒู…ู„ ุทุจุนุง ุจุฅู…ูƒุงู†ูŠ ุฃู†ุง ุฃูˆู‚ู
269
00:22:07,800 --> 00:22:11,620
ู‡ุฐู‡ ูˆุฃุนู„ู‚ู‡ุง
270
00:22:17,090 --> 00:22:21,130
ุงู„ุขุณูŠ ุฌู…ุนุฉ ุงู„ุฎูŠุฑ ู‡ูŠ ู…ู† ุฃุฌู„ ุงู„ุงุฎุชุตุงุฑ ุงู„ู€ AS ู…ู† ุฃุฌู„
271
00:22:21,130 --> 00:22:24,470
ุงู„ุงุฎุชุตุงุฑ ุนุดุงู† ู…ุงุจุชุฑุถุด ุฃูƒุชุจ ุงู„ุงุณู… ุจุงู„ูƒุงู…ู„ ูŠุนู†ูŠ ู„ูˆ
272
00:22:24,470 --> 00:22:29,750
ุฃู†ุง ุจุฏูŠ ุฃูƒุชุจู‡ุงุŒ ู‡ุฑูˆุญ ุฃู‚ูˆู„ ยซKN N underscore model
273
00:22:29,750 --> 00:22:33,670
equals
274
00:22:33,670 --> 00:22:43,610
nearest neighbors ูˆ N underscore neighbor equals
275
00:22:43,610 --> 00:22:48,470
ุซู„ุงุซุฉยปุนููˆุงู‹ุŒ ุฎู…ุณุฉุŒ ุฎู„ู‘ูŠู†ูŠ ุฃุนู…ู„ ู†ูุณูŠุŒ ุฃู…ุดูŠ ุนู„ู‰ ู†ูุณ
276
00:22:48,470 --> 00:22:51,230
ุงู„ู€Style ู‡ุฐู‡ ูˆุงู„ู„ูŠ ููˆู‚ ู†ูุณ ุงู„ู…ุนู†ู‰ุŒ ุจุณ ุฃู†ุง ู‡ู†ุง
277
00:22:51,230 --> 00:22:55,530
ุจุฃุฎุชุตุฑ ููŠ ุงู„ูƒุชุงุจุฉ ุจู†ุงุกู‹ ุนู„ู‰ .. ุจุนู…ู„ Alias Name
278
00:22:55,530 --> 00:22:59,210
ูˆุจุณุชุฎุฏู… ุงู„ู€Alias Name ุงู„ุขู† ุจุถู„ ุฃู‚ูˆู„ู‘ู‡ู… ุงู„ู€KNN
279
00:22:59,210 --> 00:23:06,010
underscore model fit
280
00:23:06,010 --> 00:23:12,710
ูˆููŠ ุงู„ trainingุŒ ุดูˆ ุจูŠุงุฎุฏุŸ ุจูŠุงุฎุฏ ุงู„ู€X train ูˆุงู„ู€Y
281
00:23:12,710 --> 00:23:18,620
trainู„ุฃู† ู‡ุฐู‡ ู‡ูŠ ุงู„ู€ data ุงู„ู„ูŠ ุงู†ุง ุจุชุนู…ู„ ุนู„ูŠู‡ุง ุฃูˆ
282
00:23:18,620 --> 00:23:22,260
ู…ู† ุฎู„ุงู„ู‡ุง ุงู„ training ู„ูˆ ุงู†ุง ุงุดุชุบู„ุช ุนู…ู„ุช ู„ู‡ run
283
00:23:22,260 --> 00:23:35,620
ูˆุดูƒู„ูŠ
284
00:23:35,620 --> 00:23:37,620
ุฃู†ุง ุฃุฎุทุฃุช ููŠ ุงู„ nearest neighbors
285
00:23:46,470 --> 00:23:51,630
ยซnearest neighboursยป ุตุญ ุงู„ุตุญ ุงู„ู€ ยซspellingยป ุตุญ
286
00:23:51,630 --> 00:24:05,130
ยซEGยป ยซEIยป ยซGHยป ยซDยป ยซOยป ยซRยป ยซSยป
287
00:24:05,130 --> 00:24:08,190
ู„ูŠุดุŸ
288
00:24:21,090 --> 00:24:35,170
ู…ู…ูƒู† ุนุดุงู† ุฃู†ุง ุญุทูŠุช ุงู„ู€ alias name ููˆู‚ ุนุดุงู†
289
00:24:35,170 --> 00:24:40,270
ุญุทูŠุช ุงู„ู€ alias name ุนุดุงู† ุญุทูŠุช ุงู„ู€ alias name ู„ุฃู†
290
00:24:40,270 --> 00:24:45,710
ุงู„ู€ alias name ุจุฏู„ู‡ ู„ูƒู† ู„ูˆ ุฃู†ุง ุดู‡ูŠุช ู‡ุฐุง ูˆุนู„ู‘ุฌุช
291
00:24:45,710 --> 00:24:46,030
ู‡ุฐู‡
292
00:24:52,850 --> 00:25:00,330
ู…ุด ู‡ูŠูƒูˆู† ููŠ ุฎุทุฃ ูู…ู…ูƒู†
293
00:25:00,330 --> 00:25:03,590
ุฃู†ุง ุฃุณุชุฎุฏู… ู‡ุงูŠ ุฃูˆ ู‡ุงูŠ ุจุญุณุจ ุงู„ุญุงู„ุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ
294
00:25:03,590 --> 00:25:08,170
ุนู„ูŠู‡ุง ุชู…ุงู…ุŒ ูุงู„ู€ mode ุฃุตุจุญ ุฌุงู‡ุฒ ูŠุชุนุฑู‘ู ุนู„ู‰ ุงู„ู€
295
00:25:08,170 --> 00:25:10,890
trend data ุฃูˆ ุงู„ู€ trend set ุงู„ู„ูŠ ุฃู†ุง ุจุฏูŠ ุฃุดุชุบู„
296
00:25:10,890 --> 00:25:14,950
ุนู„ูŠู‡ุง ูˆู‡ูŠ ุจุทุจูŠุนุฉ ุงู„ุญุงู„ุฉ ู…ุฌุณูˆู…ุฉ ู„ู„ู€ tribunes ูˆุทุจุนุงู‹
297
00:25:14,950 --> 00:25:19,510
ุงู„ุฎุทูˆุฉ ุงู„ุชุงู„ูŠุฉ ุฃู†ุง ุนู…ุงู„ ุจุฏูŠ ุฃุฑูˆุญ ุฃุนู…ู„ ุฃูˆ ุจุฏูŠ ุฃุดูˆู
298
00:25:19,510 --> 00:25:23,510
ุงู„ majors ุฅูŠุด ู…ู…ูƒู† ูŠุณูˆูŠ ู„ูŠู‡ุงู„ู€ Element ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
299
00:25:23,510 --> 00:25:27,050
ุฃูˆ ุงู„ู€ Model ุงู„ู„ูŠ ุฃู†ุง ุฃู†ุดุฑุชู‡ ู„ูƒู† ุนุดุงู† ุฃู†ุง ุฃู†ุดู‚ ุงู„ู€
300
00:25:27,050 --> 00:25:30,530
Model ุฌู…ุงู„ ุงู„ุฎูŠุฑ ุฃูˆ ุจุฏูŠ ุฃุฌุฑุจ ุงู„ู€ Model ุฎู„ูŠู†ูŠ ุฃุดูˆู
301
00:25:30,530 --> 00:25:35,450
ุฃูˆ ุฃุฎุฏ ุนูŠู†ุฉ ู…ู† ุงู„ู€ Data ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ููŠ ู…ูˆุถูˆุน
302
00:25:35,450 --> 00:25:39,070
ู…ู†
303
00:25:39,070 --> 00:25:42,450
ุงู„ู€ Data Set ุจุดูƒู„ ุนุงู… ุฃู†ุง ุจุฏูŠ ุฃุฑูˆุญ ูˆ ุฃู‚ูˆู„ ู„ู‡ ุฃู†ุง
304
00:25:42,450 --> 00:25:46,190
ุทุจุนุงู‹ ุฃูˆู„ ู‡ูŠูƒูˆู† ุงู„ุฃูˆู„ ุงุณุชุฎุฏุงู… ู„ู„ู€ Numpy ุงู„ู„ูŠ
305
00:25:46,190 --> 00:25:56,740
ู…ูˆุฌูˆุฏุฉ ููˆู‚ ู‡ุฑูˆุญ ุฃู‚ูˆู„ู‡ T1ู‡ุฐู‡ ุงู„ู€ array ู…ูƒูˆู‘ู†ุฉ ู…ู†
306
00:25:56,740 --> 00:26:07,640
ู…ุฌู…ูˆุนุฉ ุฃุฑู‚ุงู… ูˆู„ูŠูƒู†
307
00:26:07,640 --> 00:26:12,940
ุนู„ู‰ ุณุจูŠู„ ุงู„ู…ุซุงู„ ุงู„ุตู ุงู„ุฃูˆู„ ูˆู‡ุฐู‡ ุงู„ class ู…ูˆุฌูˆุฏุฉ
308
00:26:12,940 --> 00:26:13,320
ู‡ู†ุง
309
00:26:17,220 --> 00:26:21,720
ุงู„ู€ Ctrl V ุงู„ุชุงุจุณ ู‡ุฐู‡ ุจุฏูŠ ุงุณุชุจุฏู„ู‡ุง ุจู€ Comma
310
00:26:31,800 --> 00:26:35,140
ุทุจุนู‹ุงุŒ ูŠุง ุนุฒูŠุฒูŠุŒ ููŠ ุดุบู„ ู…ู‡ู… ู„ุงุฒู… ู†ู‚ูˆู„ู‡ุง ุงู„ุขู† ุฅู†ู‡
311
00:26:35,140 --> 00:26:38,300
ู…ุด ุถุฑูˆุฑูŠ ุงู„ู€ Prediction ุฏุงุฆู…ู‹ุง ูŠุนู†ูŠ ู…ุงุญุฏุด ุจูŠู‚ูˆู„
312
00:26:38,300 --> 00:26:40,800
ุงู„ู€ Prediction ุจูŠูƒูˆู† ุตุญูŠุญ ุฃูˆ ุจูŠูƒูˆู† ุญู‚ูŠู‚ูŠุฉ 100%
313
00:26:40,800 --> 00:26:43,720
ู„ุงุฒู… ูŠูƒูˆู† ููŠ ุฃุฎุทุงุก ุนู†ุฏูŠ ุฏุงุฆู…ู‹ุง ุฃูˆ ููŠ ู…ุนุธู… ุงู„ุฃุญูŠุงู†
314
00:26:43,720 --> 00:26:47,160
ูŠูƒูˆู† ููŠ ุนู†ุฏูƒ ุฃุฎุทุงุก ูˆูƒู„ ู…ุง ุงูƒุชู…ู„ ุฃูˆ ูƒู„ ู…ุง ูƒุงู†ุช ุงู„
315
00:26:47,160 --> 00:26:50,520
Prediction ุชุจุนุช ุงู„ score ุชุจุนุชู‡ ุฃุนู„ู‰ ุจูŠูƒูˆู† ูƒูˆูŠุณุฉ
316
00:26:50,520 --> 00:26:57,720
Doc Re-Shape ูƒู„ู‡ ุงุนุชู…ุฏ ุงู„ู…ุตููˆูุฉ ู‡ุฐู‡ ุนู„ู‰ ุฅูŠู‡ุง ูˆุงุญุฏ
317
00:26:57,720 --> 00:27:06,120
ุณุงู„ุจ ูˆุงุญุฏูˆุทุจุนุงู‹ ู‡ุงูŠ ุงู„ target ู‡ุญุท ู‡ู†ุง target equal
318
00:27:06,120 --> 00:27:14,720
one ูˆุฎู„ู‘ูŠู†ูŠ ุฃู†ุง ุฃู†ุณุฎ ู‡ุฐู‡ ู‡ูŠูƒ Ctrl V ูˆุจุฏุฃ ุฃุฌูŠ ุนู„ู‰
319
00:27:14,720 --> 00:27:20,760
ุงู„ raw ุงู„ู„ูŠ ุฑู‚ู…ู‡ ุฎู…ุณุฉ ุฃู†ุณุฎู‡ ูˆุงู„ target ุชุจุนุชู‡ ุตูุฑ
320
00:27:20,760 --> 00:27:23,200
ู‡ุฐุง ุจุฏูŠ ุฃุณู…ูŠู‡ T5
321
00:27:33,150 --> 00:27:38,710
ุจู†ูุณ ุงู„ูƒู„ุงู… ุงู„ู€
322
00:27:38,710 --> 00:27:47,030
caps ุงู„ู„ูŠ ุนู†ุฏูŠ ุจูƒู…ุณ ุนุดุงู† ุชุชุญูˆู„ ูƒูŠู…ุง ุงู„ู„ูŠ ุนู†ุฏูŠ ู„ุงุด
323
00:27:47,030 --> 00:27:53,370
ู„ู…ุตููˆูุฉ ุชู…ุงู… ู†ู†ุจุบูŠ ู†ูุณ ุงู„ุนุฏุฏ
324
00:28:01,810 --> 00:28:08,410
ุชู…ุงู…ุŒ ู„ูŠุณ ู…ุดูƒู„ุฉ ู„ุงู† ุนู†ุฏู…ุง ุงู†ุง ุงุนู…ู„ train ุงู„ู€ model
325
00:28:08,410 --> 00:28:11,130
ุงู„ู„ูŠ ุงู†ุง ุงู†ุดุฃุชู‡ model.k-neighbors ู„ุฏูŠู‡ method
326
00:28:11,130 --> 00:28:17,070
ุงุณู…ู‡ุง model.k-neighbors ุงู†ุง ู‡ุงูŠู‡ ุงู„ model ุชุจุนูŠ KNN
327
00:28:17,070 --> 00:28:24,430
underscore model.k-neighbors
328
00:28:25,990 --> 00:28:30,270
ูˆู„ุง ู…ูŠู†ุŸ ูˆุจุฏูŠู„ู‡ ู…ูŠู†ุŸ ูˆุจุฏูŠู„ู‡ ุงู„ test element ุงู„ู„ูŠ
329
00:28:30,270 --> 00:28:37,030
ุงู†ุง ุจุฏูŠ ุงูุญุตู‡ ูˆู„ูŠูƒู† T1 ูƒู…ู‡ ูˆู…ุน ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ุฌูˆุงุฑ
330
00:28:37,030 --> 00:28:42,430
ุฎู…ุณุฉ ุนุฏุฏ ุนู†ุงุตุฑ ุงู„ุฌูˆุงุฑ ุฎู…ุณุฉ ุจุชุญุณ ููŠ ู„ุญุธุฉ ู…ู† ุงู„ู„ุญุธุงุช
331
00:28:42,430 --> 00:28:47,050
ุงู† ุงู„ K ุงู„ุฎู…ุณุฉ ุงู„ู„ูŠ ุงู†ุง ุนู†ู‡ุง ู…ุงุงู„ู‡ุงุด ุนู„ุงู‚ุฉ ู‡ุฐู‡ ุงู„
332
00:28:47,050 --> 00:28:50,290
method ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุฎู„ูŠู†ูŠ ุงุดูˆู ูˆ ุงุฑูˆุญ ุทุจุนุง ู‡ุฐู‡ ุงู„
333
00:28:50,290 --> 00:28:55,370
method ุจุชุฑุฌุนู„ูŠ two vectorsุงู„ููƒุชูˆุฑ ุงู„ุฃูˆู„ ูŠู…ุซู„ ุงู„ู€
334
00:28:55,370 --> 00:28:59,930
distances ูƒู…ุง
335
00:28:59,930 --> 00:29:08,790
ูˆุงู„ููƒุชูˆุฑ ุงู„ุชุงู†ูŠ ุงู„ index ุชู…ุงู…ุŸ ุงู„ index ุฃูˆ ุงู„
336
00:29:08,790 --> 00:29:15,850
indices ู†ูุณ ุงู„ู…ุตุทู„ุญุงุช indices ู„ู…ู†ุŸ
337
00:29:15,850 --> 00:29:18,550
ู„ู€ Indices
338
00:29:22,020 --> 00:29:27,480
ู„ู„ู€ Raw ุงู„ู„ูŠ ู‡ูŠ ุตุงุญุจุฉ ุฃู‚ุตุฑ ู…ุณุงูุฉ ูŠุนู†ูŠ ุงู„ู€
339
00:29:27,480 --> 00:29:31,600
Cannibals ู‡ุฏูˆู„ ุจูŠุฑูˆุญ ุจูŠุฌูŠุจู„ูŠ ุฃู‚ุฑุจ ุฎู…ุณุฉ ู„ู„ู€ Element
340
00:29:31,600 --> 00:29:36,760
ู„ู€ T1 ุฃู‚ุฑุจ ุฎู…ุณุฉ ู„ู€ T1 ูˆุจู…ุง ุฃู†ู‡ ุงู„ู…ูุฑูˆุถ T1 ูŠุชู…ุซู„
341
00:29:36,760 --> 00:29:39,480
ุงู„ู€ Raw ุงู„ุฃูˆู„ ููŠ ุงู„ data set ุงู„ู„ูŠ ุนู†ุฏูŠ ูู‡ูŠุฑูˆุญ
342
00:29:39,480 --> 00:29:43,460
ูŠู‚ูˆู„ู„ูŠ ุงู„ index ุฑู‚ู… Zero ุงูˆ ุงู„ index ุฑู‚ู… Zero ู‡ูƒูˆู†
343
00:29:43,460 --> 00:29:47,680
ู‡ุฐุง ุงู„ distance ุชุจุนูƒ ุตูุฑ ูˆู‡ุฌูŠุจู„ูŠ ุงู„ index ููŠ
344
00:29:47,680 --> 00:29:52,680
ู…ุตููˆูุฉ ุชุงู†ูŠุฉ ุฃู†ุง ุงู„ุขู† ู‡ุฑูˆุญ ุฃู‚ูˆู„ู„ู‡ eventุฎู„ู‘ูŠู†ุง
345
00:29:52,680 --> 00:29:58,480
ุจู†ุดูˆูู‡ุง ููŠ ู…ุฌุงู„ ุขุฎุฑ ู‡ูŠู€Run ุงู„ุขู† ุงู„ู…ูุฑูˆุถ ุชู… ุงู„ุชู†ููŠุฐ
346
00:29:58,480 --> 00:30:04,580
ู‡ุฃุฎุฏ ูƒูˆุฏ ุฌุฏูŠุฏ ูˆุจุฏูŠ ุฃุฑูˆุญ ุฃู‚ุจุน ุงู„ู€Distances
347
00:30:22,010 --> 00:30:26,970
ู„ุงุญุธูˆุง ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŒ ุตูุฑุŒ ุนุดุฑุฉุŒ ุฎู…ุณุฉ ูˆ ุฎู…ุณูŠู†ุŒ
348
00:30:26,970 --> 00:30:34,170
ุชุณุนุฉ ูˆ ุนุดุฑุฉุŒ ุชุณุนุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑูŠู†ุŒ ุนุดุฑุฉ
349
00:30:34,170 --> 00:30:34,270
ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ
350
00:30:34,270 --> 00:30:34,290
ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ
351
00:30:34,290 --> 00:30:34,350
ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ
352
00:30:34,350 --> 00:30:34,570
ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ
353
00:30:34,570 --> 00:30:38,390
ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ
354
00:30:38,390 --> 00:30:47,440
ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉุŒ ุนุดุฑุฉ ูˆ ุนุดุฑุฉู‡ุฐู‡ ุฃูˆ
355
00:30:47,440 --> 00:30:51,080
ุฃู‚ุฑุจ distance ู„ุฃู†ู‡ ุจูŠุฑุชุจ ู„ูŠู‡ู… ุชุฑุชูŠุจ ุชุณุงุนุฏูŠ ุญุณุจ
356
00:30:51,080 --> 00:30:54,960
ุงู„ุฃู‚ุฑุจ ูุงู„ุฃู‚ุฑุจุŒ ุทูŠุจุŒ ุงู„ุขู† ุฅุฐุง ุฃู†ุง ุจุฏูŠ ุฃุดูˆู ุงู„
357
00:30:54,960 --> 00:30:58,900
indexes ุชุจุน ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุฃูˆ ุจุฏูŠ ุฃุดูˆู
358
00:30:58,900 --> 00:31:02,100
ุงู„ target ุชุจุน ุงู„ indices ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุงุŒ ู…ู…ูƒู†
359
00:31:02,100 --> 00:31:09,960
ุฃู†ุง ุฃุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ target of
360
00:31:09,960 --> 00:31:14,080
I from
361
00:31:15,690 --> 00:31:22,530
ุงู„ู€ I ู…ูˆุฌูˆุฏุฉ ุฃูŠู†ุŸ ุฃูˆ ุนููˆู‹ุงุŒ for ุงู„ู€ I for
362
00:31:22,530 --> 00:31:30,390
I MุŒ ุงู„ indices ุฃู†ุง
363
00:31:30,390 --> 00:31:34,810
ู‡ุฐู‡ ู…ุตููˆูุฉ ุจุฑุถู‡ ู…ู† ุจุนุฏูŠุŒ ูุงุฑูˆุญ ุฃู‚ูˆู„ู‡ ุจุนุฏ ุฃูŠุงู…ุŒ
364
00:31:34,810 --> 00:31:35,310
ูุฅุดุฑุญ
365
00:31:52,280 --> 00:32:00,580
Target ุบู„ุท ุทุจุนุงู‹
366
00:32:00,580 --> 00:32:04,760
ู‡ุงู† ู„ู…ุง ูƒู†ุช ุจุญุงูˆู„ ุฃู† ุฃุทุจุน ุงู„ู€ Element ุจู‚ูˆู„ ู„ูŠ ุฅู†
367
00:32:04,760 --> 00:32:08,140
ู‡ุฐุง ุนุจุงุฑุฉ ุนู† object ุทุจ ุงู„ object ุฃู†ุง ุจุฏูŠ ุฃุฌูŠุจ ุงู„
368
00:32:08,140 --> 00:32:10,920
contents ุชุจุนุชู‡ ุฃูˆ ู…ุญุชูˆู‰ ุงู„ object ุงู„ู„ูŠ ุนู†ุฏูŠ ู‡ุงู†
369
00:32:10,920 --> 00:32:15,300
ูู‡ูŠู†ุทุจุนุชู‡ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ุงู† ุฌู„ุจู†ุงู‡ ุนู„ู‰
370
00:32:15,300 --> 00:32:19,570
ุงู„ุณุจุนุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุงุช ููˆู‚ุงู„ู€ Indices ุชุจุนุชู‡ู… ุฃูˆ ุงู„ู€
371
00:32:19,570 --> 00:32:22,590
Classes ุจู†ุงุกู‹ ุนู„ู‰ ุงู„ู€ Indexes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏู‡ุง
372
00:32:22,590 --> 00:32:26,550
ูŠุนู†ูŠ ุงุญู†ุง ุงุชูู‚ู†ุง ุงู„ Indices ู‡ูŠ ุนุจุงุฑุฉ ุนู† ุงู„ Index
373
00:32:26,550 --> 00:32:33,910
ุชุจุนุช ุงู„ Train Test ุฃูˆ ุงู„ู€ X-Train ุงู„ู‚ุฑูŠุจุฉ ู…ู† ุฃูˆ
374
00:32:33,910 --> 00:32:39,450
ุงู„ุฃู‚ุฑุจ ู„ู€ T1ููƒุงู† ุตูุฑ ูˆ ุตูุฑ ูˆู‡ุฐู‡ ุงู„ู€ Label ุณุจุนุชู‡ู…
375
00:32:39,450 --> 00:32:43,630
ู„ุงู† ุงู†ุง ุจุฏูŠ ุงุนู…ู„ voting ู‡ุฑูˆุญ ุงุนุฏ ุงู†ุง ู‡ุฏูˆู„ ู‡ูŠ ูˆุงุญุฏ
376
00:32:43,630 --> 00:32:48,250
ุงุชู†ูŠู† ุชู„ุงุชุฉ ุงุฑุจุนุฉ ุฎู…ุณุฉ ุฎู…ุณุฉ ู…ู† ุณุจุนุฉ Zero ูˆ ุงุชู†ูŠู†
377
00:32:48,250 --> 00:32:53,530
ู…ู† ุณุจุนุฉ one ู…ุนู†ุงุชู‡ ุงู† ุงู„ class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ู†ุง
378
00:32:53,530 --> 00:32:59,290
ุณุจุนุฉ ุทุจ ู„ูˆ ุงู†ุง ุจุฏูŠ ุงุนูŠุฏ ุงู„ุชุฌุฑุจุฉ ู‡ูŠ ู„ุฎู…ุณุฉ ูˆู‡ูŠ run
379
00:32:59,290 --> 00:33:06,780
ุงู„ุณู„ุฉ ุงู„ุจูˆู„ุฉ ุงู„ู„ูŠ ุจุนุฏูŠู‡ุงูˆู‡ูŠ ุงู„ู€ cell ุงู„ู„ูŠ ุจุนุฏูŠู‡ุง
380
00:33:06,780 --> 00:33:11,760
ูุฌุงู„ูƒ ุฅู†ู‡ ุงู„ุขู† ุจุฑุถู‡ 00 ุจุณ ุงู„ู‚ูŠู… ุงู„ู„ูŠ ุนู†ุฏูŠ ููˆู‚
381
00:33:11,760 --> 00:33:15,320
ุงุฎุชู„ูุช ู…ุด ู‚ุถูŠุฉ ู„ุฅู† ู‡ูŠ ููŠ ุงู„ุขุฎุฑ ุงู„ values ุงู„ู„ูŠ
382
00:33:15,320 --> 00:33:18,720
ุนู†ุฏูŠู‡ุง ุตุงุฑุชุงู† ุทุจ ู„ูˆ ุฃู†ุง ููƒุฑุช ุฅู†ู‡ ุฃุบูŠุฑ ููŠ ุงู„ values
383
00:33:18,720 --> 00:33:25,840
ุงู„ู„ูŠ ุนู†ุฏูŠู‡ุง ุญุถุฑ ุฃุฑูˆุญ ุฃุนู…ู„ run ุนุดุงู† ุฃุฎุฏู‡ุงุŒ okay ู‡ูŠ
384
00:33:25,840 --> 00:33:32,900
ุฎู„ูŠู†ูŠ ุฃู‚ูˆู„ ู‡ู†ุง 30ุŒ ู‡ูŠ runุŒ ู„ุงุญุธูˆุง ุงู„ distance
385
00:33:32,900 --> 00:33:38,070
ุงุฎุชู„ุงูู‡ุงุŸุชุฎุชู„ูุช ุงู„ู€ distance ูƒู„ูŠุงู‹ ุงู„ุขู† ูˆุงู„ุฃุฎูŠุฑ ู‡ูŠ
386
00:33:38,070 --> 00:33:44,910
run ูˆู‡ูŠุตุงุฑ ููŠ ุนู†ุฏูŠ ุชู„ุงุชุฉ one ูˆุฃุฑุจุนุฉ zero ูู‡ูˆ ููŠ
387
00:33:44,910 --> 00:33:47,910
ุงู„ุขุฎุฑ ู‡ูŠุนู…ู„ู‡ ุงู„ classification ุนู„ู‰ ุฃู†ู‡ zeroุŒ
388
00:33:47,910 --> 00:33:51,230
ู…ู…ุชุงุฒุŒ ู„ูƒู† ู‡ุฐุง ุจุฑุถู‡ ู…ุด ู‡ูˆ ุงู„ุดุบู„ ุงู„ู„ูŠ ุงุญู†ุง ูุนู„ูŠุงู‹
389
00:33:51,230 --> 00:33:55,450
ู…ุญุชุงุฌูŠู†ู‡ุŒ ุจุณ ู†ุญุท ุจุนุถ ุงู„ comments ู‡ู†ุง
390
00:34:03,930 --> 00:34:11,170
Print target of
391
00:34:11,170 --> 00:34:18,030
the most of
392
00:34:18,030 --> 00:34:23,630
the nearest neighbors
393
00:34:23,630 --> 00:34:24,950
or
394
00:34:49,610 --> 00:34:52,410
ยซุงู„ุฃุฒุฏู‡ุงุฑยป ยซุงู„ุฃุฒุฏู‡ุงุฑยป
395
00:34:56,600 --> 00:35:01,560
ุงู„ุขู† ุณุฃู†ุชู‚ู„ ู„ุฌุฒุฆูŠุฉ ุฃูƒุชุฑ ุฃู‡ู…ูŠุฉ ุนุดุงู† ุชุชูƒู„ู… ุนู†ู‡ุง
396
00:35:01,560 --> 00:35:04,920
Classification ุนุดุงู† ุฃุชุดุชุบู„ ุนู„ู‰ Classification ู…ู†
397
00:35:04,920 --> 00:35:07,640
ู†ูุณ ุงู„ู€ Library ยซHigh from Escalar Neighborsยป
398
00:35:07,640 --> 00:35:13,780
ยซImportยป ููŠ ุนู†ุฏูŠ ุงู„ู€ ยซK nearest neighborยป ุฃูˆ ุงู„ู€
399
00:35:13,780 --> 00:35:17,540
ยซK neighbors classifierยป
400
00:35:17,540 --> 00:35:22,880
ู‡ุงุฌู‡ุงู† from K
401
00:35:38,630 --> 00:35:43,710
ู†ูุณ ุงู„ูƒู„ุงู… ุงู„ุณุงุจู‚ ุจุณ ุงู„ุฃู† ุจุฏูŠ ุฃุณู…ูŠู‡ KMN underscore
402
00:35:43,710 --> 00:35:49,210
classifier equal ุงู„ู€ model ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ู†ุง
403
00:35:49,210 --> 00:35:50,610
number of neighbors
404
00:35:54,190 --> 00:35:57,350
ูŠูƒูˆู† ุงู„ุฎู…ุณุฉ ุฃูˆ ุณุจุนุฉ ู…ุด ู‚ุทูŠุน ูƒุชูŠุฑ ุฒูŠ ู…ุง ุญูƒูŠู†ุงุŒ
405
00:35:57,350 --> 00:36:00,450
ุงู„ู…ู‡ู… ุฃู†ุง ุฃุฎุชุงุฑู‡ุง ุจุนู†ุงูŠุฉ ู„ู„ุจุฑู†ุงู…ุฌ ูˆุญูŠู† ุงู†ุชูˆุง ููŠ
406
00:36:00,450 --> 00:36:04,310
ุงู„ุขุฎุฑ ู…ุทู„ูˆุจ ู…ู†ูƒูˆุง ุฅุฐุง ุงุฎุชุงุฑุช ุงู„ู€K ูุชู‚ูˆู„ูŠ ู„ูŠุด
407
00:36:04,310 --> 00:36:06,910
ุงุนุชู…ุฏุช ุนู„ู‰ ุงู„ู€K ู‡ุฐู‡ุŸ ูŠุนู†ูŠ ุงู†ุช ู…ุทู„ูˆุจ ุชุฌุฑุจ ููŠ ุงู„ูˆุงุฌุจ
408
00:36:06,910 --> 00:36:11,730
ู…ุฑุฉ ูˆ ูƒู†ุชูŠู† ูˆ ุชู„ุงุชุฉุŒ K7ุŒ K15ุŒ K20ุŒ ุฅุฐุง ุงุฎุชุงุฑ K
409
00:36:11,730 --> 00:36:14,650
ู…ู†ุงุณุจุฉ ุจูŠู‚ูˆู„ูƒ ุจุญูŠุซ ุฃู†ู‡ุง ุชุฏูŠูƒ ุฃูุถู„ accuracy ู‚ุฏุฑ
410
00:36:14,650 --> 00:36:19,100
ุงู„ู…ุณุชุทุงุน ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุทุจุนุงู‹ ููŠ ู…ู‚ู„ูˆุจ ู…ู†ูƒู… ุชู‚ุฑูŠุฑ ู…ุน
411
00:36:19,100 --> 00:36:23,580
ุงู„ูˆุงุฌุจ ู‡ุฐุง ุจุญูŠุซ ุฃู†ู‡ ุงู†ุชูˆุง ุชุญุฏุฏูˆุง ูƒู„ ุจุณุงุทุฉ ุฃูˆ
412
00:36:23,580 --> 00:36:27,540
ุชุญุฏุฏูˆุง ุจุงู„ุชูุตูŠู„ ุงู†ุช ุงูŠุด ุณูˆูŠุช ูˆ ุงูŠุด ุงู„ู†ุชุงุฆุฌ ุงู„ู„ูŠ
413
00:36:27,540 --> 00:36:32,680
ุงุดุชุบู„ุช ุนู„ูŠู‡ุง ูˆ ุงู„ู†ุชุงุฆุฌ ุงู„ู„ูŠ ุญุตู„ุช ุนู„ูŠู‡ุง ุทูŠุจ ุงู„ุขู†
414
00:36:32,680 --> 00:36:38,860
ู‡ุฐุง ุงู„ model KMN underscore classifier ุจูŠุญุชุงุฌ ุงู†ู‡
415
00:36:38,860 --> 00:36:44,870
ุงุนู…ู„ู‡ fit ูˆุนู…ู„ูŠุฉ ุงู„ fit ุฒูŠ ู…ุง ู‚ู„ู†ุง ุงู„ extremeูˆุงู„ู€
416
00:36:44,870 --> 00:36:51,210
Y-train ุจู‚ู‰ ุฒูˆุฏูˆุง ููŠู‡ู… ู…ู…ุชุงุฒ ุจุงู„ู†ุณุจุฉ ู„ูŠ ู‡ูŠูƒุงุฏ
417
00:36:51,210 --> 00:36:57,130
ุงุณุชุฏุนุงุก ุงู„ู€ classifier ูˆุชุฌู‡ูŠุฒู‡ ูˆู‡ูŠ ุฃู†ุง ุงู„ู€ using
418
00:36:57,130 --> 00:37:00,450
the
419
00:37:00,450 --> 00:37:07,270
nearest neighbor classifier as classification
420
00:37:07,270 --> 00:37:10,750
model ุชู…ุงู…
421
00:37:12,410 --> 00:37:16,570
ู…ู† ุนู…ู„ train ุจุดูƒู„ ุตุญูŠุญ ู„ู€ classifier ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
422
00:37:16,570 --> 00:37:21,070
ุนู†ุฏูŠ ู…ู…ุชุงุฒุŒ ุทุจ ู„ูˆ ุฃู†ุง ุงู„ุขู† ุงุฐุง ุงู„ classifier ุชู…
423
00:37:21,070 --> 00:37:24,490
ุฅู†ุด ุฃูˆูŠ ุจุฏุง ุงู†ุชู‚ู„ ู„ู…ุฑุญู„ุฉ prediction ุฎุฏ ุจุญูŠุซ ุงู†ู‡
424
00:37:24,490 --> 00:37:32,730
ุจุฏู‡ ุงุนู…ู„ test test ุฏูŠ ุงู„ู„ูŠ ุงู†ุง ุณู…ูŠุชู‡ knn
425
00:37:32,730 --> 00:37:39,370
underscore classifier using
426
00:37:41,370 --> 00:37:47,370
ุงู„ู€ X test ูˆุงู„ู€
427
00:37:47,370 --> 00:37:54,690
Y test ูˆุงู„ุขู† ููŠ ุนู†ุฏูŠ ู…ุซู„ู‹ุง ููŠ ุงู„ู€ KNN underscore
428
00:37:54,690 --> 00:38:04,610
model ุนููˆู‹ุง ุงู„ู€ classifier dot predict method ุฃูˆ
429
00:38:04,610 --> 00:38:09,400
ุงู„ู€ model ุงู„ู„ูŠ ุนู†ุฏูŠ dot predictุงู„ู€ Prediction
430
00:38:09,400 --> 00:38:25,460
ุจุชุงุฎุฏ ุงู„ู€ X-Train ูˆ Y-Test ูˆุจุชุฑุฌุนู„ูŠ ุงู„ู€
431
00:38:25,460 --> 00:38:29,160
Y-Predict
432
00:38:31,250 --> 00:38:34,950
ุงู„ู€ Target ุงู„ู„ูŠ ู‡ูŠ ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ุจู…ุฌุฑุฏ ุฐู„ูƒุŒ ุฏุนูˆู†ูŠ
433
00:38:34,950 --> 00:38:42,730
ุฃู‚ูˆู„ ู„ู‡ ุงุทุจุน ู„ูŠู‡ุง Y-Predict ูƒู†ุช ุฃุชุฃูƒุฏ ุฃู† ุงู„ุฃู…ูˆุฑ
434
00:38:42,730 --> 00:38:55,230
ุชู…ุงู…ุŒ ูˆุนู…ู„ Prediction ุชุงูƒุณ
435
00:38:55,230 --> 00:39:00,810
ุชูˆ Positional Argument but three were given Space
436
00:39:22,500 --> 00:39:27,960
ุฃู†ุง ุงู„ู…ูุฑูˆุถ ุฃุฏู‘ูŠ ุงู„ู€ text ุงู„ู€ attributes ูˆู‡ูˆ ุจุฏู‡
437
00:39:27,960 --> 00:39:31,860
ูŠุนู…ู„ prediction ุฃู†ุง ุขุณู ุนู„ู‰ ุงู„ุฎุทุฃ ู‡ุฐุงุŒ ุงู„ุขู† ู‡ูŠ ุงู„ู€
438
00:39:31,860 --> 00:39:36,090
predicted labels ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠุฃูˆ ูƒุฃู†ุง ููƒุฑุช ุญุงู„ูŠ
439
00:39:36,090 --> 00:39:40,710
ูˆุตู„ุช ู„ู…ุฑุงุญุฉ ุงู„ู€ Evaluation ุณู…ุญูˆู†ูŠุŒ ู‡ูŠ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ
440
00:39:40,710 --> 00:39:43,930
ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู‡ุฐู‡ ุนุจุงุฑุฉ ุนู† ูƒู„ูŠุฉ Predicted Labels
441
00:39:43,930 --> 00:39:47,870
Predicted Labels ุฒู…ูŠู† ู„ู„ู€ X Test ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ูˆูŠู†
442
00:39:47,870 --> 00:39:50,430
ุงู„ู€ Label ุงู„ุญู‚ูŠู‚ูŠ ุชุจุนู‡ุง ู…ูˆุฌูˆุฏุŸ ุงู„ู€ Label ุงู„ุญู‚ูŠู‚ูŠ
443
00:39:50,430 --> 00:39:55,950
ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ Y Train ุฃูˆ ููŠ ุงู„ู€ Y Test ู‡ุงูŠ ุทูŠุจุŒ
444
00:39:55,950 --> 00:40:00,150
ุงู„ุขู† ุนุดุงู† ุฃู†ุง ุฃุจุฏุฃ ุฃู‚ุงุฑู† ุฎู„ูŠู†ูŠ ุฃูˆู„ ุญุงุฌุฉ ู†ุชุนุฑู ุนู„ู‰
445
00:40:00,150 --> 00:40:05,040
ุงู„ู€ Confusion Matrix ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุงูˆู‡ู†ุง ููŠ ุนู†ุฏูŠ
446
00:40:05,040 --> 00:40:15,880
ุงู„ู€ classification model evaluation ู‡ู†ุจุฏุฃ
447
00:40:15,880 --> 00:40:25,940
ุงู„ุขู† ุงู„ุงู† from ุงู„ ASCII layer import matrix
448
00:40:28,280 --> 00:40:31,460
ุงู„ุขู† ุจุฏูŠ ุฃุฌูŠุจ ุงู„ู€ MatrixุŒ ุฅูŠุด ุงู„ู€ Matrix ุฌุงู…ุนุฉ
449
00:40:31,460 --> 00:40:34,540
ุงู„ุฎูŠุงุฑุŸ ุชุญุชูˆูŠ ุฃู†ู‡ ู…ู† ุฎู„ุงู„ู‡ุง ุฃู†ุง ู…ู…ูƒู† ุฃู†ุดุฃ ุงู„ู€
450
00:40:34,540 --> 00:40:37,100
confusion matrixุŒ ุฃุญุณุจ ุงู„ู€ accuracyุŒ ุฃุญุณุจ ุงู„
451
00:40:37,100 --> 00:40:40,240
precisionุŒ ุฃุญุณุจ ุงู„ recallุŒ ุฃุญุณุจ ุงู„ ุฃุซู…ุฌุฉุŒ ูƒู„ ู‡ุฐู‡
452
00:40:40,240 --> 00:40:44,260
ู„ุฏู‰ ุงู„ attributeุŒ ุนููˆุงุŒ ู„ู„ูƒุงุณูŠููŠุฑ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ
453
00:40:44,260 --> 00:40:49,940
ุนู†ุฏู‡ุงุŒ ูˆุฎู„ูŠู†ูŠ ุฃู†ุง ุฃุจุฏุฃ ู…ุน ุงู„ confusion matrixุŒ
454
00:41:07,520 --> 00:41:13,880
ุงู„ู€ M ุงู„ู€ CM ู…ุชุฑ ุงูŠู‚ุงู„
455
00:41:24,700 --> 00:41:29,180
ู‡ู†ุง ูƒู„ ุงู„ู€ evaluation functions ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู†ุง
456
00:41:29,180 --> 00:41:33,420
ู‡ุชุงุฎุฏ ู…ู†ูŠ ุดุบู„ุชูŠู† ู‡ุชุงุฎุฏ ู…ู†ูŠ ุงู„ู€ y test ุงู„ู„ูŠ ู‡ูˆ ุงู„
457
00:41:33,420 --> 00:41:37,260
label ุงู„ุญู‚ูŠู‚ูŠ ูˆุงู„ูŠ predicted ุฃูˆ ุงู„ู€ y predicted
458
00:41:37,260 --> 00:41:43,800
ุงู„ู€ y predict ูˆู‡ูŠ
459
00:41:43,800 --> 00:41:48,590
ุจุฏูŠ ุฃุฑูˆุญ ุฃู‚ูˆู„ู‡ ุงุทุจุน ู„ูŠู‡ ุงู„ matrix ุงู„ู„ูŠ ุนู†ุฏู†ุงุงู„ู„ูŠ
460
00:41:48,590 --> 00:41:52,010
ู‡ูŠ ุงู„ู€ Confusion Matrix ุงู„ู€ Test Set ุจูŠุชูƒ ุญุฌู…ู‡ุง
461
00:41:52,010 --> 00:41:57,450
ู‡ูŠู‡ู… ุงู„ู…ุฌู…ูˆุน ุงู„ุนู†ุงุตุฑ ุงู„ู…ูˆุฌูˆุฏุฉ 120ุŒ 25ุŒ True
462
00:41:57,450 --> 00:42:02,570
PositiveุŒ True NegativeุŒ False PositiveุŒ False
463
00:42:02,570 --> 00:42:08,250
NegativeุŒ False PositiveุŒ False Negative ุจุณ ุฅูŠุด ุงู„
464
00:42:08,250 --> 00:42:11,270
classes ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑุŸ ุงู„
465
00:42:11,270 --> 00:42:13,670
classes ูŠุง ุฃุฎูˆุงู†ู†ุง ูˆ ูŠุง ุฃุฎูˆุงุชูŠ ุจูŠูƒูˆู†ูˆุง ุชู†ุชุจู‡ูˆุง
466
00:42:13,670 --> 00:42:17,770
ุจุดูƒู„ ูƒูˆูŠุณู„ุฃู†ู‡ ุฃู†ุง ู…ุง ุญุฏุฏ ู„ู‡ูˆุด ุฅูŠุด ุงู„ classes ูุฅูŠุด
467
00:42:17,770 --> 00:42:22,890
ู‡ูˆ ุจูŠุงุฎุฏ ู…ุจุงุดุฑุฉ ุจูŠุฑูˆุญ ุจูŠุนุชู…ุฏ ุนู„ู‰ ุงู„ุขู† ุฃูˆู„ ู…ุง ู‚ุฑุฃุช
468
00:42:22,890 --> 00:42:29,870
data set ุฃูˆู„ ู…ุง ู‚ุฑุฃุช data set ุฅูŠุด ุฃูˆู„ class ูˆุงุฌู‡ู‡ุŸ
469
00:42:29,870 --> 00:42:32,730
ุทุจุนุงู‹ ุฃู†ุง ุจุชูƒู„ู… ููŠ ุงู„ test set ู‡ุฐุง ู„ุฃู† ุฃูˆู„ ู…ุง
470
00:42:32,730 --> 00:42:37,250
ุฒูˆุฏุชู‡ุŒ ุฒูˆุฏุชู‡ ุบู†ูŠู† ููŠ ุงู„ Y-predict ุฃูˆู„ element ููŠ
471
00:42:37,250 --> 00:42:41,870
ุงู„ Y-test
472
00:42:46,220 --> 00:42:49,820
ูƒุงู† ูˆุงุญุฏุŒ ูุฎู„ุงุตุŒ ุจูŠุนุชุจุฑ ุฃู†ู‡ ู‡ุฐุง ู„ู„ู€ Class ุงู„ุฃูˆู„ุŒ
473
00:42:49,820 --> 00:42:53,980
ุชู…ุงู…ุŸ ูˆู‡ุฐุง ู„ู„Class ุงู„ุซุงู†ูŠุŒ ุทุจุนุงู‹ ู‡ุฐู‡ ุงู„ุนู†ุงุตุฑ
474
00:42:53,980 --> 00:42:56,240
ู…ุนู†ุงุชู‡ ุฃู†ู‡ุง ุงู„ู€ confusion matrix ูˆู…ู† ุฎู„ุงู„ู‡ุง ุฃู†ุง
475
00:42:56,240 --> 00:43:00,000
ุจู†ุทู„ู‚ ูˆ ุจุญุณุจ ูƒู„ ุญุงุฌุฉุŒ ุทุจ ุฅุฐุง ุฃู†ุง ุจุฏุฃ ุฃุญุณุจ ุงู„
476
00:43:00,000 --> 00:43:05,240
accuracy ุงู„ุขู†ุŒ
477
00:43:05,240 --> 00:43:08,260
ุงุฐูƒุฑูˆุง ุงู„ accuracy ูƒุงู†ุช ุฅูŠุด ุจุชุณุงูˆูŠุŸ ุงู„ true
478
00:43:08,260 --> 00:43:12,360
positive ุฒุงุฆุฏ ุงู„ true negative ุนู„ู‰ ูƒู„ ุงู„ุนู†ุงุตุฑ
479
00:43:12,360 --> 00:43:13,600
ุงู„ู…ุฌู…ูˆุนุฉ ู‡ู†ุง
480
00:43:19,260 --> 00:43:25,360
ุณุฃู‚ูˆู… ุจุฅุนุงุฏุฉ ุงู„ู€ Accuracy ACC ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ
481
00:43:25,360 --> 00:43:28,040
ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ
482
00:43:28,040 --> 00:43:33,260
ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ
483
00:43:33,260 --> 00:43:33,800
ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ
484
00:43:33,800 --> 00:43:34,360
ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ
485
00:43:34,360 --> 00:43:39,340
ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ ุชุณุงูˆูŠ ู…ุชุฑูƒุฒ
486
00:43:39,340 --> 00:43:48,690
ุชุณุงูˆูŠ ู…ุชู‡ูˆ ุงู„ู€ Accuracy ู„ู„ู€ Model ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุงู†ูƒ
487
00:43:48,690 --> 00:43:55,850
ู‡ุงู† Matrix dot ู…ุด underscore ุฌุงู„ูŠ
488
00:43:55,850 --> 00:44:01,430
72.27 ู…ู…ุชุงุฒุŒ ุจุฏูŠ ุฃู†ุชู‚ู„ ู„ู„ุณู„ุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ู„ูˆ ุฃู†ุง ุจุฏูŠ
489
00:44:01,430 --> 00:44:05,330
ุฃุญุณุจ ุงู„ F major score ุฃูˆ ุงู„ precision ุงู„ first
490
00:44:05,330 --> 00:44:07,690
class ุงู„ู„ูŠ ู…ูˆุฌูˆุฏ ุนู†ุฏูŠ ู‡ุงู†
491
00:44:15,790 --> 00:44:20,710
ุจู†ูุณ ุงู„ูƒูŠููŠุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ู‡ุงู† ุจุฏูŠ ุฃุณู…ูŠู‡ุง
492
00:44:20,710 --> 00:44:29,190
precision equal matrix dot precision underscore
493
00:44:29,190 --> 00:44:35,950
score ูˆุจุฏูŠ ุฃุนุทูŠู‡ ุงู„ู…ุฌู…ูˆุนุชูŠู† ูˆู„ู…ู‘ุง ุงู†ุง ุจุฏูŠ ุฃู‚ูˆู„ู‡
494
00:44:35,950 --> 00:44:41,010
pre ู‚ุทุนู„ูŠู‡ ู„ุง ุฅู„ู‡ ุฅู„ุง ุงู„ู„ู‡
495
00:44:48,420 --> 00:44:55,240
ุจุชุญู…ู„ูˆู†ูŠ ุดูˆ ู‡ุณุงูˆู„ูƒู… ูŠุนู†ูŠ 65 ุงู„ู„ูŠ ุจุนุฏู‡ุง ุงุญุณู† ู…ู† ุงู„
496
00:44:55,240 --> 00:45:01,800
recallูุงู„ุฃู…ูˆุฑ ูƒู„ู‡ุง ุจุงู„ุดูƒู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ุชุชุฌู…ุน ุทุจุนุงู‹
497
00:45:01,800 --> 00:45:04,560
ู„ุงุญุธูˆุง ุงู„ู€ Acrylic Model ูƒูƒู„ ุงู„ู€ Precision ุงู„ู€
498
00:45:04,560 --> 00:45:07,900
First Class ุงู„ู€ Recall ุงู„ู€ First Class ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ
499
00:45:07,900 --> 00:45:11,560
ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ
500
00:45:11,560 --> 00:45:18,080
ู‡ูŠูƒ ู‡ูŠูƒ ู‡ูŠูƒ
501
00:45:29,740 --> 00:45:38,460
ุจุงุฑุถู‡ุŒ ุฑุฃูŠูŠ ุตุงุฑุช ุจุฏุฎู„ุนุฉ ูˆุฏู†ูŠุง ุฌู…ุงุนุฉ ุงู„ุฎูŠุฑ No
502
00:45:38,460 --> 00:45:43,740
attribute
503
00:45:43,740 --> 00:45:53,160
recall underscore score ุฃูˆ
504
00:45:53,160 --> 00:45:53,840
ุงู„ู€ F major
505
00:46:04,040 --> 00:46:10,680
F1 equal matrix F1
506
00:46:10,680 --> 00:46:18,160
underscore F1
507
00:46:21,880 --> 00:46:26,800
ุฃุฎุฑ ุดุบู„ุฉุŒ ุฃู†ุง ู…ู…ูƒู† ุฃุฌูŠุจ ูƒู„ ุงู„ู€Values ู…ุน ุจุนุถู‡ุง ู…ู†
508
00:46:26,800 --> 00:46:31,520
ุฎู„ุงู„ ุดุบู„ุฉ ู†ุณู…ูŠู‡ุง ุงู„ู€Classification Report
509
00:46:31,520 --> 00:46:37,800
ุงู„ู€Classification Report ู…ู…ูƒู† ูŠุณุงุนุฏู†ูŠ ุจุดูƒู„ ูƒุชูŠุฑ
510
00:46:37,800 --> 00:46:41,520
ุจุญูŠุซ ุฃู†ู‡ ุฃู†ุง ู…ุญุชุงุฌุด ุฃู† ุฃูƒุชุจ ูƒู„ ุญุงุฌุฉ ู…ุน ุจุนุถู‡ุง
511
00:46:41,520 --> 00:46:45,400
Classification
512
00:46:45,400 --> 00:46:45,900
Report
513
00:46:50,530 --> 00:46:57,750
ุฃูˆ ุงู„ู€ CLS underscore report ุจูŠุณุงูˆูŠ matrix dot
514
00:46:57,750 --> 00:47:01,430
classification
515
00:47:01,430 --> 00:47:10,310
underscore report ุจุฏูŠ ุฃุฏู‘ูŠู„ู‡ ุงู„ู€ method ุฃูˆ ุนููˆู‹ุง
516
00:47:10,310 --> 00:47:14,010
ุงู„ู€ to function ุฃูˆ ุฃุฒูˆุฏู‡ ุจุงู„ู€ predicted ุจุงู„ู€ to
517
00:47:14,010 --> 00:47:18,670
label ูˆุงู„ู€ predicted label ูˆุญุฑูˆุญ ุฃู‚ูˆู„ ู„ู‡ ู‡ุงู†ุทุจุน
518
00:47:18,670 --> 00:47:19,890
ู„ูŠู‡ ุงู„ classifier
519
00:47:23,050 --> 00:47:26,830
ยซReclassification Reportยป ูˆู‡ู†ุง ุฌุงุจ ู„ูŠ ุงู„ุฑุงุจูˆุฑุช
520
00:47:26,830 --> 00:47:32,290
ุงู„ูƒุงู…ู„ ุจุฏุฃ ุจุงู„ู€ ยซPrecisionยป ูˆุงู„ู€ ยซRecallยป ูˆุงู„ู€ ยซF
521
00:47:32,290 --> 00:47:36,090
Scoreยป ุฃูŠ ุงู„ู‚ูŠู… ุงู„ุชู„ุงุชุฉ ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ู„ู„ู€
522
00:47:36,090 --> 00:47:41,470
ยซClassยป ุทุจุนุงู‹ ู„ู„ ยซClass Zeroยป ู„ุฃู† ุงู„ู€ ยซRecordยป
523
00:47:41,470 --> 00:47:45,430
ู„ุงุฒู… ูŠุจูŠู† ูƒู„ ุงู„ู‚ูŠู… ู„ุงุฒู… ูŠุจูŠู† ูƒู„ ุญุงุฌุฉ ุงู„ุขู† ุงู„ู€
524
00:47:45,430 --> 00:47:51,210
ยซRecallยป ู‡ูŠุงู„ู€ Precision
525
00:47:51,210 --> 00:47:55,870
ุชู„ุงุชุฉ ูˆ ุชู…ุงู†ูŠู† ุงู„ู€ Recall ุชุณุนุฉ ูˆ ุณู…ุนูŠู† ุงู„ู€ F-score
526
00:47:55,870 --> 00:48:07,230
ูˆุงู„ู€ Accuracy ูˆูŠู†ู‡ุงุŸ ู„ูŠุด ู‡ูŠ ูƒุชุฑ ุฏุงุฎู„ุงุช ู…ุน ุจุนุถุŸ
527
00:48:15,290 --> 00:48:21,970
ุงู„ู€ Accuracy ุจุดูƒู„ ุนุงู… ู‡ูŠ 73 ู„ู…ุงุฐุง
528
00:48:21,970 --> 00:48:26,930
72.72ุŸ ู‡ู†ุง ููŠ ุงู„ู€ robot ุนู…ู„ ุงู„ู€ Roundation ุฃูˆ
529
00:48:26,930 --> 00:48:32,090
ุงู„ู‚ูŠู… ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูƒ ู‡ู†ุง ูู‡ูŠ ูุนู„ูŠุง 72.72 ูุจุนู…ู„
530
00:48:32,090 --> 00:48:34,950
ุงู„ู€ Roundation ุงู„ุขู† ุงู„ู€ Recall ุงู„ู€ Zero ุฒูŠ ู…ุง ู‚ู„ู†ุง
531
00:48:34,950 --> 00:48:38,090
6.7 ุงู„ู€ Precision ูˆุงู„ู€ Recall ุงู„ู€ Class ุงู„ุฃูˆู„
532
00:48:43,190 --> 00:48:49,230
ู‡ูŠ ุงู„ class number one ู„ู…ุง
533
00:48:49,230 --> 00:48:56,040
ู‚ู„ุช ู„ู‡ ุงุญุณุจ ุงู„ precision ุฌุงู„ูŠ 66ู‡ุฐู‡ ู‡ูŠ ุชู‚ุฑูŠุจู‹ุง ุงู„ู€
534
00:48:56,040 --> 00:49:03,800
55.ูƒุฐุง ุงู„ู€ Z ุงู„ู€ 56 ุงู„ู€ recall ุงู„ู„ูŠ ู‡ูŠ 55.8 ุจุนู…ู„ู‡ุง
535
00:49:03,800 --> 00:49:10,240
ุชู‚ุฑูŠุจู‹ุง ุงู„ F score ุงู„ู„ูŠ ูƒุงู†ุช ุจุชู…ุซู„ ุงู„ู€ 60 ุชู…ุงู…ุŸ
536
00:49:10,240 --> 00:49:13,960
ูˆุงู„ support ู„ู„ values ุงู„ู„ูŠ ู…ูˆุฌูˆุฏุฉ ุนู†ุฏู‡ุง ูู‡ูŠ ููŠ ุงู„
537
00:49:13,960 --> 00:49:16,880
report ู‡ุฐุง ุฃู†ุง ุฌูŠุจุช ูƒู„ ุงู„ values ุจุงู„ู†ุณุจุฉ ู„ูŠ ู„ู…ุฑุฉ
538
00:49:17,890 --> 00:49:23,690
ูˆุงุญุฏุฉุŒ ุจุชู…ู†ู‰ ูŠูƒูˆู† ุงู„ููŠุฏูŠูˆ ู‡ุฐุง ูŠูˆุถุญู„ูƒู… ูุนู„ูŠู‹ุง ุฅูŠุด
539
00:49:23,690 --> 00:49:27,590
ุฃู†ุง ู…ุญุชุงุฌ ููŠ ุงู„ classification ุทุจุนู‹ุง ู‡ุฐุง ุงู„ูƒู„ุงู…
540
00:49:27,590 --> 00:49:32,170
ุจุฏู‡ ูŠุชุทุจู‚ ู…ุน ูƒู„ data set ุฃูˆ ู…ุน ูƒู„ classification
541
00:49:32,170 --> 00:49:36,630
model ูˆูƒู„ classification model ููŠู‡ ุฎุงุตูŠุฉ ู…ุนูŠู†ุฉุŒ
542
00:49:36,630 --> 00:49:40,210
ูŠู…ูƒู† ูŠูƒูˆู† ุงู„ุดุบู„ ุงู„ูˆุญูŠุฏ ุงู„ุขู† ููŠ ุงู„ุงุฎุชู„ุงู ุนู†ุฏูƒู… ุงู„ู„ูŠ
543
00:49:40,210 --> 00:49:42,770
ู‡ูŠ ุงุณุชุฏุนุงุก ุงู„ classifierุจุงุฑูŠุฎ ุงู„ุงุณุชูุนุงู„ ุงู„ู€
544
00:49:42,770 --> 00:49:47,870
Classifier ุจูŠู†ู…ุง ุงู„ู€ Fit ุญุชุธู„ ุซุงุจุช ู„ู„ุฌู…ูŠุนุŒ ุงู„ู€
545
00:49:47,870 --> 00:49:51,270
Predict ุญุชุธู„ ุซุงุจุช ู„ู„ุฌู…ูŠุนุŒ ูˆุงู„ู€ Measurement ุญุชุธู„
546
00:49:51,270 --> 00:49:56,590
ู…ูˆุฌูˆุฏุฉ ู„ูƒู„ ุงู„ุนู†ุงุนุŒ ู„ูƒู„ ุงู„ Classifiers ุจู†ูุณ
547
00:49:56,590 --> 00:50:00,910
ุงู„ูƒูŠููŠุฉุŒ ุฃู†ุง ู‡ูŠูƒ ุฎู„ุตุชุŒ ุจุชู…ู†ู‰ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰
548
00:50:04,250 --> 00:50:07,330
ุจุฃุชู…ู†ู‰ ุนู„ู‰ ุงู„ู„ู‡ ุชุจุงุฑูƒ ูˆุชุนุงู„ู‰ ุฃู† ุฃูƒูˆู† ูุนู„ูŠู‹ุง ูˆูู‚ุฉ
549
00:50:07,330 --> 00:50:10,850
ุงู„ู„ูŠ ู„ุงู† ุฎู„ุงู„ ุงู„ุชุณุฌูŠู„ ุงู„ุณุงุจู‚ ุฃู† ุฃู†ุง ุฃูˆุถุญูƒู… ู…ูˆุถูˆุน
550
00:50:10,850 --> 00:50:16,390
ุงู„ู€ Classification ูˆู…ู† ุฎู„ุงู„ู‡ ุงุณุชุฎุฏู…ุช ุงู„ู€ Canary
551
00:50:16,390 --> 00:50:20,370
Snapper ูˆุงุณุชุฎุฏู…ุช ุงู„ู€ Kaggle ูƒู€ Tool ู…ุฎุชู„ูุฉ ุนู† ุงู„ู€
552
00:50:20,370 --> 00:50:24,770
IPython ููŠ ุงู„ู€ Local Machine ุงู„ู…ูˆุฌูˆุฏุฉ ุนู†ุฏูŠ ุฅุฐุง ููŠ
553
00:50:24,770 --> 00:50:29,270
ุฃูŠ ุณุคุงู„ ุญุถุฑูˆู„ู‡ ู„ู€ Next Sessionุงู„ู€ Online Session
554
00:50:29,270 --> 00:50:33,690
of the Discussion ุฃุนู„ู‰ ูˆุนุณู‰ ุฃู†ู†ุง ู†ู‚ุฏุฑ ุฃู† ู†ุชูˆููŠูƒ
555
00:50:33,690 --> 00:50:36,530
ุฏุงุฆู…ู‹ุง ูˆุฃุจุฏุงู‹ ูˆุงู„ุณู„ุงู… ุนู„ูŠูƒู… ูˆุฑุญู…ุฉ ุงู„ู„ู‡ ูˆุจุฑูƒุงุชู‡