|
1 |
|
00:00:21,230 --> 00:00:25,470 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงุจุชุฏุฃูุง ูู ุงูู
ุฑุฉ ุงูู
ุงุถูุฉ |
|
|
|
2 |
|
00:00:25,470 --> 00:00:28,130 |
|
ุจุงูู system of linear equations ุงููู ูู section |
|
|
|
3 |
|
00:00:28,130 --> 00:00:33,070 |
|
2.1 ููู
ุง ููุชูู ุจุนุฏ ู ุงุจุชุฏุฃูุง ูู ุฃุฎุฐ ุฃู
ุซูุฉ |
|
|
|
4 |
|
00:00:33,070 --> 00:00:38,070 |
|
ุนูู ูุฐุง ุงูู section ู ุฃุนุทููุง ุนูู ุฐูู ุซูุงุซุฉ ุฃู
ุซูุฉ |
|
|
|
5 |
|
00:00:38,070 --> 00:00:42,930 |
|
ุชู
ุงู
ุ ู ูุฐุง ูู ุงูู
ุซุงู ุงูุฑุงุจุน ุงููู ุจูู ุฅูุฏูุง ุงูุขู |
|
|
|
6 |
|
00:00:43,470 --> 00:00:48,850 |
|
ุงูู
ุซุงู ุจูููู ุงุณุชุฎุฏู
ุงูู Echelon Form ุฃู ุงูู Row |
|
|
|
7 |
|
00:00:48,850 --> 00:00:53,450 |
|
Echelon Form ุนุดุงู ูุญู ุงูู
ุนุงุฏูุฉ ุงููู ุนูุฏูุง ูุฐู ูุจูู |
|
|
|
8 |
|
00:00:53,450 --> 00:00:57,170 |
|
ุงูุฎุทูุฉ ุงูุฃููู ูููู ุจูุงุฎุฏ ุงูู Augmented Matrix ูุนูู |
|
|
|
9 |
|
00:00:57,170 --> 00:01:02,010 |
|
ุงูู
ุตูููุฉ ุงูู
ูุณุนุฉ ุงูู
ุตููุฉ ุงูู
ูุณุนุฉ ุนูุฏูุง ุนูู ูุฐุง |
|
|
|
10 |
|
00:01:02,010 --> 00:01:09,690 |
|
ุงูุดูู ุงููู ูู 1 1 -1 1 2 1 |
|
|
|
11 |
|
00:01:09,690 --> 00:01:18,930 |
|
-1 1 ู ููุง 0 ู ููุง 1 1 0 ู |
|
|
|
12 |
|
00:01:18,930 --> 00:01:28,910 |
|
ููุง ุงูุตู ุงูุฑุงุจุน ูู ุนุจุงุฑุฉ ุนู 0 ู ูุฐูู 1 ู |
|
|
|
13 |
|
00:01:28,910 --> 00:01:36,130 |
|
0 ู 2 ู ุจูุฑูุญ ูุญุท ููุง ู
ุตูููุฉ ุงูู
ุนุงู
ูุงุช ุฃู |
|
|
|
14 |
|
00:01:36,130 --> 00:01:44,190 |
|
ุงูุซูุงุจุช ุงููู ูู 4 -5 -1 4 |
|
|
|
15 |
|
00:01:44,190 --> 00:01:50,930 |
|
ุงูุดูู ุงููู ุนูุฏูุง ุทุจุนุง ุฅูุด |
|
|
|
16 |
|
00:01:50,930 --> 00:01:58,490 |
|
5ุ 4 ุตููู ูู ุงูู
ุนุงุฏูุฉ |
|
|
|
17 |
|
00:01:58,490 --> 00:02:04,330 |
|
ุงูุซุงููุฉ 5 ุจุงูู
ูุฌุจ 5 ุจุงูู
ูุฌุจ ูุนูุง ูุจูู ูู .. |
|
|
|
18 |
|
00:02:04,330 --> 00:02:09,710 |
|
ูู ูุชุจูุง ุงููู ูู ู
ุตูููุฉ ุงูู
ุนุงู
ูุงุช ููุฐูู ุฃุถููุง ููุง |
|
|
|
19 |
|
00:02:09,710 --> 00:02:16,090 |
|
ุนู
ูุฏ ุงูุซูุงุจุช ูุณู
ูุช ูุฐูู ุจุงูู
ุตููุฉ ุงูู
ูุณุนุฉ ุงูุขู ูุงุถุญ |
|
|
|
20 |
|
00:02:16,090 --> 00:02:20,330 |
|
ุนูุฏู ููุง ุตูุฑูู ูุจูู ุฏูู ุจูุฏุฑุด ุฃุนู
ู ูููู
ููุง ุญุงุฌุฉ |
|
|
|
21 |
|
00:02:20,570 --> 00:02:26,270 |
|
ูุจูู ุจุงุฌู ุนูู ุงูุงุซููู ูุฐู ู ุจุชุฎูููุง 1 ุตุญูุญ ุฅุฐุง |
|
|
|
22 |
|
00:02:26,270 --> 00:02:33,850 |
|
ุจูุฏุฑ ุฃุถุฑุจ ุงูุตู ุงูุฃูู ูู ุณุงูุจ 2 ู ุฃุถููู ููุตู |
|
|
|
23 |
|
00:02:33,850 --> 00:02:39,510 |
|
ุงูุซุงูู ูุจูู ูุฐุง ุจุฏู ุฃุนู
ู ุณุงูุจ 2 R1 |
|
|
|
24 |
|
00:02:42,510 --> 00:02:49,830 |
|
ุจุฃุญุตู ุนูู ุงูู
ุตูููุฉ ุงูุซุงููุฉ ุงูุตู ุงูุฃูู ูู
ุง ูู 1 |
|
|
|
25 |
|
00:02:49,830 --> 00:02:56,050 |
|
1 -1 1 ููู ุงูู 4 ุงูุตู ุงูุซุงูู ุจูุตูุฑ |
|
|
|
26 |
|
00:02:56,050 --> 00:03:00,210 |
|
0 -2 1 ุจูุตูุฑ -1 |
|
|
|
27 |
|
00:03:14,240 --> 00:03:20,850 |
|
ุงูุตูุฑูู ูุจููุง ูู
ุง ูู
ุงูุงุซููู ูุจูู ูุงู 0 ููู 0 |
|
|
|
28 |
|
00:03:20,850 --> 00:03:27,450 |
|
ููู 1 1 ูููุง 1 0 ูููุง 0 2 ูููุง |
|
|
|
29 |
|
00:03:27,450 --> 00:03:32,890 |
|
-1 ููู ุงูู 4 ููู ุงูู
ุตูููุฉ ุงูุฌุฏูุฏุฉ ุงููู |
|
|
|
30 |
|
00:03:32,890 --> 00:03:39,150 |
|
ุนูุฏูุง ุงูุขู ูุฐุง ุงูู leading ุงููู ุนูุฏูุง ูู 1 ุชู
ุงู
|
|
|
|
31 |
|
00:03:39,150 --> 00:03:43,630 |
|
ุฅุฐุง ุจุงูุถุจุท ููุตู ุงููู ุจุนุฏู ุงูุนุตุฑ ุตุญุชู ูุฃ ุงููู ุนูู |
|
|
|
32 |
|
00:03:43,630 --> 00:03:48,090 |
|
ูู
ููู ุจุงูุถุจุท ูุงุฒู
ูููู ุงูู leading ูุฐุง ุฌุฏุงุด 1 ุตุญ |
|
|
|
33 |
|
00:03:48,090 --> 00:03:50,930 |
|
ูุจูู ุจุฑูุญ ุจุถุฑุจ ุงูุตู ุงูุฃูู ูุฐุง ูู ุฌุฏ ุฅูู ุงูุตู |
|
|
|
34 |
|
00:03:50,930 --> 00:03:55,090 |
|
ุงูุซุงูู ูู ุฌุฏ ุฅูู ูู -1 ูุจูู ุจุงุฌู ุจูููู ุจุฏู |
|
|
|
35 |
|
00:03:55,090 --> 00:04:02,610 |
|
ุฃุนู
ู - R2 ููุท ูุบุฉ ูุจูู ุจุงุฌู ุจููู ุงูู
ุตูููุฉ |
|
|
|
36 |
|
00:04:02,610 --> 00:04:09,250 |
|
ูุชุฃุฎุฐ ุงูุดูู ุงูุชุงูู 1 1 -1 ูููุง ูู
ุงู |
|
|
|
37 |
|
00:04:09,250 --> 00:04:15,760 |
|
1 ููุฐุง ุนู
ูุฏู ุงูุซูุงุจุช ุงููู ูู 4 ูููุง 0 |
|
|
|
38 |
|
00:04:15,760 --> 00:04:22,940 |
|
ูููุง 1 ูููุง -1 ูููุง 1 ูููุง 3 |
|
|
|
39 |
|
00:04:22,940 --> 00:04:28,240 |
|
ูุงูุตููู ุงูุชุงููุงุช ุงูุงุซููู ุงููู ุตูููู ุฒู ู
ุง ูู
1 |
|
|
|
40 |
|
00:04:28,240 --> 00:04:36,380 |
|
1 ูููุง 1 0 ูููุง 0 2 ูููุง -1 |
|
|
|
41 |
|
00:04:36,380 --> 00:04:44,100 |
|
ูููุง ูุฏุงุด ุงููู ูู 4 ุจุนุฏ ููู ุจุฏู ุฃุนู
ู ููุง 0 |
|
|
|
42 |
|
00:04:44,100 --> 00:04:49,220 |
|
ูููุง 0 ุฅุฐุง ุจุถุฑุจ ุงูุตู ุงูุซุงูู ูู -1 ู |
|
|
|
43 |
|
00:04:49,220 --> 00:04:56,100 |
|
ุจุถููู ููุตู ุงูุซุงูุซ ู ูุฐูู ููุตู ุงูุฑุงุจุน ูุจูู ุนู
ูุชูู |
|
|
|
44 |
|
00:04:56,100 --> 00:05:02,880 |
|
ูุนู
ููู
ูู ุงูู 1 ูุจูู ุจุฏู ุฃุนู
ู ู
ุง ูุฃุชู - ุงููู |
|
|
|
45 |
|
00:05:02,880 --> 00:05:06,220 |
|
ูู R2 to R3 |
|
|
|
46 |
|
00:05:19,380 --> 00:05:26,280 |
|
ูุจูู ุฃูู ุตููู ูุจููุง ูู
ุง ูู
ูุจูู ุจุงุฌู ุจููู ุงูุตู |
|
|
|
47 |
|
00:05:26,280 --> 00:05:34,180 |
|
ุงูุฃูู ูุฐุง ุงููู ูู 1 1 -1 ูููุง 1 ููุง |
|
|
|
48 |
|
00:05:34,180 --> 00:05:40,940 |
|
4 ูู
ุง ูู ูููุง 0 ูููุง 1 ูุณุงูุจ 1 1 |
|
|
|
49 |
|
00:05:40,940 --> 00:05:46,780 |
|
ูููุง 3 ุงูุขู ุจุฏู ุฃุถุฑุจู ูู -1 ูุฃุถููู ููุง |
|
|
|
50 |
|
00:05:46,780 --> 00:05:51,820 |
|
ุจุฏู ูุฌููู ููุง ูุฐุง 0 0 ุฒู ู
ุง ูู ุจุฏู ูุฌููู ููุง |
|
|
|
51 |
|
00:05:51,820 --> 00:05:57,280 |
|
0 0 ุชู
ุงู
ุ ุงูุขู ูุฐุง ุฃูุง ุถุฑุจุชู ูู -1 |
|
|
|
52 |
|
00:05:57,280 --> 00:06:02,810 |
|
ูุจูู ููุง ูุฏุงุด 1 1 ุจูุตูุฑ 2 ูููุง 1 ูุจูู |
|
|
|
53 |
|
00:06:02,810 --> 00:06:08,510 |
|
ููุง 2 ูููุง 1 ููุง ุตุงุฑ ูุฐุง -1 ุฃุถููู |
|
|
|
54 |
|
00:06:08,510 --> 00:06:14,510 |
|
ููุง ูุจูู ุจูุตูุฑ -1 ู 1 ูุจูู -1 ู |
|
|
|
55 |
|
00:06:14,510 --> 00:06:19,490 |
|
1 ููุท ูุบูุฑ ุจููู -1 ุฒู 2 ุงููู ูู ุงุจ |
|
|
|
56 |
|
00:06:19,490 --> 00:06:24,330 |
|
1 ูุฃ ุฅุฐุง ุนุฑูุช ุฃู -1 ุจูุตูุฑ -3 |
|
|
|
57 |
|
00:06:24,330 --> 00:06:29,980 |
|
ูุจูู ุจูุตูุฑ ูุฐู -4 ููุฐู 1 ูุจูู ูุฐู ุณุงูู |
|
|
|
58 |
|
00:06:29,980 --> 00:06:36,000 |
|
4 ููุฐู 1 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุงุ ุชู
ุงู
ุ ุงูุขู |
|
|
|
59 |
|
00:06:36,000 --> 00:06:42,320 |
|
ุจุงูุฐุงูู ูู
ููุ ูุตู ุงูุซุงูุซุ ุจุฏู ูุฐุง ูููู 1ุ ุตุญูุญุ |
|
|
|
60 |
|
00:06:42,320 --> 00:06:46,600 |
|
ูุจูู ุจุฑูุญ ุจุถุฑุจ ูุฐุง ุงูููุงู
ูู ูุฏุงุดุ ูู ยฝุ ูุจูู ุจุฏู |
|
|
|
61 |
|
00:06:46,600 --> 00:06:55,170 |
|
ุงููุต R3 ูุจูู ุจุงูุฏู ูุงุฎุฏ ููุง ุงููุต R3 ููุซุจ |
|
|
|
62 |
|
00:06:55,170 --> 00:07:01,890 |
|
ุนูู ุงูุดูู ุซุงูุซ ุฃูู ุตููู ุฒู ู
ุง ูู
ุง 1 1 ููู
ุงู |
|
|
|
63 |
|
00:07:01,890 --> 00:07:04,670 |
|
-1 ูููุง 1 |
|
|
|
64 |
|
00:07:14,780 --> 00:07:20,920 |
|
ูุงูุนู
ูุฏ ูุฐุง ูุฐุง 1 ูููุง 4 ูููุง 0 ูููุง |
|
|
|
65 |
|
00:07:20,920 --> 00:07:27,120 |
|
1 -1 1 3 ุงูุขู ุจุฏู ุฃุถุฑุจ ูุฏู ยฝ |
|
|
|
66 |
|
00:07:27,120 --> 00:07:32,280 |
|
ูุจูู 0 0 ุฒู ู
ุง ูู ูููุง -ยฝ ูููุง - |
|
|
|
67 |
|
00:07:32,280 --> 00:07:41,220 |
|
2 ูุงูุตูุฉ ุงูุฑุงุจุนุฉ ุฒู ู
ุง ูู 1 1 1 ุงูุขู |
|
|
|
68 |
|
00:07:41,730 --> 00:07:50,010 |
|
ุจุฏู ุฃุฎูู ูุฐุง 0 ูุจูู ุจุฏุงุชู ุฃูููู -R3 to R4 |
|
|
|
69 |
|
00:07:50,010 --> 00:07:55,050 |
|
ููุดูู ุฅูุด ุจุฏูุง ูุนู
ู ูู ูุฐุง ูุจูู ูุฐุง ุงูููุงู
ุจุฏู |
|
|
|
70 |
|
00:07:55,050 --> 00:08:01,410 |
|
ูุนุทููุง ุงูู
ุตูููุฉ ุงูุชุงููุฉ ุงูุขู 1 1 -1 |
|
|
|
71 |
|
00:08:01,410 --> 00:08:10,710 |
|
1 0 1 -1 1 0 0 1 - |
|
|
|
72 |
|
00:08:10,710 --> 00:08:18,310 |
|
ยฝ ููุง ู
ูุฌุจุฉ ูููุง ู
ูุฌุจุฉ ูููุง ู
ูุฌุจุฉ ูููุง ู
ูุฌุจุฉ ูููุง |
|
|
|
73 |
|
00:08:18,310 --> 00:08:22,250 |
|
ู
ูุฌุจุฉ |
|
|
|
74 |
|
00:08:22,250 --> 00:08:32,410 |
|
ูููุง ู
ูุฌุจุฉ |
|
|
|
75 |
|
00:08:36,410 --> 00:08:44,730 |
|
ุจุฏู ูุฐุง ูููู ูู
ุงู ุฌุฏุงุดุฑ ุจุฏู 1 ุตุญูุญ ุทูุจ ุฅูุด ุฑุฃูู |
|
|
|
76 |
|
00:08:44,730 --> 00:08:51,350 |
|
ูุง ุจูุงุช ูู ุนู
ูุช ู
ุง ูุฃุชู ุจุฏู ุฃุญุงูู ุฃุฎูู ุงูุฎุทูุงุช |
|
|
|
77 |
|
00:08:51,350 --> 00:08:57,470 |
|
ุดููุฉ ูุจูู ุจุฏู ุฃุนู
ู ู
ุง ูุฃุชู ุจุฏู ุฃุถุฑุจ ูุฐุง ูู ุณุงูุจ |
|
|
|
78 |
|
00:08:57,470 --> 00:09:02,830 |
|
1 ู ุฃุถููู ููู ูุงู ุงูุฎุทูุฉ ุงูุฃููู ุงูุฎุทูุฉ ุงูุซุงููุฉ |
|
|
|
79 |
|
00:09:03,120 --> 00:09:11,260 |
|
ุจุฏู ุฃุถุบุท ูุฏู ูุฏุงุด โ
ูุจูู ุจุฏู ุฃุฌู R2 |
|
|
|
80 |
|
00:09:11,260 --> 00:09:17,720 |
|
ุจุงูุณุงูุจ -R2 to R1 ูุงู ูุงุญุฏุฉ ุงูุซุงููุฉ |
|
|
|
81 |
|
00:09:17,720 --> 00:09:25,300 |
|
ุจุฏู โ
R4 ู
ุฑุฉ ูุงุญุฏุฉ ุฎุทูุฉ ูุงุญุฏุฉ ูุจูู ุจุชุงุฎุฏ |
|
|
|
82 |
|
00:09:25,300 --> 00:09:32,920 |
|
ุงูุดูู ุงูุชุงูู ูุงุฏู 1 ููุฐุง 0 ููุฐุง ููุง ุถุฑุจูุง ููู |
|
|
|
83 |
|
00:09:32,920 --> 00:09:37,940 |
|
-1 ุจูุตูุฑ ู
ูุฌุจุฉ 1 ุจูุตูุฑ 0 ูููุง ูู
ุงู |
|
|
|
84 |
|
00:09:37,940 --> 00:09:42,520 |
|
0 ูููุง ุถุฑุจูุง ููู -1 ุจูุตูุฑ -3 |
|
|
|
85 |
|
00:09:42,520 --> 00:09:48,220 |
|
ูุจูู ููุง ููุจูู ุงููุฏุงุด 1 ูุฐุง 0 1 -1 |
|
|
|
86 |
|
00:09:48,220 --> 00:09:57,290 |
|
1 ูู
ุง ูู ููุฐู 3 ูู
ุง ูู ูููุง 0 0 1 0 0 ูููุง |
|
|
|
87 |
|
00:09:57,290 --> 00:10:00,590 |
|
0 0 0 1 |
|
|
|
88 |
|
00:10:00,590 --> 00:10:08,050 |
|
ุตุญูุญ ูุฅู ุฃูุง ุถุฑุจุช ุฌุฏููุง ูู โ
ููุฐุง ูุตุจุญ 2 ู |
|
|
|
89 |
|
00:10:08,050 --> 00:10:13,890 |
|
ุงููู ูุจููุง -2 ุฒู ู
ูู ูุจูู ูุฐู -2 ู |
|
|
|
90 |
|
00:10:13,890 --> 00:10:19,870 |
|
ูุฐู ุงููู ูู ู
ูู 2 ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุทูุจ ุฃูุง |
|
|
|
91 |
|
00:10:19,870 --> 00:10:28,150 |
|
ู
ู
ูู ุฃุฎูู ููุง ูุฐุง 0 ู ุฃุฎูู ูุฐุง 0 ูุจูู ุจุฏุฃ |
|
|
|
92 |
|
00:10:28,150 --> 00:10:34,270 |
|
ุฃุถูู ุงูุตู ุงูุซุงูุซ ุฅูู ุงูุตู ุงูุซุงูู ุจุฎูู 0 ููู |
|
|
|
93 |
|
00:10:34,270 --> 00:10:41,210 |
|
ูุจูู ููุง ุจุฏูุง ูุนู
ู ู
ุง ูุฃุชู ุจุฏุฃ ุฃุญุท ุณูู
ู ุฃููู ููุง |
|
|
|
94 |
|
00:10:41,210 --> 00:10:50,530 |
|
-R3 to R2 ูุจูู ุจุฏู ูุตูุฑ ุนูุฏู ู
ุง ูุฃุชู |
|
|
|
95 |
|
00:10:50,530 --> 00:10:55,410 |
|
R3 |
|
|
|
96 |
|
00:10:55,410 --> 00:11:03,710 |
|
to R2 ููุฐุง ุดู ุฑุฃูู ูู
ุงู ุฃุถุฑุจู ูู ยฝ ู ุฃุถููู ููู |
|
|
|
97 |
|
00:11:03,710 --> 00:11:06,890 |
|
ููู ุจุงูู
ุฑุฉ ูููุณุ |
|
|
|
98 |
|
00:11:10,320 --> 00:11:18,100 |
|
ุทูุจ ูุนู
ููุง ุฎุทูุฉ ูุงุญุฏุฉ ูุจูู -R3 to R2 |
|
|
|
99 |
|
00:11:18,100 --> 00:11:30,380 |
|
ููุฐูู ยฝ R4 to R3 ู
ุฑุฉ ูุงุญุฏุฉ ูุจูู ุจูุตูุฑ |
|
|
|
100 |
|
00:11:30,380 --> 00:11:38,510 |
|
ุนูุฏูุง ููุง 1 0 0 0 1 ููุง -R3 |
|
|
|
101 |
|
00:11:38,510 --> 00:11:44,050 |
|
to R2 ุณุงูุจ |
|
|
|
102 |
|
00:11:44,050 --> 00:11:48,990 |
|
R3 .. ูุง ูุง R3 ุจุฏูู ุณุงูุจ ุตุญูุญ R3 |
|
|
|
103 |
|
00:11:48,990 --> 00:11:55,030 |
|
ุจุฏู ุฃุถููู ูู R2 ู
ุจุงุดุฑุฉ ูุจูู 0 ูููุง 1 |
|
|
|
104 |
|
00:11:55,030 --> 00:12:04,270 |
|
ูููุง 0 ูููุง ยฝ ูููุง 1 ุฃุถููุง ุฅุถุงูุฉ ุจุนุฏูู ยฝ R |
|
|
|
105 |
|
00:12:04,270 --> 00:12:12,620 |
|
4 ุจุฏู ุฃุถููู ูู R3 ุจูุตูุฑ 0 0 1 ูููุง |
|
|
|
106 |
|
00:12:12,620 --> 00:12:18,740 |
|
ยฝ ุจูุตูุฑ 0 ูููุง ยฝ ููู 2 ุงููู ูู ุจู 1 |
|
|
|
107 |
|
00:12:18,740 --> 00:12:23,560 |
|
ุจูุจูู ุงููู ุนูุฏูุง ููุง ุฌุฏููุง -1 ููุฐุง 0 0 |
|
|
|
108 |
|
00:12:23,560 --> 00:12:29,040 |
|
ูููุง 1 ูููุง 2 ุจุงูุดูู ุงููู ุนูุฏูุง ูู ุถุงูู |
|
|
|
109 |
|
00:12:29,040 --> 00:12:33,830 |
|
ุนูููุง ุจุณ ุฎุทูุฉ ูุงุญุฏุฉ ุงููู ูุชุฎูุต ู
ู ุงููุต ุงููู ุนูุฏูุง |
|
|
|
110 |
|
00:12:33,830 --> 00:12:38,550 |
|
ูุฐุง ูุจูู ุจูู ุฃุถุฑุจ ุงูุตู ุงูุฑุงุจุน ูู -ยฝ ูุฃุถููู |
|
|
|
111 |
|
00:12:38,550 --> 00:12:47,170 |
|
ููุตู ุงูุซุงูู ูุจูู ูุฐุง ุจุฏู ูุนุทููุง -ยฝ R4 to |
|
|
|
112 |
|
00:12:47,170 --> 00:12:55,670 |
|
R3 ุจูุญุตู ุนูู ู
ุง ูุฃุชู ูุงู 1 0 0 0 |
|
|
|
113 |
|
00:12:55,670 --> 00:13:04,810 |
|
1 ุฃู ููุง 0 1 ุฒูุฑู ุฒูุฑู ูููุง ุขู ุงุณุชูู |
|
|
|
114 |
|
00:13:04,810 --> 00:13:09,990 |
|
ุดููุฉ ุฅุญูุง ุจููู -ยฝ ุขู 4 ูุจูู ููุง ุจูุตูุฑ ูุฏูุฑ |
|
|
|
115 |
|
00:13:09,990 --> 00:13:16,630 |
|
-1 ู
ุน 1 ุจูุตูุฑ 0 ู
ุธุจูุท ููู ู
ุฑุฉ ุซุงููุฉ |
|
|
|
116 |
|
00:13:16,630 --> 00:13:22,020 |
|
ุจุงูุฃูู ู
ุงููู
ู
ุนุงู ุงูุตู ุงูุฃูู ุญุงุทูุชู ุฒู ู
ุง ูู ุตูู |
|
|
|
117 |
|
00:13:22,020 --> 00:13:29,320 |
|
ุงูุซุงูู ุจููู -ยฝ ุฃูู .. ูุฃ ุตูู ุงูุซุงูู .. ุณุงูุจ |
|
|
|
118 |
|
00:13:29,320 --> 00:13:35,640 |
|
ยฝ .. ูุฃ ูุฐุง -ยฝ ุฃูู 4 ู ูุงุฑู 2 .. |
|
|
|
119 |
|
00:13:35,640 --> 00:13:41,450 |
|
ุฃููู ููุงุฑู 2 ูุจูู ูู R2 ุจูุตูุฑ ุนูุฏูุง ููุง 0 0 |
|
|
|
120 |
|
00:13:41,450 --> 00:13:46,950 |
|
ู
ุธุจูุท ููุฐุง 0 0 1 0 |
|
|
|
121 |
|
00:13:46,950 --> 00:13:53,850 |
|
-1 ูููุง 0 0 0 2 |
|
|
|
122 |
|
00:13:53,850 --> 00:13:59,070 |
|
ุงูุดูู ุงููู ุนูุฏูุง ุฅุฐุงู ุงูู System ุงููู ูุตูุชู ูุง ุจูุงุช |
|
|
|
123 |
|
00:13:59,070 --> 00:14:03,890 |
|
ูุฐุง ุงููู ูู X1 = 1 ู X2 = 0 ู X3 |
|
|
|
124 |
|
00:14:03,890 --> 00:14:08,030 |
|
= -1 ู X4 = 2 ู
ูุงูุฆ ููู System |
|
|
|
125 |
|
00:14:08,030 --> 00:14:12,710 |
|
ุงูุฃุตู ุงููู ูู
ูู ุงูู Star ุงููู ุนูุฏูุง ูุจูู ุฃุตุจุญ ุญู |
|
|
|
126 |
|
00:14:12,710 --> 00:14:16,630 |
|
ุงูู
ุนุงุฏูุฉ ุงูู Star ุฃู ุงูู System ุงูู Star ูู ุญู ูุฐุง |
|
|
|
127 |
|
00:14:16,630 --> 00:14:23,790 |
|
ุงูู System ูุฐูู ุจุฑูุถ ุฃููู ูู solution of |
|
|
|
128 |
|
00:14:23,790 --> 00:14:39,520 |
|
the system star with x1 ู x2 ู x3 ู x4 ุจูุจูู ูุณุงูู |
|
|
|
129 |
|
00:14:39,520 --> 00:14:47,880 |
|
ูุนูู four triple ู
ู 1 0 ุณุงูุจ 1 2 |
|
|
|
130 |
|
00:14:47,880 --> 00:14:54,800 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุฎูููุง ูุณุฃู ุงูุณุคุงู ุงูุชุงูู ุงูุขู |
|
|
|
131 |
|
00:14:54,800 --> 00:15:01,240 |
|
ูู ุงูู system star ูุฐุง Consistent ููุง Inconsistentุ |
|
|
|
132 |
|
00:15:01,240 --> 00:15:06,240 |
|
Consistent ูุฃูู ูุฌูุช ุญู ู
ุฑุฉ ููู ูุฏู ุฃููู ุฃู ูู ูุงู |
|
|
|
133 |
|
00:15:06,240 --> 00:15:11,000 |
|
ุญู ุฃู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู ูุจูู ุจุณู
ู ุงูู system |
|
|
|
134 |
|
00:15:11,000 --> 00:15:13,400 |
|
Consistentุ |
|
|
|
135 |
|
00:15:15,600 --> 00:15:19,720 |
|
ุทูุจ ุฅุญูุง ูุบุงูุฉ ุฃุฎุฐูุง 4 ุฃู
ุซูุฉ ุฒู ู
ุง ุฃูุชู
ุดุงูููู |
|
|
|
136 |
|
00:15:19,720 --> 00:15:26,600 |
|
ููู ูุงุญุฏ ูููู
ุดูู ูุงุชุณุงุจ ุฏุฑุฌูุง ู
ู ุงูู
ุนุงุฏูุชูู ูู |
|
|
|
137 |
|
00:15:26,600 --> 00:15:31,760 |
|
ู
ุฌููููู ูุบุงูุฉ ู
ุง ูุตููุง ุฅูู 4 ู
ุนุงุฏูุงุช ูู 4 |
|
|
|
138 |
|
00:15:31,760 --> 00:15:39,390 |
|
ู
ุฌููููู ุจูุฌู ูุงุฎุฏ ู
ุซุงู ุจูุฎุชูู ุดููุงู ุนู ุงูุฃู
ุซูุฉ ุงููู |
|
|
|
139 |
|
00:15:39,390 --> 00:15:47,190 |
|
ูุงุชุช ููู ุจูุญู
ู ููุณ ุงูููุฑุฉ ูุจูู ู
ุซุงู ุฑูู
5 ูุฐุง |
|
|
|
140 |
|
00:15:47,190 --> 00:15:53,050 |
|
ู
ู ุงููุชุงุจ ุณุคุงู 19 ูู
ุฑุฉ ุฅูู ุจูููู For what |
|
|
|
141 |
|
00:15:53,050 --> 00:16:02,890 |
|
values For what values ู
ุง ูู ุงูููู
ุงููู ุจุชุงุฎุฏูุง a |
|
|
|
142 |
|
00:16:02,890 --> 00:16:11,530 |
|
and b ุจุญูุซ ุฃู For what value of a does the system |
|
|
|
143 |
|
00:16:11,530 --> 00:16:19,910 |
|
does the system does |
|
|
|
144 |
|
00:16:33,010 --> 00:16:41,970 |
|
ุงููู ูู x1 - 2x2 = a ู - |
|
|
|
145 |
|
00:16:41,970 --> 00:16:49,270 |
|
3x1 + 6x2 ุจุฏู ูุณุงูู b ูุฐุง ูู ุงูู |
|
|
|
146 |
|
00:16:49,270 --> 00:16:57,110 |
|
system have a solution have a |
|
|
|
147 |
|
00:16:57,110 --> 00:16:58,690 |
|
solution |
|
|
|
148 |
|
00:17:33,750 --> 00:17:39,630 |
|
ุณุคุงู ู
ุฑุฉ ุซุงููุฉ ูููู ูู ู
ุง ูู ุงูููู
ุงูุชู ุชุฃุฎุฐูุง ูู |
|
|
|
149 |
|
00:17:39,630 --> 00:17:46,010 |
|
ู
ู a ู b ุจุญูุซ ุฃู ูุฐุง ุงูู system ูููู ูู ุญู ุชู
ุงู
|
|
|
|
150 |
|
00:17:46,010 --> 00:17:52,530 |
|
ูู
ุง ุฃููู ุญู ู
ุง ููุชุด ุญู ูุญูุฏ ูุฏ ูููู ุญู ูุญูุฏ ููุฏ ูููู |
|
|
|
151 |
|
00:17:52,530 --> 00:17:57,790 |
|
ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู ุงูู
ูู
ุฃู ูููู ููุงู ุญู ุจุบุถ |
|
|
|
152 |
|
00:17:57,790 --> 00:18:01,830 |
|
ุงููุธุฑ ุนู ุดูู ุงูุญู ูุนูู ุจุฏู ุฅูุด ุงูููู
ุชุฃุฎุฐูุง a |
|
|
|
153 |
|
00:18:01,830 --> 00:18:06,090 |
|
ู b ุฅุฐุง ุจุฑูุญ ุจุจุฏุฃ ุจุงูู
ุตูููุฉ ุงูู
ูุณุนุฉ ุฒู ู
ุง ููุช |
|
|
|
154 |
|
00:18:06,090 --> 00:18:11,630 |
|
ุจุดุชุบู ูู ุงูุฃุฑุจุนุฉ ุฃู
ุซูุฉ ุงูู
ุงุถูุฉ ูุจูู ููุง ุจูููู |
|
|
|
155 |
|
00:18:11,630 --> 00:18:12,610 |
|
solution |
|
|
|
156 |
|
00:18:14,930 --> 00:18:24,930 |
|
ุจุนุฏูู ููู
ุตูููุฉ ุงูู
ูุณุนุฉ 1 -2 3 6 ูููุง a ูููุง b |
|
|
|
157 |
|
00:18:24,930 --> 00:18:30,870 |
|
ุจุงูุดูู ุงููู ุนูุฏูุงูุง ุชู
ุงู
ุ ุจุฏู ุฃุญุงูู ุฃุฎูู ูุฐุง 0 |
|
|
|
158 |
|
00:18:30,870 --> 00:18:36,910 |
|
ูุจูู ุจุถุฑุจ ุงูุตู ุงูุฃูู ููู 3 ู ุจุถููู ููุตู ุงูุซุงูู |
|
|
|
159 |
|
00:18:36,910 --> 00:18:45,940 |
|
ูุจูู ููุง 3 R1 to R2 ููุณ ุงูุนุฏุฏ ุงูุตู ุงูุฃูู ุฒู ู
ุง |
|
|
|
160 |
|
00:18:45,940 --> 00:18:53,160 |
|
ูู 1 ุณุงูุจ 2 a ุงูุตู ุงูุซุงูู 0 ูุนูู ุถุฑุจูุง |
|
|
|
161 |
|
00:18:53,160 --> 00:18:59,120 |
|
ููู 3 ูู ุณุงูุจ 6 ู
ุน 6 ูู 0 ููุง ุถุฑุจูุง ููู |
|
|
|
162 |
|
00:18:59,120 --> 00:19:05,560 |
|
3 ุงููู ุจูุตูุฑ 3a + ุงูู b ุจุงูุดูู ุงููู |
|
|
|
163 |
|
00:19:05,560 --> 00:19:08,440 |
|
ุนูุฏูุง ุชู
ุงู
|
|
|
|
164 |
|
00:19:09,470 --> 00:19:13,430 |
|
ู
ู ูุฐุง ุงูููุงู
ู
ุงุฐุง ูุณุชูุชุฌ ูุง ุจูุงุช ุฃู 3a + |
|
|
|
165 |
|
00:19:13,430 --> 00:19:20,110 |
|
b ูุฏู 0 ุฃุตูุงู ุงููู ูุฑุถู ูุนูู ูุฃูู ููุง 0 X |
|
|
|
166 |
|
00:19:20,110 --> 00:19:26,290 |
|
1 + 0 X2 + 3a + b ูููุง X |
|
|
|
167 |
|
00:19:26,290 --> 00:19:30,630 |
|
1 - 2 X2 + a ุงูู
ุนุงุฏูุฉ ุงูุฃููู |
|
|
|
168 |
|
00:19:30,630 --> 00:19:37,190 |
|
ุชู
ุงู
ูุจูู ุจุงุฌู ุจููู ูู The above system |
|
|
|
169 |
|
00:19:39,090 --> 00:19:50,930 |
|
has a solution of ุงูู 3a + ุงูู b ุจุฏู ุณุงููุฉ 0 |
|
|
|
170 |
|
00:19:51,930 --> 00:19:57,110 |
|
ูุนูู ุฃู ููู
ุชูู ุฃุฎุฏูู
ูู a ู b ุจูุฎููู ููู
ุนุงุฏูุฉ |
|
|
|
171 |
|
00:19:57,110 --> 00:20:03,150 |
|
ุชุณุงูู 0 ุจุชุจูู ูู ุนุจุงุฑุฉ ุนู ุงูููู
ุงููู ุจุชุฎูู ููุฐุง |
|
|
|
172 |
|
00:20:03,150 --> 00:20:06,950 |
|
ุงูู system ุญู ุจุณ ู
ุง ูุงููุด ูุงุช ุงูุญู ูู ูุงูู ูุงุช |
|
|
|
173 |
|
00:20:06,950 --> 00:20:12,190 |
|
ุงูุญู ุจุฏู ุฃุฑูุญ ุงูููู
ุฉ ุงููู ุจุฏู ุฃุญุทูุง ูุจุฏู ุฃุทุจููุง |
|
|
|
174 |
|
00:20:12,190 --> 00:20:16,390 |
|
ูุจุงูุชุงูู ูู ูุงุญุฏ ุจูุทูุน ุนูุฏู ุฅูู ุญู ุงูุดูู ูุนูู ูุงู
|
|
|
|
175 |
|
00:20:1 |
|
|
|
201 |
|
00:23:14,080 --> 00:23:18,540 |
|
a system |
|
|
|
202 |
|
00:23:18,540 --> 00:23:22,260 |
|
in the form |
|
|
|
203 |
|
00:23:28,810 --> 00:23:37,730 |
|
A11X1 A12X2 A1NXN0 |
|
|
|
204 |
|
00:23:37,730 --> 00:23:42,170 |
|
A21X1 |
|
|
|
205 |
|
00:23:42,170 --> 00:23:45,470 |
|
A22X2 |
|
|
|
206 |
|
00:23:45,470 --> 00:23:49,710 |
|
A2NXN0 |
|
|
|
207 |
|
00:23:49,710 --> 00:23:54,630 |
|
AM1X1 |
|
|
|
208 |
|
00:23:57,270 --> 00:24:04,530 |
|
AM2X2 + + AMNXN |
|
|
|
209 |
|
00:24:04,530 --> 00:24:09,770 |
|
+ + AMNXN + + AMNXN |
|
|
|
210 |
|
00:24:09,770 --> 00:24:16,310 |
|
+ AMNXN + AMNXN |
|
|
|
211 |
|
00:24:16,310 --> 00:24:18,990 |
|
+ AMNXN + AMNXN + AMNXN + AMNXN + |
|
|
|
212 |
|
00:24:18,990 --> 00:24:22,290 |
|
AMNXN + AMNXN + AMNXN |
|
|
|
213 |
|
00:24:22,290 --> 00:24:27,410 |
|
ูุจูู ูุชูุณู
ูุฐู ุงูู remark ุฅูู ููุทุชูู ุงูููุทุฉ |
|
|
|
214 |
|
00:24:27,410 --> 00:24:36,570 |
|
ุงูุฃููู The homogeneous system ุงุณุชุนุงุฑุฉ ุงููู ุนูุฏูุง |
|
|
|
215 |
|
00:24:36,570 --> 00:24:46,810 |
|
ูุฐุง is always has a solution is always has a |
|
|
|
216 |
|
00:24:46,810 --> 00:24:51,650 |
|
solution ุฏุงุฆู
ุง ุจููููู ุญู because |
|
|
|
217 |
|
00:24:55,830 --> 00:25:00,410 |
|
it has because |
|
|
|
218 |
|
00:25:00,410 --> 00:25:08,490 |
|
it has at least the |
|
|
|
219 |
|
00:25:08,490 --> 00:25:17,750 |
|
trivial solution ุงูุด |
|
|
|
220 |
|
00:25:17,750 --> 00:25:23,550 |
|
ุงู trivial solution ุงูู x ูุงุญุฏ ู x ุงุชููู ููุธู |
|
|
|
221 |
|
00:25:23,550 --> 00:25:31,410 |
|
ู
ุงุดููู ูุบุงูุฉ xn ุจุฏู ูุณุงูู zero ู zero ู ูุฐูู zero |
|
|
|
222 |
|
00:25:31,410 --> 00:25:39,510 |
|
ุงูููุทุฉ ุงูุซุงููุฉ the homogeneous system ูุจูู ููุถูู |
|
|
|
223 |
|
00:25:39,510 --> 00:25:45,630 |
|
ุนูููุง ูู
ุงู ุนุจุงุฑุฉ ูุจู ู
ุง ูุจุฏุฃ ุงูููุทุฉ ุงูุชุงููุฉ ูุจูู |
|
|
|
224 |
|
00:25:45,630 --> 00:25:55,070 |
|
ุจุงุฌู ุจููู sir the homogeneous system |
|
|
|
225 |
|
00:25:56,240 --> 00:26:04,940 |
|
a star is consistent is consistent |
|
|
|
226 |
|
00:26:04,940 --> 00:26:12,420 |
|
ุจูุฌู ุฅูู ุงูููุทุฉ ุงูุซุงููุฉ the homogeneous system a |
|
|
|
227 |
|
00:26:12,420 --> 00:26:23,740 |
|
star the homogeneous system a star of m equations |
|
|
|
228 |
|
00:26:23,740 --> 00:26:41,630 |
|
of m equations and n unknowns has |
|
|
|
229 |
|
00:26:41,630 --> 00:26:45,830 |
|
infinite |
|
|
|
230 |
|
00:26:45,830 --> 00:26:55,190 |
|
number of solutions infinite number of |
|
|
|
231 |
|
00:26:57,200 --> 00:27:03,940 |
|
Solutions Infinite number of solutions that |
|
|
|
232 |
|
00:27:03,940 --> 00:27:07,140 |
|
contains |
|
|
|
233 |
|
00:27:07,140 --> 00:27:16,640 |
|
the trivial solution that |
|
|
|
234 |
|
00:27:16,640 --> 00:27:21,440 |
|
contains the trivial solution |
|
|
|
235 |
|
00:27:28,560 --> 00:27:32,740 |
|
m ุฃูู ู
ู n |
|
|
|
236 |
|
00:27:58,990 --> 00:28:14,570 |
|
ูุฐุจุช one find the solution of the system x |
|
|
|
237 |
|
00:28:14,570 --> 00:28:24,550 |
|
ูุงุญุฏ ูุงูุต x ุงุชููู ูุงูุต ุชูุงุชุฉ x ุชูุงุชุฉ ุจูุณุงูู ุฒูุฑู |
|
|
|
238 |
|
00:28:24,550 --> 00:28:32,040 |
|
ูุงุญุฏ x ูุงุญุฏ ุฒู x ุงุชููู ุฒุงุฆุฏ x ุชูุงุชุฉ ุจูุณุงูู ุฒูุฑู |
|
|
|
239 |
|
00:28:32,040 --> 00:28:41,120 |
|
ุงุชููู x ูุงุญุฏ ุฒุงุฆุฏ ุงุชููู x ุงุชููู ุฒุงุฆุฏ x ุชูุงุชุฉ |
|
|
|
240 |
|
00:28:41,120 --> 00:28:44,740 |
|
ููู ุจูุณุงูู ุฒูุฑู |
|
|
|
241 |
|
00:29:18,390 --> 00:29:23,190 |
|
ุงูููุทุฉ ุงูุฃููู ูู ุชุนุฑูู ุงูู homogeneous system |
|
|
|
242 |
|
00:29:23,190 --> 00:29:28,450 |
|
ุงูููุทุฉ ุงูุซุงููุฉ ูู ุงูู
ูุงุญุธุฉ ุงูุชู ุชุชููู ู
ู ููุทุชูู |
|
|
|
243 |
|
00:29:28,450 --> 00:29:32,610 |
|
ููุฐู ุชุนุทููุง ู
ุคุดุฑ ูุญู ุงูู homogeneous system |
|
|
|
244 |
|
00:29:33,240 --> 00:29:37,060 |
|
ุงูุฏููููุดู ุจูููู ุงูู homogeneous literal system is |
|
|
|
245 |
|
00:29:37,060 --> 00:29:41,800 |
|
a system in the form ูุจูู ู
ุนุงุฏูุงุช ูุทูุฉ ุจุณ ุงูุซูุงุจุช |
|
|
|
246 |
|
00:29:41,800 --> 00:29:49,080 |
|
ูููุง ุฃุตูุงุฑ ูู ูุงู ุงุณุชุจุฏููุง ุฃุญุฏ ุงูุฃุตูุงุฑ ุจุฑูู
ุจูุจุทู |
|
|
|
247 |
|
00:29:49,080 --> 00:29:52,980 |
|
ูุตูุฑ homogeneous system ุจูุตูุฑ non homogeneous |
|
|
|
248 |
|
00:29:52,980 --> 00:29:57,320 |
|
system ุนูู ุฃู ุญุงู ุ ุฃูุง ู
ุฏูุฑ ุงูู System ุจูุฐุง ุงูุดูู |
|
|
|
249 |
|
00:29:57,320 --> 00:30:01,880 |
|
ู
ุง ูู ุฃุฎุจุงุฑ ุงูุญููู ุจุชุงุจุนุชู ุจุฑูุญ ุจููู ุงูููุทุฉ ุงูุฃููู |
|
|
|
250 |
|
00:30:01,880 --> 00:30:06,780 |
|
ุงููู ูู ู
ุฏูุฑ ุงูู System Star ุฏุงุฆู
ุงู ู ุฃุจุฏุงู ูู ุญู |
|
|
|
251 |
|
00:30:06,780 --> 00:30:13,520 |
|
ุนูู ุงูุฃูู ูู ุงูุญู ุงูุตูุฑู ูุฃู ูู ุดููุช X1 ู X2 ู Xn |
|
|
|
252 |
|
00:30:13,520 --> 00:30:18,320 |
|
ูู ูู ู
ู ุงูู
ุนุงุฏูุฉ ู ุญุทูุช ุจุฏููุง ุตูุฑ ุจุตูุฑ ุงูู System |
|
|
|
253 |
|
00:30:18,320 --> 00:30:24,320 |
|
ุตุญูุฉ ุจุตูุฑ 00000 ุจุชุญูู ุฃู ู
ุนุงุฏูุฉ ุฃู ุจุชุญูู ูู |
|
|
|
254 |
|
00:30:24,320 --> 00:30:28,140 |
|
ุงูู
ุนุงุฏูุงุช ุงููู ู
ูุฌูุฏุฉ ูุฑุง ูู ูุฐุง ุงู system ูู
ู ููุง |
|
|
|
255 |
|
00:30:28,140 --> 00:30:32,700 |
|
ุจุฑูุญ ุจููู ูู ุงู homogenous system ุนูู ุงูุฃูู ูู |
|
|
|
256 |
|
00:30:32,700 --> 00:30:38,660 |
|
ุงูุญู ุงูุตูุฑู ุชู
ุงู
ุชู
ุงู
ูุนูู ู
ุนูู ูุฐุง ุงูููุงู
ุฃู ูุฐุง |
|
|
|
257 |
|
00:30:38,660 --> 00:30:43,940 |
|
ุงู system ุฏุงุฆู
ุง ู ุฃุจุฏุง Consistent ุนู
ุฑูุด ุจูููู |
|
|
|
258 |
|
00:30:43,940 --> 00:30:48,940 |
|
inconsistent ุนูู ุงูุฅุทูุงู ุฏุงุฆู
ุง ู ุฃุจุฏุง consistent |
|
|
|
259 |
|
00:30:48,940 --> 00:30:54,460 |
|
ูุฃูู ุจูุญุชูู ุนูู ุฃู ูู ุงูุญู ุงูุตูุฑู ุฃู ุงูุญู ุงูุจุฏููู |
|
|
|
260 |
|
00:30:54,460 --> 00:31:00,160 |
|
ุฃู ุงูุญู ุงูุชุงูุนู ุงู trivial solution 000 ูุฐุง ุงูููุทุฉ |
|
|
|
261 |
|
00:31:00,160 --> 00:31:03,920 |
|
ุงูุฃููู ุงูููุทุฉ ุงูุซุงููุฉ ุงู homogenous system star |
|
|
|
262 |
|
00:31:03,920 --> 00:31:10,260 |
|
ุงููู ูู M ู
ู ุงูู
ุนุงุฏูุงุช ู N ู
ู ุงูู
ุฌุงููู ุดุงููุฉ M ู
ู |
|
|
|
263 |
|
00:31:10,260 --> 00:31:15,860 |
|
ุงูู
ุนุงุฏูุงุช ูุนูุฏู N ู
ู ุงูู
ุฌุงููู ูุจูู ุนูุฏู X1 ู X2 |
|
|
|
264 |
|
00:31:15,860 --> 00:31:23,500 |
|
ูุบุงูุฉ XN ูุนูุฏู ุนุฏุฏ ู
ู ุงูู
ุนุงุฏูุงุช ูุณุงูู M ูู
ูู ูุฏูู |
|
|
|
265 |
|
00:31:23,500 --> 00:31:27,680 |
|
ูููููุง ุฌุฏ ุจุนุถ ุฒู ู
ุง ุงุญูุง ุฌุงูููู ููุง ููู
ูู ูููููุง |
|
|
|
266 |
|
00:31:27,680 --> 00:31:33,700 |
|
ู
ุฎุชููุงุช ุทูุจ ุชุนุงูู ูุดูู ุงูุด ุจูููู ููุง ุงู homogenous |
|
|
|
267 |
|
00:31:33,700 --> 00:31:39,030 |
|
system of M equations and N unknowns ูุฏููุง ุนุฏุฏ ู
ุญุฏุฏ |
|
|
|
268 |
|
00:31:39,030 --> 00:31:43,230 |
|
ู
ู ุงูุญููู ุงูุชู ุชุญุชูู ุนูู ูุฐู ุงูุญููู ุงูุชุนุฑููุฉ ุฅุฐุง |
|
|
|
269 |
|
00:31:43,230 --> 00:31:48,450 |
|
ูุงูุช ูุนูู ูุง ุจูุงุช ูู ุนูุฏู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู |
|
|
|
270 |
|
00:31:48,450 --> 00:31:53,110 |
|
ููุฐุง ุงู system ูุฅู ูุฐุง ุงูุนุฏุฏ ุงูููุงุฆู ุฏุงุฆู
ุง ู ุฃุจุฏุง |
|
|
|
271 |
|
00:31:53,110 --> 00:31:58,620 |
|
ูุฌุชู
ุน ุนูู ู
ููุ ุนูู ุงูุญู ุงูุตูุฑู ูุนูู ูุง ุจูููู ุงูุญู |
|
|
|
272 |
|
00:31:58,620 --> 00:32:03,680 |
|
ุงูุตูุฑู ู
ุณุชูู ูุญุงูู ู
ุงููุด ุบูุฑู ูุง ุฅู
ุง ุจููู ุนูุฏู ุนุฏุฏ |
|
|
|
273 |
|
00:32:03,680 --> 00:32:08,540 |
|
ูุง ููุงุฆู ู
ู ุงูุญููู ุชุฌุชู
ู ุนูู ุงูุญู ุงูุตูุฑู ุงููู ู
ูุฌูุฏ |
|
|
|
274 |
|
00:32:08,540 --> 00:32:12,820 |
|
ุชู
ุงู
ูุจูู ููู ุจูููู ุงููุธุงู
ุงููู ุนูุฏูุง ุจูููู ูููุณ |
|
|
|
275 |
|
00:32:12,820 --> 00:32:17,160 |
|
ุทูุจ ูุง ุจูุงุช ุฎูููู ุฃุณุฃู ูุจู ู
ุง ุฃูู
ู ุงูุณุคุงู ุงูุชุงูู |
|
|
|
276 |
|
00:32:17,160 --> 00:32:21,900 |
|
ูู ุงู non homogeneous system ูุญุชูู ุนูู ุงูุญู |
|
|
|
277 |
|
00:32:21,900 --> 00:32:29,190 |
|
ุงูุตูุฑูุ ูุนูู ูู ุงูุญู ุงูุตูุฑู ุฃุญุฏ ุญููู ุงูู non |
|
|
|
278 |
|
00:32:29,190 --> 00:32:34,310 |
|
-homogeneous systemุ ููุง |
|
|
|
279 |
|
00:32:34,310 --> 00:32:39,350 |
|
ุนู
ุฑู ุจูุญุตู ููุง ุนู
ุฑู ุจูุญุตู ููุดุ ูุฃู ูู ููุช ุงูููุงู
|
|
|
|
280 |
|
00:32:39,350 --> 00:32:44,150 |
|
ูุฐุง ุตุงุญุจ ุจุฏู ุฃุดูู ูู ุงู axis ู ุฃุญุท ุจุฏููุง ุฃุตูุฑูุง |
|
|
|
281 |
|
00:32:44,150 --> 00:32:48,790 |
|
ุตุงุฑ ุงูุทุฑู ุงูุดู
ุงู ููู ุฃุตูุฑ ุจุณ ุงูุทุฑู ุงููู
ูู ุฃุนุฏุงุฏ |
|
|
|
282 |
|
00:32:48,790 --> 00:32:53,750 |
|
ุจููุน ุงูุตูุฑ ูุณุชูู ุฃุนุฏุงุฏุ ูุนูู ู
ุงุนูุฏูุด ุญู ูุจูู ุจูุงุก |
|
|
|
283 |
|
00:32:53,750 --> 00:32:59,010 |
|
ุนููู ุงูู Non-homogeneous system ูุง ูู
ูู ุฃู ูููู |
|
|
|
284 |
|
00:32:59,010 --> 00:33:04,990 |
|
ุงูุญู ุงูุตูุฑู ูู ุฃุญุฏ ุงูุญููู ูู ููู ุงูุญู ุงูุตูุฑู ูููู |
|
|
|
285 |
|
00:33:04,990 --> 00:33:10,990 |
|
ุญูุง ููู homogeneous system ููุท ูุง ุบูุฑ ูุฏ ุชุฃุชู ูุฐุง |
|
|
|
286 |
|
00:33:10,990 --> 00:33:16,210 |
|
ุฅุฐุง ุฌุจูุง ุตุญ ูุฎุทุฃ ุฏูููุชู ูุจูู ุฑูุฒู ุนูู ูุฐู ุงูููุทุฉ |
|
|
|
287 |
|
00:33:16,480 --> 00:33:21,240 |
|
ุจุฏู ุฃุฑุฌุน ููููุทุฉ ุงูุซุงููุฉ ู
ุฑุฉ ุซุงููุฉ ยซุดูููยป ูุถู
ู ูู |
|
|
|
288 |
|
00:33:21,240 --> 00:33:26,700 |
|
ุฃู ูู ุนูุฏู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู ุงูุฐุงุชู ูุฌุชู
ู ุนูู |
|
|
|
289 |
|
00:33:26,700 --> 00:33:33,800 |
|
ุงูุญู ุงูุตูุฑู ุดุฑุท ูุงุญุฏ ููุท ุฃู ุนุฏุฏ ุงูู
ุนุงุฏูุงุช ุฃูู ู
ู |
|
|
|
290 |
|
00:33:33,800 --> 00:33:38,480 |
|
ุนุฏุฏ ุงูู
ุฌุงููู ูุนูู ู
ู
ูู ูููู ุนูุฏู ู
ุนุงุฏูุชูู ู ุชูุช |
|
|
|
291 |
|
00:33:38,480 --> 00:33:45,590 |
|
ู
ุฌุงููู ู
ู
ูู ูููู ุนูุฏู 3 ู
ุนุงุฏูุงุช ู 5 ู
ุฌุงููู ู
ู
ูู |
|
|
|
292 |
|
00:33:45,590 --> 00:33:51,090 |
|
ูููู ุนูุฏู 10 ู
ุนุงุฏูุงุช ู 11 ู
ุฌููู ูุนูู ุฏุงุฆู
ุง ู ุฃุจุฏุง |
|
|
|
293 |
|
00:33:51,090 --> 00:33:55,630 |
|
ุฅุฐุง ูุงู ุนุฏุฏ ุงูู
ุนุงุฏูุงุช ุฃูู ู
ู ุนุฏุฏ ุงูู
ุฌุงููู |
|
|
|
294 |
|
00:33:55,630 --> 00:34:02,510 |
|
automatic ูุงุฒู
ูุญุตู ุนูุฏู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู ูู |
|
|
|
295 |
|
00:34:02,510 --> 00:34:07,020 |
|
ูุฐู ุงููู ุจุชูููู ุงูููุทุฉ ุงููู ุนูุฏูุง ุชู
ุงู
ุทุจ ูุฑุฌุน ุงูุขู |
|
|
|
296 |
|
00:34:07,020 --> 00:34:13,260 |
|
ูุญุงูู ูุทุจู ู
ุง ููููู ุนูู ุฃุฑุถ ุงููุงูุน ุทูุจ ูุง ุจูุงุช ูู
ุง |
|
|
|
297 |
|
00:34:13,260 --> 00:34:17,160 |
|
ูููู ุนูุฏู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู ุชุฌุชู
ู ุนูู ุงูุญู |
|
|
|
298 |
|
00:34:17,160 --> 00:34:22,480 |
|
ุงูุตูุฑู ูุนูู ูุฐุง ุงูุญู ุจูููู ุฃุนุฏุงุฏ ููุง ุฃุตูุงุฑ |
|
|
|
299 |
|
00:34:26,360 --> 00:34:30,980 |
|
ูุฏ ูููู ุฃุนุฏุงุฏ ููุฏ ูููู ุฃุตูุงุฑ ุตุญ ููุง ูุฃ ู
ุด ุงุญูุง ุจูููู |
|
|
|
300 |
|
00:34:30,980 --> 00:34:35,340 |
|
ูุนูู ุฅุฐุง ูุญุชูู ุนูู ุงูุญู ุงูุตูุฑู ุฅุฐุง ุงูุญู ุงู zero |
|
|
|
301 |
|
00:34:35,340 --> 00:34:39,540 |
|
ุฃุญุฏ ูุฐู ุงูุญููู ูุจุนุฏูุง ุชุชุฃุนุฏู ููู ุงูุฃุนุฏุงุฏ ูู ุจูุฏุฑ |
|
|
|
302 |
|
00:34:39,540 --> 00:34:45,280 |
|
ุฃุฌูุจูู
ุจุงูุถุจุท ูููู
ูุง ุจูุฏุฑุด ู
ู
ูู ุฃุฌูุจูู
ุตุญูุญ ูููู
ู |
|
|
|
303 |
|
00:34:45,280 --> 00:34:50,920 |
|
ู
ู
ูู ู
ุงูุฏุฑุด ูุจุชุธูุฑ ุงูุญู ุจุฏูุงูุฉ ุฑู
ูุฒ ูุนูู ุฃูุง ุจูุฑุถ |
|
|
|
304 |
|
00:34:50,920 --> 00:34:55,340 |
|
ูุฐู ุฑู
ูุฒ ูุจุงูุชุงูู ุงูุฑู
ูุฒ ูุฐู ูุฏ ู
ุง ุจุฏู ุญุท ูุจุงูุชุงูู |
|
|
|
305 |
|
00:34:55,340 --> 00:35:00,310 |
|
ุจูุทูุน ุนูุฏู ู
ุนูููุง ู
ู ุงูุญููู ูุจุฏุฃ ุจุชุทุจูู ูุฐุง ุนูู ุฃุฑุถ |
|
|
|
306 |
|
00:35:00,310 --> 00:35:03,950 |
|
ุงููุงูุน ุจูููู ูุงุชูู ุญู ุงู system ุงููู ูุฏุงู
ูุง ูุฐุง |
|
|
|
307 |
|
00:35:03,950 --> 00:35:10,070 |
|
ูุจูู ุจุฏู ุฃุจุฏุฃ ุจู
ูู ุจุงูู
ุตููุฉ ุงูู
ูุณุนุฉ ุงููู ูููุง |
|
|
|
308 |
|
00:35:10,070 --> 00:35:15,060 |
|
ุนูููุง ูุจูู ุงูู
ุตููุฉ ุงูู
ูุณุนุฉ ุนูู ุงูุดูู ุงูุชุงูู ูุฐุง |
|
|
|
309 |
|
00:35:15,060 --> 00:35:21,060 |
|
ูุงุญุฏ ู ููุง ุณุงูุจ ูุงุญุฏ ู ููุง ุณุงูุจ ุชูุงุชุฉ ู ููุง ุฒูุฑู ู |
|
|
|
310 |
|
00:35:21,060 --> 00:35:27,320 |
|
ููุง ูุงุญุฏ ู ููุง ูุงุญุฏ ู ููุง ุงุชููู ุงุชููู ูุงุญุฏ ู ููุง |
|
|
|
311 |
|
00:35:27,320 --> 00:35:30,620 |
|
ุฒูุฑู ุฒูุฑู ุฒูุฑู ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
312 |
|
00:35:33,400 --> 00:35:45,920 |
|
ุจูุฎูู ููุง ุฃุณุทุงุฑ ููุต R1 to R2 ูููุต R1 to R3 ูุญุตู |
|
|
|
313 |
|
00:35:45,920 --> 00:35:52,440 |
|
ุนูู ู
ุง ูุฃุชู ุงูุตู ุงูุฃูู ุฒู ู
ุง ูู 1 ุณุงูุจ 1 ุณุงูุจ 3 |
|
|
|
314 |
|
00:35:52,440 --> 00:36:01,740 |
|
ุฒูุฑู ุงูุตู ุงูุชุงูู ุฒูุฑู ูููุง ุงุชููู ูููุง ุงุฑุจุนุฉ ู ููุง |
|
|
|
315 |
|
00:36:01,740 --> 00:36:07,860 |
|
ุฒูุฑู ูููุง ุฒูุฑู ูููุง ุถุฑุจูุง ูู ุณุงูุจ ุงุชููู ุจุตูุฑ |
|
|
|
316 |
|
00:36:07,860 --> 00:36:14,180 |
|
ุงุชููู ูุจูู ุงุฑุจุนุฉ ูููุง ุถุฑุจูุง ูู ุณุงูุจ ุงุชููู ุจุตูุฑ |
|
|
|
317 |
|
00:36:14,180 --> 00:36:21,640 |
|
ุณุชุฉ ูุงุญุฏ ุณุจุนุฉ ูููุง ุฒูุฑู ูุถุญููุงุจุนุฏูู ุจุฏู ูุฐุง |
|
|
|
318 |
|
00:36:21,640 --> 00:36:28,700 |
|
ูุฏุงุด ูุงุญุฏ ุตุญูุญ ูุจูู ุจุฏู ูุต ูุงุฑู ุงุชููู ูุจูู ูุฐุง |
|
|
|
319 |
|
00:36:28,700 --> 00:36:35,420 |
|
ูุงุฎุฏ ูุต ูุงุฑู ุงุชููู ุชุตุจุญ ุงูู
ูุฑููุฉ ุนูู ุงูุดูู ุงูุชุงูู |
|
|
|
320 |
|
00:36:35,420 --> 00:36:41,680 |
|
ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ ุชูุงุชุฉ ุฒูุฑู ูููุง ุฒูุฑู ูุงุญุฏ |
|
|
|
321 |
|
00:36:41,680 --> 00:36:48,880 |
|
ุงุชููู ุฒูุฑู ูููุง ุฒูุฑู ุงุฑุจุน ุณุจุนุฉ ุฒูุฑู ุจุงูุดูู ุงููู |
|
|
|
322 |
|
00:36:48,880 --> 00:36:54,030 |
|
ุนูุฏูุง ูุจูู ูุฐุง ุจุฏู ูุนุทููุง ุงูุตู ุงูุฃูู ู
ุงููุด ุนูุงูุฉ |
|
|
|
323 |
|
00:36:54,030 --> 00:36:59,590 |
|
ููู ุจุฏู ุนูู ุงูุตู ุงูุชุงูู ุจููู ูุงูุต ุงุฑุจุนุฉ R ุงุชููู to |
|
|
|
324 |
|
00:36:59,590 --> 00:37:07,830 |
|
R ุชูุช ูุงุจุชุฏู ุชุตุจุญ ุนูู ุทุจูุนู ุงูุด ุฑุฃูู ูู ุฃุถููุง ูู
ุงู |
|
|
|
325 |
|
00:37:07,830 --> 00:37:13,550 |
|
ุงูุตู ุงูุซุงูู ุงูู ุงูุตู ุงูุฃูู ุจุงูู
ุฑุฉ ู
ุงุญุฏุด ุฃุญุณู ู
ู |
|
|
|
326 |
|
00:37:13,550 --> 00:37:21,840 |
|
ูุฐุง ุฅุฐุง ูู ูู R ุงุชููู to R one ุฎุทูุฉ ูุงุญุฏุฉ ููุฌุฃุด |
|
|
|
327 |
|
00:37:21,840 --> 00:37:25,840 |
|
ุงููู ุจุฏู ูุตูุฑ R ุงุชููู ู R one ุจูุธู ููุง ูุงุญุฏ ู |
|
|
|
328 |
|
00:37:25,840 --> 00:37:30,120 |
|
ุจูุตูุฑ ููุง ุฒูุฑู ูููุง ุณุงูุจ ูุงุญุฏ ู ูุฐุง ุฒูุฑู ูุงุญุฏ |
|
|
|
329 |
|
00:37:30,120 --> 00:37:36,520 |
|
ุงุชููู ูููุง ุฒูุฑู ุฒูุฑู ุฒู ู
ุง ูู ุชู
ุงู
ู ูุฐุง ุฒูุฑู ุฒู |
|
|
|
330 |
|
00:37:36,520 --> 00:37:42,180 |
|
ู
ุง ูู ุถุฑุจุชู ูู ุณุงูุจ ุงุฑุจุน ุจูุตูุฑ ุฒูุฑู ุจูุตูุฑ ููุง ุณุงูุจ |
|
|
|
331 |
|
00:37:42,180 --> 00:37:48,310 |
|
ูุงุญุฏ ูููุง ุฌุฏุงุด ุฒูุฑู ุจุงูุดูู ุงููู ุนูุฏูุง ูุฐุง ุฃูุง ุจุฏูุด |
|
|
|
332 |
|
00:37:48,310 --> 00:37:52,070 |
|
ูุฐุง ุณุงูุจ ุจุฏู ุฅูุงู ุจุงูู
ูุฌุจ ุญุชู ูู ุถุงู ุจุงูุณุงูุจ |
|
|
|
333 |
|
00:37:52,070 --> 00:37:57,310 |
|
ู
ุงุนูุฏูุด ุฅูุงู ู
ุงุนูุฏูุด ู
ุดููุฉ ู
ุดููุชูุง ุจุฏู ุฃุฎูู ูุฐุง ุจ |
|
|
|
334 |
|
00:37:57,310 --> 00:38:02,430 |
|
ุฒูุฑู ู ุจุฏู ุฃุฎูู ูุฐุง ุจ ุฅูุงู ุจ ุฒูุฑู ูุจูู ุจุฏู ุฃุฌู ู R |
|
|
|
335 |
|
00:38:02,430 --> 00:38:07,510 |
|
ุชูุงุชุฉ ุฃุถุฑุจู ูู ุณุงูุจ ูุงุญุฏ ู ุฃุถููู ููุตู ุงูุฃูู ู |
|
|
|
336 |
|
00:38:07,510 --> 00:38:13,510 |
|
ุฃุถุฑุจู ูู ุงุชููู ู ุฃุถููู ููุตู ุงูุซุงูู ูุจูู ูุฐุง ุจุฏู |
|
|
|
337 |
|
00:38:13,510 --> 00:38:22,220 |
|
ูุนุทููุง ุงููู ูู ู
ู ุณุงูุจ R ุซูุงุซุฉ to R one ู ุจุนุฏ ููู |
|
|
|
338 |
|
00:38:22,220 --> 00:38:29,760 |
|
ุณุงูุจ ุงุชููู ูุงููู ู
ูุฌุฉ ุจุงุชููู ู
ูุฌุฉ ุจุงุชููู R ุซูุงุซุฉ |
|
|
|
339 |
|
00:38:29,760 --> 00:38:37,020 |
|
to R two ููุณ ุงูุนุงูู
ูุฉ ูุฐุง ูุงุญุฏ ููุฐุง ุฒูุฑู ุฒู ู
ุง ูู |
|
|
|
340 |
|
00:38:37,020 --> 00:38:44,530 |
|
ูุฃููู ุจุงุถูู ุณุงูุจ R ุซูุงุซุฉ to R one ูููุง ุจูุตูุฑ ุฒูุฑู ู |
|
|
|
341 |
|
00:38:44,530 --> 00:38:52,770 |
|
ููุง ุฒูุฑู ูููุง ุงุชููู R three ู R two ูุจูู ููุง ุฒูุฑู |
|
|
|
342 |
|
00:38:52,770 --> 00:38:58,970 |
|
ูููุง ูุงุญุฏ ูููุง ุฒูุฑู ูููุง ุฒูุฑู ูููุง ุฒูุฑู ู ุฒูุฑู |
|
|
|
343 |
|
00:38:58,970 --> 00:39:07,230 |
|
ุณุงูุจ ูุงุญุฏ ู ุฒูุฑู ุจูุฏุฑ ุงูููู ุงุฎุฑ ุฎุทูุฉ ุณุงูุจ R ุซูุงุซุฉ |
|
|
|
344 |
|
00:39:07,230 --> 00:39:17,840 |
|
ูุจุงูุชุงูู ุจุชุตุจุญ ุงูู
ุตููุฉ 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 |
|
|
|
345 |
|
00:39:17,840 --> 00:39:32,680 |
|
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|
|
|
346 |
|
00:39:46,770 --> 00:39:51,470 |
|
solution ูุง ู
ุดููุฉ ููู ุจูู solution ูุงููู ุบูุฑู |
|
|
|
347 |
|
00:39:51,470 --> 00:39:55,970 |
|
ู
ุงููุด ู
ุดููุฉ ุทุจ |
|
|
|
348 |
|
00:39:55,970 --> 00:40:01,730 |
|
ููุด ู
ุง ุทูุน ุงูุดุจูุงุช ููุง ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู ุฃููุฉ |
|
|
|
349 |
|
00:40:01,730 --> 00:40:08,140 |
|
ูุฃู ุนุฏุฏ ุงูู
ุนุงุฏูุงุช ุจูุณุงูู ุนุฏุฏ ุงูู
ุฌุงูุฏูุจูู ุฅุฐุง ูุงู |
|
|
|
350 |
|
00:40:08,140 --> 00:40:12,560 |
|
ุนุฏุฏ ุงูู
ุนุงุฏูุงุช ูุณุงูู ุนุฏุฏ ุงูู
ุฌุงููู ูุทูุน ุนูุฏู ุงูุญู |
|
|
|
351 |
|
00:40:12,560 --> 00:40:19,260 |
|
ุงูุตูุฑู ูุทูุน ุนูุฏู ุนุฏุฏ ุนุงุฏู ุนุฏุฏ ุนุงุฏู ุบูุฑ ููู ุจุตูุฑ |
|
|
|
352 |
|
00:40:19,260 --> 00:40:23,760 |
|
ุนุฏุฏ ุงูู
ุนุงุฏูุงุช ุฃูู ู
ู ุนุฏุฏ ุงูู
ุฌุงููู ุจุตูุฑ ุนูุฏู ุนุฏุฏ |
|
|
|
353 |
|
00:40:23,760 --> 00:40:32,040 |
|
ูุง ููุงุฆู ู
ู ุงูุญููู ุทูุจ ูุฌู ูุงุฎุฏ ูู
ุงู ู
ุซุงู ูุจูู |
|
|
|
354 |
|
00:40:32,040 --> 00:40:34,900 |
|
ุงูู
ุซุงู ุฑูู
ุงุชููู exactly two |
|
|
|
355 |
|
00:40:40,600 --> 00:40:49,100 |
|
solve the system solve the system ุฎูุต ุงู system |
|
|
|
356 |
|
00:40:49,100 --> 00:40:58,260 |
|
ุงููู ูู ุงุชููู x ูุงุญุฏ ูุงูุต ุงุชููู x ุงุชููู ูุงูุต |
|
|
|
357 |
|
00:40:58,260 --> 00:41:07,320 |
|
x ุชูุงุชุฉ ุฒุงุฆุฏ x ุงุฑุจุนุฉ ุจูุณุงูู ุฒูุฑู ุงูู
ุนุงุฏูุฉ |
|
|
|
358 |
|
00:41:07,320 --> 00:41:16,230 |
|
ุงูุชุงููุฉ ูุงูุต x ูุงุญุฏ ุฒุงุฆุฏ x ุงุชููู ุฒุงุฆุฏ x ุชูุงุชุฉ |
|
|
|
359 |
|
00:41:16,230 --> 00:41:19,930 |
|
ูุงูุต ุงุชููู x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน |
|
|
|
360 |
|
00:41:19,930 --> 00:41:21,710 |
|
ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x |
|
|
|
361 |
|
00:41:21,710 --> 00:41:23,890 |
|
ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน |
|
|
|
362 |
|
00:41:23,890 --> 00:41:24,010 |
|
ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน |
|
|
|
363 |
|
00:41:24,010 --> 00:41:29,190 |
|
ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒุงุฆุฏ x |
|
|
|
364 |
|
00:41:29,190 --> 00:41:34,930 |
|
ุงุฑุจุน ุฒุงุฆุฏ x ุงุฑุจุน ุฒ |
|
|
|
365 |
|
00:41:45,650 --> 00:41:51,590 |
|
-2x2 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 |
|
|
|
366 |
|
00:41:51,590 --> 00:41:51,630 |
|
-2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 |
|
|
|
367 |
|
00:41:51,630 --> 00:41:53,310 |
|
-2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 |
|
|
|
368 |
|
00:41:53,310 --> 00:41:56,150 |
|
-2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 |
|
|
|
369 |
|
00:41:56,150 --> 00:41:59,510 |
|
-2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 - 2x4 |
|
|
|
370 |
|
00:42:08,180 --> 00:42:13,520 |
|
ุจุงููุณุจุฉ ูู system ุงููู ุนูุฏูุง ุชุชููุนูุง ุฃู ูููู ุนูุฏู |
|
|
|
371 |
|
00:42:13,520 --> 00:42:20,920 |
|
ุญู ุตูุฑู ููุท ูุบูุฑ ูุฏ ูููู ููุฏ ูุง ูููู ุทุจ ู
ู
ูู ูููู |
|
|
|
372 |
|
00:42:20,920 --> 00:42:29,930 |
|
ุนุฏุฏ ูุง ููุงุฆู ู
ู |
|
|
|
401 |
|
00:45:12,220 --> 00:45:18,440 |
|
and R2 ุจุฏู ุฃุจุฏููู
ูุงูุจุงูู ุจุฏู ุฃุฎููู ู
ูุงูู ุฒู ู
ุง |
|
|
|
402 |
|
00:45:18,440 --> 00:45:23,900 |
|
ูุจูู ุจูุฌููู ุนูุฏู ููุง ูุงู ุณุงูุจ ูุงุญุฏ ูููุง ูุงุญุฏ ูููุง |
|
|
|
403 |
|
00:45:23,900 --> 00:45:29,530 |
|
ูุงุญุฏ ูููุง ุณุงูุจ ุงุซููู ูููุง ุฒูุฑู ููุง ุณุงูุจ ุงุซููู |
|
|
|
404 |
|
00:45:29,530 --> 00:45:36,170 |
|
ุณุงูุจ ูุงุญุฏ ูุงุญุฏ ุตูุฑ ุซูุงุซุฉ ุณุงูุจ ุซูุงุซุฉ ูุงุญุฏ ุณุงูุจ ุณุชุฉ |
|
|
|
405 |
|
00:45:36,170 --> 00:45:41,330 |
|
ุตูุฑ ููุง ุงูุตู ุงูุฑุงุจุน ูุงูุฃุฎูุฑ ุงุซููู ุณุงูุจ ุงุซููู |
|
|
|
406 |
|
00:45:41,330 --> 00:45:49,590 |
|
ุตูุฑ ุณุงูุจ ุงุซููู ุตูุฑ ุจุงูุดูู ูุฐุง ุงูุขู ูุฐุง ุจุนู
ู |
|
|
|
407 |
|
00:45:49,590 --> 00:45:53,870 |
|
ูุชุงุจุฉ ูุฑุฌู ุจุงูุฏุงุฌุฉ ุนูู ุงูุตู ุงูุฃูู ุฃู ุงูุฃุฎูุฑ ูููู |
|
|
|
408 |
|
00:45:53,870 --> 00:46:00,220 |
|
ูุงุช ุจุณุงูุจ ูุงุญุฏ ูุจูู ุงูุด ุจุตูุฑ ุนูุฏูุง ููุง ุงููู ูู ุณุงูุจ |
|
|
|
409 |
|
00:46:00,220 --> 00:46:06,200 |
|
ุฃุตูุงุฑ ููุท ูุง ุบูุฑ ูุจูู ุจุงูุตุจุญ ุงูู
ุตูููุฉ ุนูู ุงูุดูู |
|
|
|
410 |
|
00:46:06,200 --> 00:46:13,480 |
|
ุงูุชุงูู ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ |
|
|
|
411 |
|
00:46:13,480 --> 00:46:21,000 |
|
ูุงุญุฏ ุงุซููู ูุฐู ููุท ูุง ุบูุฑ ููุฐู zero ููุฐู ุงุซููู |
|
|
|
412 |
|
00:46:21,000 --> 00:46:27,710 |
|
ุณุงูุจ ุงุซููู ุณุงูุจ ูุงุญุฏ ูุงุญุฏ ุซูุงุซุฉ ุณุงูุจ ุซูุงุซุฉ ูุงุญุฏ ุณุงูุจ ุณุชุฉ |
|
|
|
413 |
|
00:46:27,710 --> 00:46:33,930 |
|
ุงุซููู ุณุงูุจ ุงุซููู ุตูุฑ ุณุงูุจ ุงุซููู ุตูุฑ ุตูุฑ ุตูุฑ |
|
|
|
414 |
|
00:46:33,930 --> 00:46:40,770 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ุงูุขู ุจุฏู ุฃุนู
ู ุซูุงุซ ุฎุทูุงุช ู
ุฑุฉ |
|
|
|
415 |
|
00:46:40,770 --> 00:46:47,850 |
|
ูุงุญุฏุฉ ูุชุฎูู ููุง ุตูุฑ ูููุง ุตูุฑ ูููุง ุตูุฑ ูุจูู ุณุงูุจ |
|
|
|
416 |
|
00:46:47,850 --> 00:46:57,030 |
|
ุงุซููู R1 ุฅูู R2 ูุฅูู R4 ูุจูู ุจุฏุงุดู ุฃูููู |
|
|
|
417 |
|
00:46:57,030 --> 00:47:08,430 |
|
ู
ุง ูุฃุชู ุจุฏู ุขุฎุฐ ุณุงูุจ R1 to R2 and R4 ูู ุฃุฑุจุนุฉ ูุจุนุฏ |
|
|
|
418 |
|
00:47:08,430 --> 00:47:18,430 |
|
ููู ุทุจุนุงู ุณุงูุจ ุงุซููู ููุง ูุฐู |
|
|
|
419 |
|
00:47:18,430 --> 00:47:25,680 |
|
ุณุงูุจ ุงุซููู R1 ููุง ูุจุนุฏ ููู ุณุงูุจ ุซูุงุซุฉ R1 two are |
|
|
|
420 |
|
00:47:25,680 --> 00:47:32,140 |
|
three ููู ู
ุฑุฉ ูุงุญุฏุฉ ูุจูู ุงูุตู ุงูุฃูู ุฒู ู
ุง ูู ูุงุญุฏ |
|
|
|
421 |
|
00:47:32,140 --> 00:47:38,840 |
|
ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุงุซููู zero ุงูุตู ุงูุซุงูู ูุฐุง ุตุงุฑ |
|
|
|
422 |
|
00:47:38,840 --> 00:47:45,260 |
|
zero ููุฐุง ุถุฑุจุชู ูู ุณุงูุจ ุงุซููู ุจุตูุฑ ููุง zero ููุฐุง |
|
|
|
423 |
|
00:47:45,260 --> 00:47:50,200 |
|
ุถุฑุจุชู ูู ุณุงูุจ ุงุซููู ุจุตูุฑ ููุง ูุงุญุฏ ูููุง ูุฐุง ุจุตูุฑ |
|
|
|
424 |
|
00:47:50,200 --> 00:47:56,160 |
|
ุณุงูุจ ุซูุงุซุฉ ููุฐู zero ูุฐุง ุถุฑุจุช ูู ุณุงูุจ ุซูุงุซุฉ ุจุตูุฑ |
|
|
|
425 |
|
00:47:56,160 --> 00:48:02,740 |
|
zero ูุฐุง ุจุตูุฑ ุซูุงุซุฉ ูุณุงูุจ ุซูุงุซุฉ ูู
ุงู zero ูุฐุง |
|
|
|
426 |
|
00:48:02,740 --> 00:48:08,420 |
|
ุถุฑุจุช ูู ุณุงูุจ ุซูุงุซุฉ ุจุตูุฑ ุซูุงุซุฉ ูุงุญุฏ ุฃุฑุจุนุฉ ูุฐุง ุณุงูุจ |
|
|
|
427 |
|
00:48:08,420 --> 00:48:16,170 |
|
ุณุชุฉ ูุณุงูุจ ุณุชุฉ ุจุตูุฑ ุณุงูุจ ุฃุชู
ุงุดู ูููุง zero ููุฐุง |
|
|
|
428 |
|
00:48:16,170 --> 00:48:21,750 |
|
zero ููุง ููุฐุง ุฑุจุทู ูู ุณุงูุจ ุงุซููู ุจุตูุฑ ููุง zero |
|
|
|
429 |
|
00:48:21,750 --> 00:48:27,430 |
|
ููุฐุง ุจูุตูุฑ ููุง ุงุซููู ููุฐุง ุฑุจุทู ูู ุณุงูุจ ุงุซููู ุจูุตูุฑ |
|
|
|
430 |
|
00:48:27,430 --> 00:48:34,750 |
|
ุณุงูุจ ุฃุฑุจุนุฉ ููุฌุฑ ุณุงูุจ ุณุชุฉ ูููุง ุงุซููู ูููุง zero ุงููู |
|
|
|
431 |
|
00:48:34,750 --> 00:48:38,590 |
|
ู
ุงุตุงุฑุด ุนูุฏู leading ููุง ูุงุญุฏ ุฃู
ุงู ุทุงูุน ุตุงุฑ ูู |
|
|
|
432 |
|
00:48:38,590 --> 00:48:43,150 |
|
ุฃุตูุงุฑ ุงููู ุจูุฌุฑูุด ุฃุณูู ูููุง ุญุงุฌุฉ ุฅุฐุง ู
ุฏุงุฌู ุนูู ู
ููุ |
|
|
|
433 |
|
00:48:43,470 --> 00:48:51,110 |
|
ุนูู ุงูุตู ุงูุซุงูุซ ูุงุถุฑุจู ูู ุฑุจุน ุชู
ุงู
ุ ูุจูู ุจุงุฌู |
|
|
|
434 |
|
00:48:51,110 --> 00:48:58,430 |
|
ุจูููู ููุง ุฃูุง ุจุฏู ุฑุจุน ููุนุฑู ุซูุงุซุฉ ุจุตููู ุฅูู
ุง ูุนูู |
|
|
|
435 |
|
00:48:58,430 --> 00:49:05,250 |
|
ุงููู ูู ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุณุงูุจ ูุงุญุฏ ุงุซููู zero zero |
|
|
|
436 |
|
00:49:05,250 --> 00:49:13,430 |
|
zero ูุงุญุฏ ุณุงูุจ ุซูุงุซุฉ zero ูููุง zero .. zero .. |
|
|
|
437 |
|
00:49:13,430 --> 00:49:20,690 |
|
ูุงุญุฏ .. ูููุง ุณุงูุจ ุซูุงุซุฉ .. zero .. ูููุง zero .. |
|
|
|
438 |
|
00:49:20,690 --> 00:49:29,030 |
|
zero .. ุงุซููู .. ุณุงูุจ ุณุชุฉ .. zero .. ุจุงูุดูู ูุฐุง ุทุจ |
|
|
|
439 |
|
00:49:29,030 --> 00:49:35,170 |
|
ุงูุด ุฑุฃูู ุชุฎูุต ู
ู ุงูุตู ุงูุซุงูุซ ูุงูุฑุงุจุน ู
ุฑุฉ ูุงุญุฏุฉ |
|
|
|
440 |
|
00:49:35,170 --> 00:49:40,750 |
|
ูุจุฏุฃ ุฏู ุนูู ุงูุตู ุงูุซุงูู ุฃุถุฑุจู ูู ุณุงูุจ ูุงุญุฏ ูุฃุถููู |
|
|
|
441 |
|
00:49:40,750 --> 00:49:45,730 |
|
ููุตู ุงูุซุงูุซ ูุงุถุฑุจู ูู ุณุงูุจ ุงุซููู ูุฃุถููู ููุตู |
|
|
|
442 |
|
00:49:45,730 --> 00:49:55,130 |
|
ุงูุฑุงุจุน ูุจูู ุจุงูู ุจูููู ููุง ุณุงูุจ R2 to |
|
|
|
443 |
|
00:49:55,130 --> 00:50:03,750 |
|
R3 ูุณุงูุจ ุงุซููู R2 to R4 ุงูุดูู ุงููู |
|
|
|
444 |
|
00:50:03,750 --> 00:50:08,860 |
|
ุนููู ูุฐุง ูุจูู ุจุชุตุจุญ ุนูู ุงูุดูู ุงูุชุงูู ููุง ูุงุญุฏ ูููุง |
|
|
|
445 |
|
00:50:08,860 --> 00:50:15,280 |
|
ุณุงูุจ ูุงุญุฏ ูููุง ุณุงูุจ ูุงุญุฏ ูููุง ุงุซููู ูููุง zero ูููุง |
|
|
|
446 |
|
00:50:15,280 --> 00:50:23,140 |
|
zero zero ูููุง ูุงุญุฏ ุณุงูุจ ุซูุงุซุฉ ูููุง zero ูููุง zero |
|
|
|
447 |
|
00:50:23,140 --> 00:50:29,480 |
|
zero zero zero ูููุง zero zero zero zero zero zero |
|
|
|
448 |
|
00:50:29,480 --> 00:50:34,940 |
|
zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero zero |
|
|
|
449 |
|
00:50:36,150 --> 00:50:43,210 |
|
ูู
ุงู ุฎุทูุฉ ูุฐุง ุงู system ููุง ุจุฏุฃ ุงูุญู ูุจูู ูุฐุง ุจูุฏุฑ |
|
|
|
450 |
|
00:50:43,210 --> 00:50:55,790 |
|
ุฃุดููู ุจุงูุดูู ุฅู ุฃูุง ุจุฏู |
|
|
|
451 |
|
00:50:55,790 --> 00:51:05,860 |
|
ุฃุถูู ุงูุตู ุงูุซุงูู ููุตู ุงูุฃูู ูุจูู R2 ูุงููู ุงูุด ุฑุฃูู |
|
|
|
452 |
|
00:51:05,860 --> 00:51:11,640 |
|
ุฅูู ุฏูููุช ูุนู
ููู
ูู ุนู
ููุงูุง ู
ุน ุงูุฎุทูุฉ ุงูุฃููู ูุฐู |
|
|
|
453 |
|
00:51:11,640 --> 00:51:19,540 |
|
ููุง ุจูุงุด ุฎุทูุฉ ุฌุฏูุฏุฉ and R2 |
|
|
|
454 |
|
00:51:19,540 --> 00:51:29,140 |
|
to R1 ูุจูู ูุฐู ุจุงูุตูุฑ zero ููุฐู ุจุงูุตูุฑ ุณุงูุจ ูุงุญุฏ |
|
|
|
455 |
|
00:51:29,140 --> 00:51:30,320 |
|
ููุท ุฏู ุบูุฑ |
|
|
|
456 |
|
00:51:35,780 --> 00:51:42,720 |
|
ุฃูุซุฑ ู
ู ููู ุจููุฏุฑ ูุนู
ูุ ูุฃ ูุจูู ุงู system ุจุฃุฑุจุน |
|
|
|
457 |
|
00:51:42,720 --> 00:51:49,180 |
|
ู
ุนุงุฏูุงุช ุฅูู ู
ูู ุฅูู ู
ุนุงุฏูุชูู ุงูู
ุนุงุฏูุฉ ุงูุฃููู x |
|
|
|
458 |
|
00:51:49,180 --> 00:51:56,960 |
|
ูุงุญุฏ ูุงูุต x ุงุซููู ูุงูุต x ุฃุฑุจุนุฉ ุจุฏู ูุณุงูู zero |
|
|
|
459 |
|
00:51:56,960 --> 00:52:03,380 |
|
ูุงูู
ุนุงุฏูุฉ ุงูุซุงููุฉ ุฃุตุจุญ x ูุงุญุฏ ุนูู x ุซูุงุซุฉ |
|
|
|
460 |
|
00:52:16,330 --> 00:52:24,200 |
|
ู
ุนุงุฏูุชูู ูู ุฃุฑุจุนุฉ ู
ุฌุงููู ูุจูู ููุด ุฅู
ูุงููุฉ ุฅูุง ุฃุญุท |
|
|
|
461 |
|
00:52:24,200 --> 00:52:29,680 |
|
ููู
ุชูู ู
ู ุนูุฏู ุชู
ุงู
ูุจูู ุจุนุฏู ุฃุฎุชุงุฑ ุงููู ุจุฏูููุง ุฃู |
|
|
|
462 |
|
00:52:29,680 --> 00:52:34,080 |
|
ููู
ุฉ ุฃุญุทููุง ู
ู ุนูุฏู ูุฃุดูู ุงูุด ุงููู ุจุฏู ูุญุตู ูุจูู |
|
|
|
463 |
|
00:52:34,080 --> 00:52:43,380 |
|
ุฃูุง ูู ุฑูุญุช ุฌูุจ main goal put ู
ุซูุงู x4 ุชุณุงูู ุงููู |
|
|
|
464 |
|
00:52:43,380 --> 00:52:52,290 |
|
ุจุฏูููุง x4 ูุญุทูุง ุจูุงุญุฏ ุฃู ุงูู x4 ุจู ax4 ุชุณุงูู a ู
ุซูุงู |
|
|
|
465 |
|
00:52:52,290 --> 00:53:03,290 |
|
and x2 ุชุณุงูู b ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
466 |
|
00:53:03,290 --> 00:53:03,310 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
467 |
|
00:53:03,310 --> 00:53:06,630 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
468 |
|
00:53:06,630 --> 00:53:06,650 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
469 |
|
00:53:06,650 --> 00:53:16,530 |
|
ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู ูุญู |
|
|
|
470 |
|
00:53:21,350 --> 00:53:27,450 |
|
ูุจูู ุงูู x ุซูุงุซุฉ ูุงูู x ุฃุฑุจุนุฉ ูุญุทููุง ุจู A ูุจูู ุจุฏู |
|
|
|
471 |
|
00:53:27,450 --> 00:53:37,990 |
|
ูุณุงูู ุซูุงุซุฉ A ูุจูู ุฃุตุจุญ that solution is x ูุงุญุฏ x |
|
|
|
472 |
|
00:53:37,990 --> 00:53:45,850 |
|
ุงุซููู x ุซูุงุซุฉ x ุฃุฑุจุนุฉ ุชุณุงูู x ูุงุญุฏ ุงููู ูู ุจูุฏุงุด |
|
|
|
473 |
|
00:53:45,850 --> 00:53:59,850 |
|
ุทูุนูุงูุง a ุฒุงุฆุฏ ุงูู b x2 ุญุทููุงูุง b x3 ุซูุงุซุฉ a x4 ุฏู |
|
|
|
474 |
|
00:53:59,850 --> 00:54:06,490 |
|
a ุจุงูุดูู ุงููู ุนูุฏูุง ูุจูู ูุฐุง ุฃุตุจุญ ุงูุญู ุทุจ ูู ูุฐุง |
|
|
|
475 |
|
00:54:06,490 --> 00:54:11,810 |
|
ูุญุชูู ุนูู ุงูู trivial solution ุงูุฅุฌุงุจุฉ ูุนู
ุญุทูุช |
|
|
|
476 |
|
00:54:11,810 --> 00:54:12,990 |
|
ูููุฏ ุนูู a ูb |
|
|
|
477 |
|
00:54:16,070 --> 00:54:22,410 |
|
ุจุญุตู ุนูู ุญู ุงูุตูุฑู ุฅุฐุง |
|
|
|
478 |
|
00:54:22,410 --> 00:54:31,390 |
|
ุตุงุฑ ุนูุฏู ุนุฏุฏ ูุง ููุงุฆู ู
ู ุงูุญููู system has |
|
|
|
479 |
|
00:54:31,390 --> 00:54:41,510 |
|
infinite number of solutions |
|
|
|
480 |
|
00:54:42,440 --> 00:54:54,640 |
|
that is this system this system is consistent |
|
|
|
481 |
|
00:54:54,640 --> 00:54:58,600 |
|
ูุงุฒููุง |
|
|
|
482 |
|
00:54:58,600 --> 00:55:03,400 |
|
ูู ููุณ ุงู section ููู
ุง ููุชูู ุจุนุฏ ููู
ุฑุฉ ุงููุงุฏู
ุฉ |
|
|
|
483 |
|
00:55:03,400 --> 00:55:05,080 |
|
ุฅู ุดุงุก ุงููู ุชุนุงูู |
|
|