|
1 |
|
00:00:19,390 --> 00:00:23,870 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ุงูุชูููุง ูู ุฃูู chapter ู
ู |
|
|
|
2 |
|
00:00:23,870 --> 00:00:27,410 |
|
ุงูุฌุจุฑ ุงูุฎุทู ู ูู chapter 2 ูุงูุขู ุจูุฑูุญ ูู |
|
|
|
3 |
|
00:00:27,410 --> 00:00:31,030 |
|
chapter ุงูุซุงูู ู
ู ุงูุฌุจุฑ ุงูุฎุทู ู ูู chapter 3 |
|
|
|
4 |
|
00:00:31,030 --> 00:00:35,870 |
|
ู
ู ุงููุชุงุจ ุงูู
ูุฑุฑ ูุฐุง ุงู chapter ูุชุญุฏุซ ุนู ููุทุชูู |
|
|
|
5 |
|
00:00:35,870 --> 00:00:39,910 |
|
ุฑุฆูุณูุชูู ุงูููุทุฉ ุงูุฃููู ูู ุงู vector spaces ู |
|
|
|
6 |
|
00:00:39,910 --> 00:00:43,890 |
|
ุงูููุทุฉ ุงูุซุงููุฉ ูู ุงู linear transformations ูุนูู |
|
|
|
7 |
|
00:00:43,890 --> 00:00:48,830 |
|
ุงูุชุญูููุงุช ุงูุฎุทูุฉ ู
ูุถูุนูุง ุงูููู
ู
ูุถูุน ุงู vector |
|
|
|
8 |
|
00:00:48,830 --> 00:00:54,070 |
|
spaces ูุนูู ู
ุฏุงุฑ ุงูุฃูุงู
ุงููุงุฏู
ุฉ ูุฐูู ููููุง ูู ูุฐุง |
|
|
|
9 |
|
00:00:54,070 --> 00:00:58,550 |
|
ุงู section ููุท ุณูุนุทู ุชุนุฑูู ูู vector space ููุนุทู |
|
|
|
10 |
|
00:00:58,550 --> 00:01:04,670 |
|
ุจุนุถ ุงูุฃู
ุซูุฉ ุนููู ููุท ูุง ุบูุฑ ูู
ู ุซู
ููุชูู ุฅูู ุจููุฉ |
|
|
|
11 |
|
00:01:04,670 --> 00:01:09,450 |
|
ุงูุฃุฌุฒุงุก ุงูุชู ุชุชุนูู ุจุงู vector spaces ูุจูู ุงุญูุง |
|
|
|
12 |
|
00:01:09,450 --> 00:01:16,950 |
|
ุนูุฏูุง vector spaces ูุนูู ุงููุถุงุกุงุช ุงูุงุชุฌุงููุฉ ุจุฏูุง |
|
|
|
13 |
|
00:01:16,950 --> 00:01:22,530 |
|
ูุนุทู ุชุนุฑูู ูููุถุงุก ุงูุงุชุฌุงูู ููุดูู ููู ูุทุจู ุงูุชุนุฑูู |
|
|
|
14 |
|
00:01:22,530 --> 00:01:28,090 |
|
ุนูู ุงูุฃู
ุซูุฉ ุงูู
ุฎุชููุฉ ุจููู ุงูุชุฑุถ ุฃู capital V ุนุจุงุฑุฉ |
|
|
|
15 |
|
00:01:28,090 --> 00:01:32,370 |
|
ุนู non-empty set of objects ูุจูู ุฃูุง ุนูุฏู capital |
|
|
|
16 |
|
00:01:32,370 --> 00:01:37,650 |
|
V ูู ุนุจุงุฑุฉ ุนู ู
ุฌู
ูุนุฉ ููุฐู ุงูู
ุฌู
ูุนุฉ ุชุญุชูู ุนูู ุนุฏุฏ |
|
|
|
17 |
|
00:01:37,650 --> 00:01:41,750 |
|
ู
ู ุงูุนูุงุตุฑ in which two operations addition and |
|
|
|
18 |
|
00:01:41,750 --> 00:01:45,610 |
|
multiplication by scalars are defined ูุนูููุง |
|
|
|
19 |
|
00:01:45,610 --> 00:01:50,030 |
|
ุนู
ููุชูู ู
ุนุฑูุชูู ุนู
ููุฉ ุจูุณู
ููุง ุนู
ููุฉ ุงูุฌู
ุน ูุงูุซุงููุฉ |
|
|
|
20 |
|
00:01:50,030 --> 00:01:54,650 |
|
ุนู
ููุฉ ุงูุถุฑุจ ูู ู
ูุฏุงุฑ ููุงุณู ุฃู ู
ูุฏุงุฑ ุซุงุจุช ูู
ุง ูููู |
|
|
|
21 |
|
00:01:54,650 --> 00:01:58,930 |
|
vector ูุจูู ูู ุถุฑุจูุงูุง ูู ุฑูู
ูููู ูุฐุง ูู scalar |
|
|
|
22 |
|
00:01:58,930 --> 00:02:04,130 |
|
multiplication ูุนูู ุถุฑุจ ููุงุณู ูุจูู ุงุญูุง ูู ุนูุฏูุง |
|
|
|
23 |
|
00:02:04,130 --> 00:02:08,670 |
|
set V ุงูู V ูุฐุง ุจุฏุฃ ุฃุถุน ุนูููุง ุนู
ููุชูู ุงูุนู
ููุฉ |
|
|
|
24 |
|
00:02:08,670 --> 00:02:14,070 |
|
ุงูุฃููู ุนู
ููุฉ ุงูุฌู
ุน ุจูู ุงูู
ุชุฌูุงุช ุงูู
ูุฌูุฏุฉ ูู V |
|
|
|
25 |
|
00:02:14,070 --> 00:02:18,870 |
|
ุงูุนู
ููุฉ ุงูุซุงููุฉ ุฃุฎุฏ ุฑูู
ู
ู set of real numbers R |
|
|
|
26 |
|
00:02:18,870 --> 00:02:25,370 |
|
ูุถุฑุจู ูู ุฃู ู
ู ุงูู
ุชุฌูุงุช ุชุจุนุงุช ุงู vector V ูุจูู ูุงู |
|
|
|
27 |
|
00:02:25,370 --> 00:02:28,970 |
|
ุงูุนู
ููุชูู ุงููู ุฃูุง ุจููู ุนูููู
ู
ุนุฑูุชูู ูุงููุง ู
ุนุฑูุฉ |
|
|
|
28 |
|
00:02:28,970 --> 00:02:29,550 |
|
ุฐุงุชู |
|
|
|
29 |
|
00:02:46,650 --> 00:02:52,470 |
|
ุนู
ููุฉ ุฌู
ุน ู
ุชุฌููู ู
ู V ูู ู
ุชุฌู ุฌุฏูุฏ ู
ูุฌูุฏ ูู V |
|
|
|
30 |
|
00:02:52,470 --> 00:02:58,210 |
|
ุนู
ููุฉ ุถุฑุจ scalar A ูู U ูู ุจูุนุทููู ู
ุชุฌู ุฌุฏูุฏ ูุฐุง |
|
|
|
31 |
|
00:02:58,210 --> 00:03:04,030 |
|
ุงูู
ุชุฌู ู
ูุฌูุฏ ูู V ูุฐูู R defined ูุจูู ูู ูุฐู ุงูุญุงูุฉ |
|
|
|
32 |
|
00:03:04,030 --> 00:03:08,170 |
|
ุจูููู ุฅู ุงู V ูุนูููุง ุนู
ููุฉ ุงูุฌู
ุน ูุนูููุง ุนู
ููุฉ |
|
|
|
33 |
|
00:03:08,170 --> 00:03:13,390 |
|
ุงูุถุฑุจ base color is a vector space ุฃู linear space |
|
|
|
34 |
|
00:03:13,390 --> 00:03:16,830 |
|
ุจุนุถ ุงููุชุจ ุจุชููู ุนูู vector space ู ุจุนุถ ุงููุชุจ ุจุชููู |
|
|
|
35 |
|
00:03:16,830 --> 00:03:19,890 |
|
ุนูู linear space if the following properties are |
|
|
|
36 |
|
00:03:19,890 --> 00:03:26,080 |
|
satisfied ุนูู V ูุจูู ุฅุฐุง ุชุญูู ุงูุดุฑูุท ุงูุนุดุฑุฉ ุงูุชุงููุฉ |
|
|
|
37 |
|
00:03:26,080 --> 00:03:31,540 |
|
ุนูู ูุฐู ุงูุณุช ุจููู ุงูุณุช ูุฐู vector space ุฅุฐุง ูู
|
|
|
|
38 |
|
00:03:31,540 --> 00:03:36,640 |
|
ูุชุญูู ููู ุดุฑุท ูุงุญุฏ ูุจูู ุจูุจุทู ูุตูุฑ vector space |
|
|
|
39 |
|
00:03:36,640 --> 00:03:40,520 |
|
ูุจูู ูุจูู ูู ุฃู ูุฐุง ู
ุง ูู vector space ูููู |
|
|
|
40 |
|
00:03:40,520 --> 00:03:47,060 |
|
ุฃูุบู ุดุฑุท ู
ู ุงูุดุฑูุท ุงูุนุดุฑุฉ ูุฃุชู ููุดุฑุท ุงูุฃูู ุฃู |
|
|
|
41 |
|
00:03:47,060 --> 00:03:51,080 |
|
ุงูุฎุงุตูุฉ ุงููู ูู ูู ุฃุฎุฏุช ุนูุตุฑูู ู
ู V ูุจูู ุญุงุตู |
|
|
|
42 |
|
00:03:51,080 --> 00:03:56,420 |
|
ุงูุฌู
ุน ู
ุด ุจุฏู ูููู ู
ูุฌูุฏ ูู V ูููุณ ุฎุงุฑุฌ V ุทุงูุน |
|
|
|
43 |
|
00:03:56,420 --> 00:04:00,240 |
|
ุฎุงุฑุฌ V ูุจุชุจุทู ูุตูุฑ vector space ูุจูู ุจุฏูู ุงูู
ุฌู
ูุน |
|
|
|
44 |
|
00:04:00,240 --> 00:04:05,480 |
|
ูููู ุฏุงุฎู V ุงู condition ุงูุชุงูู ุงู U ุฒุงุฆุฏ ุงู V |
|
|
|
45 |
|
00:04:05,480 --> 00:04:10,020 |
|
ูุณุงูู ุงู V ุฒุงุฆุฏ ุงู U ูุนูู ุนู
ููุฉ ุนู
ููุฉ ุฌู
ุน ุงูู
ูุชุฌุงุช |
|
|
|
46 |
|
00:04:10,020 --> 00:04:14,690 |
|
ุนู
ููุฉ ุฅุจุฏุงููุฉ ูู ู
ุง ูุงูุช ุฅุจุฏุงููุฉ it is not a vector |
|
|
|
47 |
|
00:04:14,690 --> 00:04:19,210 |
|
space ุทูุจ ุงูุฎุงุตูุชูู ุงููู ุงุซููููู
ุชุญููุง ุจุฑูุญูุง |
|
|
|
48 |
|
00:04:19,210 --> 00:04:23,210 |
|
ุงูุฎุงุตูุฉ ุงูุซุงูุซุฉ ู ูู ุฎุงุตูุฉ ุงู associativity ูู |
|
|
|
49 |
|
00:04:23,210 --> 00:04:29,230 |
|
ุฌู
ุนุช ุงู U ุฅูู V ุฒุงุฆุฏ ุงู W ุชู
ุงู
ุง ูู
ุง ูู ุฌู
ุนุช ุงู U |
|
|
|
50 |
|
00:04:29,230 --> 00:04:34,530 |
|
ุฒุงุฆุฏ ุงู V ุฅูู ู
ู ุฅูู ุงู W ู ุฏู ุจูุณู
ูู ุฎุงุตูุฉ ุงูุฏู
ุฌ |
|
|
|
51 |
|
00:04:34,530 --> 00:04:38,830 |
|
associative law ุฃู associative property ุงูุขู ุฃูุชู |
|
|
|
52 |
|
00:04:38,830 --> 00:04:42,630 |
|
ุญููุช ุงูุฎูุงุต ุงูุซูุงุซ ุจุฑูุญ ูุฎุงุตูุฉ ุฑุงุจุนุฉ ุงูุฎุงุตูุฉ |
|
|
|
53 |
|
00:04:42,630 --> 00:04:46,450 |
|
ุงูุฑุงุจุนุฉ ุชููู ูู ูู ุนูุฏู ุนูุตุฑ ุงููู ูู ุงู zero |
|
|
|
54 |
|
00:04:46,450 --> 00:04:51,450 |
|
ุงูู
ูุชูุตู ูุฐุง ู
ูุฌูุฏ ูู V ุฅุฐุง ูุงููู ูุงู Zero ุฒุงุฆุฏ V |
|
|
|
55 |
|
00:04:51,450 --> 00:04:57,230 |
|
ูุณุงูู V ุฒุงุฆุฏ Zero ูุณุงูู V ููู ุงู V ูุจูู ูุฐุง ุจุณู
ูู |
|
|
|
56 |
|
00:04:57,230 --> 00:05:01,970 |
|
Zero vector ูู
ููุ ูู vector space V ูุนูู ุจู
ุนูู ุขุฎุฑ |
|
|
|
57 |
|
00:05:01,970 --> 00:05:07,070 |
|
ุฃู ุงู vector space V ูุงุฒู
ูุญุชูู ุนูู ุงูุนูุตุฑ ุงูุตูุฑู |
|
|
|
58 |
|
00:05:07,070 --> 00:05:13,410 |
|
ุจุงููุณุจุฉ ูุนู
ููุฉ ุงูุฌู
ุน ูุจูู ุงูู zero ูุฐุง vector ูุจูู |
|
|
|
59 |
|
00:05:13,410 --> 00:05:20,130 |
|
ู
ุด scalar ูุนูู ู
ุด number ูุฅูู
ุง ูู vector ุชู
ุงู
ุจุญูุซ |
|
|
|
60 |
|
00:05:20,130 --> 00:05:24,030 |
|
ูุฐุง ุงู zero vector ูู ุฌู
ุนุชู ุฅูู ุฃู vector ุขุฎุฑ ู
ู |
|
|
|
61 |
|
00:05:24,030 --> 00:05:28,590 |
|
ุงููู
ูู ุฃู ู
ู ุงูุดู
ุงู ุจุฏู ูุนุทููู ููุณ ุงู vector ูุฐุง |
|
|
|
62 |
|
00:05:28,590 --> 00:05:32,850 |
|
ุงู element ุจููู ุนููู ุงู zero vector ุฎุงุตูุฉ ุงูุฎุงู
ุณุฉ |
|
|
|
63 |
|
00:05:32,850 --> 00:05:37,470 |
|
ูุฃู u ู
ูุฌูุฏ ูู capital V there exists ูุงุฒู
ุงููู |
|
|
|
64 |
|
00:05:37,470 --> 00:05:42,980 |
|
ุฃุฌู ุฃุณุฃูู ุจู U ู
ูุฌูุฏ ูู V ูุนูู ูุนูู ุฅุฐุง ุงูุนูุตุฑ ุฃู ุงู |
|
|
|
65 |
|
00:05:42,980 --> 00:05:48,560 |
|
vector ู
ูุฌูุฏ ูู V ูุงุฒู
ุฃูุงูู ุณุงูุจ ูุฐุง ุงูุนูุตุฑ ู
ูุฌูุฏ |
|
|
|
66 |
|
00:05:48,560 --> 00:05:54,560 |
|
ูู V ุจุญูุซ ูู ุฌู
ุนุช ุงู U ูุณุงูุจ U ุชู
ุงู
ุง ูู
ุง ูู ุฌู
ุนุช |
|
|
|
67 |
|
00:05:54,560 --> 00:05:58,740 |
|
ุณุงูุจ U ู U ูุฃูู ูุงู ููุง commutative ููุฏุด ุจุฏู |
|
|
|
68 |
|
00:05:58,740 --> 00:06:02,830 |
|
ูุนุทููุง ุงูู zero vector ู
ุด ุงูู zero scalar ูุฃู ุงุญูุง |
|
|
|
69 |
|
00:06:02,830 --> 00:06:09,790 |
|
ุจูุฌู
ุน vectors ุณุงูุจ U ูู vector ูุจูู U ุฒุงุฆุฏ ูุงูุต U |
|
|
|
70 |
|
00:06:09,790 --> 00:06:14,910 |
|
ูุณุงูู ุชู
ุงู
ุง ูุงูุต ุงูู U ุฒุงุฆุฏ ุงูู U ุจุฏู ูุณุงูู ู
ู ุงูู |
|
|
|
71 |
|
00:06:14,910 --> 00:06:19,180 |
|
zero vector ูุฐู ุงูุฎุงู
ุณุฉ ุงูุฎุงุตูุฉ ุงูุณุงุฏุณุฉ ูู ุฃุฎุฏุช ุฃู |
|
|
|
72 |
|
00:06:19,180 --> 00:06:23,740 |
|
scalar ู
ู ุงู set of real number A ุฃุฎุฏุช ุนูุตุฑ A ู
ู |
|
|
|
73 |
|
00:06:23,740 --> 00:06:27,900 |
|
ุงู set of real number ู ุฃุฎุฏุช ุงู U vector ู
ูุฌูุฏ ูู |
|
|
|
74 |
|
00:06:27,900 --> 00:06:35,880 |
|
V ุฅุฐุง ุญุตู ุถุฑุจ ู 2A ูู U ุจุฏู ูููู ู
ูุฌูุฏ ูู V ุชู
ุงู
ุง |
|
|
|
75 |
|
00:06:35,880 --> 00:06:40,070 |
|
ุชุญููุช ุงูุฎุงุตูุฉ ุฏู ูุฑูุญ ุจุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุง ูู ูุงู |
|
|
|
76 |
|
00:06:40,070 --> 00:06:45,170 |
|
ุงูู A scalar ู ุฃุฎุฏุช two vectors ู
ู V ู ุฑูุญ ุถุฑุจ ูุงุณููุฑ |
|
|
|
77 |
|
00:06:45,170 --> 00:06:51,550 |
|
ุงูู A ุถุฏ ุงูู U ุฒุงุฆุฏ ุงูู V ุฎุถุนุช ูุฐู ูุนู
ููุงุช ุงูุชูุฒูุน |
|
|
|
78 |
|
00:06:51,550 --> 00:06:56,850 |
|
ุฃู distributive property ุฎุงุตูุฉ ุงูุชูุฒูุน ุตุงุฑุช ูุฐู A |
|
|
|
79 |
|
00:06:56,850 --> 00:07:03,190 |
|
ุถุฏ ุงูู U ุฒุงุฆุฏ A ุถุฏ ุงูู V ู
ุด ุนุงุฌุฒ ูู ู ุจุณ ุถุฑุจ scalar |
|
|
|
80 |
|
00:07:03,190 --> 00:07:08,090 |
|
ู
ุน ุฌุงู
ุนุฉ ู vector ูุฃ ุฌุงู
ุนุฉ ู scalars ู
ุน ุถุฑุจ ู
ุน ู
ูู |
|
|
|
81 |
|
00:07:08,090 --> 00:07:12,750 |
|
ู
ุน vector ุงูุฎุงุตูุฉ ุงููู ุจุนุฏูุง ูู ูุงู ุงู a ู ุงู b |
|
|
|
82 |
|
00:07:12,750 --> 00:07:16,930 |
|
ู
ูุฌูุฏุฉ ูู R ู ุงู u ู
ูุฌูุฏุฉ ูู V ูุจูู ุงู a ุฒุงุฆุฏ ุงู b |
|
|
|
83 |
|
00:07:16,930 --> 00:07:21,450 |
|
ู dot ุงู u ุจูุณุงูู a dot ุงู u ุฒุงุฆุฏ ุงู b dot ุงู u ูู |
|
|
|
84 |
|
00:07:21,450 --> 00:07:28,160 |
|
ูุฐุง ุจูููู ู
ูุฌูุฏ ูู V ุทุจุนุง ูุจูู ุจูุฌู ููุฎุงุตูุฉ ุงูุชุงุณุนุฉ |
|
|
|
85 |
|
00:07:28,160 --> 00:07:34,580 |
|
ูู ูุงู ุนูุฏู scalar A ูุนูุฏู scalar B ุถุฑุจุช ุงู B ูู |
|
|
|
86 |
|
00:07:34,580 --> 00:07:39,000 |
|
ุงู U ูุงููุชุฌ ุฑูุญุช ุถุฑุจุช ูู A ุชู
ุงู
ุง ูู
ุง ูู ุถุฑุจุช ุงู |
|
|
|
87 |
|
00:07:39,000 --> 00:07:43,360 |
|
two scalars ู
ู ุงูุจุฏุงูุฉ ูู ู
ู ูู ุงู vector V ุจุฏู |
|
|
|
88 |
|
00:07:43,360 --> 00:07:48,960 |
|
ูุทูุน ุนูุฏู vector ุงุณู
ู A B ุถุฏ ุงู U ููุฐุง ุจูููู vector |
|
|
|
89 |
|
00:07:48,960 --> 00:07:53,220 |
|
ู
ูุฌูุฏ ูู ุงูู vector ุงูุฃุตูู ุทุจููุง ููุฎุงุตูุฉ ุงููู |
|
|
|
90 |
|
00:07:53,220 --> 00:07:57,640 |
|
ุนูุฏูุง ูุฐู ุชู
ุงู
ุชุญูู ุงูุฎุงุตูุฉ ุงูุชุงุณุนุฉ ุจูุฑูุญ ุงูุฎุงุตูุฉ |
|
|
|
91 |
|
00:07:57,640 --> 00:08:02,860 |
|
ุงูุนุงุดุฑุฉ ูู ุฃุฎุฏุช ุงููุงุญุฏ as a scalar ูุนูู ูุฃูู |
|
|
|
92 |
|
00:08:02,860 --> 00:08:08,400 |
|
ุงูุฎุงุตูุฉ ุฏู ุญุงูุฉ ุฎุงุตุฉ ู
ู ู
ู ุงููู ููู ุฃุฎุฏุช ุงู U ูู |
|
|
|
93 |
|
00:08:08,400 --> 00:08:12,180 |
|
vector ู ุฃุฎุฏุช ุงููุงุญุฏ as a scalar ุถุฑุจุช ุงููุงุญุฏ ูู U |
|
|
|
94 |
|
00:08:12,180 --> 00:08:18,850 |
|
ุจูุทูุน ุงููุชุฌ ูุณุงูู U ุงููู ูู ู
ูุฌูุฏ ูู V ูุจูู ุฅุฐุง |
|
|
|
95 |
|
00:08:18,850 --> 00:08:23,930 |
|
ุชุญููุช ูุฐู ุงูุฎูุงุต ุงูุนุดุฑ ูู ูุฐู ุงูุญุงูุฉ ุจููู ูุจูู |
|
|
|
96 |
|
00:08:23,930 --> 00:08:28,430 |
|
ุงููู ูู ุนูุฏู ูุฐุง ู
ุงูู vector space ุจุฏูุง ูุจุฏุฃ ูุทุจู |
|
|
|
97 |
|
00:08:28,430 --> 00:08:31,710 |
|
ุงูููุงู
ุงููู ุงุญูุง ุจููููู ุนูู ุฃุฑุถ ุงููุงูุน ุจุฃู
ุซูุฉ |
|
|
|
98 |
|
00:08:31,710 --> 00:08:35,950 |
|
ู
ุฎุชููุฉ ููุดูู ู
ูู ู
ู
ูู ูุทูุน vector space ุฃู ู
ู
ูู |
|
|
|
99 |
|
00:08:35,950 --> 00:08:42,150 |
|
ู
ุง ูุทูุนุด vector space ูุฅุฐุง ู
ุง ุทูุนุด ู
ูู ู
ู ุงูุฎูุงุต ูุง |
|
|
|
100 |
|
00:08:42,150 --> 00:08:46,790 |
|
ุชุชุญูู ูู ูุฐู ุงูุญุงูุฉ ุจููุช ูุตูุฑ ู
ุง ูู vector |
|
|
|
101 |
|
00:08:46,790 --> 00:08:52,980 |
|
space ุฌุงุก ูุงุฎุฏ ุงูู
ุซุงู ุงูุฃูู ุงูุชุฑุถ ุงู V ูู ุงูุนูุงุตุฑ |
|
|
|
102 |
|
00:08:52,980 --> 00:08:59,700 |
|
ุงูู zero X1 ู X2 ุจุญูุซ X1 ู X2 ู
ูุฌูุฏ ูู R ูุนูู ุงูุดุ |
|
|
|
103 |
|
00:08:59,700 --> 00:09:04,700 |
|
ูุนูู ุจุฏู ุงุฎุฐ ูู ุงู vectors ุงููู ูู vector ู
ููู ู
ู |
|
|
|
104 |
|
00:09:04,700 --> 00:09:08,560 |
|
ุงู three components ุจุญูุซ ุงูู
ุฑูุจุฉ ุงูุฃููู ุฏุงุฆู
ุง ู |
|
|
|
105 |
|
00:09:08,560 --> 00:09:12,920 |
|
ุฃุจุฏุฃ zero ูู ู
ุง ูู zero ุฅุฐุง ู
ุด ุนูุฏูุง ุจุฑุง ู
ุงููุงุด |
|
|
|
106 |
|
00:09:12,920 --> 00:09:17,560 |
|
ุนูุงูุฉ ูููุง ูุจูู ุงุญูุง ุจุฏูุง ูุฌู
ุน ูุนูู ู
ุซูุง ูู ุฌูุช |
|
|
|
107 |
|
00:09:17,560 --> 00:09:22,140 |
|
ููุช ูุง ุจูุงุช ูุฐุง ูู ูุงุญุฏุฉ ูููู ุนุจุงุฑุฉ ุนู ุนูุตุฑ ูู ุงู |
|
|
|
108 |
|
00:09:22,140 --> 00:09:26,560 |
|
vector space ุงูุดูู ูุฐู ุชู
ุงู
ุฌูุช ููุช ููุจูุงุช ุงูุณุทุฑ |
|
|
|
109 |
|
00:09:26,560 --> 00:09:30,930 |
|
ูุฐุง ููู ุงูุชุฌ ูููุงุญูุฉ ุงูุซุงููุฉ ูุจูู ูุฃูู ุฃูุง ุฃุฎุฏุช |
|
|
|
110 |
|
00:09:30,930 --> 00:09:35,490 |
|
ุญุงูุฉ ุฎุงุตุฉ ู
ู ุงูุฃุตููุฉ ุงูู
ุฑูุจุฉ ุงูุฃููู ูููุง zero ูู |
|
|
|
111 |
|
00:09:35,490 --> 00:09:42,390 |
|
ูู three tuple ุชู
ุงู
ุ ุจุฏุฃุช ุฃุดูู ูู ูุฐุง ุชุญุช ุนู
ููุฉ |
|
|
|
112 |
|
00:09:42,390 --> 00:09:47,030 |
|
ุงูุฌู
ุน ุงูุนุงุฏูุฉ ูุชุญุช ุนู
ููุฉ ุงูุถุฑุจ ุงูุนุงุฏูุฉ ูู ูู |
|
|
|
113 |
|
00:09:47,030 --> 00:09:52,990 |
|
vector space ุฃู
ูุง ุทูุน ููุง ูู ุงูุนูุงุตุฑ ุงููู ุงูู
ุฑูุจุฉ |
|
|
|
114 |
|
00:09:52,990 --> 00:09:56,610 |
|
ุงูุฃููู ุฏุงุฆู
ุง ู ุฃุจุฏุง ุจ zero ุทุจ ู ุงูู
ุฑูุจุฉ ุงูุซุงููุฉ ู |
|
|
|
115 |
|
00:09:56,610 --> 00:10:01,430 |
|
ุงูุซุงูุซุฉ ุฃุด ู
ุง ูุงู ูููู ูู
ุง ุญุทูุชุด ุนูููู
ูููุฏ ูู
ูู |
|
|
|
116 |
|
00:10:01,430 --> 00:10:06,250 |
|
ุณุงูุจ ูู
ูู ู
ูุฌุจ ูู
ูู Zero ูู ุฃูุง ู
ููุฏ ุจุงูู
ุฑูุจุฉ |
|
|
|
117 |
|
00:10:06,250 --> 00:10:10,510 |
|
ุงูุฃููู ูุงุฒู
ุชููู Zero ู ููุช ูู X1 ู X2 ู
ูุฌูุฏุฉ ูู |
|
|
|
118 |
|
00:10:10,510 --> 00:10:14,510 |
|
R ู
ูุฌูุฏุฉ ุจุณุงูุจ ูุณุฑ ู
ุด ุนุงุฑู ุงูู Zero ู
ุงููุด ุนูุงูุฉ ุจูู |
|
|
|
119 |
|
00:10:14,510 --> 00:10:17,210 |
|
ุฃุด ู
ุง ูููู ุดููู ู
ุง ูููู ุฅู ุดุงุก ุงููู ูููู ุฌุฐูุฑ |
|
|
|
120 |
|
00:10:17,210 --> 00:10:22,210 |
|
ุชุฑุจูุนูุฉ ูุฌุฐูุฑ ุชูุนูุจูุฉ ูุฃููุง set ุฃู ุนูุงุตุฑ ู
ูุฌูุฏุฉ ูู |
|
|
|
121 |
|
00:10:22,210 --> 00:10:27,060 |
|
ุงู set of real number ุทูุจ under the usual addition |
|
|
|
122 |
|
00:10:27,060 --> 00:10:33,680 |
|
ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ ุชุจุน ุงู vectors and the usual |
|
|
|
123 |
|
00:10:33,680 --> 00:10:38,040 |
|
multiplication of scalar ูุนู
ููุฉ ุงูุถุฑุจ ุงูุนุงุฏู ูู |
|
|
|
124 |
|
00:10:38,040 --> 00:10:42,280 |
|
vectors ูู scalar ู ุฃุฎุฐูุง ุณุงุจูุง ุฅูู ุนู
ููุฉ ูู ุถุฑุจุช |
|
|
|
125 |
|
00:10:42,280 --> 00:10:47,160 |
|
element ูู vector ุจุฏูู ุฃุถุฑุจู ูู ุฌู
ูุน ุงู components ู
ุด |
|
|
|
126 |
|
00:10:47,160 --> 00:10:51,720 |
|
ููู ูุจูู ุฏู ุงุณู
ู ุงูุถุฑุจ ุงูุนุงุฏู ูุงูุฌู
ุน ุจุฌู
ุน |
|
|
|
127 |
|
00:10:51,720 --> 00:10:57,070 |
|
component was ูู ุนูุตุฑ ู
ุน ูุธูุฑู ุจูููู then ุงู V is |
|
|
|
128 |
|
00:10:57,070 --> 00:11:02,490 |
|
a vector space because ูุจูู ูุฐุง ุงููู ููู ุชุญุช ุนู
ููุฉ |
|
|
|
129 |
|
00:11:02,490 --> 00:11:06,010 |
|
ุงูุฌู
ุน ุงูุนุงุฏูุฉ ูุงูุถุฑุจ ุงูุนุงุฏูุฉ ุฏู ุจูููู vector |
|
|
|
130 |
|
00:11:06,010 --> 00:11:10,030 |
|
space ู
ุง ูู ุงูุณุจุจ ุจูููู ูู ุฃุฎุฏุช three vectors |
|
|
|
131 |
|
00:11:10,030 --> 00:11:15,770 |
|
ู
ูุฌูุฏุฉ ูู V ุทูุนู ุงูู
ุฑูุจุฉ ุทูุนู ูููู ุงูู
ุฑูุจุฉ ุงูุฃููู |
|
|
|
132 |
|
00:11:15,770 --> 00:11:25,990 |
|
ูุงูู
ุฑูุจุฉ ุงูุฃููู ูุงูู
ุฑูุจ ุงูุฃููู ูููู ุจุฃุณูุงุฑ ู
ูุฌูุฏุฉ |
|
|
|
133 |
|
00:11:25,990 --> 00:11:31,690 |
|
ูู V ุจุฏุงูุฉ ุฃุดูู ุงูุฎูุงุต ุงูุนุงุดุฑุฉ ูู ุงู U ุฒุงุฆุฏ ุงู V |
|
|
|
134 |
|
00:11:31,690 --> 00:11:37,070 |
|
ู
ูุฌูุฏ ูู V ููุง ูุฃ ูุจูู ุจุฏุงูุฉ ููุฎุงุตูุฉ ุงูุฃููู ูู
ุฑ |
|
|
|
135 |
|
00:11:37,070 --> 00:11:42,370 |
|
ูุงุญุฏ ุจูุงุฎุฐ ุงู U ุฒุงุฆุฏ ุงู V ูุจูู ูุฐุง ุจุฏู ูุนุทููู |
|
|
|
136 |
|
00:11:42,370 --> 00:11:48,130 |
|
Zero ู X ูุงุญุฏ ู X ุงุซููู ุฒุงุฆุฏ Zero ู Y ูุงุญุฏ ู Y |
|
|
|
137 |
|
00:11:48,130 --> 00:11:55,140 |
|
ุงุซููู ู Y ูุณุงูู ุงุญูุง ูููุง ูุฐู ุนู
ููุฉ ุงูุฌู
ุน ุนุงุฏูุฉ ูู
ููุ |
|
|
|
138 |
|
00:11:55,140 --> 00:11:59,040 |
|
ููู vectors ูุจูู ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ ุจุฌู
ุน |
|
|
|
139 |
|
00:11:59,040 --> 00:12:08,440 |
|
component y 0 ู
ุน 0 ุจูุฏุฑุด 0 X1 ุฒุงุฆุฏ Y1 X2 ุฒุงุฆุฏ Y2 |
|
|
|
140 |
|
00:12:08,440 --> 00:12:12,630 |
|
ู
ูุฌูุฏุฉ ูู V ููุง ูุง ุจูุงุชุ ู
ูุฌูุฏ ูู V ููุดุ ูุฃู ุงูู |
|
|
|
141 |
|
00:12:12,630 --> 00:12:17,290 |
|
element ุงูุฃูู ุฃู ุงูู
ุฑูุจุฉ ุงูุฃููู ูู ูู vector ูุณุงูู |
|
|
|
142 |
|
00:12:17,290 --> 00:12:23,030 |
|
0 ุฅุฐุง ุชุญูู ุงูุฎุงุตูุฉ ุงูุฃููู ุจุฏูู ุฃุฌุฑุจ ุงูุฎุงุตูุฉ |
|
|
|
143 |
|
00:12:23,030 --> 00:12:28,750 |
|
ุงูุซุงููุฉ ูู
ุฑุฉ 2 ุจุฏู ุฃุฎุฏ ุงู U ุฒุงุฆุฏ ุงู V ูุจูู .. ุจุฏูู |
|
|
|
144 |
|
00:12:28,750 --> 00:12:33,970 |
|
ุฃุฌู
ุนู ูุบุงูุฉ ูุง ุจูุงุช ูุจูู ููุง 0 ุฒุงุฆุฏ 0 ุจ 0 X1 ุฒุงุฆุฏ |
|
|
|
145 |
|
00:12:33,970 --> 00:12:44,370 |
|
Y1 X2 ุฒุงุฆุฏ Y2 ู
ูุฌูุฏุฉ ูู V ู
ูุฌูุฏุฉ ูู V ุฃูุง ุจุฏู ุฎุงุตูุฉ |
|
|
|
146 |
|
00:12:44,370 --> 00:12:51,790 |
|
ุงูุฅุจุฏุงู ุฃููุณ ุงูุชูุงุฏู ุชุณุงูู Zero one ุงูุขู X ูุงุญุฏ ุฒุงุฆุฏ |
|
|
|
147 |
|
00:12:51,790 --> 00:12:57,030 |
|
Y ูุงุญุฏ ู
ุด ูุฏูู X ูุงุญุฏ ู Y ูุงุญุฏ ุฃุนุฏุงุฏ ู
ูุฌูุฏุฉ ูู |
|
|
|
148 |
|
00:12:57,030 --> 00:13:01,810 |
|
ุงูุณุช ูู real numbers ุนู
ููุฉ ุฌู
ุน ุงูุฃุนุฏุงุฏ ุงูุนุงุฏูุฉ ูุฐู |
|
|
|
149 |
|
00:13:01,810 --> 00:13:05,210 |
|
ุนู
ููุฉ ุฅุจุฏุงููุฉ ููุง ูุงุ ุฃูุง ุจููู ุฎู
ุณุฉ ุฒุงุฆุฏ ุณุชุฉ ู |
|
|
|
150 |
|
00:13:05,210 --> 00:13:09,030 |
|
ุงููู ุณุชุฉ ุฒุงุฆุฏ ุฎู
ุณุฉ ู
ุง ูู ููุณ ุงูุดูุก ุฅุฐุง ุจุงุฌู ุจููู |
|
|
|
151 |
|
00:13:09,030 --> 00:13:16,210 |
|
ูุฐุง Y ูุงุญุฏ ุฒุงุฆุฏ X ูุงุญุฏ ู Y ุงุซููู ุฒุงุฆุฏ X ุงุซููู ุงููู |
|
|
|
152 |
|
00:13:16,210 --> 00:13:23,350 |
|
ุจูุฏุฑ ุฃููู ูุฐู Zero ู Y ูุงุญุฏ ู Y ุงุซููู ุฒุงุฆุฏ Zero X |
|
|
|
153 |
|
00:13:23,350 --> 00:13:28,490 |
|
ูุงุญุฏ ู X ุงุซููู ุตุญูุญ ููุง ูุฃุ ูุนูู ูุตูุช ูุฐุง ุงู vector |
|
|
|
154 |
|
00:13:28,490 --> 00:13:32,710 |
|
ุฅูู ู
ุฌู
ูุน two vectors ุทุจ ุงูุฃูู ู
ูู ููุ ู
ุด V |
|
|
|
155 |
|
00:13:32,710 --> 00:13:38,930 |
|
ู ุงูุซุงูู ูุจูู V ุฒุงุฆุฏ ุงู U ูุจูู ุจุฏุฃุช ุจ U ุฒุงุฆุฏ ุงู V |
|
|
|
156 |
|
00:13:38,930 --> 00:13:44,130 |
|
ูุตูุช ุฅูู V ุฒุงุฆุฏ ุงู U ูุจูู ุชุญูู ุงูุฎุงุตูุฉ ุงูุฃููู |
|
|
|
157 |
|
00:13:44,130 --> 00:13:48,800 |
|
ูุงูุฎุงุตูุฉ ุงูุซุงููุฉ ุนูุฏูุง ุจุฏูุง ูุฑูุญ ูู
ููุ ููุฎุงุตูุฉ |
|
|
|
158 |
|
00:13:48,800 --> 00:13:54,360 |
|
ุงูุซุงูุซุฉ ูุจูู ุจุงุฎุฐ U ุฒุงุฆุฏ V ุฒุงุฆุฏ W |
|
|
|
159 |
|
00:13:59,340 --> 00:14:04,300 |
|
ู X1 ู X2 ุฒุงุฆุฏ ุงู V ุฒุงุฆุฏ ุงู W ุจุฏูู ุฃุฌู
ุน ุนูู ุทูู |
|
|
|
160 |
|
00:14:04,300 --> 00:14:10,640 |
|
ุงูุฎุท ูุงู ุนูุฏ ุงู V ููุฐู ุงู W ุจุฏู ุฃุฌู
ุนูุง ู
ุจุงุดุฑุฉ ูุจูู |
|
|
|
161 |
|
00:14:10,640 --> 00:14:22,570 |
|
Zero Y1 ุฒุงุฆุฏ Z1 ู Y2 ุฒุงุฆุฏ Z2 ุงูุขู ุจุฏุฃุฌู ุฃุฌู
ุน ุตุงุฑ |
|
|
|
162 |
|
00:14:22,570 --> 00:14:25,650 |
|
ุนูุฏู vector ูุนูุฏู vector ุซุงูู ุจุฏุฃ ุฃุฌู
ุน component |
|
|
|
163 |
|
00:14:25,650 --> 00:14:33,650 |
|
twice 00 ุจ 0 ูุจูู ุจูุตูุฑ ุนูุฏู X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ |
|
|
|
164 |
|
00:14:33,650 --> 00:14:46,190 |
|
ุฒุงุฆุฏ Z ูุงุญุฏ ู X ุงุซููู ุฒุงุฆุฏ Y ุงุซููู ุฒุงุฆุฏ Z ุงุซููู |
|
|
|
165 |
|
00:14:46,190 --> 00:14:54,460 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ุทูุจ ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏุฃุฌู |
|
|
|
166 |
|
00:14:54,460 --> 00:14:59,700 |
|
ููู ูุตูุช ูู ูุฐุง ูุฏูู ูููู
real number ุนู
ููุฉ ุงูุฌู
ุน |
|
|
|
167 |
|
00:14:59,700 --> 00:15:04,160 |
|
ุนูู ุงู real number ุฅุฏู
ุงุฌูุฉ ููุง ูุงุ ูุจูู ุฎูุงุต ุฅุฐุง |
|
|
|
168 |
|
00:15:04,160 --> 00:15:09,860 |
|
ุจูุฏุฑ ุฃูุชุจ ูุฐู ุนูู ุงูุดูู ุงูุชุงูู ูู ุนุจุงุฑุฉ ุนู Zero ู |
|
|
|
169 |
|
00:15:09,860 --> 00:15:17,480 |
|
X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ ุฒุงุฆุฏ Z ูุงุญุฏ ุชู
ุงู
ูุฐุง ุงู term |
|
|
|
170 |
|
00:15:17,480 --> 00:15:25,640 |
|
ุงูุฃูู ู ุงู term ุงูุซุงูู ุจูุฏุฑ ุงููู X ูุงุญุฏ ุฒุงุฆุฏ Y |
|
|
|
171 |
|
00:15:25,640 --> 00:15:30,840 |
|
ูุงุญุฏ ุฒุงุฆุฏ Z ูุงุญุฏ ููุฐู ุจููู X ุงุซููู ุฒุงุฆุฏ Y ุงุซููู |
|
|
|
172 |
|
00:15:30,840 --> 00:15:39,220 |
|
ุฒุงุฆุฏ Z ุงุซููู ุชู
ุงู
ุฅุฐุง ูุฐู ุจูุฏุฑ ุฃููู ุชุณุงูู ุจุฏุฃุช |
|
|
|
173 |
|
00:15:39,220 --> 00:15:44,300 |
|
ุฃุญุทูุง ุนูู ุดูู ู
ุฌู
ูุน two vectors ุฅุฐุง ุจูุฏุฑ ุฃููู ูุฐุง |
|
|
|
174 |
|
00:15:44,300 --> 00:15:54,100 |
|
Zero ู X ูุงุญุฏ ุฒุงุฆุฏ Y ูุงุญุฏ ู X ุงุซููู ุฒุงุฆุฏ Y ุงุซููู |
|
|
|
175 |
|
00:15:54,100 --> 00:16:00,580 |
|
ุฒุงุฆุฏ ุถุงู ุนูุฏู Zero ู ุถุงู ุนูุฏู Z ูุงุญุฏ ู ุถุงู ุนูุฏู Z |
|
|
|
1 |
|
|
|
201 |
|
00:18:48,400 --> 00:18:58,430 |
|
ุฃููู ูู U + (-U) = 0 |
|
|
|
202 |
|
00:18:58,430 --> 00:19:10,130 |
|
X1 + X2 + 0 -X1 - X2 ุชู
ุงู
ูุฌู
ุน 0 ู
ุน 0 ุจ 0 |
|
|
|
203 |
|
00:19:10,130 --> 00:19:18,110 |
|
X1 ู ููุต X1 ุจ 0 X2 ู ููุต X2 ุจ 0 ู
ูู ูู ูุฐุงุ ูุฐุง ุงู |
|
|
|
204 |
|
00:19:18,110 --> 00:19:27,610 |
|
zero vector. Similarly ุจููุณ ุงูุทุฑููุฉ ุณุงูุจ |
|
|
|
205 |
|
00:19:27,610 --> 00:19:33,810 |
|
U + (-U) = the zero vector ุฅุฐุง ุชุญููุช ุงูุฎุงุตูุฉ |
|
|
|
206 |
|
00:19:33,810 --> 00:19:39,590 |
|
ุฑูู
ุฎู
ุณุฉ ุจุฏูุง ูุญูู ุจุงูู ุงูุฎูุงุต ุฎูููู ุฃู
ุณุญ ุงููู ููู |
|
|
|
207 |
|
00:19:39,590 --> 00:19:45,610 |
|
ูุฐุง ุทูุจ ูุฐุง ุงููู ู
ุงูููุด ูุฒูู
ู
ู ููุง ูููู ูู
ุณุญู |
|
|
|
208 |
|
00:19:56,930 --> 00:20:01,810 |
|
ุฎูุตูุง ุงูุฎุงุตูุฉ ุงูุฎุงู
ุณุฉ ูุงูุชูููุง ููุฎุงุตูุฉ ุงูุณุงุฏุณุฉุ ุฎุงุตูุฉ |
|
|
|
209 |
|
00:20:01,810 --> 00:20:06,230 |
|
ุงูุณุงุฏุณุฉ ุจูููู ูู ูุงู ุฃุฎุฐุช scalar ู
ูุฌูุฏ ูู R ู U |
|
|
|
210 |
|
00:20:06,230 --> 00:20:11,430 |
|
ู
ูุฌูุฏ ูู V ูุญุตู ุถุฑุจู ู
ุง ุจุฏู ูููู ู
ูุฌูุฏ ูู V ูุจูู |
|
|
|
211 |
|
00:20:11,430 --> 00:20:18,390 |
|
ุจุฏู ุฃุฎุฏ ููุง F ุ ุงูู A ู
ูุฌูุฏ ูู R scalar ู ุงูู U ุงููู |
|
|
|
212 |
|
00:20:18,390 --> 00:20:25,310 |
|
ูู ูุณุงูู (0, X1, X2) ู
ูุฌูุฏุงุช ูู V then |
|
|
|
213 |
|
00:20:25,310 --> 00:20:33,740 |
|
ุจุฏู ุฃุฎุฏ ุงูู A ูู ุงูู U ูุจูู ูุฐู A ุจุฏู ุฃุถุฑุจูุง ูู ุงูู 0 |
|
|
|
214 |
|
00:20:33,740 --> 00:20:39,420 |
|
X1 ู X2 ูุณุงูู ุงูู A ูู ุงูู 0 ุจูุฏุงุด ูุง ุจูุงุชุ |
|
|
|
215 |
|
00:20:39,420 --> 00:20:46,200 |
|
Zero ูููุง A X1 ูููุง A X2ุ ุฅูุด ุฑุฃูู ูู ุงู vector |
|
|
|
216 |
|
00:20:46,200 --> 00:20:50,120 |
|
ุงููู ุทูุน ู
ูุฌูุฏ ูู V ููุง ูุฃุ ูุฃู ุงูู
ุฑูุจุฉ ุงูุฃููู |
|
|
|
217 |
|
00:20:50,620 --> 00:20:55,820 |
|
ูุงูุจุงููุฉ ูู ููุณ ุงูู
ูุงูุ ูููู ูุจูู ูุฐุง ู
ูุฌูุฏ ูู ุงู vector |
|
|
|
218 |
|
00:20:55,820 --> 00:21:01,020 |
|
space V ูุจุงูุชุงูู ุงุชุญููุช ุงูุฎุงุตูุฉ ุงูุณุงุฏุณุฉ ุจุฏูุง ูุฑูุญ |
|
|
|
219 |
|
00:21:01,020 --> 00:21:05,700 |
|
ููุฎุงุตูุฉ ุงูุณุงุจุนุฉุ ุงูุฎุงุตูุฉ ุงูุณุงุจุนุฉ ุจูููู ูู ูุงู A |
|
|
|
220 |
|
00:21:05,700 --> 00:21:13,980 |
|
ู
ูุฌูุฏ ูู R ู U ู V ู
ูุฌูุฏุฉ ูู U ูุจูู ููุง F ุงูู A |
|
|
|
221 |
|
00:21:13,980 --> 00:21:21,940 |
|
ู
ูุฌูุฏุฉ ูู R and ุงูู U ุงููู ูู (0, 0, X1, X2) |
|
|
|
222 |
|
00:21:21,940 --> 00:21:30,080 |
|
ู ุงูู V (0, Y1, Y2) ู
ูุฌูุฏุงุช ูู |
|
|
|
223 |
|
00:21:30,080 --> 00:21:40,020 |
|
V then ุจุฏู ุฃุฎุฏ ุงูู A Dot ุงูู U ุฒุงุฆุฏู ุงูู V ูุจูู ุงูู A |
|
|
|
224 |
|
00:21:40,020 --> 00:21:46,430 |
|
Dot ุงูู U ุฒุงุฆุฏ ุงูู V ุจุฏู ุฃุฌู
ุน component twice ูุจูู |
|
|
|
225 |
|
00:21:46,430 --> 00:21:55,970 |
|
(0, X1 + Y1, X2 + Y2) ุจุฏู |
|
|
|
226 |
|
00:21:55,970 --> 00:22:05,350 |
|
ุฃุถุฑุจ ูุจูู ูุงุฏ 0 ู a ูู (x1 + y1) ู a |
|
|
|
227 |
|
00:22:05,350 --> 00:22:17,030 |
|
ูู (x2 + y2) ููุด ุถุฑุจุชูุ ูุฃู ุถุฑุจ ุนุงุฏู ุทูุจ |
|
|
|
228 |
|
00:22:17,030 --> 00:22:27,330 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุจุฏู ูุณุงูู (0, ax1 + ay1, |
|
|
|
229 |
|
00:22:27,330 --> 00:22:32,650 |
|
ax2 + ay2) |
|
|
|
230 |
|
00:22:32,650 --> 00:22:39,820 |
|
ูุฐุง ุตุงุฑ vector ูุงุญุฏุ ุดู ุฑุฃูู |
|
|
|
231 |
|
00:22:39,820 --> 00:22:45,900 |
|
ู
ู
ูู ุฃุฌุฒู ุงูู two vectorsุ ุฅูุด ุงู two vectors ูุนููุ |
|
|
|
232 |
|
00:22:45,900 --> 00:22:53,700 |
|
ู
ู
ูู ุฃููู ูุฐุง (0, ax1, ax2) ุฒุงุฆุฏ |
|
|
|
233 |
|
00:22:53,700 --> 00:23:02,480 |
|
(0, ay1, ay2) ูู ุฌู
ุนุชูู
ุจูุทูุน ุนูุฏู ูุฐุง |
|
|
|
234 |
|
00:23:02,480 --> 00:23:08,260 |
|
ู
ุฑุฉ ุซุงููุฉ ุทูุจ ุจุฏู ุฃุฑูุฒ ุนูู ุฎูุงุต ุงู scalar ุฃุธู ุจูุฏุฑ ุฃุฎุฏ |
|
|
|
235 |
|
00:23:08,260 --> 00:23:19,160 |
|
a ุนุงู
ู ู
ุดุชุฑู ู
ู ุงููู ุจุฑุง ุจูุธู (0, x1, x2) ุฒุงุฆุฏ a (0, y1, |
|
|
|
236 |
|
00:23:19,160 --> 00:23:29,950 |
|
y2) ูุจูู ูุฐุง A ุงูุฃููุงูู ูู ุงูู U ูุงูุชุงูู A ูู ุงูู V |
|
|
|
237 |
|
00:23:29,950 --> 00:23:36,290 |
|
ุงูุดูู ุงููู ุนููุง ูุจูู ุจูุงุก ุนูู A ุถุฏ U ุฒุงุฆุฏ V ูุจูู A |
|
|
|
238 |
|
00:23:36,290 --> 00:23:44,270 |
|
ุถุฏ U ุฒุงุฆุฏ A ุถุฏ V ูุจุงูุชุงูู ุชุญููุช ุงูุฎุงุตูุฉ ุงูุณุงุจุนุฉ |
|
|
|
239 |
|
00:23:44,750 --> 00:23:51,810 |
|
ุจูุฑูุญ ููุฎุงุตูุฉ ุงูุซุงู
ูุฉ ูุจูู ุจุงุฌู ุจูููู ุซู
ุงููุฉ if |
|
|
|
240 |
|
00:23:51,810 --> 00:24:00,710 |
|
ุงูู A ู ุงูู B ู
ูุฌูุฏุฉ ูู R and ุงูู U (0, X1, X |
|
|
|
241 |
|
00:24:00,710 --> 00:24:09,870 |
|
2) ู
ูุฌูุฏุฉ ูู V then ุจุฏู ุฃุฎุฏ ุงูู A ุฒุงุฆุฏ ุงูู B Dot |
|
|
|
242 |
|
00:24:09,870 --> 00:24:20,230 |
|
ู
ู Dot ุงูู U ูุณุงูู A ุฒุงุฆุฏ B ุถุงุช ุงูู U |
|
|
|
243 |
|
00:24:26,050 --> 00:24:29,870 |
|
ูุฐุง ู
ุฌู
ูุน two real numbers ูุจูู real number ูุงุญุฏ |
|
|
|
244 |
|
00:24:29,870 --> 00:24:35,310 |
|
ูุจูู ุจุฏู ุฃุถุฑุจ ุฌูุจู ุญุณุจ ุงูุถุฑุจ ุงูุนุงุฏู ูุจูู ูุฐุง ุจูุฏุงุดุ |
|
|
|
245 |
|
00:24:35,310 --> 00:24:44,530 |
|
ุจู 0ุ ูุฌู ููู ุจุนุฏูุง ูุฐู a ุฒุงุฆุฏ ุงูู B ูู ุงูู X1 ูููุง |
|
|
|
246 |
|
00:24:44,530 --> 00:24:51,770 |
|
a ุฒุงุฆุฏ ุงูู B ูู ู
ูุ ูู ุงูู X2 ูููููููุง ุงูุฌุฒุกุ ูุฐู ุจูุฏุฑ |
|
|
|
247 |
|
00:24:51,770 --> 00:24:57,750 |
|
ุฃููู ุนูููุง ู
ุง ูุฃุชูุ ูุณุงูู ูุงู 0 ุฒู ู
ุง ูู ููุฐู |
|
|
|
248 |
|
00:24:57,750 --> 00:25:01,930 |
|
ุจูุฏุฑ ุฃูููุง ูุฃู ุงูู X1 ูุงูู X2 real number |
|
|
|
249 |
|
00:25:01,930 --> 00:25:08,270 |
|
ูุงูู A ู ุงูู B real number ูุจูู A X1 ุฒุงุฆุฏ B X |
|
|
|
250 |
|
00:25:08,270 --> 00:25:18,280 |
|
1 , A X2 ุฒุงุฆุฏ B X2 ู
ู
ูู ุฃุฌุฒู ุฅูู two |
|
|
|
251 |
|
00:25:18,280 --> 00:25:28,180 |
|
vectors ูุจูู ูุฐู ุจูุฏุฑ ุฃููู (0, ax1, ax2) ุฒุงุฆุฏ |
|
|
|
252 |
|
00:25:28,180 --> 00:25:39,510 |
|
(0, bx1, bx2) ู
ู
ูู ุฃุฎุฏ ุงูู A ุจุฑุง ูุจูู ุงูู A ูู |
|
|
|
253 |
|
00:25:39,510 --> 00:25:50,050 |
|
(0, X1, X2) ุฒุงุฆุฏ B ูู (0, X1, X |
|
|
|
254 |
|
00:25:50,050 --> 00:25:57,030 |
|
2) ูุจูู ูุฐู ุจุฏุฃุช ุชุณุงูู A ุถุฏ ุงูู U ุฒุงุฆุฏ B ุถุฏ ุงูู |
|
|
|
255 |
|
00:25:57,030 --> 00:26:03,150 |
|
U ูุจุงูุชุงูู ุชุญููุช ุงูุฎุงุตูุฉ ุฑูู
ุซู
ุงููุฉ ูุจูู ุซู
ุงููุฉ |
|
|
|
256 |
|
00:26:07,780 --> 00:26:18,160 |
|
ุงูุฎุงุตูุฉ ุงูุชุงุณุนุฉ ูุจูู ุงููุฑุถ |
|
|
|
257 |
|
00:26:18,160 --> 00:26:28,520 |
|
ุงูุชุงุณุนุฉุ ุจุฏุฃุช ุฃุฎุฏ F ุงูู A ูุงูู B ู
ูุฌูุฏุฉ ูู R and ุงูู |
|
|
|
258 |
|
00:26:28,520 --> 00:26:36,780 |
|
U (0, X1, X2) ู
ูุฌูุฏุฉ ูู V then ุจุฏุฃุช ุฃุฎุฏ ุงูู |
|
|
|
259 |
|
00:26:36,780 --> 00:26:46,120 |
|
A ูู ุงูู B ุถุฏ ุงูู U ูุณุงูู A ูู ุถ ุถุฏ ุงูู U ูุจูู ุจุฏู ุงุถุฑุจ |
|
|
|
260 |
|
00:26:46,120 --> 00:26:52,220 |
|
B ูู ูู ุนูุตุฑ ู
ู ุงูุนูุงุตุฑ ุงููู ุนูุฏูุง ูุจูู ูุงู 0 ู |
|
|
|
261 |
|
00:26:52,220 --> 00:27:00,280 |
|
B X1 ู B X2ุ ุงูุดูู ุงููู ุนูุฏูุง ููุง ุงูุขู ุจุฏู |
|
|
|
262 |
|
00:27:00,280 --> 00:27:07,280 |
|
ุงุถุฑุจ ุงูู A ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู A ูู 0 ุจ |
|
|
|
263 |
|
00:27:07,280 --> 00:27:17,690 |
|
0 ูุจูู A B X1 ู A B X2 ุจุงูุดูู ุงููู ุนูุฏูุง |
|
|
|
264 |
|
00:27:17,690 --> 00:27:24,790 |
|
ููุงุ ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ุงูุขู ุงูู A ู ุงูู B ู ุงูู X1 |
|
|
|
265 |
|
00:27:24,790 --> 00:27:29,830 |
|
ูููู
real numbers ููุฐูู ุงูู A ู ุงูู B ู ุงูู X2 ููู |
|
|
|
266 |
|
00:27:29,830 --> 00:27:36,350 |
|
real numbers ูุจูู ุจูุฏุฑ ุฃููู ูุฐุง 0 ููุฐุง A B X1 |
|
|
|
267 |
|
00:27:36,350 --> 00:27:43,980 |
|
ููู ููุณ ุงูููุช A B X2 ุจูุฏุฑ ุฃุฎุฏ ุงูู a B ุจุฑุง ูุจูู |
|
|
|
268 |
|
00:27:43,980 --> 00:27:51,160 |
|
ูุฐุง a B ุจุฑุง ููู ูู ู
ููุ ูู ุงูู (0, x1, x2) |
|
|
|
269 |
|
00:27:51,160 --> 00:27:59,360 |
|
ูุจูู ูุฐุง a B ุถุฏ ุงูู U ูุจูู ุชุญููุช ุงูุฎุงุตูุฉ ุฑูู
9 |
|
|
|
270 |
|
00:27:59,360 --> 00:28:07,540 |
|
ุจูุงูุชูู ููุฎุงุตูุฉ ุฑูู
10 ุงูุฃุฎูุฑุฉ ุจุฏู 1. (0, x1, x2) ูุจูู 1 |
|
|
|
271 |
|
00:28:07,540 --> 00:28:12,520 |
|
ูู (0, x1, x2) |
|
|
|
272 |
|
00:28:13,880 --> 00:28:17,600 |
|
ุงููุงุญุฏ ูู
ุง ูุถุฑุจู ูู 0 ุจูุจูู ุฏู ุฌู
ูุงุชู ุจู 0 |
|
|
|
273 |
|
00:28:17,600 --> 00:28:23,660 |
|
ุงููุงุญุฏ ูู ุงูู X1 ุจุงูู X1ุ ุงููุงุญุฏ ูู ุงูู X2 ุจุงูู X2 ูุจูู |
|
|
|
274 |
|
00:28:23,660 --> 00:28:29,940 |
|
ูุฐุง ุฃุนุทุงูู ู
ููุ ุงูู U ูุจูู ูููุงูู ู
ู ุงูุจุฏุงูุฉ ุฃู ูุฐุง |
|
|
|
275 |
|
00:28:29,940 --> 00:28:35,040 |
|
vector space ููุด ูููุงุ because ูุฑูุญูุง ูุฌููุง ุงูุนุดุฑ |
|
|
|
276 |
|
00:28:35,040 --> 00:28:39,660 |
|
ุฎูุงุต ูููุง ู
ุญููุฉ ูุจูู ุฃุตุจุญ ูุฐุง ุงููู ุนูุฏูุง ุงููู ูู |
|
|
|
277 |
|
00:28:39,660 --> 00:28:45,840 |
|
vector spaceุ ุทุจุนุงู ู
ุด ูู ุณุชุฉ ุจูุนุทููุง ูู ุจุชููู vector |
|
|
|
278 |
|
00:28:45,840 --> 00:28:51,660 |
|
space ู ุจุถุฑูุญ ุฃุจุฏุฃ ุฃุทุจู ุงูุฎูุงุต ุงูุนุดุฑุฉุ ุชู
ุงู
ุ ูุนูู |
|
|
|
279 |
|
00:28:51,660 --> 00:28:56,840 |
|
ููุณ ุจุงูุถุฑูุฑุฉ ุฅู ุฑุงุญ ุฃุทูู ุฎุงุตูุฉ ู
ุง ุชุญููุดุ ูุจูู ุฃุฑูุญ |
|
|
|
280 |
|
00:28:56,840 --> 00:29:00,240 |
|
ุฃุฏูุฑ ุนูู ุงูุจุงููุ ู
ุง ุฃุฏูุฑุด ุนูู ุงูุจุงููุ ุฎูุงุตุ not vector |
|
|
|
281 |
|
00:29:00,240 --> 00:29:03,940 |
|
space ูุจุงุณุ ูููุช ุงูุฃููู ุงุชุญููุช ุจุฑูุญ ููุชุงููุฉ ูู
ุง |
|
|
|
282 |
|
00:29:03,940 --> 00:29:07,400 |
|
ุงุชุญููุชุดุ ุงูุซุงููุฉ not vector space ูุจุณูุจ ุงูุจุงูู ู |
|
|
|
283 |
|
00:29:07,400 --> 00:29:12,520 |
|
ููุฐุง ูุนููุ ููู ุฎุงุตูุฉ ุจุชุชุญููุด ุจููู ูุจูู ูุฐุง ู
ุงูู |
|
|
|
284 |
|
00:29:12,520 --> 00:29:16,880 |
|
vector space ูุจูุชููุ ุงูุฏูุฉ ุงูุซุงููุฉ ุงูุฃููู ุงุชุญููุช |
|
|
|
285 |
|
00:29:16,880 --> 00:29:20,680 |
|
ุฅููุง ุจุฑูุญ ููุชุงูุช ุจุฑูุญ ููุฑุงุจุน ูู
ุง ุฅุฐุง ุงุชุญูููุง |
|
|
|
286 |
|
00:29:20,680 --> 00:29:24,400 |
|
ุงูุนุดุฑุฉ ูููู
ูุจูู ูู vector spaceุ ูุจูู ุฅุฐุง ุงุฎุชูุช ุฃู |
|
|
|
287 |
|
00:29:24,400 --> 00:29:28,320 |
|
ุฎุงุตูุฉ ู
ู ุงูุฎุงุตุฉ ุงูุนุดุฑ ุจููู ู
ุนูู ู
ุงูู vector |
|
|
|
288 |
|
00:29:28,320 --> 00:29:35,680 |
|
space ูุฐุง ุฃูู ู
ุซุงู ุนูู ูุฐุง ุงูู
ูุถูุนุ ูุง ูุฒุงู ุนูุฏูุง |
|
|
|
289 |
|
00:29:35,680 --> 00:29:45,140 |
|
ุงูุนุฏูุฏ ู
ู ุงูุฃู
ุซูุฉุ ุฏู ุงูู
ุซุงู ุฑูู
ุงุซููู ูุฐุง |
|
|
|
290 |
|
00:29:45,140 --> 00:29:50,320 |
|
ุฅุฐุง ุทูุน vector space ุฅุฐุง ู
ุง ุทูุนุด vector space |
|
|
|
291 |
|
00:29:50,320 --> 00:29:55,990 |
|
ูู
ูู ุชุณูู ุฎุทูุฉ ูุงุญุฏุฉ ููุง ูุงุ ูุฅุฐุง ุฃูุช ุฏูููุฉ ูุธุฑ |
|
|
|
292 |
|
00:29:55,990 --> 00:30:00,090 |
|
ูุดุงุทุฑุฉ ูู ุงูุญุณุงุจุงุช ูู
ุฌุฑุฏ ุงููุธุฑ ุจุชูููู ูุฐู ุงูุจุฑุดู
|
|
|
|
293 |
|
00:30:00,090 --> 00:30:04,230 |
|
ุชููุนุด ููุฎุงุตูุฉ ุงูููุงููุฉ ุนูู ุทูู ู
ู ุฏูู ู
ุฌุฑู
ู ูุชุฑูุญ |
|
|
|
294 |
|
00:30:04,230 --> 00:30:09,030 |
|
ุชูุชุจู ูููุง ูุจุชูุดู ุงูุจุงูู 100% ุชู
ุงู
ุ ูุนุทู ุงูู
ุซุงู |
|
|
|
295 |
|
00:30:09,030 --> 00:30:17,970 |
|
ุฑูู
ุงุซููู example two ูุฐุง ุณุคุงู ุฎู
ุณุฉ ู
ู ุงููุชุงุจ |
|
|
|
296 |
|
00:30:17,970 --> 00:30:20,690 |
|
ุจูููู let V to sound |
|
|
|
297 |
|
00:30:24,960 --> 00:30:34,460 |
|
ูู ุงูุนูุงุตุฑ ุนูู ุงูุดูู (1, X, Y) ุจุญูุซ X ู Y |
|
|
|
298 |
|
00:30:34,460 --> 00:30:39,800 |
|
ู
ูุฌูุฏุฉ ูู set of real numbers under usual addition |
|
|
|
299 |
|
00:30:40,930 --> 00:30:49,930 |
|
under usual addition ุชุญุช ุนู
ููุฉ ุงูุฌู
ุน ุงูุนุงุฏูุฉ and |
|
|
|
300 |
|
00:30:49,930 --> 00:30:57,030 |
|
ููู ููุณ ุงูููุช usual scalar multiplicationุ usual |
|
|
|
301 |
|
00:30:57,030 --> 00:31:03,250 |
|
scalar multiplication |
|
|
|
302 |
|
00:31:03,250 --> 00:31:06,370 |
|
ุชุญุช |
|
|
|
303 |
|
00:31:06,370 --> 00:31:18,190 |
|
ุนู
ููุฉ ุงูุถุฑุจ ูุงูุฌู
ุน ุงูุนุงุฏูุฉ then is not |
|
|
|
304 |
|
00:31:18,190 --> 00:31:26,430 |
|
a vector space |
|
|
|
305 |
|
00:31:32,720 --> 00:31:37,520 |
|
ูู
ุฌุฑุฏ ุงููุธุฑ ูุฐุง ุงูู V ุงููู ุนูุฏูุง ูุฐู ุชุญุช ุนู
ููุฉ |
|
|
|
306 |
|
00:31:37,520 --> 00:31:40,760 |
|
ุงูุฌู
ุน ุงูุนุงุฏูุฉ ูุงูุถุฑุจ ุงูุนุงุฏูุฉ ููุณุช ูู ุงูุงูุชุฑุงุถูุฉ |
|
|
|
307 |
|
00:31:40,760 --> 00:31:44,520 |
|
ูููุ ุจุฏู ูุงุญุฏุฉ ุชุญููุ ุจุณ ูุงุญุฏุฉ ุชุฑูุน ุฃูุฏููุง ูุชุญูู |
|
|
|
308 |
|
00:31:44,520 --> 00:31:49,680 |
|
ุฃูุง ุจููู ููุด zero element ู
ุง ุนูุฏูุด ุงูุญุงูุฉ ูุฐุง ูุฌูุฉ |
|
|
|
309 |
|
00:31:49,680 --> 00:31:55,200 |
|
ูุธุฑุ ูู ูุฌูุฉ ูุธุฑ ุซุงููุฉุ ูุจู ุงูู zero ุทูุจ ุดููู ุงููู |
|
|
|
310 |
|
00:31:55,200 --> 00:32:01,520 |
|
ูุจู ุงูู zeroุ ุงุฌู
ุน ุงุซูููุ ุงุฌู
ุน ูู ุฌู
ุนุช ุงุซููู ุงูุด |
|
|
|
311 |
|
00:32:01,520 --> 00:32:02,100 |
|
ุจูุทูุนุ |
|
|
|
312 |
|
00:32:06,540 --> 00:32:11,420 |
|
ูุจูู ุนู
ููุฉ ุงูุฌู
ุน ูุง ุชุชุญููุ ุตุญูุญ ููุง ูุฃุ ุจุฑูุญ ุจูููู |
|
|
|
313 |
|
00:32:11,420 --> 00:32:15,500 |
|
ูุฐุง is not a vector space because |
|
|
|
314 |
|
00:32:19,270 --> 00:32:26,570 |
|
ุงูู U ุจุฏูุง ุชุณุงูู (1, X1, Y1) ู ุงูู V |
|
|
|
315 |
|
00:32:26,570 --> 00:32:33,150 |
|
ุฏูุณุฑ (1, X2, Y2) ู
ูุฌูุฏุฉ ูู capital V |
|
|
|
316 |
|
00:32:33,150 --> 00:32:42,170 |
|
then ุงูู U ุฒุงุฆุฏ ุงูู V ุจุฏู ูุณุงูู (2, X1 + |
|
|
|
317 |
|
00:32:42,170 --> 00:32:48,860 |
|
X2, X1 ุฎูููุง ุจุณ ูุณูููุฉ ูุง ุจูุงุช ุฎูููุง X |
|
|
|
318 |
|
00:32:48,860 --> 00:32:57,060 |
|
1 ู X2ุ ููุฐู Y1 ู Y2 ุชู
ุงู
ูุจูู X |
|
|
|
319 |
|
00:32:57,060 --> 00:33:04,800 |
|
1 + Y1ุ X2 + Y2) does not |
|
|
|
320 |
|
00:33:04,800 --> 00:33:09,740 |
|
belong to V ู
ุด ู
ูุฌูุฏุฉ ูู V ูุฃู ุฃูุง ุจุฏู ุงู |
|
|
|
321 |
|
00:33:09,740 --> 00:33:14,550 |
|
component ุงููู ูุฏุงุด ุชููู ูุจูู ูู ุญุงูุฉ ุงู zero ูููุน |
|
|
|
322 |
|
00:33:14,550 --> 00:33:18,830 |
|
ูุตูุฑ vector space ููู ูู ุญุงูุฉ ุงููุงุญุฏ ู
ุง ููุนุด ูููู |
|
|
|
323 |
|
00:33:18,830 --> 00:33:24,230 |
|
vector spaceุ ู
ุงูู vector spaceุ ุทูุจ ู
ุซุงู ุซูุงุซุฉ |
|
|
|
324 |
|
00:33:24,230 --> 00:33:32,530 |
|
ู
ุซุงู ุซูุงุซุฉ ูู ุณุคุงู ุณุจุนุฉ ู
ู ุงููุชุงุจ ูุฐูู ุณุคุงู ุณุจุนุฉ |
|
|
|
325 |
|
00:33:32,530 --> 00:33:42,530 |
|
ุจูููู let ุงูู V ุชุณุงูู ูู ุงูู
ุตูููุงุช A ุจุญูุซ ุงูู A is |
|
|
|
326 |
|
00:33:42,530 --> 00:33:48,370 |
|
two by two matrixุ ูู ุงูู
ุตูููุงุช ุงููู ูุธุงู
ูุง ุงุซููู |
|
|
|
327 |
|
00:33:48,370 --> 00:33:56,450 |
|
ูู ุงุซููู with determinant ููู A ูุง ูุณุงูู 0 |
|
|
|
328 |
|
00:33:56,450 --> 00:34:02,970 |
|
under usual |
|
|
|
329 |
|
00:34:09,830 --> 00:34:19,150 |
|
addition and scalar multiplication |
|
|
|
330 |
|
00:34:19,150 --> 00:34:26,610 |
|
of |
|
|
|
331 |
|
00:34:26,610 --> 00:34:38,460 |
|
matrices then ุฅูุด ุฑุฃููุ ุงูู V ู
ุด ุนุงุฑู ุงูุชุจ ูู |
|
|
|
332 |
|
00:34:38,460 --> 00:34:42,420 |
|
vector space ููุง not vector spaceุ ููุฌู ู
ูู ูู ุงูู V |
|
|
|
333 |
|
00:34:42,420 --> 00:34:51,200 |
|
ูู ุงูุฃูู ุงูู V ูู ุงูู
ุตูููุงุช A ุงููู ูุธุงู
ูุง 2 ูู 2 ู |
|
|
|
334 |
|
00:34:51,200 --> 00:34:55,760 |
|
ุงููู ู
ุญุฏุฏูุง ู
ุง ูู ูุง ูุณุงูู 0 ุงููู ู
ุญุฏุฏ ูููุง ูุง |
|
|
|
335 |
|
00:34:55,760 --> 00:34:59,550 |
|
ูุณุงูู 0 ูุจูู ูู ุงูู
ุตูุงุช ุงููู ูุธุงู
ูุง ุงุซููู ูู ุงุซููู |
|
|
|
336 |
|
00:34:59,550 --> 00:35:04,850 |
|
ู ุงููู ู
ุญุฏุฏุฉ ูุง ูุณุงูู ุชุฌู
ุนุชูู
ูุญุทูุชูู
ูู Vุ ุนุฑูุช |
|
|
|
337 |
|
00:35:04,850 --> 00:35:09,510 |
|
ุนูููุง ุนู
ููุฉ ุฌู
ุน ุงูู
ุตููุงุช ุงูุนุงุฏู ููู ุฌู
ุน component |
|
|
|
338 |
|
00:35:09,510 --> 00:35:14,630 |
|
-wise ูุนุฑูุช ุนูููุง ุถุฑุจ ุงูู
ุตููุฉ ูู scalar ููู ุถุฑุจ ุงู |
|
|
|
339 |
|
00:35:14,630 --> 00:35:17,730 |
|
real number ูู ูู ุนูุตุฑ ู
ู ุงูุนูุงุตุฑ ุงูู
ุตููุฉ ุงููู |
|
|
|
340 |
|
00:35:17,730 --> 00:35:21,670 |
|
ูุงูุช usual addition and usual multiplication ุชู
ุงู
|
|
|
|
341 |
|
00:35:21,990 --> 00:35:27,530 |
|
ุชุญุช ุงูุนู
ููุชูู ุงูุงุซููู ูุฏูู ูู ุงูู V Vector Space ุฃู
|
|
|
|
342 |
|
00:35:27,530 --> 00:35:35,990 |
|
ูุงุ ุทุจุนุงู ูุฃ ุฃุจุณุท ุดุบูุฉ ุจุฏู Zero Matrixุ ูู ุงูู Zero |
|
|
|
343 |
|
00:35:35,990 --> 00:35:40,270 |
|
Matrix ุงูู
ุญุฏุฏ ุชุจุนูุง ูุง ูุณุงูู 0ุ ูุฃ ุทุจุนุงูุ ูุจูู ุฌุฏ |
|
|
|
344 |
|
00:35:40,270 --> 00:35:48,990 |
|
ุฅู ุงูู V is not a vector space because |
|
|
|
345 |
|
00:35:54,180 --> 00:36:10,760 |
|
it does not contain the zero matrix since |
|
|
|
346 |
|
00:36:15,640 --> 00:36:23,320 |
|
ุงูู Determinant ููู
ุตูููุฉ 0 ูุจูู 0 ูุจูู |
|
|
|
347 |
|
00:36:23,320 --> 00:36:28,760 |
|
ุงูุฎุงุตูุฉ ุชุจุน ุงูุนูุตุฑ ุงูุตูุฑู ูู
ุชุชุญูู ูุฐูู ูุฐุง ููุณ |
|
|
|
348 |
|
00:36:28,760 --> 00:36:37,320 |
|
Vector Space ูุจุงูู
ุซุงู |
|
|
|
349 |
|
00:36:37,320 --> 00:36:47,640 |
|
ุฑูู
ุฃุฑุจุนุฉ ุจููู Let capital V ูู ุงูุนูุงุตุฑ ุนูู ุงูุดูู (X |
|
|
|
350 |
|
00:36:47,640 --> 00:36:57,480 |
|
ุ Y ุ Z) ุจุญูุซ ุฅู ุงูู X ู Y ู Z ู
ูุฌูุฏุฉ ูู set of real |
|
|
|
351 |
|
00:36:57,480 --> 00:37:03,900 |
|
numbersุ define addition |
|
|
|
352 |
|
00:37:03,900 --> 00:37:07,380 |
|
define |
|
|
|
353 |
|
00:37:07,380 --> 00:37:09,780 |
|
addition and |
|
|
|
354 |
|
00:37:16,800 --> 00:37:26,020 |
|
multiplication on the by ุงูู |
|
|
|
355 |
|
00:37:26,020 --> 00:37:40,400 |
|
(X1, Y1, Z1) ุฒุงุฆุฏ (X2, Y2, Z2) ุจุฏู ูุณุงูู ุงููู |
|
|
|
356 |
|
00:37:40,400 --> 00:37:54,760 |
|
ูู (X1, Y1, Z1) ูููุง (X2, Y2, Z2)ุ X1 + X2ุ Y1 |
|
|
|
357 |
|
00:37:54,760 --> 00:38:06,920 |
|
+ Y2 ูููุง Z1 + Z2ุ ูุฐุง ุงูุฌู
ุน and |
|
|
|
358 |
|
00:38:06,920 --> 00:38:11,000 |
|
ุงู |
|
|
|
359 |
|
00:38:11,000 --> 00:38:25,540 |
|
a ูู (x, y, z) ูุณุงูู (ax, y, z)ุ then ุงูู V |
|
|
|
360 |
|
00:38:25,540 --> 00:38:28,580 |
|
is ุงููู ุฃุนูู
|
|
|
|
361 |
|
00:38:40,130 --> 00:38:46,110 |
|
ูููุ ุขู ุจุณ ุจูุถุฑุจูุง ูู ุงูู
ุฑูุจุฉ ุงูุฃูููุ ูุนูู ุนู
ููุฉ |
|
|
|
362 |
|
00:38:46,110 --> 00:38:50,690 |
|
ุงูุฌู
ุน ูู
ุง ูู component-wise ูุงูุฅูู ุจุณ ุจูุถุฑุจูุง ูู |
|
|
|
363 |
|
00:38:50,690 --> 00:38:59,410 |
|
ุงูู
ุฑูุจุฉ ุงูุฃููู ููุท ูุง ุบูุฑุ ุชู
ุงู
ุ ูุนูู ุฅูู ูุฐู ุงู |
|
|
|
364 |
|
00:38:59,410 --> 00:39:07,410 |
|
Sid ูู ููู ูุตูุฑุฉุ ูุงูู
|
|
|
|
365 |
|
00:39:07,410 --> 00:39:13,190 |
|
ูุนูู ูุฐู ุงู Sid ุฎุงุต ููู ูุฃูู .. ุฎุงุต ููู .. ูุงูู
|
|
|
|
366 |
|
00:39:17,540 --> 00:39:21,240 |
|
ูู ูุฐุง vector space ููุง ู
ุงูู vector spaceุ ุจุชุฎูู |
|
|
|
367 |
|
00:39:21,240 --> 00:39:28,220 |
|
ุฃูู ู
ุงูู vector space ุณุจู because ูู ุฃุฎุฐุช ูุจูู |
|
|
|
368 |
|
00:39:28,220 --> 00:39:40,920 |
|
ูุฐุง is not a vector space because ูู |
|
|
|
369 |
|
00:39:40,920 --> 00:39:47,910 |
|
ุฃุฎุฐุช ูุง ู
ูุงุฏ (a + b) ูู ู
ูุ ูู U ูุจูู ูุฐุง |
|
|
|
370 |
|
00:39:47,910 --> 00:39:57,190 |
|
ุจูุตูุฑ (a + b) ูู |