abdullah's picture
Add files using upload-large-folder tool
c8f3414 verified
1
00:00:19,390 --> 00:00:23,870
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ุงู†ุชู‡ูŠู†ุง ููŠ ุฃูˆู„ chapter ู…ู†
2
00:00:23,870 --> 00:00:27,410
ุงู„ุฌุจุฑ ุงู„ุฎุทูŠ ูˆ ู‡ูˆ chapter 2 ูˆุงู„ุขู† ุจู†ุฑูˆุญ ู„ู„
3
00:00:27,410 --> 00:00:31,030
chapter ุงู„ุซุงู†ูŠ ู…ู† ุงู„ุฌุจุฑ ุงู„ุฎุทูŠ ูˆ ู‡ูˆ chapter 3
4
00:00:31,030 --> 00:00:35,870
ู…ู† ุงู„ูƒุชุงุจ ุงู„ู…ู‚ุฑุฑ ู‡ุฐุง ุงู„ chapter ูŠุชุญุฏุซ ุนู† ู†ู‚ุทุชูŠู†
5
00:00:35,870 --> 00:00:39,910
ุฑุฆูŠุณูŠุชูŠู† ุงู„ู†ู‚ุทุฉ ุงู„ุฃูˆู„ู‰ ู‡ูŠ ุงู„ vector spaces ูˆ
6
00:00:39,910 --> 00:00:43,890
ุงู„ู†ู‚ุทุฉ ุงู„ุซุงู†ูŠุฉ ู‡ูŠ ุงู„ linear transformations ูŠุนู†ูŠ
7
00:00:43,890 --> 00:00:48,830
ุงู„ุชุญูˆูŠู„ุงุช ุงู„ุฎุทูŠุฉ ู…ูˆุถูˆุนู†ุง ุงู„ูŠูˆู… ู…ูˆุถูˆุน ุงู„ vector
8
00:00:48,830 --> 00:00:54,070
spaces ูˆุนู„ู‰ ู…ุฏุงุฑ ุงู„ุฃูŠุงู… ุงู„ู‚ุงุฏู…ุฉ ูƒุฐู„ูƒ ู„ูƒู†ู†ุง ููŠ ู‡ุฐุง
9
00:00:54,070 --> 00:00:58,550
ุงู„ section ูู‚ุท ุณู†ุนุทูŠ ุชุนุฑูŠู ู„ู„ vector space ูˆู†ุนุทูŠ
10
00:00:58,550 --> 00:01:04,670
ุจุนุถ ุงู„ุฃู…ุซู„ุฉ ุนู„ูŠู‡ ูู‚ุท ู„ุง ุบูŠุฑ ูˆู…ู† ุซู… ู†ู†ุชู‚ู„ ุฅู„ู‰ ุจู‚ูŠุฉ
11
00:01:04,670 --> 00:01:09,450
ุงู„ุฃุฌุฒุงุก ุงู„ุชูŠ ุชุชุนู„ู‚ ุจุงู„ vector spaces ูŠุจู‚ู‰ ุงุญู†ุง
12
00:01:09,450 --> 00:01:16,950
ุนู†ุฏู†ุง vector spaces ูŠุนู†ูŠ ุงู„ูุถุงุกุงุช ุงู„ุงุชุฌุงู‡ูŠุฉ ุจุฏู†ุง
13
00:01:16,950 --> 00:01:22,530
ู†ุนุทูŠ ุชุนุฑูŠู ู„ู„ูุถุงุก ุงู„ุงุชุฌุงู‡ูŠ ูˆู†ุดูˆู ูƒูŠู ู†ุทุจู‚ ุงู„ุชุนุฑูŠู
14
00:01:22,530 --> 00:01:28,090
ุนู„ู‰ ุงู„ุฃู…ุซู„ุฉ ุงู„ู…ุฎุชู„ูุฉ ุจู‚ูˆู„ ุงูุชุฑุถ ุฃู† capital V ุนุจุงุฑุฉ
15
00:01:28,090 --> 00:01:32,370
ุนู† non-empty set of objects ูŠุจู‚ู‰ ุฃู†ุง ุนู†ุฏูŠ capital
16
00:01:32,370 --> 00:01:37,650
V ู‡ูŠ ุนุจุงุฑุฉ ุนู† ู…ุฌู…ูˆุนุฉ ูˆู‡ุฐู‡ ุงู„ู…ุฌู…ูˆุนุฉ ุชุญุชูˆูŠ ุนู„ู‰ ุนุฏุฏ
17
00:01:37,650 --> 00:01:41,750
ู…ู† ุงู„ุนู†ุงุตุฑ in which two operations addition and
18
00:01:41,750 --> 00:01:45,610
multiplication by scalars are defined ูˆุนู„ูŠู‡ุง
19
00:01:45,610 --> 00:01:50,030
ุนู…ู„ูŠุชูŠู† ู…ุนุฑูุชูŠู† ุนู…ู„ูŠุฉ ุจู†ุณู…ูŠู‡ุง ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ูˆุงู„ุซุงู†ูŠุฉ
20
00:01:50,030 --> 00:01:54,650
ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ููŠ ู…ู‚ุฏุงุฑ ู‚ูŠุงุณูŠ ุฃูˆ ู…ู‚ุฏุงุฑ ุซุงุจุช ู„ู…ุง ู†ู‚ูˆู„
21
00:01:54,650 --> 00:01:58,930
vector ูŠุจู‚ู‰ ู„ูˆ ุถุฑุจู†ุงู‡ุง ููŠ ุฑู‚ู… ู†ู‚ูˆู„ ู‡ุฐุง ู‡ูˆ scalar
22
00:01:58,930 --> 00:02:04,130
multiplication ูŠุนู†ูŠ ุถุฑุจ ู‚ูŠุงุณูŠ ูŠุจู‚ู‰ ุงุญู†ุง ููŠ ุนู†ุฏู†ุง
23
00:02:04,130 --> 00:02:08,670
set V ุงู„ู€ V ู‡ุฐุง ุจุฏุฃ ุฃุถุน ุนู„ูŠู‡ุง ุนู…ู„ูŠุชูŠู† ุงู„ุนู…ู„ูŠุฉ
24
00:02:08,670 --> 00:02:14,070
ุงู„ุฃูˆู„ู‰ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุจูŠู† ุงู„ู…ุชุฌู‡ุงุช ุงู„ู…ูˆุฌูˆุฏุฉ ููŠ V
25
00:02:14,070 --> 00:02:18,870
ุงู„ุนู…ู„ูŠุฉ ุงู„ุซุงู†ูŠุฉ ุฃุฎุฏ ุฑู‚ู… ู…ู† set of real numbers R
26
00:02:18,870 --> 00:02:25,370
ูˆุถุฑุจู‡ ููŠ ุฃูŠ ู…ู† ุงู„ู…ุชุฌู‡ุงุช ุชุจุนุงุช ุงู„ vector V ูŠุจู‚ู‰ ู‡ุงูŠ
27
00:02:25,370 --> 00:02:28,970
ุงู„ุนู…ู„ูŠุชูŠู† ุงู„ู„ูŠ ุฃู†ุง ุจู‚ูˆู„ ุนู„ูŠู‡ู… ู…ุนุฑูุชูŠู† ูƒุงู†ูˆุง ู…ุนุฑูุฉ
28
00:02:28,970 --> 00:02:29,550
ุฐุงุชูŠ
29
00:02:46,650 --> 00:02:52,470
ุนู…ู„ูŠุฉ ุฌู…ุน ู…ุชุฌู‡ูŠู† ู…ู† V ู‡ูˆ ู…ุชุฌู‡ ุฌุฏูŠุฏ ู…ูˆุฌูˆุฏ ููŠ V
30
00:02:52,470 --> 00:02:58,210
ุนู…ู„ูŠุฉ ุถุฑุจ scalar A ููŠ U ู‡ูˆ ุจูŠุนุทูŠู†ูŠ ู…ุชุฌู‡ ุฌุฏูŠุฏ ู‡ุฐุง
31
00:02:58,210 --> 00:03:04,030
ุงู„ู…ุชุฌู‡ ู…ูˆุฌูˆุฏ ููŠ V ูƒุฐู„ูƒ R defined ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ
32
00:03:04,030 --> 00:03:08,170
ุจูŠู‚ูˆู„ ุฅู† ุงู„ V ูˆุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ูˆุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ
33
00:03:08,170 --> 00:03:13,390
ุงู„ุถุฑุจ base color is a vector space ุฃูˆ linear space
34
00:03:13,390 --> 00:03:16,830
ุจุนุถ ุงู„ูƒุชุจ ุจุชู‚ูˆู„ ุนู†ู‡ vector space ูˆ ุจุนุถ ุงู„ูƒุชุจ ุจุชู‚ูˆู„
35
00:03:16,830 --> 00:03:19,890
ุนู†ู‡ linear space if the following properties are
36
00:03:19,890 --> 00:03:26,080
satisfied ุนู„ู‰ V ูŠุจู‚ู‰ ุฅุฐุง ุชุญู‚ู‚ ุงู„ุดุฑูˆุท ุงู„ุนุดุฑุฉ ุงู„ุชุงู„ูŠุฉ
37
00:03:26,080 --> 00:03:31,540
ุนู„ู‰ ู‡ุฐู‡ ุงู„ุณุช ุจู‚ูˆู„ ุงู„ุณุช ู‡ุฐูŠ vector space ุฅุฐุง ู„ู…
38
00:03:31,540 --> 00:03:36,640
ูŠุชุญู‚ู‚ ูˆู„ูˆ ุดุฑุท ูˆุงุญุฏ ูŠุจู‚ู‰ ุจูŠุจุทู„ ูŠุตูŠุฑ vector space
39
00:03:36,640 --> 00:03:40,520
ูŠุจู‚ู‰ ูŠุจูŠู† ู„ูŠ ุฃู† ู‡ุฐุง ู…ุง ู‡ูˆ vector space ูŠูƒููŠ
40
00:03:40,520 --> 00:03:47,060
ุฃู„ุบูŠ ุดุฑุท ู…ู† ุงู„ุดุฑูˆุท ุงู„ุนุดุฑุฉ ู†ุฃุชูŠ ู„ู„ุดุฑุท ุงู„ุฃูˆู„ ุฃูˆ
41
00:03:47,060 --> 00:03:51,080
ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ู‡ูˆ ู„ูˆ ุฃุฎุฏุช ุนู†ุตุฑูŠู† ู…ู† V ูŠุจู‚ู‰ ุญุงุตู„
42
00:03:51,080 --> 00:03:56,420
ุงู„ุฌู…ุน ู…ุด ุจุฏู‡ ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ V ูˆู„ูŠุณ ุฎุงุฑุฌ V ุทุงู„ุน
43
00:03:56,420 --> 00:04:00,240
ุฎุงุฑุฌ V ูุจุชุจุทู„ ูŠุตูŠุฑ vector space ูŠุจู‚ู‰ ุจุฏู‘ู‡ ุงู„ู…ุฌู…ูˆุน
44
00:04:00,240 --> 00:04:05,480
ูŠูƒูˆู† ุฏุงุฎู„ V ุงู„ condition ุงู„ุชุงู†ูŠ ุงู„ U ุฒุงุฆุฏ ุงู„ V
45
00:04:05,480 --> 00:04:10,020
ูŠุณุงูˆูŠ ุงู„ V ุฒุงุฆุฏ ุงู„ U ูŠุนู†ูŠ ุนู…ู„ูŠุฉ ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ู…ู†ุชุฌุงุช
46
00:04:10,020 --> 00:04:14,690
ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ู„ูˆ ู…ุง ูƒุงู†ุช ุฅุจุฏุงู„ูŠุฉ it is not a vector
47
00:04:14,690 --> 00:04:19,210
space ุทูŠุจ ุงู„ุฎุงุตูŠุชูŠู† ุงู„ู„ูŠ ุงุซู†ูŠู†ู‡ู… ุชุญู‚ู‚ุง ุจุฑูˆุญู†ุง
48
00:04:19,210 --> 00:04:23,210
ุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู„ุซุฉ ูˆ ู‡ูŠ ุฎุงุตูŠุฉ ุงู„ associativity ู„ูˆ
49
00:04:23,210 --> 00:04:29,230
ุฌู…ุนุช ุงู„ U ุฅู„ู‰ V ุฒุงุฆุฏ ุงู„ W ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุฌู…ุนุช ุงู„ U
50
00:04:29,230 --> 00:04:34,530
ุฒุงุฆุฏ ุงู„ V ุฅู„ู‰ ู…ู† ุฅู„ู‰ ุงู„ W ูˆ ุฏูŠ ุจูŠุณู…ูŠู‡ ุฎุงุตูŠุฉ ุงู„ุฏู…ุฌ
51
00:04:34,530 --> 00:04:38,830
associative law ุฃูˆ associative property ุงู„ุขู† ุฃู†ุชูŽ
52
00:04:38,830 --> 00:04:42,630
ุญู‚ู‚ุช ุงู„ุฎูˆุงุต ุงู„ุซู„ุงุซ ุจุฑูˆุญ ู„ุฎุงุตูŠุฉ ุฑุงุจุนุฉ ุงู„ุฎุงุตูŠุฉ
53
00:04:42,630 --> 00:04:46,450
ุงู„ุฑุงุจุนุฉ ุชู‚ูˆู„ ู„ูŠ ููŠ ุนู†ุฏูƒ ุนู†ุตุฑ ุงู„ู„ูŠ ู‡ูˆ ุงู„ zero
54
00:04:46,450 --> 00:04:51,450
ุงู„ู…ูุชู‘ุตู„ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ V ุฅุฐุง ูˆุงู„ู„ู‡ ูƒุงู† Zero ุฒุงุฆุฏ V
55
00:04:51,450 --> 00:04:57,230
ูŠุณุงูˆูŠ V ุฒุงุฆุฏ Zero ูŠุณุงูˆูŠ V ู„ูƒู„ ุงู„ V ูŠุจู‚ู‰ ู‡ุฐุง ุจุณู…ูŠู‡
56
00:04:57,230 --> 00:05:01,970
Zero vector ู„ู…ูŠู†ุŸ ู„ู„ vector space V ูŠุนู†ูŠ ุจู…ุนู†ู‰ ุขุฎุฑ
57
00:05:01,970 --> 00:05:07,070
ุฃู† ุงู„ vector space V ู„ุงุฒู… ูŠุญุชูˆูŠ ุนู„ู‰ ุงู„ุนู†ุตุฑ ุงู„ุตูุฑูŠ
58
00:05:07,070 --> 00:05:13,410
ุจุงู„ู†ุณุจุฉ ู„ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ูŠุจู‚ู‰ ุงู„ู€ zero ู‡ุฐุง vector ูŠุจู‚ู‰
59
00:05:13,410 --> 00:05:20,130
ู…ุด scalar ูŠุนู†ูŠ ู…ุด number ูˆุฅู†ู…ุง ู‡ูˆ vector ุชู…ุงู… ุจุญูŠุซ
60
00:05:20,130 --> 00:05:24,030
ู‡ุฐุง ุงู„ zero vector ู„ูˆ ุฌู…ุนุชู‡ ุฅู„ู‰ ุฃูŠ vector ุขุฎุฑ ู…ู†
61
00:05:24,030 --> 00:05:28,590
ุงู„ูŠู…ูŠู† ุฃูˆ ู…ู† ุงู„ุดู…ุงู„ ุจุฏู‡ ูŠุนุทูŠู†ูŠ ู†ูุณ ุงู„ vector ู‡ุฐุง
62
00:05:28,590 --> 00:05:32,850
ุงู„ element ุจู‚ูˆู„ ุนู„ูŠู‡ ุงู„ zero vector ุฎุงุตูŠุฉ ุงู„ุฎุงู…ุณุฉ
63
00:05:32,850 --> 00:05:37,470
ู„ุฃูŠ u ู…ูˆุฌูˆุฏ ููŠ capital V there exists ู„ุงุฒู… ุงู„ู„ูŠ
64
00:05:37,470 --> 00:05:42,980
ุฃุฌูŠ ุฃุณุฃู„ูŠ ุจู€ U ู…ูˆุฌูˆุฏ ููŠ V ูŠุนู†ูŠ ูŠุนู†ูŠ ุฅุฐุง ุงู„ุนู†ุตุฑ ุฃูˆ ุงู„
65
00:05:42,980 --> 00:05:48,560
vector ู…ูˆุฌูˆุฏ ููŠ V ู„ุงุฒู… ุฃู„ุงู‚ูŠ ุณุงู„ุจ ู‡ุฐุง ุงู„ุนู†ุตุฑ ู…ูˆุฌูˆุฏ
66
00:05:48,560 --> 00:05:54,560
ููŠ V ุจุญูŠุซ ู„ูˆ ุฌู…ุนุช ุงู„ U ูˆุณุงู„ุจ U ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุฌู…ุนุช
67
00:05:54,560 --> 00:05:58,740
ุณุงู„ุจ U ูˆ U ู„ุฃู†ู‡ ู‚ุงู„ ู‡ู†ุง commutative ูˆู†ุฏุด ุจุฏู‡
68
00:05:58,740 --> 00:06:02,830
ูŠุนุทูŠู†ุง ุงู„ู€ zero vector ู…ุด ุงู„ู€ zero scalar ู„ุฃู† ุงุญู†ุง
69
00:06:02,830 --> 00:06:09,790
ุจู†ุฌู…ุน vectors ุณุงู„ุจ U ู‡ูˆ vector ูŠุจู‚ู‰ U ุฒุงุฆุฏ ู†ุงู‚ุต U
70
00:06:09,790 --> 00:06:14,910
ูŠุณุงูˆูŠ ุชู…ุงู…ุง ู†ุงู‚ุต ุงู„ู€ U ุฒุงุฆุฏ ุงู„ู€ U ุจุฏู‡ ูŠุณุงูˆูŠ ู…ู† ุงู„ู€
71
00:06:14,910 --> 00:06:19,180
zero vector ู‡ุฐู‡ ุงู„ุฎุงู…ุณุฉ ุงู„ุฎุงุตูŠุฉ ุงู„ุณุงุฏุณุฉ ู„ูˆ ุฃุฎุฏุช ุฃูŠ
72
00:06:19,180 --> 00:06:23,740
scalar ู…ู† ุงู„ set of real number A ุฃุฎุฏุช ุนู†ุตุฑ A ู…ู†
73
00:06:23,740 --> 00:06:27,900
ุงู„ set of real number ูˆ ุฃุฎุฏุช ุงู„ U vector ู…ูˆุฌูˆุฏ ููŠ
74
00:06:27,900 --> 00:06:35,880
V ุฅุฐุง ุญุตู„ ุถุฑุจ ู„ 2A ููŠ U ุจุฏู‡ ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ V ุชู…ุงู…ุง
75
00:06:35,880 --> 00:06:40,070
ุชุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุฏู‡ ู†ุฑูˆุญ ุจุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ู„ูˆ ูƒุงู†
76
00:06:40,070 --> 00:06:45,170
ุงู„ู€ A scalar ูˆ ุฃุฎุฏุช two vectors ู…ู† V ูˆ ุฑูˆุญ ุถุฑุจ ูƒุงุณูƒู„ุฑ
77
00:06:45,170 --> 00:06:51,550
ุงู„ู€ A ุถุฏ ุงู„ู€ U ุฒุงุฆุฏ ุงู„ู€ V ุฎุถุนุช ู‡ุฐู‡ ู„ุนู…ู„ูŠุงุช ุงู„ุชูˆุฒูŠุน
78
00:06:51,550 --> 00:06:56,850
ุฃูˆ distributive property ุฎุงุตูŠุฉ ุงู„ุชูˆุฒูŠุน ุตุงุฑุช ู‡ุฐู‡ A
79
00:06:56,850 --> 00:07:03,190
ุถุฏ ุงู„ู€ U ุฒุงุฆุฏ A ุถุฏ ุงู„ู€ V ู…ุด ุนุงุฌุฒ ู‡ูƒ ูˆ ุจุณ ุถุฑุจ scalar
80
00:07:03,190 --> 00:07:08,090
ู…ุน ุฌุงู…ุนุฉ ูˆ vector ู„ุฃ ุฌุงู…ุนุฉ ูˆ scalars ู…ุน ุถุฑุจ ู…ุน ู…ูŠู†
81
00:07:08,090 --> 00:07:12,750
ู…ุน vector ุงู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ ุจุนุฏู‡ุง ู„ูˆ ูƒุงู† ุงู„ a ูˆ ุงู„ b
82
00:07:12,750 --> 00:07:16,930
ู…ูˆุฌูˆุฏุฉ ููŠ R ูˆ ุงู„ u ู…ูˆุฌูˆุฏุฉ ููŠ V ูŠุจู‚ู‰ ุงู„ a ุฒุงุฆุฏ ุงู„ b
83
00:07:16,930 --> 00:07:21,450
ูˆ dot ุงู„ u ุจูŠุณุงูˆูŠ a dot ุงู„ u ุฒุงุฆุฏ ุงู„ b dot ุงู„ u ูƒู„
84
00:07:21,450 --> 00:07:28,160
ู‡ุฐุง ุจูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ V ุทุจุนุง ูŠุจู‚ู‰ ุจู†ุฌูŠ ู„ู„ุฎุงุตูŠุฉ ุงู„ุชุงุณุนุฉ
85
00:07:28,160 --> 00:07:34,580
ู„ูˆ ูƒุงู† ุนู†ุฏูŠ scalar A ูˆุนู†ุฏูŠ scalar B ุถุฑุจุช ุงู„ B ููŠ
86
00:07:34,580 --> 00:07:39,000
ุงู„ U ูˆุงู„ู†ุชุฌ ุฑูˆุญุช ุถุฑุจุช ููŠ A ุชู…ุงู…ุง ูƒู…ุง ู„ูˆ ุถุฑุจุช ุงู„
87
00:07:39,000 --> 00:07:43,360
two scalars ู…ู† ุงู„ุจุฏุงูŠุฉ ููŠ ู…ู† ููŠ ุงู„ vector V ุจุฏู‡
88
00:07:43,360 --> 00:07:48,960
ูŠุทู„ุน ุนู†ุฏูŠ vector ุงุณู…ู‡ A B ุถุฏ ุงู„ U ูˆู‡ุฐุง ุจูŠูƒูˆู† vector
89
00:07:48,960 --> 00:07:53,220
ู…ูˆุฌูˆุฏ ููŠ ุงู„ู€ vector ุงู„ุฃุตู„ูŠ ุทุจู‚ู‹ุง ู„ู„ุฎุงุตูŠุฉ ุงู„ู„ูŠ
90
00:07:53,220 --> 00:07:57,640
ุนู†ุฏู†ุง ู‡ุฐู‡ ุชู…ุงู… ุชุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ุงู„ุชุงุณุนุฉ ุจูŠุฑูˆุญ ุงู„ุฎุงุตูŠุฉ
91
00:07:57,640 --> 00:08:02,860
ุงู„ุนุงุดุฑุฉ ู„ูˆ ุฃุฎุฏุช ุงู„ูˆุงุญุฏ as a scalar ูŠุนู†ูŠ ูƒุฃู†ู‡
92
00:08:02,860 --> 00:08:08,400
ุงู„ุฎุงุตูŠุฉ ุฏูŠ ุญุงู„ุฉ ุฎุงุตุฉ ู…ู† ู…ู† ุงู„ู„ูŠ ููˆู‚ ุฃุฎุฏุช ุงู„ U ู‡ูˆ
93
00:08:08,400 --> 00:08:12,180
vector ูˆ ุฃุฎุฏุช ุงู„ูˆุงุญุฏ as a scalar ุถุฑุจุช ุงู„ูˆุงุญุฏ ููŠ U
94
00:08:12,180 --> 00:08:18,850
ุจูŠุทู„ุน ุงู„ู†ุชุฌ ูŠุณุงูˆูŠ U ุงู„ู„ูŠ ู‡ูˆ ู…ูˆุฌูˆุฏ ููŠ V ูŠุจู‚ู‰ ุฅุฐุง
95
00:08:18,850 --> 00:08:23,930
ุชุญู‚ู‚ุช ู‡ุฐู‡ ุงู„ุฎูˆุงุต ุงู„ุนุดุฑ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ูˆู„ ูŠุจู‚ู‰
96
00:08:23,930 --> 00:08:28,430
ุงู„ู„ูŠ ููŠ ุนู†ุฏูŠ ู‡ุฐุง ู…ุงู„ู‡ vector space ุจุฏู†ุง ู†ุจุฏุฃ ู†ุทุจู‚
97
00:08:28,430 --> 00:08:31,710
ุงู„ูƒู„ุงู… ุงู„ู„ูŠ ุงุญู†ุง ุจู†ู‚ูˆู„ู‡ ุนู„ู‰ ุฃุฑุถ ุงู„ูˆุงู‚ุน ุจุฃู…ุซู„ุฉ
98
00:08:31,710 --> 00:08:35,950
ู…ุฎุชู„ูุฉ ูˆู†ุดูˆู ู…ูŠู† ู…ู…ูƒู† ูŠุทู„ุน vector space ุฃูˆ ู…ู…ูƒู†
99
00:08:35,950 --> 00:08:42,150
ู…ุง ูŠุทู„ุนุด vector space ูˆุฅุฐุง ู…ุง ุทู„ุนุด ู…ูŠู† ู…ู† ุงู„ุฎูˆุงุต ู„ุง
100
00:08:42,150 --> 00:08:46,790
ุชุชุญู‚ู‚ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจู‚ูŠุช ูŠุตูŠุฑ ู…ุง ู‡ูˆ vector
101
00:08:46,790 --> 00:08:52,980
space ุฌุงุก ูŠุงุฎุฏ ุงู„ู…ุซุงู„ ุงู„ุฃูˆู„ ุงูุชุฑุถ ุงู„ V ูƒู„ ุงู„ุนู†ุงุตุฑ
102
00:08:52,980 --> 00:08:59,700
ุงู„ู€ zero X1 ูˆ X2 ุจุญูŠุซ X1 ูˆ X2 ู…ูˆุฌูˆุฏ ููŠ R ูŠุนู†ูŠ ุงูŠุดุŸ
103
00:08:59,700 --> 00:09:04,700
ูŠุนู†ูŠ ุจุฏูŠ ุงุฎุฐ ูƒู„ ุงู„ vectors ุงู„ู„ูŠ ูƒู„ vector ู…ูƒูˆู† ู…ู†
104
00:09:04,700 --> 00:09:08,560
ุงู„ three components ุจุญูŠุซ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ุฏุงุฆู…ุง ูˆ
105
00:09:08,560 --> 00:09:12,920
ุฃุจุฏุฃ zero ู„ูˆ ู…ุง ู‡ูŠ zero ุฅุฐุง ู…ุด ุนู†ุฏู†ุง ุจุฑุง ู…ุงู„ู†ุงุด
106
00:09:12,920 --> 00:09:17,560
ุนู„ุงู‚ุฉ ููŠู‡ุง ูŠุจู‚ู‰ ุงุญู†ุง ุจุฏู†ุง ู†ุฌู…ุน ูŠุนู†ูŠ ู…ุซู„ุง ู„ูˆ ุฌูŠุช
107
00:09:17,560 --> 00:09:22,140
ู‚ู„ุช ูŠุง ุจู†ุงุช ู‡ุฐุง ูƒู„ ูˆุงุญุฏุฉ ููŠูƒูˆ ุนุจุงุฑุฉ ุนู† ุนู†ุตุฑ ููŠ ุงู„
108
00:09:22,140 --> 00:09:26,560
vector space ุงู„ุดูƒู„ ู‡ุฐูŠ ุชู…ุงู… ุฌูŠุช ู‚ู„ุช ู„ู„ุจู†ุงุช ุงู„ุณุทุฑ
109
00:09:26,560 --> 00:09:30,930
ู‡ุฐุง ูƒู„ู‡ ุงู†ุชุฌ ู„ู„ู†ุงุญูŠุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ูƒุฃู†ู‡ ุฃู†ุง ุฃุฎุฏุช
110
00:09:30,930 --> 00:09:35,490
ุญุงู„ุฉ ุฎุงุตุฉ ู…ู† ุงู„ุฃุตู„ูŠุฉ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ูƒู„ู‡ุง zero ููŠ
111
00:09:35,490 --> 00:09:42,390
ูƒู„ three tuple ุชู…ุงู…ุŸ ุจุฏุฃุช ุฃุดูˆู ู‡ู„ ู‡ุฐุง ุชุญุช ุนู…ู„ูŠุฉ
112
00:09:42,390 --> 00:09:47,030
ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ูˆุชุญุช ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุงู„ุนุงุฏูŠุฉ ู‡ู„ ู‡ูˆ
113
00:09:47,030 --> 00:09:52,990
vector space ุฃู… ู„ุง ุทู„ุน ู‡ู†ุง ูƒู„ ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุงู„ู…ุฑูƒุจุฉ
114
00:09:52,990 --> 00:09:56,610
ุงู„ุฃูˆู„ู‰ ุฏุงุฆู…ุง ูˆ ุฃุจุฏุง ุจ zero ุทุจ ูˆ ุงู„ู…ุฑูƒุจุฉ ุงู„ุซุงู†ูŠุฉ ูˆ
115
00:09:56,610 --> 00:10:01,430
ุงู„ุซุงู„ุซุฉ ุฃุด ู…ุง ูƒุงู† ูŠูƒูˆู† ูˆู…ุง ุญุทูŠุชุด ุนู„ูŠู‡ู… ู‚ูŠูˆุฏ ูŠู…ูƒู†
116
00:10:01,430 --> 00:10:06,250
ุณุงู„ุจ ูŠู…ูƒู† ู…ูˆุฌุจ ูŠู…ูƒู† Zero ูƒู„ ุฃู†ุง ู…ู‚ูŠุฏ ุจุงู„ู…ุฑูƒุจุฉ
117
00:10:06,250 --> 00:10:10,510
ุงู„ุฃูˆู„ู‰ ู„ุงุฒู… ุชูƒูˆู† Zero ูˆ ู‚ู„ุช ู„ูƒ X1 ูˆ X2 ู…ูˆุฌูˆุฏุฉ ููŠ
118
00:10:10,510 --> 00:10:14,510
R ู…ูˆุฌูˆุฏุฉ ุจุณุงู„ุจ ูƒุณุฑ ู…ุด ุนุงุฑู ุงูŠู‡ Zero ู…ุงู„ูŠุด ุนู„ุงู‚ุฉ ุจูŠู‡
119
00:10:14,510 --> 00:10:17,210
ุฃุด ู…ุง ูŠูƒูˆู† ุดูƒู„ู‡ ู…ุง ูŠูƒูˆู† ุฅู† ุดุงุก ุงู„ู„ู‡ ูŠูƒูˆู† ุฌุฐูˆุฑ
120
00:10:17,210 --> 00:10:22,210
ุชุฑุจูŠุนูŠุฉ ูˆุฌุฐูˆุฑ ุชูƒุนูŠุจูŠุฉ ู„ุฃู†ู‡ุง set ุฃูŠ ุนู†ุงุตุฑ ู…ูˆุฌูˆุฏุฉ ููŠ
121
00:10:22,210 --> 00:10:27,060
ุงู„ set of real number ุทูŠุจ under the usual addition
122
00:10:27,060 --> 00:10:33,680
ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ุชุจุน ุงู„ vectors and the usual
123
00:10:33,680 --> 00:10:38,040
multiplication of scalar ูˆุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ุงู„ุนุงุฏูŠ ู„ู„
124
00:10:38,040 --> 00:10:42,280
vectors ููŠ scalar ูˆ ุฃุฎุฐู†ุง ุณุงุจู‚ุง ุฅู†ู‡ ุนู…ู„ูŠุฉ ู„ูˆ ุถุฑุจุช
125
00:10:42,280 --> 00:10:47,160
element ููŠ vector ุจุฏู‘ูŠ ุฃุถุฑุจู‡ ููŠ ุฌู…ูŠุน ุงู„ components ู…ุด
126
00:10:47,160 --> 00:10:51,720
ู‡ูŠูƒ ูŠุจู‚ู‰ ุฏู‡ ุงุณู…ู‡ ุงู„ุถุฑุจ ุงู„ุนุงุฏูŠ ูˆุงู„ุฌู…ุน ุจุฌู…ุน
127
00:10:51,720 --> 00:10:57,070
component was ูƒู„ ุนู†ุตุฑ ู…ุน ู†ุธูŠุฑู‡ ุจูŠู‚ูˆู„ then ุงู„ V is
128
00:10:57,070 --> 00:11:02,490
a vector space because ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู„ูŠ ููˆู‚ ุชุญุช ุนู…ู„ูŠุฉ
129
00:11:02,490 --> 00:11:06,010
ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ูˆุงู„ุถุฑุจ ุงู„ุนุงุฏูŠุฉ ุฏูŠ ุจูŠูƒูˆู† vector
130
00:11:06,010 --> 00:11:10,030
space ู…ุง ู‡ูˆ ุงู„ุณุจุจ ุจูŠู‚ูˆู„ ู„ูˆ ุฃุฎุฏุช three vectors
131
00:11:10,030 --> 00:11:15,770
ู…ูˆุฌูˆุฏุฉ ููŠ V ุทู„ุนูŠ ุงู„ู…ุฑูƒุจุฉ ุทู„ุนูŠ ูƒู„ู‘ู‡ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰
132
00:11:15,770 --> 00:11:25,990
ูˆุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ูˆุงู„ู…ุฑูƒุจ ุงู„ุฃูˆู„ู‰ ูƒู„ู‘ู‡ ุจุฃุณูุงุฑ ู…ูˆุฌูˆุฏุฉ
133
00:11:25,990 --> 00:11:31,690
ููŠ V ุจุฏุงูŠุฉ ุฃุดูˆู ุงู„ุฎูˆุงุต ุงู„ุนุงุดุฑุฉ ู‡ู„ ุงู„ U ุฒุงุฆุฏ ุงู„ V
134
00:11:31,690 --> 00:11:37,070
ู…ูˆุฌูˆุฏ ููŠ V ูˆู„ุง ู„ุฃ ูŠุจู‚ู‰ ุจุฏุงูŠุฉ ู„ู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ู†ู…ุฑ
135
00:11:37,070 --> 00:11:42,370
ูˆุงุญุฏ ุจูŠุงุฎุฐ ุงู„ U ุฒุงุฆุฏ ุงู„ V ูŠุจู‚ู‰ ู‡ุฐุง ุจุฏู‡ ูŠุนุทูŠู†ูŠ
136
00:11:42,370 --> 00:11:48,130
Zero ูˆ X ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ุฒุงุฆุฏ Zero ูˆ Y ูˆุงุญุฏ ูˆ Y
137
00:11:48,130 --> 00:11:55,140
ุงุซู†ูŠู† ูˆ Y ูŠุณุงูˆูŠ ุงุญู†ุง ู‚ู„ู†ุง ู‡ุฐู‡ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุนุงุฏูŠุฉ ู„ู…ูŠู†ุŸ
138
00:11:55,140 --> 00:11:59,040
ู„ู„ู€ vectors ูŠุจู‚ู‰ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ุจุฌู…ุน
139
00:11:59,040 --> 00:12:08,440
component y 0 ู…ุน 0 ุจู‚ุฏุฑุด 0 X1 ุฒุงุฆุฏ Y1 X2 ุฒุงุฆุฏ Y2
140
00:12:08,440 --> 00:12:12,630
ู…ูˆุฌูˆุฏุฉ ููŠ V ูˆู„ุง ูŠุง ุจู†ุงุชุŸ ู…ูˆุฌูˆุฏ ููŠ V ู„ูŠุดุŸ ู„ุฃู† ุงู„ู€
141
00:12:12,630 --> 00:12:17,290
element ุงู„ุฃูˆู„ ุฃูˆ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ููŠ ูƒู„ vector ูŠุณุงูˆูŠ
142
00:12:17,290 --> 00:12:23,030
0 ุฅุฐุง ุชุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰ ุจุฏู‘ูŠ ุฃุฌุฑุจ ุงู„ุฎุงุตูŠุฉ
143
00:12:23,030 --> 00:12:28,750
ุงู„ุซุงู†ูŠุฉ ู†ู…ุฑุฉ 2 ุจุฏูŠ ุฃุฎุฏ ุงู„ U ุฒุงุฆุฏ ุงู„ V ูŠุจู‚ู‰ .. ุจุฏู‘ูŠ
144
00:12:28,750 --> 00:12:33,970
ุฃุฌู…ุนู‡ ู„ุบุงูŠุฉ ูŠุง ุจู†ุงุช ูŠุจู‚ู‰ ู‡ู†ุง 0 ุฒุงุฆุฏ 0 ุจ 0 X1 ุฒุงุฆุฏ
145
00:12:33,970 --> 00:12:44,370
Y1 X2 ุฒุงุฆุฏ Y2 ู…ูˆุฌูˆุฏุฉ ููŠ V ู…ูˆุฌูˆุฏุฉ ููŠ V ุฃู†ุง ุจุฏูŠ ุฎุงุตูŠุฉ
146
00:12:44,370 --> 00:12:51,790
ุงู„ุฅุจุฏุงู„ ุฃู„ูŠุณ ุงู„ุชู‡ุงุฏูŠ ุชุณุงูˆูŠ Zero one ุงู„ุขู† X ูˆุงุญุฏ ุฒุงุฆุฏ
147
00:12:51,790 --> 00:12:57,030
Y ูˆุงุญุฏ ู…ุด ู‡ุฏูˆู„ X ูˆุงุญุฏ ูˆ Y ูˆุงุญุฏ ุฃุนุฏุงุฏ ู…ูˆุฌูˆุฏุฉ ููŠ
148
00:12:57,030 --> 00:13:01,810
ุงู„ุณุช ููŠ real numbers ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ุฃุนุฏุงุฏ ุงู„ุนุงุฏูŠุฉ ู‡ุฐู‡
149
00:13:01,810 --> 00:13:05,210
ุนู…ู„ูŠุฉ ุฅุจุฏุงู„ูŠุฉ ูˆู„ุง ู„ุงุŸ ุฃู†ุง ุจู‚ูˆู„ ุฎู…ุณุฉ ุฒุงุฆุฏ ุณุชุฉ ูˆ
150
00:13:05,210 --> 00:13:09,030
ุงู„ู„ู‡ ุณุชุฉ ุฒุงุฆุฏ ุฎู…ุณุฉ ู…ุง ู‡ูŠ ู†ูุณ ุงู„ุดูŠุก ุฅุฐุง ุจุงุฌูŠ ุจู‚ูˆู„
151
00:13:09,030 --> 00:13:16,210
ู‡ุฐุง Y ูˆุงุญุฏ ุฒุงุฆุฏ X ูˆุงุญุฏ ูˆ Y ุงุซู†ูŠู† ุฒุงุฆุฏ X ุงุซู†ูŠู† ุงู„ู„ูŠ
152
00:13:16,210 --> 00:13:23,350
ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐู‡ Zero ูˆ Y ูˆุงุญุฏ ูˆ Y ุงุซู†ูŠู† ุฒุงุฆุฏ Zero X
153
00:13:23,350 --> 00:13:28,490
ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ูŠุนู†ูŠ ูุตู„ุช ู‡ุฐุง ุงู„ vector
154
00:13:28,490 --> 00:13:32,710
ุฅู„ู‰ ู…ุฌู…ูˆุน two vectors ุทุจ ุงู„ุฃูˆู„ ู…ูŠู† ู‡ูˆุŸ ู…ุด V
155
00:13:32,710 --> 00:13:38,930
ูˆ ุงู„ุซุงู†ูŠ ูŠุจู‚ู‰ V ุฒุงุฆุฏ ุงู„ U ูŠุจู‚ู‰ ุจุฏุฃุช ุจ U ุฒุงุฆุฏ ุงู„ V
156
00:13:38,930 --> 00:13:44,130
ูˆุตู„ุช ุฅู„ู‰ V ุฒุงุฆุฏ ุงู„ U ูŠุจู‚ู‰ ุชุญู‚ู‚ ุงู„ุฎุงุตูŠุฉ ุงู„ุฃูˆู„ู‰
157
00:13:44,130 --> 00:13:48,800
ูˆุงู„ุฎุงุตูŠุฉ ุงู„ุซุงู†ูŠุฉ ุนู†ุฏู†ุง ุจุฏู†ุง ู†ุฑูˆุญ ู„ู…ูŠู†ุŸ ู„ู„ุฎุงุตูŠุฉ
158
00:13:48,800 --> 00:13:54,360
ุงู„ุซุงู„ุซุฉ ูŠุจู‚ู‰ ุจุงุฎุฐ U ุฒุงุฆุฏ V ุฒุงุฆุฏ W
159
00:13:59,340 --> 00:14:04,300
ูˆ X1 ูˆ X2 ุฒุงุฆุฏ ุงู„ V ุฒุงุฆุฏ ุงู„ W ุจุฏู‘ูŠ ุฃุฌู…ุน ุนู„ู‰ ุทูˆู„
160
00:14:04,300 --> 00:14:10,640
ุงู„ุฎุท ู‡ุงูŠ ุนู†ุฏ ุงู„ V ูˆู‡ุฐู‡ ุงู„ W ุจุฏูŠ ุฃุฌู…ุนู‡ุง ู…ุจุงุดุฑุฉ ูŠุจู‚ู‰
161
00:14:10,640 --> 00:14:22,570
Zero Y1 ุฒุงุฆุฏ Z1 ูˆ Y2 ุฒุงุฆุฏ Z2 ุงู„ุขู† ุจุฏุฃุฌูŠ ุฃุฌู…ุน ุตุงุฑ
162
00:14:22,570 --> 00:14:25,650
ุนู†ุฏูŠ vector ูˆุนู†ุฏูŠ vector ุซุงู†ูŠ ุจุฏุฃ ุฃุฌู…ุน component
163
00:14:25,650 --> 00:14:33,650
twice 00 ุจ 0 ูŠุจู‚ู‰ ุจูŠุตูŠุฑ ุนู†ุฏูŠ X ูˆุงุญุฏ ุฒุงุฆุฏ Y ูˆุงุญุฏ
164
00:14:33,650 --> 00:14:46,190
ุฒุงุฆุฏ Z ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ุฒุงุฆุฏ Y ุงุซู†ูŠู† ุฒุงุฆุฏ Z ุงุซู†ูŠู†
165
00:14:46,190 --> 00:14:54,460
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุทูŠุจ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏุฃุฌูŠ
166
00:14:54,460 --> 00:14:59,700
ู„ู„ูŠ ูˆุตู„ุช ู„ู‡ ู‡ุฐุง ู‡ุฏูˆู„ ูƒู„ู‡ู… real number ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน
167
00:14:59,700 --> 00:15:04,160
ุนู„ู‰ ุงู„ real number ุฅุฏู…ุงุฌูŠุฉ ูˆู„ุง ู„ุงุŸ ูŠุจู‚ู‰ ุฎู„ุงุต ุฅุฐุง
168
00:15:04,160 --> 00:15:09,860
ุจู‚ุฏุฑ ุฃูƒุชุจ ู‡ุฐู‡ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ ุนู† Zero ูˆ
169
00:15:09,860 --> 00:15:17,480
X ูˆุงุญุฏ ุฒุงุฆุฏ Y ูˆุงุญุฏ ุฒุงุฆุฏ Z ูˆุงุญุฏ ุชู…ุงู… ู‡ุฐุง ุงู„ term
170
00:15:17,480 --> 00:15:25,640
ุงู„ุฃูˆู„ ูˆ ุงู„ term ุงู„ุซุงู†ูŠ ุจู‚ุฏุฑ ุงู‚ูˆู„ X ูˆุงุญุฏ ุฒุงุฆุฏ Y
171
00:15:25,640 --> 00:15:30,840
ูˆุงุญุฏ ุฒุงุฆุฏ Z ูˆุงุญุฏ ูˆู‡ุฐู‡ ุจู‚ูˆู„ X ุงุซู†ูŠู† ุฒุงุฆุฏ Y ุงุซู†ูŠู†
172
00:15:30,840 --> 00:15:39,220
ุฒุงุฆุฏ Z ุงุซู†ูŠู† ุชู…ุงู… ุฅุฐุง ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ุชุณุงูˆูŠ ุจุฏุฃุช
173
00:15:39,220 --> 00:15:44,300
ุฃุญุทู‡ุง ุนู„ู‰ ุดูƒู„ ู…ุฌู…ูˆุน two vectors ุฅุฐุง ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง
174
00:15:44,300 --> 00:15:54,100
Zero ูˆ X ูˆุงุญุฏ ุฒุงุฆุฏ Y ูˆุงุญุฏ ูˆ X ุงุซู†ูŠู† ุฒุงุฆุฏ Y ุงุซู†ูŠู†
175
00:15:54,100 --> 00:16:00,580
ุฒุงุฆุฏ ุถุงู„ ุนู†ุฏูŠ Zero ูˆ ุถุงู„ ุนู†ุฏูŠ Z ูˆุงุญุฏ ูˆ ุถุงู„ ุนู†ุฏูŠ Z
1
201
00:18:48,400 --> 00:18:58,430
ุฃู‚ูˆู„ ู„ู‡ U + (-U) = 0
202
00:18:58,430 --> 00:19:10,130
X1 + X2 + 0 -X1 - X2 ุชู…ุงู… ู†ุฌู…ุน 0 ู…ุน 0 ุจ 0
203
00:19:10,130 --> 00:19:18,110
X1 ูˆ ู†ู‚ุต X1 ุจ 0 X2 ูˆ ู†ู‚ุต X2 ุจ 0 ู…ูŠู† ู‡ูˆ ู‡ุฐุงุŸ ู‡ุฐุง ุงู„
204
00:19:18,110 --> 00:19:27,610
zero vector. Similarly ุจู†ูุณ ุงู„ุทุฑูŠู‚ุฉ ุณุงู„ุจ
205
00:19:27,610 --> 00:19:33,810
U + (-U) = the zero vector ุฅุฐุง ุชุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ
206
00:19:33,810 --> 00:19:39,590
ุฑู‚ู… ุฎู…ุณุฉ ุจุฏู†ุง ู†ุญู‚ู‚ ุจุงู‚ูŠ ุงู„ุฎูˆุงุต ุฎู„ูŠู†ูŠ ุฃู…ุณุญ ุงู„ู„ูŠ ููˆู‚
207
00:19:39,590 --> 00:19:45,610
ู‡ุฐุง ุทูŠุจ ู‡ุฐุง ุงู„ู„ูŠ ู…ุงู„ู‡ูˆุด ู„ุฒูˆู… ู…ู† ู‡ู†ุง ูˆููˆู‚ ู†ู…ุณุญู‡
208
00:19:56,930 --> 00:20:01,810
ุฎู„ุตู†ุง ุงู„ุฎุงุตูŠุฉ ุงู„ุฎุงู…ุณุฉ ูˆุงู†ุชู‚ู„ู†ุง ู„ู„ุฎุงุตูŠุฉ ุงู„ุณุงุฏุณุฉุŒ ุฎุงุตูŠุฉ
209
00:20:01,810 --> 00:20:06,230
ุงู„ุณุงุฏุณุฉ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† ุฃุฎุฐุช scalar ู…ูˆุฌูˆุฏ ููŠ R ูˆ U
210
00:20:06,230 --> 00:20:11,430
ู…ูˆุฌูˆุฏ ููŠ V ูุญุตู„ ุถุฑุจู‡ ู…ุง ุจุฏูŠ ูŠูƒูˆู† ู…ูˆุฌูˆุฏ ููŠ V ูŠุจู‚ู‰
211
00:20:11,430 --> 00:20:18,390
ุจุฏูŠ ุฃุฎุฏ ู‡ู†ุง F ุŒ ุงู„ู€ A ู…ูˆุฌูˆุฏ ููŠ R scalar ูˆ ุงู„ู€ U ุงู„ู„ูŠ
212
00:20:18,390 --> 00:20:25,310
ู‡ูŠ ูŠุณุงูˆูŠ (0, X1, X2) ู…ูˆุฌูˆุฏุงุช ููŠ V then
213
00:20:25,310 --> 00:20:33,740
ุจุฏูŠ ุฃุฎุฏ ุงู„ู€ A ููŠ ุงู„ู€ U ูŠุจู‚ู‰ ู‡ุฐู‡ A ุจุฏูŠ ุฃุถุฑุจู‡ุง ููŠ ุงู„ู€ 0
214
00:20:33,740 --> 00:20:39,420
X1 ูˆ X2 ูŠุณุงูˆูŠ ุงู„ู€ A ููŠ ุงู„ู€ 0 ุจู‚ุฏุงุด ูŠุง ุจู†ุงุชุŸ
215
00:20:39,420 --> 00:20:46,200
Zero ูˆู‡ู†ุง A X1 ูˆู‡ู†ุง A X2ุŒ ุฅูŠุด ุฑุฃูŠูƒ ููŠ ุงู„ vector
216
00:20:46,200 --> 00:20:50,120
ุงู„ู„ูŠ ุทู„ุน ู…ูˆุฌูˆุฏ ููŠ V ูˆู„ุง ู„ุฃุŸ ู„ุฃู† ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰
217
00:20:50,620 --> 00:20:55,820
ูˆุงู„ุจุงู‚ูŠุฉ ููŠ ู†ูุณ ุงู„ู…ูƒุงู†ุŒ ูŠูƒูˆู† ูŠุจู‚ู‰ ู‡ุฐุง ู…ูˆุฌูˆุฏ ููŠ ุงู„ vector
218
00:20:55,820 --> 00:21:01,020
space V ูˆุจุงู„ุชุงู„ูŠ ุงุชุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุงู„ุณุงุฏุณุฉ ุจุฏู†ุง ู†ุฑูˆุญ
219
00:21:01,020 --> 00:21:05,700
ู„ู„ุฎุงุตูŠุฉ ุงู„ุณุงุจุนุฉุŒ ุงู„ุฎุงุตูŠุฉ ุงู„ุณุงุจุนุฉ ุจูŠู‚ูˆู„ ู„ูˆ ูƒุงู† A
220
00:21:05,700 --> 00:21:13,980
ู…ูˆุฌูˆุฏ ููŠ R ูˆ U ูˆ V ู…ูˆุฌูˆุฏุฉ ููŠ U ูŠุจู‚ู‰ ู‡ู†ุง F ุงู„ู€ A
221
00:21:13,980 --> 00:21:21,940
ู…ูˆุฌูˆุฏุฉ ููŠ R and ุงู„ู€ U ุงู„ู„ูŠ ู‡ูŠ (0, 0, X1, X2)
222
00:21:21,940 --> 00:21:30,080
ูˆ ุงู„ู€ V (0, Y1, Y2) ู…ูˆุฌูˆุฏุงุช ููŠ
223
00:21:30,080 --> 00:21:40,020
V then ุจุฏูŠ ุฃุฎุฏ ุงู„ู€ A Dot ุงู„ู€ U ุฒุงุฆุฏูŠ ุงู„ู€ V ูŠุจู‚ู‰ ุงู„ู€ A
224
00:21:40,020 --> 00:21:46,430
Dot ุงู„ู€ U ุฒุงุฆุฏ ุงู„ู€ V ุจุฏูŠ ุฃุฌู…ุน component twice ูŠุจู‚ู‰
225
00:21:46,430 --> 00:21:55,970
(0, X1 + Y1, X2 + Y2) ุจุฏูŠ
226
00:21:55,970 --> 00:22:05,350
ุฃุถุฑุจ ูŠุจู‚ู‰ ู‡ุงุฏ 0 ูˆ a ููŠ (x1 + y1) ูˆ a
227
00:22:05,350 --> 00:22:17,030
ููŠ (x2 + y2) ู„ูŠุด ุถุฑุจุชูƒุŸ ู„ุฃู† ุถุฑุจ ุนุงุฏูŠ ุทูŠุจ
228
00:22:17,030 --> 00:22:27,330
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุจุฏูˆ ูŠุณุงูˆูŠ (0, ax1 + ay1,
229
00:22:27,330 --> 00:22:32,650
ax2 + ay2)
230
00:22:32,650 --> 00:22:39,820
ู‡ุฐุง ุตุงุฑ vector ูˆุงุญุฏุŒ ุดูˆ ุฑุฃูŠูƒ
231
00:22:39,820 --> 00:22:45,900
ู…ู…ูƒู† ุฃุฌุฒู‡ ุงู„ู‰ two vectorsุŒ ุฅูŠุด ุงู„ two vectors ูŠุนู†ูŠุŸ
232
00:22:45,900 --> 00:22:53,700
ู…ู…ูƒู† ุฃู‚ูˆู„ ู‡ุฐุง (0, ax1, ax2) ุฒุงุฆุฏ
233
00:22:53,700 --> 00:23:02,480
(0, ay1, ay2) ู„ูˆ ุฌู…ุนุชู‡ู… ุจูŠุทู„ุน ุนู†ุฏูŠ ู‡ุฐุง
234
00:23:02,480 --> 00:23:08,260
ู…ุฑุฉ ุซุงู†ูŠุฉ ุทูŠุจ ุจุฏูŠ ุฃุฑูƒุฒ ุนู„ู‰ ุฎูˆุงุต ุงู„ scalar ุฃุธู† ุจู‚ุฏุฑ ุฃุฎุฏ
235
00:23:08,260 --> 00:23:19,160
a ุนุงู…ู„ ู…ุดุชุฑูƒ ู…ู† ุงู„ูƒู„ ุจุฑุง ุจูŠุธู„ (0, x1, x2) ุฒุงุฆุฏ a (0, y1,
236
00:23:19,160 --> 00:23:29,950
y2) ูŠุจู‚ู‰ ู‡ุฐุง A ุงู„ุฃูˆู„ุงู†ูŠ ู‡ูˆ ุงู„ู€ U ูˆุงู„ุชุงู†ูŠ A ููŠ ุงู„ู€ V
237
00:23:29,950 --> 00:23:36,290
ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ู‡ุง ูŠุจู‚ู‰ ุจู†ุงุก ุนู„ู‰ A ุถุฏ U ุฒุงุฆุฏ V ูŠุจู‚ู‰ A
238
00:23:36,290 --> 00:23:44,270
ุถุฏ U ุฒุงุฆุฏ A ุถุฏ V ูˆุจุงู„ุชุงู„ูŠ ุชุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุงู„ุณุงุจุนุฉ
239
00:23:44,750 --> 00:23:51,810
ุจู†ุฑูˆุญ ู„ู„ุฎุงุตูŠุฉ ุงู„ุซุงู…ู†ุฉ ูŠุจู‚ู‰ ุจุงุฌูŠ ุจู‚ูˆู„ู‡ ุซู…ุงู†ูŠุฉ if
240
00:23:51,810 --> 00:24:00,710
ุงู„ู€ A ูˆ ุงู„ู€ B ู…ูˆุฌูˆุฏุฉ ููŠ R and ุงู„ู€ U (0, X1, X
241
00:24:00,710 --> 00:24:09,870
2) ู…ูˆุฌูˆุฏุฉ ููŠ V then ุจุฏูŠ ุฃุฎุฏ ุงู„ู€ A ุฒุงุฆุฏ ุงู„ู€ B Dot
242
00:24:09,870 --> 00:24:20,230
ู…ู† Dot ุงู„ู€ U ูŠุณุงูˆูŠ A ุฒุงุฆุฏ B ุถุงุช ุงู„ู€ U
243
00:24:26,050 --> 00:24:29,870
ู‡ุฐุง ู…ุฌู…ูˆุน two real numbers ูŠุจู‚ู‰ real number ูˆุงุญุฏ
244
00:24:29,870 --> 00:24:35,310
ูŠุจู‚ู‰ ุจุฏูŠ ุฃุถุฑุจ ุฌูˆุจู‡ ุญุณุจ ุงู„ุถุฑุจ ุงู„ุนุงุฏูŠ ูŠุจู‚ู‰ ู‡ุฐุง ุจู‚ุฏุงุดุŸ
245
00:24:35,310 --> 00:24:44,530
ุจู€ 0ุŒ ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏู‡ุง ู‡ุฐู‡ a ุฒุงุฆุฏ ุงู„ู€ B ููŠ ุงู„ู€ X1 ูˆู‡ู†ุง
246
00:24:44,530 --> 00:24:51,770
a ุฒุงุฆุฏ ุงู„ู€ B ููŠ ู…ู†ุŸ ููŠ ุงู„ู€ X2 ูˆู‡ูŠู‚ูู„ู†ุง ุงู„ุฌุฒุกุŒ ู‡ุฐู‡ ุจู‚ุฏุฑ
247
00:24:51,770 --> 00:24:57,750
ุฃู‚ูˆู„ ุนู„ูŠู‡ุง ู…ุง ูŠุฃุชูŠุŒ ูŠุณุงูˆูŠ ู‡ุงูŠ 0 ุฒูŠ ู…ุง ู‡ูŠ ูˆู‡ุฐู‡
248
00:24:57,750 --> 00:25:01,930
ุจู‚ุฏุฑ ุฃููƒู‡ุง ู„ุฃู† ุงู„ู€ X1 ูˆุงู„ู€ X2 real number
249
00:25:01,930 --> 00:25:08,270
ูˆุงู„ู€ A ูˆ ุงู„ู€ B real number ูŠุจู‚ู‰ A X1 ุฒุงุฆุฏ B X
250
00:25:08,270 --> 00:25:18,280
1 , A X2 ุฒุงุฆุฏ B X2 ู…ู…ูƒู† ุฃุฌุฒู‡ ุฅู„ู‰ two
251
00:25:18,280 --> 00:25:28,180
vectors ูŠุจู‚ู‰ ู‡ุฐู‡ ุจู‚ุฏุฑ ุฃู‚ูˆู„ (0, ax1, ax2) ุฒุงุฆุฏ
252
00:25:28,180 --> 00:25:39,510
(0, bx1, bx2) ู…ู…ูƒู† ุฃุฎุฏ ุงู„ู€ A ุจุฑุง ูŠุจู‚ู‰ ุงู„ู€ A ููŠ
253
00:25:39,510 --> 00:25:50,050
(0, X1, X2) ุฒุงุฆุฏ B ููŠ (0, X1, X
254
00:25:50,050 --> 00:25:57,030
2) ูŠุจู‚ู‰ ู‡ุฐู‡ ุจุฏุฃุช ุชุณุงูˆูŠ A ุถุฏ ุงู„ู€ U ุฒุงุฆุฏ B ุถุฏ ุงู„ู€
255
00:25:57,030 --> 00:26:03,150
U ูˆุจุงู„ุชุงู„ูŠ ุชุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุฑู‚ู… ุซู…ุงู†ูŠุฉ ูŠุจู‚ู‰ ุซู…ุงู†ูŠุฉ
256
00:26:07,780 --> 00:26:18,160
ุงู„ุฎุงุตูŠุฉ ุงู„ุชุงุณุนุฉ ูŠุจู‚ู‰ ุงู„ูุฑุถ
257
00:26:18,160 --> 00:26:28,520
ุงู„ุชุงุณุนุฉุŒ ุจุฏุฃุช ุฃุฎุฏ F ุงู„ู€ A ูˆุงู„ู€ B ู…ูˆุฌูˆุฏุฉ ููŠ R and ุงู„ู€
258
00:26:28,520 --> 00:26:36,780
U (0, X1, X2) ู…ูˆุฌูˆุฏุฉ ููŠ V then ุจุฏุฃุช ุฃุฎุฏ ุงู„ู€
259
00:26:36,780 --> 00:26:46,120
A ููŠ ุงู„ู€ B ุถุฏ ุงู„ู€ U ูŠุณุงูˆูŠ A ููŠ ุถ ุถุฏ ุงู„ู€ U ูŠุจู‚ู‰ ุจุฏูŠ ุงุถุฑุจ
260
00:26:46,120 --> 00:26:52,220
B ููŠ ูƒู„ ุนู†ุตุฑ ู…ู† ุงู„ุนู†ุงุตุฑ ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ุงูŠ 0 ูˆ
261
00:26:52,220 --> 00:27:00,280
B X1 ูˆ B X2ุŒ ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง ุงู„ุขู† ุจุฏูŠ
262
00:27:00,280 --> 00:27:07,280
ุงุถุฑุจ ุงู„ู€ A ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏูŠ ูŠุณุงูˆูŠ A ููŠ 0 ุจ
263
00:27:07,280 --> 00:27:17,690
0 ูŠุจู‚ู‰ A B X1 ูˆ A B X2 ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง
264
00:27:17,690 --> 00:27:24,790
ู‡ู†ุงุŒ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ุขู† ุงู„ู€ A ูˆ ุงู„ู€ B ูˆ ุงู„ู€ X1
265
00:27:24,790 --> 00:27:29,830
ูƒู„ู‡ู… real numbers ูˆูƒุฐู„ูƒ ุงู„ู€ A ูˆ ุงู„ู€ B ูˆ ุงู„ู€ X2 ูƒู„ู‡
266
00:27:29,830 --> 00:27:36,350
real numbers ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู‡ุฐุง 0 ูˆู‡ุฐุง A B X1
267
00:27:36,350 --> 00:27:43,980
ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช A B X2 ุจู‚ุฏุฑ ุฃุฎุฏ ุงู„ู€ a B ุจุฑุง ูŠุจู‚ู‰
268
00:27:43,980 --> 00:27:51,160
ู‡ุฐุง a B ุจุฑุง ูƒู„ู‡ ููŠ ู…ูŠู†ุŸ ููŠ ุงู„ู€ (0, x1, x2)
269
00:27:51,160 --> 00:27:59,360
ูŠุจู‚ู‰ ู‡ุฐุง a B ุถุฏ ุงู„ู€ U ูŠุจู‚ู‰ ุชุญู‚ู‚ุช ุงู„ุฎุงุตูŠุฉ ุฑู‚ู… 9
270
00:27:59,360 --> 00:28:07,540
ุจู†ุงู†ุชู‚ู„ ู„ู„ุฎุงุตูŠุฉ ุฑู‚ู… 10 ุงู„ุฃุฎูŠุฑุฉ ุจุฏูŠ 1. (0, x1, x2) ูŠุจู‚ู‰ 1
271
00:28:07,540 --> 00:28:12,520
ููŠ (0, x1, x2)
272
00:28:13,880 --> 00:28:17,600
ุงู„ูˆุงุญุฏ ู„ู…ุง ู†ุถุฑุจู‡ ููŠ 0 ุจูŠุจู‚ู‰ ุฏู‡ ุฌู…ู†ุงุชู‡ ุจู€ 0
273
00:28:17,600 --> 00:28:23,660
ุงู„ูˆุงุญุฏ ููŠ ุงู„ู€ X1 ุจุงู„ู€ X1ุŒ ุงู„ูˆุงุญุฏ ููŠ ุงู„ู€ X2 ุจุงู„ู€ X2 ูŠุจู‚ู‰
274
00:28:23,660 --> 00:28:29,940
ู‡ุฐุง ุฃุนุทุงู†ูŠ ู…ูŠู†ุŸ ุงู„ู€ U ูŠุจู‚ู‰ ู‚ู„ู†ุงู„ูƒ ู…ู† ุงู„ุจุฏุงูŠุฉ ุฃู† ู‡ุฐุง
275
00:28:29,940 --> 00:28:35,040
vector space ู„ูŠุด ู‚ู„ู†ุงุŸ because ูˆุฑูˆุญู†ุง ูˆุฌูŠู†ุง ุงู„ุนุดุฑ
276
00:28:35,040 --> 00:28:39,660
ุฎูˆุงุต ูƒู„ู‡ุง ู…ุญู‚ู‚ุฉ ูŠุจู‚ู‰ ุฃุตุจุญ ู‡ุฐุง ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ู„ูŠ ู‡ูˆ
277
00:28:39,660 --> 00:28:45,840
vector spaceุŒ ุทุจุนุงู‹ ู…ุด ูƒู„ ุณุชุฉ ุจู†ุนุทูŠู‡ุง ู„ูƒ ุจุชูƒูˆู† vector
278
00:28:45,840 --> 00:28:51,660
space ูˆ ุจุถุฑูˆุญ ุฃุจุฏุฃ ุฃุทุจู‚ ุงู„ุฎูˆุงุต ุงู„ุนุดุฑุฉุŒ ุชู…ุงู…ุŸ ูŠุนู†ูŠ
279
00:28:51,660 --> 00:28:56,840
ู„ูŠุณ ุจุงู„ุถุฑูˆุฑุฉ ุฅู† ุฑุงุญ ุฃุทูˆู„ ุฎุงุตูŠุฉ ู…ุง ุชุญู‚ู‚ุดุŒ ูŠุจู‚ู‰ ุฃุฑูˆุญ
280
00:28:56,840 --> 00:29:00,240
ุฃุฏูˆุฑ ุนู„ู‰ ุงู„ุจุงู‚ูŠุŒ ู…ุง ุฃุฏูˆุฑุด ุนู„ู‰ ุงู„ุจุงู‚ูŠุŒ ุฎู„ุงุตุŒ not vector
281
00:29:00,240 --> 00:29:03,940
space ูˆุจุงุณุŒ ู„ู‚ูŠุช ุงู„ุฃูˆู„ู‰ ุงุชุญู‚ู‚ุช ุจุฑูˆุญ ู„ู„ุชุงู†ูŠุฉ ูˆู…ุง
282
00:29:03,940 --> 00:29:07,400
ุงุชุญู‚ู‚ุชุดุŒ ุงู„ุซุงู†ูŠุฉ not vector space ูˆุจุณูŠุจ ุงู„ุจุงู‚ูŠ ูˆ
283
00:29:07,400 --> 00:29:12,520
ู‡ูƒุฐุง ูŠุนู†ูŠุŒ ูˆูŠู† ุฎุงุตูŠุฉ ุจุชุชุญู‚ู‚ุด ุจู‚ูˆู„ ูŠุจู‚ู‰ ู‡ุฐุง ู…ุงู‡ูˆ
284
00:29:12,520 --> 00:29:16,880
vector space ูˆุจู†ุชู‡ูŠุŒ ุงู„ุฏู„ุฉ ุงู„ุซุงู†ูŠุฉ ุงู„ุฃูˆู„ู‰ ุงุชุญู‚ู‚ุช
285
00:29:16,880 --> 00:29:20,680
ุฅู†ู‡ุง ุจุฑูˆุญ ู„ู„ุชุงู„ุช ุจุฑูˆุญ ู„ู„ุฑุงุจุน ู„ู…ุง ุฅุฐุง ุงุชุญู‚ู‚ูˆุง
286
00:29:20,680 --> 00:29:24,400
ุงู„ุนุดุฑุฉ ูƒู„ู‡ู… ูŠุจู‚ู‰ ู‡ูˆ vector spaceุŒ ูŠุจู‚ู‰ ุฅุฐุง ุงุฎุชู„ุช ุฃูŠ
287
00:29:24,400 --> 00:29:28,320
ุฎุงุตูŠุฉ ู…ู† ุงู„ุฎุงุตุฉ ุงู„ุนุดุฑ ุจูƒูˆู† ู…ุนู„ู‡ ู…ุงู‡ูˆ vector
288
00:29:28,320 --> 00:29:35,680
space ู‡ุฐุง ุฃูˆู„ ู…ุซุงู„ ุนู„ู‰ ู‡ุฐุง ุงู„ู…ูˆุถูˆุนุŒ ู„ุง ูŠุฒุงู„ ุนู†ุฏู†ุง
289
00:29:35,680 --> 00:29:45,140
ุงู„ุนุฏูŠุฏ ู…ู† ุงู„ุฃู…ุซู„ุฉุŒ ุฏูŠ ุงู„ู…ุซุงู„ ุฑู‚ู… ุงุซู†ูŠู† ู‡ุฐุง
290
00:29:45,140 --> 00:29:50,320
ุฅุฐุง ุทู„ุน vector space ุฅุฐุง ู…ุง ุทู„ุนุด vector space
291
00:29:50,320 --> 00:29:55,990
ูŠู…ูƒู† ุชุณูˆูŠ ุฎุทูˆุฉ ูˆุงุญุฏุฉ ูˆู„ุง ู„ุงุŸ ูˆุฅุฐุง ุฃู†ุช ุฏู‚ูŠู‚ุฉ ู†ุธุฑ
292
00:29:55,990 --> 00:30:00,090
ูˆุดุงุทุฑุฉ ููŠ ุงู„ุญุณุงุจุงุช ูˆู…ุฌุฑุฏ ุงู„ู†ุธุฑ ุจุชู‚ูˆู„ูŠ ู‡ุฐู‡ ุงู„ุจุฑุดู…
293
00:30:00,090 --> 00:30:04,230
ุชู†ูุนุด ู„ู„ุฎุงุตูŠุฉ ุงู„ูู„ุงู†ูŠุฉ ุนู„ู‰ ุทูˆู„ ู…ู† ุฏูˆู† ู…ุฌุฑู…ูŠ ูˆุชุฑูˆุญ
294
00:30:04,230 --> 00:30:09,030
ุชูƒุชุจูŠ ู„ูŠู‡ุง ูˆุจุชูƒุดู ุงู„ุจุงู‚ูŠ 100% ุชู…ุงู…ุŒ ู†ุนุทูŠ ุงู„ู…ุซุงู„
295
00:30:09,030 --> 00:30:17,970
ุฑู‚ู… ุงุซู†ูŠู† example two ู‡ุฐุง ุณุคุงู„ ุฎู…ุณุฉ ู…ู† ุงู„ูƒุชุงุจ
296
00:30:17,970 --> 00:30:20,690
ุจูŠู‚ูˆู„ let V to sound
297
00:30:24,960 --> 00:30:34,460
ูƒู„ ุงู„ุนู†ุงุตุฑ ุนู„ู‰ ุงู„ุดูƒู„ (1, X, Y) ุจุญูŠุซ X ูˆ Y
298
00:30:34,460 --> 00:30:39,800
ู…ูˆุฌูˆุฏุฉ ููŠ set of real numbers under usual addition
299
00:30:40,930 --> 00:30:49,930
under usual addition ุชุญุช ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ and
300
00:30:49,930 --> 00:30:57,030
ูˆููŠ ู†ูุณ ุงู„ูˆู‚ุช usual scalar multiplicationุŒ usual
301
00:30:57,030 --> 00:31:03,250
scalar multiplication
302
00:31:03,250 --> 00:31:06,370
ุชุญุช
303
00:31:06,370 --> 00:31:18,190
ุนู…ู„ูŠุฉ ุงู„ุถุฑุจ ูˆุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ then is not
304
00:31:18,190 --> 00:31:26,430
a vector space
305
00:31:32,720 --> 00:31:37,520
ูˆู…ุฌุฑุฏ ุงู„ู†ุธุฑ ู‡ุฐุง ุงู„ู€ V ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡ ุชุญุช ุนู…ู„ูŠุฉ
306
00:31:37,520 --> 00:31:40,760
ุงู„ุฌู…ุน ุงู„ุนุงุฏูŠุฉ ูˆุงู„ุถุฑุจ ุงู„ุนุงุฏูŠุฉ ู„ูŠุณุช ููŠ ุงู„ุงู‚ุชุฑุงุถูŠุฉ
307
00:31:40,760 --> 00:31:44,520
ู„ูŠู‡ุŸ ุจุฏูŠ ูˆุงุญุฏุฉ ุชุญูƒูŠุŒ ุจุณ ูˆุงุญุฏุฉ ุชุฑูุน ุฃูŠุฏูŠู‡ุง ูˆุชุญูƒูŠ
308
00:31:44,520 --> 00:31:49,680
ุฃู†ุง ุจู‚ูˆู„ ููŠุด zero element ู…ุง ุนู†ุฏูŠุด ุงู„ุญุงู„ุฉ ู‡ุฐุง ูˆุฌู‡ุฉ
309
00:31:49,680 --> 00:31:55,200
ู†ุธุฑุŒ ููŠ ูˆุฌู‡ุฉ ู†ุธุฑ ุซุงู†ูŠุฉุŸ ู‚ุจู„ ุงู„ู€ zero ุทูŠุจ ุดูˆููŠ ุงู„ู„ูŠ
310
00:31:55,200 --> 00:32:01,520
ู‚ุจู„ ุงู„ู€ zeroุŒ ุงุฌู…ุน ุงุซู†ูŠู†ุŒ ุงุฌู…ุน ู„ูˆ ุฌู…ุนุช ุงุซู†ูŠู† ุงูŠุด
311
00:32:01,520 --> 00:32:02,100
ุจูŠุทู„ุนุŸ
312
00:32:06,540 --> 00:32:11,420
ูŠุจู‚ู‰ ุนู…ู„ูŠุฉ ุงู„ุฌู…ุน ู„ุง ุชุชุญู‚ู‚ุŒ ุตุญูŠุญ ูˆู„ุง ู„ุฃุŸ ุจุฑูˆุญ ุจู‚ูˆู„ู‡
313
00:32:11,420 --> 00:32:15,500
ู‡ุฐุง is not a vector space because
314
00:32:19,270 --> 00:32:26,570
ุงู„ู€ U ุจุฏู‡ุง ุชุณุงูˆูŠ (1, X1, Y1) ูˆ ุงู„ู€ V
315
00:32:26,570 --> 00:32:33,150
ุฏูˆุณุฑ (1, X2, Y2) ู…ูˆุฌูˆุฏุฉ ููŠ capital V
316
00:32:33,150 --> 00:32:42,170
then ุงู„ู€ U ุฒุงุฆุฏ ุงู„ู€ V ุจุฏูˆ ูŠุณุงูˆูŠ (2, X1 +
317
00:32:42,170 --> 00:32:48,860
X2, X1 ุฎู„ูŠู‡ุง ุจุณ ู„ุณู‡ูˆู„ุฉ ูŠุง ุจู†ุงุช ุฎู„ูŠู‡ุง X
318
00:32:48,860 --> 00:32:57,060
1 ูˆ X2ุŒ ูˆู‡ุฐูŠ Y1 ูˆ Y2 ุชู…ุงู… ูŠุจู‚ู‰ X
319
00:32:57,060 --> 00:33:04,800
1 + Y1ุŒ X2 + Y2) does not
320
00:33:04,800 --> 00:33:09,740
belong to V ู…ุด ู…ูˆุฌูˆุฏุฉ ููŠ V ู„ุฃู† ุฃู†ุง ุจุฏูŠ ุงู„
321
00:33:09,740 --> 00:33:14,550
component ุงู„ู„ูŠ ู‚ุฏุงุด ุชูƒูˆู† ูŠุจู‚ู‰ ููŠ ุญุงู„ุฉ ุงู„ zero ูŠู†ูุน
322
00:33:14,550 --> 00:33:18,830
ูŠุตูŠุฑ vector space ู„ูƒู† ููŠ ุญุงู„ุฉ ุงู„ูˆุงุญุฏ ู…ุง ู†ูุนุด ูŠูƒูˆู†
323
00:33:18,830 --> 00:33:24,230
vector spaceุŒ ู…ุงู‡ูˆ vector spaceุŒ ุทูŠุจ ู…ุซุงู„ ุซู„ุงุซุฉ
324
00:33:24,230 --> 00:33:32,530
ู…ุซุงู„ ุซู„ุงุซุฉ ู„ู‡ ุณุคุงู„ ุณุจุนุฉ ู…ู† ุงู„ูƒุชุงุจ ูƒุฐู„ูƒ ุณุคุงู„ ุณุจุนุฉ
325
00:33:32,530 --> 00:33:42,530
ุจูŠู‚ูˆู„ let ุงู„ู€ V ุชุณุงูˆูŠ ูƒู„ ุงู„ู…ุตููˆูุงุช A ุจุญูŠุซ ุงู„ู€ A is
326
00:33:42,530 --> 00:33:48,370
two by two matrixุŒ ูƒู„ ุงู„ู…ุตููˆูุงุช ุงู„ู„ูŠ ู†ุธุงู…ู‡ุง ุงุซู†ูŠู†
327
00:33:48,370 --> 00:33:56,450
ููŠ ุงุซู†ูŠู† with determinant ู„ู„ู€ A ู„ุง ูŠุณุงูˆูŠ 0
328
00:33:56,450 --> 00:34:02,970
under usual
329
00:34:09,830 --> 00:34:19,150
addition and scalar multiplication
330
00:34:19,150 --> 00:34:26,610
of
331
00:34:26,610 --> 00:34:38,460
matrices then ุฅูŠุด ุฑุฃูŠูƒุŸ ุงู„ู€ V ู…ุด ุนุงุฑู ุงูƒุชุจ ู‡ูŠ
332
00:34:38,460 --> 00:34:42,420
vector space ูˆู„ุง not vector spaceุŒ ู†ูŠุฌูŠ ู…ูŠู† ู‡ูŠ ุงู„ู€ V
333
00:34:42,420 --> 00:34:51,200
ููŠ ุงู„ุฃูˆู„ ุงู„ู€ V ูƒู„ ุงู„ู…ุตููˆูุงุช A ุงู„ู„ูŠ ู†ุธุงู…ู‡ุง 2 ููŠ 2 ูˆ
334
00:34:51,200 --> 00:34:55,760
ุงู„ู„ูŠ ู…ุญุฏุฏู‡ุง ู…ุง ู„ู‡ ู„ุง ูŠุณุงูˆูŠ 0 ุงู„ู„ูŠ ู…ุญุฏุฏ ููŠู‡ุง ู„ุง
335
00:34:55,760 --> 00:34:59,550
ูŠุณุงูˆูŠ 0 ูŠุจู‚ู‰ ูƒู„ ุงู„ู…ุตูˆุงุช ุงู„ู„ูŠ ู†ุธุงู…ู‡ุง ุงุซู†ูŠู† ููŠ ุงุซู†ูŠู†
336
00:34:59,550 --> 00:35:04,850
ูˆ ุงู„ู„ูŠ ู…ุญุฏุฏุฉ ู„ุง ูŠุณุงูˆูŠ ุชุฌู…ุนุชู‡ู… ูˆุญุทูŠุชู‡ู… ููŠ VุŒ ุนุฑูุช
337
00:35:04,850 --> 00:35:09,510
ุนู„ูŠู‡ุง ุนู…ู„ูŠุฉ ุฌู…ุน ุงู„ู…ุตูˆูุงุช ุงู„ุนุงุฏูŠ ูˆู‡ูˆ ุฌู…ุน component
338
00:35:09,510 --> 00:35:14,630
-wise ูˆุนุฑูุช ุนู„ูŠู‡ุง ุถุฑุจ ุงู„ู…ุตูˆูุฉ ููŠ scalar ูˆู‡ูˆ ุถุฑุจ ุงู„
339
00:35:14,630 --> 00:35:17,730
real number ููŠ ูƒู„ ุนู†ุตุฑ ู…ู† ุงู„ุนู†ุงุตุฑ ุงู„ู…ุตูˆูุฉ ุงู„ู„ูŠ
340
00:35:17,730 --> 00:35:21,670
ูƒุงู†ุช usual addition and usual multiplication ุชู…ุงู…
341
00:35:21,990 --> 00:35:27,530
ุชุญุช ุงู„ุนู…ู„ูŠุชูŠู† ุงู„ุงุซู†ูŠู† ู‡ุฏูˆู„ ู‡ู„ ุงู„ู€ V Vector Space ุฃู…
342
00:35:27,530 --> 00:35:35,990
ู„ุงุŸ ุทุจุนุงู‹ ู„ุฃ ุฃุจุณุท ุดุบู„ุฉ ุจุฏูŠ Zero MatrixุŒ ู‡ู„ ุงู„ู€ Zero
343
00:35:35,990 --> 00:35:40,270
Matrix ุงู„ู…ุญุฏุฏ ุชุจุนู‡ุง ู„ุง ูŠุณุงูˆูŠ 0ุŸ ู„ุฃ ุทุจุนุงู‹ุŒ ูŠุจู‚ู‰ ุฌุฏ
344
00:35:40,270 --> 00:35:48,990
ุฅู† ุงู„ู€ V is not a vector space because
345
00:35:54,180 --> 00:36:10,760
it does not contain the zero matrix since
346
00:36:15,640 --> 00:36:23,320
ุงู„ู€ Determinant ู„ู„ู…ุตููˆูุฉ 0 ูŠุจู‚ู‰ 0 ูŠุจู‚ู‰
347
00:36:23,320 --> 00:36:28,760
ุงู„ุฎุงุตูŠุฉ ุชุจุน ุงู„ุนู†ุตุฑ ุงู„ุตูุฑูŠ ู„ู… ุชุชุญู‚ู‚ ู„ุฐู„ูƒ ู‡ุฐุง ู„ูŠุณ
348
00:36:28,760 --> 00:36:37,320
Vector Space ูุจุงู„ู…ุซุงู„
349
00:36:37,320 --> 00:36:47,640
ุฑู‚ู… ุฃุฑุจุนุฉ ุจู‚ูˆู„ Let capital V ูƒู„ ุงู„ุนู†ุงุตุฑ ุนู„ู‰ ุงู„ุดูƒู„ (X
350
00:36:47,640 --> 00:36:57,480
ุŒ Y ุŒ Z) ุจุญูŠุซ ุฅู† ุงู„ู€ X ูˆ Y ูˆ Z ู…ูˆุฌูˆุฏุฉ ููŠ set of real
351
00:36:57,480 --> 00:37:03,900
numbersุŒ define addition
352
00:37:03,900 --> 00:37:07,380
define
353
00:37:07,380 --> 00:37:09,780
addition and
354
00:37:16,800 --> 00:37:26,020
multiplication on the by ุงู„ู€
355
00:37:26,020 --> 00:37:40,400
(X1, Y1, Z1) ุฒุงุฆุฏ (X2, Y2, Z2) ุจุฏู‡ ูŠุณุงูˆูŠ ุงู„ู„ูŠ
356
00:37:40,400 --> 00:37:54,760
ู‡ูˆ (X1, Y1, Z1) ูˆู‡ู†ุง (X2, Y2, Z2)ุŒ X1 + X2ุŒ Y1
357
00:37:54,760 --> 00:38:06,920
+ Y2 ูˆู‡ู†ุง Z1 + Z2ุŒ ู‡ุฐุง ุงู„ุฌู…ุน and
358
00:38:06,920 --> 00:38:11,000
ุงู„
359
00:38:11,000 --> 00:38:25,540
a ููŠ (x, y, z) ูŠุณุงูˆูŠ (ax, y, z)ุŒ then ุงู„ู€ V
360
00:38:25,540 --> 00:38:28,580
is ุงู„ู„ู‡ ุฃุนู„ู…
361
00:38:40,130 --> 00:38:46,110
ูƒูŠูุŸ ุขู‡ ุจุณ ุจู†ุถุฑุจู‡ุง ููŠ ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ุŒ ูŠุนู†ูŠ ุนู…ู„ูŠุฉ
362
00:38:46,110 --> 00:38:50,690
ุงู„ุฌู…ุน ูƒู…ุง ู‡ูŠ component-wise ูˆุงู„ุฅูŠู‡ ุจุณ ุจู†ุถุฑุจู‡ุง ููŠ
363
00:38:50,690 --> 00:38:59,410
ุงู„ู…ุฑูƒุจุฉ ุงู„ุฃูˆู„ู‰ ูู‚ุท ู„ุง ุบูŠุฑุŒ ุชู…ุงู…ุŸ ูŠุนู†ูŠ ุฅู†ู‡ ู‡ุฐู‡ ุงู„
364
00:38:59,410 --> 00:39:07,410
Sid ู‡ูŠ ู‡ูŠูƒ ู‚ุตูŠุฑุฉุŒ ูุงู‡ู…
365
00:39:07,410 --> 00:39:13,190
ูŠุนู†ูŠ ู‡ุฐู‡ ุงู„ Sid ุฎุงุต ููŠู‡ ู„ุฃู†ู‡ .. ุฎุงุต ููŠู‡ .. ูุงู‡ู…
366
00:39:17,540 --> 00:39:21,240
ู‡ู„ ู‡ุฐุง vector space ูˆู„ุง ู…ุงู‡ูˆ vector spaceุŒ ุจุชุฎูŠู„
367
00:39:21,240 --> 00:39:28,220
ุฃู†ู‡ ู…ุงู‡ูˆ vector space ุณุจู‚ because ู„ูˆ ุฃุฎุฐุช ูŠุจู‚ู‰
368
00:39:28,220 --> 00:39:40,920
ู‡ุฐุง is not a vector space because ู„ูˆ
369
00:39:40,920 --> 00:39:47,910
ุฃุฎุฐุช ูŠุง ู…ู†ุงุฏ (a + b) ููŠ ู…ู†ุŸ ููŠ U ูŠุจู‚ู‰ ู‡ุฐุง
370
00:39:47,910 --> 00:39:57,190
ุจูŠุตูŠุฑ (a + b) ููŠ