abdullah's picture
Add files using upload-large-folder tool
4d1c471 verified
1
00:00:19,760 --> 00:00:25,200
ุจุณู… ุงู„ู„ู‡ ุงู„ุฑุญู…ู† ุงู„ุฑุญูŠู… ู†ู†ุชู‚ู„ ุงู„ุขู† ุฅู„ู‰ ุดุจุชุฑ ุชุณุนุฉ
2
00:00:25,200 --> 00:00:31,020
ุดุจุชุฑ ุชุณุนุฉ ูŠุชุญุฏุซ ุนู† ู„ุงุจู„ุงุณ transforms ุชุญูˆูŠู„ุงุช
3
00:00:31,020 --> 00:00:36,440
ู„ุงุจู„ุงุณ ุงู„ุชุญูˆูŠู„ุงุช ู‡ุฐู‡ุŸ ู‡ุฐู‡ ุฃุญูŠุงู†ู‹ุง ุจูŠูƒูˆู† ุงู„ุฏุงู„ุฉ
4
00:00:36,440 --> 00:00:41,860
ุตุนุจุฉ ุงู„ุชุนุงู…ู„ ู…ุนู‡ุง ูู†ุญูˆู„ู‡ุง ุฅู„ู‰ ุตูˆุฑุฉ ู…ูƒุงูุฆุฉ ู„ู‡ุง
5
00:00:41,860 --> 00:00:46,520
ุณู‡ู„ ุงู„ุชุนุงู…ู„ ู…ุนู‡ุง ู‡ุฐู‡ ุงู„ุชุญูˆูŠู„ุฉ ู†ุณู…ูŠู‡ุง ุชุญูˆูŠู„ุฉ
6
00:00:46,520 --> 00:00:51,580
Laplace ู„ุฃู† ู‡ูˆ ุงู„ุฐูŠ ุงูƒุชุดู ุงู„ุดุบู„ ู‡ุฐู‡. ู†ุฃุฎุฐ ุฃูˆู„
7
00:00:51,580 --> 00:00:55,340
section ููŠ ู‡ุฐุง ุงู„ุดุจุชุฑ ุงู„ู„ูŠ ู‡ูˆ the Laplace transform
8
00:00:55,340 --> 00:01:00,700
ุณู†ุนุทูŠ ุชุนุฑูŠู ูˆู…ู† ุซู… ู†ุฃุฎุฐ ุฃู…ุซู„ุฉ ู…ุฎุชู„ูุฉ ุนู„ู‰ ูƒูŠููŠุฉ
9
00:01:00,700 --> 00:01:07,060
ุญุณุงุจ the Laplace transform ู„ู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ. ูŠู‚ูˆู„
10
00:01:07,060 --> 00:01:11,000
ุงูุชุฑุถ ุฃู† ุงู„ู€ f of t ู‡ูŠ function ู…ุนุฑูุฉ ุนู„ู‰ ุงู„ูุชุฑุฉ
11
00:01:11,000 --> 00:01:15,830
ู…ู† zero ุฅู„ู‰ infinity. Laplace transform the function f
12
00:01:15,830 --> 00:01:20,670
of t denoted by ูŠุจู‚ู‰ Laplace transform ู„ุฏุงู„ุฉ f of
13
00:01:20,670 --> 00:01:26,870
t ู†ุนุทูŠู‡ ุฑู…ุฒ L of f of t ูŠุนู†ูŠ Laplace ู„ู€ F of T
14
00:01:26,870 --> 00:01:32,330
ุงู„ู€ L ู‡ุฐู‡ ุงู„ุญุฑู ุงู„ุฃูˆู„ ู„ูƒู„ู…ุฉ Laplace ุฃูˆ capital F
15
00:01:32,330 --> 00:01:36,650
of S ูŠุนู†ูŠ ู†ุนุชุจุฑู‡ function ููŠ ู…ู†ุŸ function ููŠ S
16
00:01:36,650 --> 00:01:41,010
ู„ู…ุงุฐุง function ููŠ SุŸ ู‡ุฐุง ู…ุซู„ู‹ุง ู†ุฌูŠุจ ุนู„ูŠู‡ ุจุนุฏ ู‚ู„ูŠู„
17
00:01:41,580 --> 00:01:45,760
ูŠู‚ูˆู„ ู„ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ุงู„ู€ F of T ุฃูˆ ุงู„ู€ F of S is
18
00:01:45,760 --> 00:01:52,680
defined by ูƒุงุจูŠุชุงู„ F of S ูŠุณุงูˆูŠ ุชูƒุงู…ู„ ู…ู† 0 ุฅู„ู‰ ุฅู†ููŠู†ูŠุชูŠ
19
00:01:52,680 --> 00:01:58,620
ู„ู„ู€ E ู†ุงู‚ุต ST ู„ู„ู€ F of T ุฏูŠ T ุญูŠุซ S parameter ุฃูˆ any
20
00:01:58,620 --> 00:02:03,100
real number. ู‡ุฐุง ุงู„ุขู† ูˆุงุถุญ ุฃู†ู‡ improper integral
21
00:02:03,100 --> 00:02:04,340
ุจุณุจุจ ูˆุฌูˆุฏ man
22
00:02:12,050 --> 00:02:16,210
ุนู† ุทุฑูŠู‚ ุงู„ู€ Limit ุจูŠุจุฏุฃ ุชุฐู‡ุจ ุฅู„ู‰ ุงู„ู€ Infinity ู„ู…ู†ุŸ
23
00:02:16,210 --> 00:02:17,850
ู„ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰ B
24
00:02:21,360 --> 00:02:26,240
ู†ูุฎู„ูŠ P ุชุฑูˆุญ ู„ู€ Infinity ูˆุจุงู„ุชุงู„ูŠ ุฃูˆุฌุฏู†ุง ู„ู€ Laplace
25
00:02:26,240 --> 00:02:31,460
transform. ู†ุชูŠุฌุชูŠ ุงู„ุชูƒุงู…ู„ ู„ุงุฒู… ุชุทู„ุน function ููŠ S
26
00:02:31,460 --> 00:02:37,320
ูˆู…ู† ู‡ู†ุง ู‚ูˆู„ู†ุง F of S ุถุฑูˆุฑูŠ ุฌุฏุง ู„ุงุฒู… ุชุทู„ุน function
27
00:02:37,320 --> 00:02:41,650
ููŠ S ุฒูŠ ู…ุง ู‡ู†ุดูˆู ุงู„ุขู†. ุฃูˆู„ ู…ุซุงู„ ู‚ุงู„ ู„ูŠ ุฎุฐ ู„ู„ู€ F of T
28
00:02:41,650 --> 00:02:45,450
ูˆ ุณูˆ E ุฃุณ AT ูˆ T greater than or equal to zero
29
00:02:45,450 --> 00:02:49,770
ู‚ุงู„ ู„ูŠ ู‡ุงุชูŠ ู„ุงุจู„ุงุณ ู„ู„ู€ E ุฃุณ AT ุทุจุนู‹ุง ุงู„ู€ area number
30
00:02:49,770 --> 00:02:54,470
ูˆ ู‡ุงุชูŠ ู„ุงุจู„ุงุณ ู„ู„ูˆุงุญุฏ ูˆ ู„ุงุจู„ุงุณ ู„ู€ E ุฃุณ ู†ุงู‚ุต AT ูˆ
31
00:02:54,470 --> 00:02:58,630
ู„ุงุจู„ุงุณ ู„ู€ E ุฃุณ ู†ุงู‚ุต ุฎู…ุณุฉ T. ูŠุนู†ูŠ ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุฏูŠ
32
00:02:58,630 --> 00:03:05,000
ุชุทุจูŠู‚ ู…ุจุงุดุฑ ุนู„ู‰ C. ุฅุฐุง ุจุฏุฃู†ุง ู†ุญุณุจ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
33
00:03:05,000 --> 00:03:11,760
ู„ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ูŠุจู‚ู‰ ู‡ุฐุง ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู€ E ุฃูุณ AT
34
00:03:11,760 --> 00:03:16,520
ุจุฏูŠ ุฃุฑุฌุน ู„ู„ุชุนุฑูŠู ูŠุจู‚ู‰ ู‡ูˆ ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰
35
00:03:16,520 --> 00:03:23,180
Infinity ู„ู„ู€ E ุฃูุณ ู†ุงู‚ุต ST ุงู„ู€ F of T ุฃู†ุง ู…ุงุฎุฐู‡ุง E
36
00:03:23,180 --> 00:03:26,340
ุฃูุณ AT ูƒู„ู‡ ููŠ DT
37
00:03:34,330 --> 00:03:40,950
ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ limit ูˆู‡ูŠ ุชูƒุงู…ู„ ู…ู† zero
38
00:03:40,950 --> 00:03:49,630
ุฅู„ู‰ B ู„ู…ุง B tends to infinity ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต S ู†ุงู‚ุต
39
00:03:49,630 --> 00:03:57,170
A ูƒู„ู‡ ููŠ T dt. ูŠุจู‚ู‰ ูƒุชุงุจุฉ ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุนู„ู‰ ุดูƒู„ limit
40
00:03:57,170 --> 00:04:02,750
ูŠุนู†ูŠ ุจุฏูŠ ุฃูƒุงู…ู„ ู‡ุฐู‡ ุงู„ุฏุงู„ุฉ ุซู… ุฃุฑูˆุญ ุขุฎุฐ ู„ู‡ุง ุงู„ู€ limit
41
00:04:02,750 --> 00:04:10,770
ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ. ูŠุจู‚ู‰ ู„ุงุจู„ุงุณ ู„ู„ู€ E ุฃูุณ AT ุจุฏู‡
42
00:04:10,770 --> 00:04:15,490
ูŠุณุงูˆูŠ ู‡ูŠ ุงู„ู€ limit ูˆู‡ุฐุง ุงู„ู€ B ุจุฏู‡ุง ุชุฑูˆุญ ู„ู„ู€ infinity
43
00:04:16,130 --> 00:04:20,470
ุฃุธู† ูŠุง ุจู†ุงุช ุชูƒุงู…ู„ ุงู„ู€ exponential ุจู†ูุณ ุงู„ู€
44
00:04:20,470 --> 00:04:26,830
exponential itself ู…ู‚ุณูˆู…ุง ุนู„ู‰ ุชูุงุถู„ S ุฅู† ูƒุงู†ุช ุงู„ู€S
45
00:04:26,830 --> 00:04:30,710
ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ูˆุฒูŠ ู…ุง ุฃู†ุชู… ุดุงูŠููŠู† ู‡ูˆ ู…ู† ุงู„ุฏุฑุฌุฉ
46
00:04:30,710 --> 00:04:37,230
ุงู„ุฃูˆู„ู‰ ููŠ T ูŠุจู‚ู‰ ู…ู‚ุณูˆู…ุง ุนู„ู‰ ู†ุงู‚ุต ุงู„ู€ S ู†ุงู‚ุต ุงู„ู€ A
47
00:04:37,230 --> 00:04:43,240
ูˆุงู„ุญูƒูŠ ู‡ุฐุง ูƒู„ู‡ ู…ู† Zero ู„ูˆูŠู†ุŸ ู…ู† Zero ู„ุบุงูŠุฉ B. ุฅุฐุง
48
00:04:43,240 --> 00:04:48,160
ุจุฏู†ุง ู†ุนูˆุถ ุจุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุฏู‡ ูŠุณุงูˆูŠ
49
00:04:48,160 --> 00:04:54,100
ุงู„ู€ limit ู„ู…ุง B tends to infinity ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต S
50
00:04:54,100 --> 00:05:01,260
ู†ุงู‚ุต ุงู„ู€ A ููŠ B ุนู„ู‰ ู…ูŠู†ุŸ ุนู„ู‰ ู†ุงู‚ุต ุงู„ู€ S ู†ุงู‚ุต ุงู„ู€ A
51
00:05:01,260 --> 00:05:06,850
ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ. ุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ T ูˆุฃุถุน
52
00:05:06,850 --> 00:05:10,950
ู…ูƒุงู†ู‡ุง Zero ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ู€ Laplace ูŠุตุจุญ E ูˆ ุงู„ู€ Zero
53
00:05:10,950 --> 00:05:19,350
ูŠุจู‚ู‰ ุฏุงุดุฑ ุจูˆุงุญุฏ ูŠุจู‚ู‰ ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S ู†ุงู‚ุต ุงู„ู€ A
54
00:05:19,350 --> 00:05:24,630
ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ู†ุง. ูŠุจู‚ู‰ ุฃุตุจุญ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
55
00:05:24,630 --> 00:05:32,370
ู„ู„ุฏุงู„ุฉ E ุฃุณ A T ุจุฏูŠ ุฃุณุงูˆูŠ ุทุจุนู‹ุง ู‡ุฐุง ุงู„ู€ O ุงู„ุณุงู„ุจ ู…ู…ูƒู†
56
00:05:32,370 --> 00:05:37,110
ุฃู†ุฒู„ู‘ู‡ ุชุญุช ุฅูŠุด ุจูŠุตูŠุฑุŸ ุจูŠุตูŠุฑ ู…ูˆุฌุจ. ูŠุจู‚ู‰ ุจูŠุตูŠุฑ limit
57
00:05:37,110 --> 00:05:45,870
ู„ู…ุง B tends to infinity ู„ูˆุงุญุฏ ุนู„ู‰ ู†ุงู‚ุต ุงู„ู€ S ู†ุงู‚ุต
58
00:05:45,870 --> 00:05:55,990
ุงู„ู€ A ููŠ E ุฃุณ S ู†ุงู‚ุต ุงู„ู€ A ูƒู„ู‡ ููŠ B ุฒุงุฆุฏ ูˆุงุญุฏ ุนู„ู‰ S
59
00:05:55,990 --> 00:06:01,940
ู†ุงู‚ุต ุงู„ู€ A. ุงู„ุญูŠู† ู„ู…ุง ุจูŠุจุฏุฃ ุชุฑูˆุญ ู„ู€ zero ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ
60
00:06:01,940 --> 00:06:09,220
ูƒู„ู‡ ุจู‚ุฏุงุดุŸ ู„ู…ุง ุชุฑูˆุญ ู„ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูƒู„ู‡
61
00:06:09,220 --> 00:06:10,940
ู…ุงู„ู‡ุง ู†ู‡ุงูŠุฉ ููŠ ุฑู‚ู…
62
00:06:14,430 --> 00:06:19,930
ูŠุจู‚ู‰ ู‡ุฐุง ูƒู„ู‡ ุฑุงุญ ุจุฒูŠุฑูˆ ูŠุจู‚ู‰ ุถู„ู‘ุช ุงู„ู†ุชูŠุฌุฉ ูˆุงุญุฏ ุนู„ู‰ S
63
00:06:19,930 --> 00:06:25,550
ู†ุงู‚ุต ุงู„ู€ A ุจุดุฑุท ุฃู† ุงู„ู€ S is greater than A ูŠุจู‚ู‰ ุจู†ุงุก
64
00:06:25,550 --> 00:06:29,510
ุนู„ูŠู‡ ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง Laplace transform ู„ู„ู€
65
00:06:29,510 --> 00:06:34,490
exponential function E ุฃุณ AT ู‡ูˆ ุนุจุงุฑุฉ ุนู† ูˆุงุญุฏ ุนู„ู‰
66
00:06:34,490 --> 00:06:39,880
S ู†ุงู‚ุต ุงู„ู€ A. ุงู†ุชู‡ูŠู†ุง ู…ู†ู‡ุง. ุทูŠุจ ุฃู† ุงู„ู…ุทู„ูˆุจ ุงู„ุฃูˆู„
67
00:06:39,880 --> 00:06:45,820
ุจูŠุฏู‘ุงุฌูŠ ู„ู„ู…ุทู„ูˆุจ ุงู„ุซุงู†ูŠ. ู†ู…ุฑุง ุจูŠุŒ ู†ู…ุฑุง ุจูŠ ุฃูŠูˆุฉุŒ ุขุฎุฑ ุดุฑุท
68
00:06:45,820 --> 00:06:49,820
ู†ู‚ุตู†ุง ุฃูƒุซุฑ ู…ู† ุฅูŠู‡ุŸ ุจุฏูŠ ู…ุดุงู† ุฃุถู…ู† ุฃู†ู‡ ู…ุง ุตู„ู‘ุชุด ุณุงู„ุจุฉ
69
00:06:49,820 --> 00:06:54,880
ุฏุงุฆู…ู‹ุง ุฃู†ุง ุจุฏูŠ S ุฌุฑูŠุชุฑ ุฏู‡ ู†ู‚ุตู‡ุง. ุทูŠุจ ุงู„ุขู† ุจูŠุฏู‘ุงุฌูŠ
70
00:06:54,880 --> 00:07:00,180
ู„ู†ู…ุฑุง ุจูŠุŒ ู†ู…ุฑุง ุจูŠ. ุจุฏูŠ ู„ุงุจู„ุงุณ ู„ู„ู€ one. ู‡ู„ ุจู‚ุฏุฑ ุฃุฌุฑุจ ุฃู†
71
00:07:00,180 --> 00:07:07,320
ุฃูุฌูŠุจ ุงู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู…ู† ุงู„ู€ E ุฃุณ ET ู‡ุฐูŠ
72
00:07:07,320 --> 00:07:13,490
ู†ู‚ุฏุฑุŸ ู„ูˆ ุญุทูŠู†ุง ุงู„ู€ a ุจู‚ุฏ ุฅูŠุดุŸ Zero. ูŠุจู‚ู‰ ุจุฃุฌูŠ ุจู‚ูˆู„ ู„ู‡ ู‡ู†ุง
73
00:07:13,490 --> 00:07:22,130
F ุงู„ู€ a ุชุณุงูˆูŠ zero then Laplace transform ู„ู„ู€ e ุฃูˆ
74
00:07:22,130 --> 00:07:27,850
ุงู„ู€ zero ู‡ูˆ Laplace transform ู„ู…ู†ุŸ ู„ู„ูˆุงุญุฏ. ูŠุนู†ูŠ ู‡ู†ุง
75
00:07:27,850 --> 00:07:33,830
ู‡ุดูŠู„ ุงู„ู€ a ูˆุฃุญุท ู…ูƒุงู†ู‡ุง zero ูŠุจู‚ู‰ ูˆุงุญุฏ ุนู„ู‰ s ู†ุงู‚ุต
76
00:07:33,830 --> 00:07:40,620
ุงู„ู€ zero ูŠุจู‚ู‰ ุจู‡ูˆู„ุฉ ุจู‚ุฏุฑ 1 ุนู„ู‰ S. ุฅุฐุง ู…ู† ุงู„ุขู† ูุตุงุนุฏู‹ุง
77
00:07:40,620 --> 00:07:48,480
ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ูˆุงุญุฏ ุงู„ุตุญูŠุญ ู‡ูŠ 1 ุนู„ู‰ S. ุทูŠุจ ู†ู…ุฑุง
78
00:07:48,480 --> 00:07:57,560
C ุฌุงู„ูŠ ุจุฏู‘ู‡ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต AT ู‡ุฐู‡
79
00:07:57,560 --> 00:08:03,340
ู†ู…ุฑุง C ุดูˆ ุจุชูุฑุฌ ุนู† ุงู„ู€ AุŸ ุจุณ ุงู„ู€ A ุจุงู„ุณุงู„ุจ. ุฅุฐุง ุจุฏูŠ
80
00:08:03,340 --> 00:08:06,620
ุขุฎุฐ ุงู„ุฅุฌุงุจุฉ ุงู„ู„ูŠ ุญุตู„ุช ุนู„ูŠู‡ุง ููˆู‚ ูˆุฃุญุท ุงู„ู€ A
81
00:08:06,620 --> 00:08:12,860
ุจุงู„ุณุงู„ุจ. ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ูƒู„ุงู… ุฏูŠ ุณูˆุงุก 1 ุนู„ู‰ S ู†ุงู‚ุต ุจุฏู„
82
00:08:12,860 --> 00:08:20,310
ุงู„ู€ A ุฃุฌุงู†ูุจ ู†ุงู‚ุต A ูŠุจู‚ู‰ 1 ุนู„ู‰ S ุฒุงุฆุฏ ุงู„ู€ A. ู†ู…ุฑุง ุฏูŠ
83
00:08:20,310 --> 00:08:27,310
ุฌุงู„ูŠ ู‡ุชู„ูŠ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ E ุฃุณ ู†ุงู‚ุต ุฎู…ุณุฉ T ูŠุจู‚ู‰
84
00:08:27,310 --> 00:08:33,330
ูˆุงุญุฏ ุนู„ู‰ S ุฒุงุฆุฏ ุฎู…ุณุฉ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ุญุงู„ุฉ ุฎุงุตุฉ ู„ู„ูŠ
85
00:08:33,330 --> 00:08:39,110
ุนู†ุฏู†ุง. ู‡ุฐุง ุฅูŠู‡ุŸ ุจู‡ูŠ ุญุณุจู†ุง ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุฏูˆุงู„ูŠู†
86
00:08:39,110 --> 00:08:41,670
ู…ุฎุชู„ูุฉ. example two
87
00:08:51,800 --> 00:08:57,540
ุจู‚ูˆู„ find ู†ู…ุฑุง
88
00:08:57,540 --> 00:09:10,360
A ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ sin AT ู†ู…ุฑุง B ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
89
00:09:10,360 --> 00:09:24,710
ู„ู€ cos AT. ู†ู…ุฑุง ุงู„ู€ c ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ cos cos 5t
90
00:09:24,710 --> 00:09:35,410
ุฎู„ูŠ
91
00:09:35,410 --> 00:09:43,800
ุจุฑูƒุชูŠ. ุจุฏู‘ูŠ ุขุฎุฐ ู†ู…ุฑุง ุฅูŠู‡ุŸ ุจุฏูŠ ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู€ sin A
92
00:09:43,800 --> 00:09:48,580
ุชูŠ. ุจุฏูŠ ุฃุฑุฌุน ู„ู„ุชุนุฑูŠู ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุจู‚ู‰ ู‡ูˆ ุชูƒุงู…ู„ ู…ู†
93
00:09:48,580 --> 00:09:58,520
zero ุฅู„ู‰ infinity ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต ST ู„ู€ sin A ุชูŠ ุฏูŠ ุชูŠ
94
00:09:58,520 --> 00:10:06,480
ุทุจุนู‹ุง ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุนุจุงุฑุฉ ุนู† ู…ูŠู†ุŸ ุนุจุงุฑุฉ ุนู† limit ู„ู…ุง B
95
00:10:06,480 --> 00:10:13,320
tends to infinity ู„ุชูƒุงู…ู„ ู…ู† zero ู„ู€ B ู„ู€ E ุฃุณ ู†ุงู‚ุต ST
96
00:10:13,320 --> 00:10:24,340
cosine AT sin AT DT sin AT DT
97
00:10:24,340 --> 00:10:28,380
ุทุจ
98
00:10:28,380 --> 00:10:34,340
ูƒูŠู ุจู†ูƒู…ู„ ู‡ุฐุง ูŠุง ู…ู†ุงุณูŠุŸ ุดูˆ ุงู„ุทุฑูŠู‚ุฉุŸ ุจู† calculate B
99
00:10:36,410 --> 00:10:39,210
ุจุฏูŠ ูˆุงุญุฏุฉ ุชุญูƒูŠ ุฃู†ุง ู…ุง ุฃุฏู‘ูŠุด ุงู„ู‡ู…ู‘ุงู…ุงุช. ุจุฏูŠ ูˆุงุญุฏุฉ ุชุฑูุน
100
00:10:39,210 --> 00:10:41,950
ุฅูŠุฏูŠู‡ุง ูˆุชุญูƒูŠ ุขู‡ integration by parts integration
101
00:10:41,950 --> 00:10:45,370
by parts. ุชู…ุงู…ุŸ ูˆู‡ู†ุง ุฒูŠ ู…ุง ูŠู‚ูˆู„ูˆุง ุถุฑุจ ุงู„ุนู…ูŠุงู†
102
00:10:45,370 --> 00:10:49,110
ุงู„ุตูŠู ุฅูŠุด ู…ุง ุชุฃุฎุฐ ุตุญ ุฅู† ุฃุฎุฐุช ุงู„ู€ U ุชุณุงูˆูŠ ุงู„ู€
103
00:10:49,110 --> 00:10:53,150
exponential ูˆุงู„ู€ DV ุชุณุงูˆูŠ ุงู„ู€ cosine. ู…ุงุดูŠุŸ ุฅู† ุนู…ู„ุช
104
00:10:53,150 --> 00:10:58,270
ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ุฃุฎุฐุช ุงู„ู€ U ู‡ูŠ ุงู„ู€ sine ูˆุงู„ู€ DV ู‡ูŠ ุงู„ู€
105
00:10:58,270 --> 00:11:02,600
exponential ู…ุงุนู†ุฏู†ุงุด ู…ุดูƒู„ุฉ. ูŠุจู‚ู‰ ูƒู„ ู…ุง ุชุฃุฎุฐ ุงู„ุงุชู†ูŠู†
106
00:11:02,600 --> 00:11:10,140
ุตุญูŠุญ. ูŠุจู‚ู‰ ุฃู†ุง ุจุฏูŠ ุขุฎุฐ ุงู„ู€ U ุชุณุงูˆูŠ E ุฃุณ ู†ุงู‚ุต ST ูˆ
107
00:11:10,140 --> 00:11:19,820
ุจุฏูŠ ุขุฎุฐ ุงู„ู€ DV Sin AT. ุจุฏูŠ ุงู„ู€ DU ูŠุจู‚ู‰ ู†ุงู‚ุต S E ุฃุณ
108
00:11:19,820 --> 00:11:32,010
ู†ุงู‚ุต ST DT. ุจุฏูŠ ุงู„ู€ V ู†ุงู‚ุต Cos AT ุนู„ู‰ A. ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ
109
00:11:32,010 --> 00:11:39,290
ู‡ุฐู‡ ุจุฏู‡ุง ุชุณุงูˆูŠ limit ู„ู…ุง B tends to infinity ู„ู…ู†ุŸ
110
00:11:39,290 --> 00:11:44,510
ู„ู€ ุงู„ู€ U ููŠ ุงู„ู€ V ูŠุจู‚ู‰ ู‡ูŠ ุงู„ู€ U ูˆุงู„ู€ V ุงู„ู„ูŠ ู‡ูˆ ู†ุงู‚ุต
111
00:11:44,510 --> 00:11:56,510
ูˆุงุญุฏ ุนู„ู‰ A ููŠ E ุฃุณ ู†ุงู‚ุต ST ููŠ cosine AT. ู‡ุฐุง ุงู„ู€ U
112
00:11:56,510 --> 00:12:06,050
ููŠ ุงู„ู€ V. ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏู‡. UV ู†ุงู‚ุต cosine AT ุนู„ู‰ A
113
00:12:06,050 --> 00:12:16,750
ุฏุงู„ุฉ ู†ุงู‚ุต S E ุฃูุณ ู†ุงู‚ุต ST ูƒู„ู‡ ุจุงู„ู†ุณุจุฉ ุฅู„ู‰ DT. ุทุจุนู‹ุง
114
00:12:16,750 --> 00:12:21,910
ูƒูˆู†ูŠ ูƒุงู…ู„ ุชุจู‚ู‰ ุญุฏูˆุฏ ุงู„ุชูƒุงู…ู„ ู‡ุฐู‡ ู‡ุชุจู‚ู‰ ู…ู† ูˆูŠู† ู„ูˆูŠู†ุŸ
115
00:12:21,910 --> 00:12:30,010
ู…ู† zero ู„ุบุงูŠุฉ B ูˆู‡ุฐุง ูƒู…ุงู† ุชูƒุงู…ู„ ู…ู† zero ู„ุบุงูŠุฉ B ูˆ
116
00:12:30,010 --> 00:12:34,570
limit ู„ู„ูƒู„ ู…ู† ู‡ู†ุง ู„ู…ุง ู†ูƒู…ู„ ู…ู† ู‡ู†ุง
117
00:12:42,160 --> 00:12:47,560
ุจุชุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู†ุงู‚ุต ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ุชุญุชู‡ุง. ูŠุจู‚ู‰
118
00:12:47,560 --> 00:12:59,450
ู‡ู†ุง ู†ุงู‚ุต cosine AB ุนู„ู‰ A ููŠ E ุฃุณ SB. ู†ุฒู„ุช ุงู„ู€
119
00:12:59,450 --> 00:13:03,910
exponential ุชุญุช ุจุฅุดุงุฑุฉ ู…ูˆุฌุจุฉ. ู‡ุฐุง ุงู„ุชุนูˆูŠุถ ุงู„ุฃูˆู„
120
00:13:03,910 --> 00:13:11,630
ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ. ูƒูˆุณุงูŠู† ุตูุฑ ุจูˆุงุญุฏ ูˆ E of zero
121
00:13:11,630 --> 00:13:19,020
ุจูˆุงุญุฏ ุจุธู„ ุนู†ุฏูŠ ู‡ู†ุง ุจุณ ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰ ุฅูŠู‡. ูˆ ุฃูŠ limit
122
00:13:19,020 --> 00:13:24,280
ู„ู„ูƒู„. ู†ุฌูŠ ู„ู„ูŠ ุจุนุฏ ู‡ุฐู‡. ุนู†ุฏูƒ ู‡ู†ุง ู†ุงู‚ุต ูˆู‡ู†ุง ู†ุงู‚ุต ูˆ
123
00:13:24,280 --> 00:13:31,160
ู‡ู†ุง ู†ุงู‚ุต ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุจุงู„ู†ุงู‚ุต ุนู†ุฏูƒ S ูˆู‡ู†ุง A ู…ู‚ุงุฏูŠุฑ
124
00:13:31,160 --> 00:13:36,540
ุซุงุจุชุฉ ูŠุจู‚ู‰ ุจู‚ุฏุฑ ุขุฎุฐู‡ุง ุจุฑุฉ ุงู„ุชูƒุงู…ู„ ูˆุจุตูŠุฑ ุชูƒุงู…ู„ ู…ู†
125
00:13:36,540 --> 00:13:44,920
zero ุฅู„ู‰ B ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต ST ู„ู€ cosine ATDT
126
00:13:47,530 --> 00:13:50,510
ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ุทุจุนู‹ุง ู‡ุฐุง ุญุงู„ู†ุง ููŠ ุชูƒุงู…ู„ ูƒู„ุงุตูŠ ุจุณ ุฃู†ุง
127
00:13:50,510 --> 00:13:55,190
ุจุฐูƒุฑ ุชุฐูƒูŠุฑ ูŠุจู‚ู‰ ุฃู†ุง ุฃุฎุฐุช ุงู„ู€ U ู‡ู†ุง ุจุงู„ู€ exponential
128
00:13:55,190 --> 00:14:02,450
ูˆุฃุฎุฐุช ุงู„ู€ DV ุจู€ sin 80 ุงุดุชู‚ุช ูˆู‡ู†ุง ูƒุงู…ู„ ูŠุจู‚ู‰ ู‡ุฐู‡ ุงู„ู€
129
00:14:02,450 --> 00:14:10,330
U ููŠ ุงู„ู€ V ู…ุง ู†ู‚ุต ุชูƒุงู…ู„ Vุฏุงู„ู‘ุฉ. ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ูˆุฃ
130
00:14:10,330 --> 00:14:13,530
ุนูˆุถ ุจุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู†ุงู‚ุต ุงู„ู‚ูŠู…ุฉ ุงู„ู„ูŠ ููˆู‚ ู‡ุฐู‡
131
00:14:13,530 --> 00:14:18,410
ุงู„ุณู‡ู„ุฉ ุงู„ู„ูŠ ุจุฏูŠ ุฃู†ุฒู„ู‡ุง ุชุญุช ุจุตูŠุฑ ู…ุฌุจุฑุฉ ุจูŠุจู‚ู‰ Cos AB
132
00:14:18,410 --> 00:14:24,540
ุนู„ู‰ A ููŠ S ู‡ู†ุง ู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุฒุงุฆุฏ. ุจุฏูŠ ุฃุดูŠู„ ุงู„ู€ T ูˆ
133
00:14:24,540 --> 00:14:27,900
ุฃุถุน ู…ูƒุงู†ู‡ุง Zero ูˆุงู„ู€ cosine ุตูุฑ ุจูˆุงุญุฏ. E ูˆ ุงู„ู€ Zero
134
00:14:27,900 --> 00:14:33,380
ุจูˆุงุญุฏ ุจูŠุถู„ ุจุณ ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰ A ู‡ู†ุง ุนู†ุฏู†ุง S ุนู„ู‰ A
135
00:14:33,380 --> 00:14:38,780
ุจุฑู‡ ุนู†ุฏูƒ ู†ุงู‚ุต ู†ุงู‚ุต ู†ุงู‚ุต ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุจุงู„ู†ุงู‚ุต ุจูŠุตูŠุฑ
136
00:14:38,780 --> 00:14:43,500
ุนู†ุฏู†ุง ู†ุงู‚ุต S ุนู„ู‰ A ุชูƒุงู…ู„ ู…ู† Zero ู„ู€ B ู„ู„ู€ E ูˆู†ุงู‚ุต ุงู„ู€
137
00:14:43,500 --> 00:14:48,840
T cosine ATDT. ุชุนุงู„ ู†ุญุณุจ ุงู„ุญุณุจุฉ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐู‡. ู‡ุฐุง
138
00:14:48,840 --> 00:14:53,740
ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ ู„ูˆ ุฃุฎุฐุช limit ู„ู‡ุฐุง ุงู„ู…ู‚ุฏุงุฑ ูŠุง ุจู†ุงุช
139
00:14:53,740 --> 00:15:00,060
ูƒุฏู‡ุด ุจุทู„ุน ูŠู„ุง ุฅูŠู‡ ุฃุดูˆู ุนู„ู‰ ุงู„ุณุฑูŠุน ูƒุฏู‡ุด ูˆุงุญุฏ ุนู„ู‰
140
00:15:00,060 --> 00:15:07,480
ุฅูŠู‡ ู‡ุฐุง ุงู„ู€ term ุงู„ุฃูˆู„. term ุงู„ุฃูˆู„ ูƒูˆุณุงูŠู† ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ
141
00:15:07,480 --> 00:15:12,510
ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆู‡ุฐุง ุจูŠู† ุจูŠุฑูˆุญ. ู…ุง ู„ุง ู„ุง ูŠุจู‚ู‰ ุนู„ู‰ ุฌุฏ
142
00:15:12,510 --> 00:15:16,030
ูŠุง ุดู ุฒูŠุฑูˆ ุนู„ู‰ ุทูˆู„ ุงู„ุฎุท ุฃูˆ ุจุชู‚ูˆู„ูˆุง ู„ูŠู‡ cos AB
143
00:15:16,030 --> 00:15:19,590
ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ ูˆุณุงู„ุจ ูˆุงุญุฏ ูˆุจุฏูŠ ุฃุถุฑุจ ุงู„ุทุฑููŠู† ููŠ
144
00:15:19,590 --> 00:15:24,410
ูˆุงุญุฏ ุนู„ู‰ A ููŠ E ุฃุณ S AB ูˆุฃุฎุฐ ุงู„ู„ูŠ ู…ุง ุจุตูŠุฑ ู‡ู†ุง
145
00:15:24,410 --> 00:15:27,110
ุฒูŠุฑูˆ ู‡ู†ุง ุฒูŠุฑูˆ ูˆุจูŠุฌูŠุจ ุณุงู†ุฏูˆุดุชูŠู† ูˆุงู„ู„ูŠ ููŠ ุงู„ู†ุต
146
00:15:27,110 --> 00:15:32,130
ุจูŠุฒูŠุฑูˆ. ุฅุฐุง ู‡ุฐุง ุงู„ู€ limit ุงู„ู„ูŠ ู‡ูˆ ูƒู„ู‡ ุจู€0. ูˆุงุญุฏ ุนู„ู‰
147
00:15:32,130 --> 00:15:36,250
ุฅูŠู‡ุŸ ู…ู‚ุฏุงุฑ ุซุงุจุชุŒ ู…ุง ู„ู‡ ุฏุนูˆุฉ ุจุงู„ู€ limit ุชู…ุงู…ุŒ ูˆุฃู†ู‘ู‡ูŠุช
148
00:15:36,250 --> 00:15:40,230
ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช ุจุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช itself ูŠุจู‚ู‰ ูˆุงุญุฏ
149
00:15:40,230 --> 00:15:46,450
ุนู„ู‰ ุฅูŠู‡ุŸ ู†ุงู‚ุต S ุนู„ู‰ ุฅูŠู‡ุŸ ููŠ limit ู„ู…ุง B tends to
150
00:15:46,450 --> 00:15:52,970
infinity ู„ุชูƒุงู…ู„ ู…ู† zero ุฅู„ู‰ B ู„ู„ู€ E ุฃุณ ู†ุงู‚ุต ST
151
00:15:52,970 --> 00:15:56,190
cosine ATDT
152
00:16:12,880 --> 00:16:18,440
ุงู„ุขู† ุจุฑุถู‡ ุจู†ุนู…ู„ ู‡ุฐู‡ integration by parts. ุชู…ุงู…ุŸ
153
00:16:18,440 --> 00:16:21,940
ุจุฑุถู‡ ู†ูุณ ุงู„ุชุนูˆูŠุถ ุงู„ู„ูŠ ุฃุฎุฐุช U ู‡ู†ุง ุจุฏูŠ ุขุฎุฐู‡ุง U ู‡ู†ุง
154
00:16:21,940 --> 00:16:25,760
ุจุงู„ุถุจุท ู„ุฅู† ู„ูˆ ุนู…ู„ุช ุงู„ุนู…ู„ูŠุฉ ุงู„ุนูƒุณูŠุฉ ู…ุง ุนุฑูุด ุงู„ู„ูŠ
155
00:16:25,760 --> 00:16:29,100
ุงุดุชุบู„ุช ูˆุฎุฑุจุช ูˆุฑุฌุนุช ูˆู…ุง ุณูˆูŠุช ุดูŠุก ุดูŠุก. ูŠุจู‚ู‰ ุจุถู„ู‘
156
00:16:29,100 --> 00:16:35,180
ุงู„ู…ุงุดูŠ ุจู†ูุณ ุงู„ุงุชุฌุงู‡. ุฅุฐุง ุจุฏูŠ ุขุฎุฐ ุงู„ู€ U ุชุณุงูˆูŠ E ุฃุณ
157
00:16:35,180 --> 00:16:47,130
ู†ุงู‚ุต ST ูˆ DV ู„ูŠู‡ cosine ATDT. ูŠุจู‚ู‰ ุงู„ู€ DU ูŠูƒูˆู† ู†ุงู‚ุต
158
00:16:47,130 --> 00:16:56,610
SE ุฃูุณ ู†ุงู‚ุต ST ููŠ DT ูˆุงู„ู€ V ุจู€ Sin AT ุนู„ู‰ A. ูŠุจู‚ู‰
159
00:16:56,610 --> 00:17:01,630
ุฃุตุจุญ ุนู†ุฏูŠ ุงู„ู„ูŠ ู‡ูˆ ู…ู† ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ุงู„ู„ูŠ ู‡ูŠ
160
00:17:01,630 --> 00:17:07,330
ุงู„ู€ Sin AT ุจุฏูŠ ุณูˆู‘ูŠุฉ ูˆุงุญุฏ ุนู„ู‰ A ุงู„ุซุงุจุช ุงู„ู„ูŠ ุนู†ุฏู†ุง
161
00:17:07,330 --> 00:17:16,080
ู†ุงู‚ุต S ุนู„ู‰ A ููŠ ุงู„ู€ limit ู„ู…ุง B tends to infinity ูˆ
162
00:17:16,080 --> 00:17:21,480
ู‡ุฐุง ุงู„ู€ cos ุงู„ู„ูŠ ุนู†ุฏู†ุง. ุจู†ุฑูˆุญ ู†ูƒุชุจ U ููŠ V ู‡ุฐุง ุงู„ู€
163
00:17:21,480 --> 00:17:29,680
U ูˆู‡ุฐุง ุงู„ู€ V ูŠุจู‚ู‰ E ุฃุณ ู†ุงู‚ุต ST ููŠ Sin AT ูƒู„ู‡ ุนู„ู‰
164
00:17:29,680 --> 00:17:40,940
ู‚ุฏ ุฅูŠุดุŸ ุนู„ู‰ A. ู†ุงู‚ุต ุชูƒุงู…ู„ V ุงู„ุชูŠ ู‡ูŠ ุงู„ู€ Sin AT ุนู„ู‰ A W
165
00:17:40,940 --> 00:17:50,160
ุงู„ุชูŠ ู‡ูŠ ู†ุงู‚ุต SE ุฃูุณ ู†ุงู‚ุต ST ูƒู„ ู‡ุฐุง ุงู„ูƒู„ุงู… ุจุงู„ู†ุณุจุฉ
166
00:17:50,160 --> 00:17:57,360
ุฅู„ู‰ ู…ูŠู†ุŸ ุฅู„ู‰ DT. ูˆู‡ูŠูŠุฌูู„ู†ุง ุงู„ุฌูˆุฒ ุจุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง. ู‡ุฐุง
167
00:17:57,360 --> 00:18:02,800
ุงู„ูƒู„ุงู… ูŠุจุฏูˆ ูŠุณุงูˆูŠ 1 ุนู„ู‰ A ู†ุฒู„ู†ุงู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ู†ุงู‚ุต S
1
201
00:21:44,690 --> 00:21:51,110
ุจุฏู‡ุง ุชุณุฃู„ุŸ ุงู‡ ุฃูŠูˆุฉ ู„ู…ุงุฐุงุŸ
202
00:21:51,110 --> 00:21:55,170
ุทุจ ุฃู†ุง ุจุฌูˆุฒ ูˆ ู„ุณู‡ ุจุชู†ุงู‚ุด ุฃู†ุง ูˆุฅูŠุงูƒ ูˆุฃู†ุง ุจุงุดุฑุญ
203
00:21:55,170 --> 00:22:01,800
ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุชูƒุงู…ู„ ู‡ุฐุง ูƒุงู„ูƒู„ู‘ ุตุนุจูŠุฉ ุจู†ุช ุงู„ุญู„ุงู„ ูˆุฃุตูˆู„ูƒ
204
00:22:01,800 --> 00:22:05,940
ุชุจู‚ู‰ ุนุฑูุงุชู‡ ูˆุฃุตูˆู„ ุญูุธูƒ ุงู„ู†ุชูŠุฌุฉ ูˆุงู…ุดูŠ ู„ูƒู† ุฃู†ุง ุจุญุตู„ูƒ
205
00:22:05,940 --> 00:22:09,280
ุชูุตูŠู„ ูˆุจุฐูƒุฑ ุชุฐูƒูŠุฑ ู„ุฃู† ุงู„ุนู‚ู„ ู…ุด ุฏุงูŠู…ู‹ุง ู…ูˆุฌูˆุฏ
206
00:22:09,280 --> 00:22:17,330
ุนุจุฏุงู„ู„ู‡ ุจูŠุฌูŠ ุจูŠุนุฏู‘ ุทูŠุจ ูŠุจู‚ู‰ ู…ุฑุฉ ุซุงู†ูŠุฉ ุจู‚ูˆู„ ุงุญู†ุง
207
00:22:17,330 --> 00:22:21,650
ุฎู„ุตู†ุง ุงู„ุญู„ ุดูˆ ุงู„ู„ูŠ ุนู…ู„ู†ุงู‡ ูˆุฃูŠู† ุชูˆุตู„ู†ุง ุงุญู†ุง ุจุฏู†ุง
208
00:22:21,650 --> 00:22:26,450
ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ู„ู€ Sin AT ุฃู†ุง ู…ุง ุนู†ุฏูŠุด ุฅู„ุง ุงู„ุชุนุฑูŠู
209
00:22:26,450 --> 00:22:31,410
ูŠุจู‚ู‰ ุจุฏูŠ ุงุถุฑุจ ููŠ ุงู„ู€ E ุฃุณ ุณุงู„ุจ ST ูˆุงู„ู€ Sin ST ูˆูƒู…ู„ ู…ู† Zero ุฅู„ู‰
210
00:22:31,410 --> 00:22:35,580
Infinity ุงู„ุดูƒู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ุงู„ุขู† ู‡ุฐุง ุงู„ู€ improper
211
00:22:35,580 --> 00:22:39,540
integral ูŠุจู‚ู‰ ุฎุงุชู„ ูˆ limit integration by parts
212
00:22:39,540 --> 00:22:44,480
ุจุฏูŠ ุฃุนู…ู„ู‡ุง ู…ุฑุชูŠู† ุฅุฐุง ุนู…ู„ุชู‡ุง ู…ุฑุชูŠู† ุจุชุจู‚ู‰ ู…ุณุฃู„ุฉ T
213
00:22:44,480 --> 00:22:49,580
ุฎู„ุตุช ูˆู‡ุฐุง ูƒุงู† ู…ุนู†ุง ุณุคุงู„ ููŠ Calculus B ุฅุฐุง ู…ุฐุงูƒุฑูŠู†
214
00:22:49,580 --> 00:22:53,380
ู…ูˆุฌูˆุฏ ูƒุงู† ู…ุนู†ุง ููŠ Calculus B ููŠ ุงู„ integration by
215
00:22:53,380 --> 00:22:56,920
parts ุจุณ ุฏู‡ ู…ุฌู†ูˆู† integration by parts ู…ุน ุงู„
216
00:22:56,920 --> 00:23:02,640
improper integral ูŠุจู‚ู‰ ู‡ุฐุง ุงู„ุชูƒุงู…ู„ ุจุฏูŠ ุฃุฎุฏ ู‡ุฐู‡ U ูˆู‡ุฐู‡
217
00:23:02,640 --> 00:23:08,940
DV ูˆุจุงู„ุชุงู„ูŠ ุณู„ู…ุช U ููŠ V ู†ุงู‚ุต ุชูƒุงู…ู„ V ุฏุงู„ U
218
00:23:08,940 --> 00:23:14,500
ุงู„ุขู† ุจุฏูŠ ุฃุนูŠุฏ ุงู„ุชุฑุชูŠุจ ู‡ุฐู‡ ุจุฏูŠ ุฃุนูˆุถ ุจุงู„ู‚ูŠู… ุงู„ู„ูŠ ููˆู‚
219
00:23:14,500 --> 00:23:18,480
ู†ุงู‚ุต ุงู„ู„ูŠ ุชุญุชูŠ ุจุฏูŠ ุฃุดูŠู„ ูƒู„ T ูˆุฃุญุท ู…ูƒุงู†ู‡ุง
220
00:23:25,040 --> 00:23:31,240
ู†ุงู‚ุต ู†ู‚ุต ู†ู‚ุต ูŠุจู‚ู‰ ุซู„ุงุซุฉ ุจุงู„ุณุงู„ุจ ุจุตูŠุฑ ุนู†ุฏู†ุง ุณุงู„ุจ S
221
00:23:31,240 --> 00:23:35,860
ุนู„ู‰ A ุซุงุจุช ุจุฏูŠ ุฃุฎุฏู‡ ุจุฑุฉ ุจุถุฑุจ ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰ B
222
00:23:35,860 --> 00:23:42,890
ู„ุฅูŠู‡ุŸ ูˆุฅุฐุง ู†ุงู‚ุต ST Cos ATDT ุจุนุฏ ุฐู„ูƒ ุจุฏูŠ ุฃู†ุฒู„ ู‡ุฐู‡ ุฒูŠ
223
00:23:42,890 --> 00:23:47,610
ู…ุง ู‡ูŠ ู‡ุฐู‡ ุฒูŠ ู…ุง ู‡ูŠ ูˆู‡ูŠ ุงู„ limit ุงู„ู€ Exponential
224
00:23:47,610 --> 00:23:53,150
ุงู„ู„ูŠ ุนู†ุฏู†ุง ูŠุนู†ูŠ ุงู†ุชู‚ู„ู†ุง ู…ู† E ุฃุณ ุณุงู„ุจ ST ู„ู€ Sin AT
225
00:23:53,150 --> 00:23:59,550
ุฅู„ู‰ ุชูƒุงู…ู„ ู„ู„ู€ E ุฃุณ ุณุงู„ุจ ST Cos AT ูŠุจู‚ู‰ ู„ูˆ ูƒู…ู„ุช
226
00:23:59,550 --> 00:24:04,250
ูƒู…ุงู† ู…ุฑุฉ ุจุฑุฌุน ู„ุฑุฃุณูŠ ุงู„ู…ุณุฃู„ุฉ ุงู„ู„ูŠ ููˆู‚ ุฅุฐุง ุจุฏูŠ ุฃุฑูˆุญ
227
00:24:04,250 --> 00:24:08,330
ูƒุงู…ู„ ูƒู…ุงู† ู…ุฑุฉ ุจุฏูŠ ุฃุฎุฏ ู‡ุฐู‡ U ูˆู‡ุฐู‡ DV
228
00:24:15,840 --> 00:24:22,700
ู‡ุฐู‡ ุชูƒุงู…ู„ู‡ุง ุจู€ Sin AT ุนู„ูŠู‡ุง ุจู†ู‚ุณู… ุนู„ู‰ ุชูุงุถู„ ุงู„ุฒุงูˆูŠุฉ
229
00:24:22,700 --> 00:24:28,810
ุฅู† ูƒุงู†ุช ุงู„ุฒุงูˆูŠุฉ ู…ู† ุงู„ุฏุฑุฌุฉ ุงู„ุฃูˆู„ู‰ ุทูŠุจ ุจุฏู†ุง ู†ุจุฏุฃ ู†ุนูˆู‘ุถ
230
00:24:28,810 --> 00:24:34,090
ูŠุจู‚ู‰ 1 ุนู„ู‰ A ู†ุงู‚ุต S ุนู„ู‰ A ููŠ Limit ุงู„ู„ูŠ ู‡ูŠ ู…ูˆุฌูˆุฏุฉ
231
00:24:34,090 --> 00:24:39,670
ุนู†ุฏู†ุง ู‡ู†ุง ุจุงู„ุถุจุท ุชู…ุงู…ู‹ุง ุงู„ุขู† ุจุฏู‘ูŠ ุฃุฌูŠ ุฃู‚ูˆู„ ู„ู‡ ุงู„ U ููŠ ุงู„ู€
232
00:24:39,670 --> 00:24:46,290
V ุฃูŠู‡ุง ู…ู† A ู…ู† Zero ู„ู€ B ู†ุงู‚ุต ุชูƒุงู…ู„ ู…ู† Zero ู„ู€ B ู„ู„ู€ V
233
00:24:46,290 --> 00:24:52,090
ุฏู‡ ุงู„ U ู‡ุฐุง ุงู„ V ูˆู‡ุฐู‡ ุฏู‡ ุงู„ U ูƒุชุจุชู‡ุง ุฒูŠ ู…ุง ู‡ูŠ ุทูŠุจ 1
234
00:24:52,090 --> 00:24:56,930
ุนู„ู‰ A ู†ุฒู„ุช ุณุงู„ุจ S A ุนู„ู‰ A ู†ุฒู„ุช ุงู„ู€ Limit ูƒู…ุง ู‡ูŠ ู‡ุฐู‡
235
00:24:56,930 --> 00:25:01,890
ู„ู…ุง ุชู†ุฒู„ ุจูŠ ุชุญุช ุจุตูŠุฑ Sin AB ุนู„ู‰ A ููŠ ุงู„ู€ SB
236
00:25:01,890 --> 00:25:05,730
ุทุจุนู‹ุง ู‡ุฐู‡ ุงู„ู€ Limit ุงู„ู„ูŠ ู‡ุชุจู‚ู‰ ุฒูŠุฑูˆ ูˆุฅู†ู…ุง ุจูŠ ุชุฑูˆุญ ู„ู…ุง ู„ุง
237
00:25:05,730 --> 00:25:09,790
ู†ู‡ุงูŠุฉ ู„ูŠุด ุฅู†ูˆ ุงู„ู€ Sin AB ู…ุญุตูˆุฑ ู…ู† ูˆุงุญุฏ ูˆุณุงู„ุจ ูˆุงุญุฏ
238
00:25:09,790 --> 00:25:13,910
ุถุฑุจู†ุง ููŠ ูˆุงุญุฏ ุนู„ู‰ ุงู„ู€ Exponential ูˆุฎู„ุช ุจูŠ ุชุฑูˆุญ ู„ู…ุง
239
00:25:13,910 --> 00:25:19,550
ู„ุง ู†ู‡ุงูŠุฉ ุจุตูŠุฑ ุนุฏุฏ ุนู„ู‰ ู…ุง ู„ุง ู†ู‡ุงูŠุฉ ู„ู‡ ูˆู‡ูˆ ุฒูŠุฑูˆ ูŠุจู‚ู‰
240
00:25:19,550 --> 00:25:25,410
ู‡ุฐู‡ ุฒูŠุฑูˆ ุฏุงุฆู…ู‹ุง ูˆุฃุจุฏู‹ุง ุงู„ุขู† ู†ุงู‚ุต ุจุฏูŠ ุฃุถุน ู‡ู†ุง ุฒูŠุฑูˆ
241
00:25:25,410 --> 00:25:31,210
ูˆู‡ู†ุง ุฒูŠุฑูˆ ู‡ุฐู‡ ูˆุงุญุฏ ูˆู‡ุฐู‡ ุฒูŠุฑูˆ ุนู„ู‰ ุฃูŠ ุนุฏุฏ ุจู‚ุฏุฑ ุจุฒูŠุฑูˆ
242
00:25:31,210 --> 00:25:37,330
ูˆุตู„ู†ุง ู„ู‡ุฐู‡ ุงู„ู€ S ุนู„ู‰ A ุจุฑุฉ ูˆู†ุงู‚ุต ู…ุน ู†ุงู‚ุต ุจุตูŠุฑ ุฒุงุฆุฏ
243
00:25:37,330 --> 00:25:45,330
ูˆุงู„ู€ E ุฃุณ ุณุงู„ุจ ST Sin ATDT ู‡ูŠ ูƒู…ุง ู‡ูŠ ุฅุฐุง ุงู†ู‚ู„ุจุช ุงู„ู…ุณุฃู„ุฉ
244
00:25:45,330 --> 00:25:50,690
ุงู„ุชูƒุงู…ู„ ุงู„ุฃุณุงุณูŠ ุงู„ู€ Elemental ูˆุงู„ู€ Sin AT ู‡ุฐุง ุจุฏูŠ ุฃุณุงูˆูŠ
245
00:25:50,690 --> 00:25:54,430
ู…ูŠู†ุŸ ุจุฏูŠ ุฃุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ ุฅูŠู‡ุŸ ู†ุงู‚ุต ูุนู†ุฏูƒ ู‡ู†ุง S
246
00:25:54,430 --> 00:25:59,090
ุนู„ูŠู‡ ูˆู‡ู†ุง S ุนู„ู‰ ุฅูŠู‡ุŸ S ุชุฑุจูŠุน ุนู„ู‰ A ุชุฑุจูŠุน Limit ู„ู…ุง
247
00:25:59,090 --> 00:26:04,030
ุงู„ู€ P ุจุฏุฃุช ุชุฑูˆุญ ู„ู„ู€ Infinity ู„ู„ุชูƒุงู…ู„ ุงู„ู„ูŠ ุนู†ุฏู†ุง ู‡ุฐุง
248
00:26:04,340 --> 00:26:09,480
ุงู„ุชูƒุงู…ู„ ู„ุฃู† ู‡ุฐุง ู‡ูˆ ู†ูุณ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุชู…ุงู… ุจุณ ุจุฏู‘ู‡
249
00:26:09,480 --> 00:26:13,700
ุฃุฑุฌุน ู‡ุฐุง ุฅู„ู‰ ุฃุตู„ู‡ ู‚ุจู„ ุงู„ู€ Limit ูŠุจู‚ู‰ ุฑุฌุนุชู‡ ุฅู„ู‰ ุฃุตู„ู‡
250
00:26:13,700 --> 00:26:17,340
ุจุฏู„ ู…ุง ู‡ูˆ Limit ุดูŠู„ุชู‡ ูˆูƒุชุจุช ุชูƒุงู…ู„ ู…ู† Zero ุฅู„ู‰
251
00:26:17,340 --> 00:26:23,420
Infinity ู„ู„ู€ E ุฃุณ ุณุงู„ุจ STDT ู‡ุฐุง ู‡ูˆ ุงู„ุทุฑู ุงู„ุดู…ุงู„ ูŠุจู‚ู‰
252
00:26:23,420 --> 00:26:27,640
ุจุฏู‘ู‡ ุฃุฏู‘ูŠู‡ ุนู†ุฏู‘ู‡ ูˆุฃุฌู…ุน ุจุฏู„ ู…ุง ูƒุงู†ุช ุดุฑุทุฉ ุณุงู„ุจุฉ ุจุตูŠุฑ
253
00:26:27,640 --> 00:26:33,560
ุดุฑุทุฉ ู…ูˆุฌุจุฉ ูŠุจู‚ู‰ ุจุธู„ ู‡ู†ุง ูˆุงุญุฏ ูˆู‡ู†ุง ุจูŠุธู„ S ุชุฑุจูŠุน ุนู„ู‰
254
00:26:33,560 --> 00:26:36,820
A ุชุฑุจูŠุน ูƒู„ู‡ ููŠ ุงู„ุชูƒุงู…ู„ ู‡ุฐุง ุงู„ู„ูŠ ู‡ูˆ Laplace
255
00:26:36,820 --> 00:26:41,240
transform ู„ู€ Sin AT ุจูŠุธู„ ุงู„ุทุฑู ุงู„ูŠู…ูŠู† ูู‚ุท ุงู„ู„ูŠ ู‡ูˆ
256
00:26:41,240 --> 00:26:47,500
ุฌุฏู‘ู‹ุง 1 ุนู„ู‰ A ุงู„ุขู† ูˆุญุฏู†ุง ุงู„ู…ู‚ุงู…ุงุช ู„ู‡ุฐู‡ ุตูˆุฑุฉ A ุชุฑุจูŠุน
257
00:26:47,500 --> 00:26:52,780
ุฒุงุฆุฏ S ุชุฑุจูŠุน ุนู„ู‰ A ุชุฑุจูŠุน ุจุฏู‡ ูŠุณุงูˆูŠ ูˆุงุญุฏ ุนู„ู‰ A ุงู„ุขู†
258
00:26:52,780 --> 00:26:59,260
ุจุฏู†ุง ู†ุฌุณู… ุนู„ู‰ ู‡ุฐูŠ ุจูŠุตูŠุฑ A ุชุฑุจูŠุน ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A
259
00:26:59,260 --> 00:27:04,260
ุชุฑุจูŠุน ููŠ A ุชุฑุจูŠุน ุจุชุฑูˆุญ ุงู„ A ู…ุน ุงู„ A ุจูŠุธู‡ุฑ ุฃู† A ููŠ
260
00:27:04,260 --> 00:27:09,960
S ุชุฑุจูŠุน ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A ุชุฑุจูŠุน ู‡ุฐุง ู„ู€ Laplace Transform ู„
261
00:27:09,960 --> 00:27:16,650
Sin AT ู„ุฐู„ูƒ ูƒู…ู„ู†ุง ู…ุฑุชูŠู† ูˆูˆุตู„ู†ุง ุฅู„ู‰ ู†ุชูŠุฌุฉ ุงู„ุชูƒุงู…ู„ ูˆู‚ุจู„
262
00:27:16,650 --> 00:27:19,750
ุดูˆูŠุฉ ู„ู…ุง ุฏูŠ ุฃู†ุง ุฃุนุทูŠู†ุง ุชุนุฑูŠู ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู…
263
00:27:19,750 --> 00:27:25,690
ุฃู‚ูˆู„ ู„ูƒ ูŠุง ุจู‚ูˆู„ L of F of T ูŠุง ุฅู…ุง F of S ู„ุญุธุฉ ู…ู†
264
00:27:25,690 --> 00:27:30,750
ุญุฏ ู…ุง ุฅู†ูƒู…ู„ ุจุทู„ุน ุนู†ุฏูŠ ุฏุงู„ุฉ ููŠ ู…ูŠู†ุŸ ุฏุงู„ุฉ ููŠ S ูˆู‡ู†ุง
265
00:27:30,750 --> 00:27:34,250
ุฏุงู„ุฉ ููŠ S ูˆู‡ู†ุง ุฏุงู„ุฉ ููŠ S ูˆู‡ู†ุง ุฏุงู„ุฉ ููŠ S ูˆูƒู„ู‡
266
00:27:34,250 --> 00:27:39,090
ุฏุงู„ุฉ ููŠ S ูˆุณุฃู„ุชูƒ ู‡ุฐุง ุงู„ุณุคุงู„ ู„ูŠุด ุงู„ F of S ูŠุจู‚ู‰
267
00:27:39,090 --> 00:27:43,030
ุงู„ู†ุชูŠุฌุฉ ุจุนุฏ ู…ุง ู†ูƒู…ู„ ูˆู†ุนูˆุถ ูƒู„ู‡ุง ุจุชุทู„ุน Function ููŠ
268
00:27:43,030 --> 00:27:48,170
S ูู‚ุท ู…ุง ุถู„ู‘ ุนู†ุฏู†ุง ู…ู† T ูˆุจุงู„ุชุงู„ูŠ ุฌูŠุจ ุฏุงู„ุฉ ูƒุงูุฉ ู…ู†
269
00:27:48,170 --> 00:27:52,330
ุงู„ุฏุงู„ุฉ ุงู„ุฃุตู„ูŠุฉ ุทุจ ุงุญู†ุง ุงู„ุขู† ุฌุจู†ุง
270
00:27:59,930 --> 00:28:04,430
ุจุชุนู…ู„ูŠ ุงู„ุฎุทูˆุงุช ุงู„ู„ูŠ ุนู…ู„ุชู‡ุง ุจุณ ุจุฏู„ ุงู„ู€ Sin ุจุชุญุทูŠ ู…ุนู‡ุง
271
00:28:04,430 --> 00:28:05,530
ูƒู€ Cosine
272
00:28:11,800 --> 00:28:18,920
ู‡ุฐู‡ ู†ู…ุฑู‘ ุจูŠู‡ Similarly ุงู„ู„ูŠ ู‡ูˆ Laplace Transform La
273
00:28:18,920 --> 00:28:27,400
Cosine AT ุจุฏูŠู‡ ุณุงูˆูŠ ุจู†ุงุช S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ A
274
00:28:27,400 --> 00:28:33,190
ุชุฑุจูŠุน ู‡ุฐู‡ ุงู„ู€ Sin ุจุฏู„ ุงู„ู€ Constant ุจูŠุฌูŠู†ูŠ S ูˆู„ูŠุณ
275
00:28:33,190 --> 00:28:37,470
Constant ุจุณ ู‡ู†ุง ูƒุงู†ุช ุฅุนุงุฏุฉ ุงู„ู€ Sin Constant ูˆู‡ู†ุง S
276
00:28:37,470 --> 00:28:44,050
ูˆู‡ุฐู‡ ุชุดูŠูƒ ุจุฑุงุญุชูƒ ุฑูˆุญ ุฃุนู…ู„ู‡ุง ููŠ ุงู„ุฏุงุฑ ุดูŠูƒ ุนู„ูŠู‡ุง ุทูŠุจ
277
00:28:44,050 --> 00:28:49,850
ู…ู† B ุจุฏู‡ ุฃุฑูˆุญ ุฃุฌูŠุจ C ูŠุจู‚ู‰ ุจุฏูŠ C ุจุฏูŠ ู„ู€ Laplace
278
00:28:49,850 --> 00:28:58,630
Transform ู„ู€ Cosine 5T ุงู„ู„ูŠ ุนุจุงุฑุฉ ุนู† S ุนู„ู‰ S ุชุฑุจูŠุน
279
00:28:58,630 --> 00:29:07,570
ุฒุงุฆุฏ ุฎู…ุณุฉ ู„ูƒู„ ุชุฑุจูŠุน ูŠุนู†ูŠ S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ 25
280
00:29:07,570 --> 00:29:16,620
ูˆ25 ุญุฏ ููŠูƒู… ุจุชุญุจ ุชุณุฃู„ ุฃุณุฆู„ุฉ ู‡ู†ุงุŸ ุฎู„ุงุตุŸ ู‡ุง ูŠุง ุจู†ุช
281
00:29:16,620 --> 00:29:21,540
ุงู„ุญู„ุงู„ ุฃู†ุช ู„ุนุจุชูŠ ุชู‚ุตู‘ุจูŠ ูˆู„ุง ู„ุงุŸ ุฎู„ุงุต ูŠุนู†ูŠุŸ ูุฑุฌุช
282
00:29:21,540 --> 00:29:23,640
ูˆูƒุงู†ุช ูˆู‚ู†ู‘ูˆู‡ุง ุชูุฑุฌูˆุงุŸ
283
00:29:42,720 --> 00:29:48,600
ู…ุง ุจุนุฏ ุงู„ุถูŠู‚ุฉ ุจู†ุงุช ุฅู„ุง ุงู„ูˆุณุนุฉ ูˆู…ุง ุจุนุฏ ุงู„ุนุณุฑ ุฅู„ุง
284
00:29:48,600 --> 00:29:55,240
ุงู„ูŠุณุฑ ูˆู„ู‡ุฐุง ู‚ุงู„ ุงู„ู„ู‡ ุชุนุงู„ู‰ ูุฅู† ู…ุน ุงู„ุนุณุฑ ูŠุณุฑุง ูˆุฅู†
285
00:29:55,240 --> 00:29:59,660
ู…ุน ุงู„ุนุณุฑ ูŠุณุฑุง ูˆู„ู† ูŠุบู„ุจ ุนุณุฑุง ูŠุณุฑูŠู† ุฃูˆ ูƒู…ุง ู‚ุงู„ ุตู„ู‰
286
00:29:59,660 --> 00:30:03,470
ุงู„ู„ู‡ ุนู„ูŠู‡ ูˆุณู„ู… ูŠุนู†ูŠ ู‚ุฏู‘ูŠุด ุจุชุฏุงูŠู‚ ููŠ ู„ุญุธุฉ ุชู…ุงู… ูˆุจุนุฏ
287
00:30:03,470 --> 00:30:07,830
ุดูˆูŠุฉ ุจุชุชูˆุณู‘ุน ูˆู‡ุฐู‡ ุทุจูŠุนุฉ ุงู„ุฏู†ูŠุง ุจุถู„ู‘ุด ุงู„ูˆุงุญุฏ ุนู†ุฏู‡
288
00:30:07,830 --> 00:30:13,030
ุนุณุฑ ุนู„ู‰ ุทูˆู„ ูˆู„ุง ุจุถู„ ุนู†ุฏู‡ ุงู†ูุฑุงุฌุฉ ุนู„ู‰ ุทูˆู„ ุงู„ู„ู‡ ูŠุฎูุถ
289
00:30:13,030 --> 00:30:18,670
ุงู„ู‚ุตุฉ ูˆูŠุฑูุนู‡ุง ูˆู‡ุฐู‡ ุทุจุนู‹ุง ู…ู† ุจุฏูŠู‡ูŠุงุช ุงู„ู„ูŠ ู‡ูˆ ุนู…ู„
290
00:30:18,670 --> 00:30:26,550
ุงู„ู„ู‡ ุณุจุญุงู†ู‡ ูˆุชุนุงู„ู‰ ุทูŠุจ ู†ุฑุฌุน ุงู„ุขู† ูˆู†ูƒู…ู„ ููŠ ุนู†ุฏู†ุง
291
00:30:26,550 --> 00:30:30,170
ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ Theorem
292
00:30:34,330 --> 00:30:44,450
ู„ุงุจู„ุงุณ ุชุญูˆูŠู„ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
293
00:30:44,450 --> 00:30:53,230
ู„ุงุจู„ุงุณ
294
00:30:53,230 --> 00:30:53,550
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
295
00:30:53,550 --> 00:30:53,930
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
296
00:30:53,930 --> 00:30:54,070
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
297
00:30:54,070 --> 00:30:54,690
ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ ู„ุงุจู„ุงุณ
298
00:31:04,380 --> 00:31:14,120
ู„ูˆ Laplace Transform ู„ู„ู€ F1 ูˆLaplace Transform ู„ู„ู€
299
00:31:14,120 --> 00:31:27,260
F2 are both exist ู„ูˆ ูƒุงู†ูˆุง Exist for ู„ู„ู€ S ุงู„ู„ูŠ
300
00:31:27,260 --> 00:31:30,320
ุฃูƒุจุฑ ู…ู† S node then
301
00:31:52,040 --> 00:31:59,900
ุฃูˆ ุจู‚ุฏุฑ ุฃู‚ูˆู„ C1 F1
302
00:31:59,900 --> 00:32:16,940
of S ุฒุงุฆุฏ C2 Capital F2 of S example ู†ู…ุฑุฉ
303
00:32:16,940 --> 00:32:30,900
A find Laplace Transform ู„ู€ 8 ู‡ุฐุง ู†ู…ุฑุฉ A ู†ู…ุฑุฉ
304
00:32:30,900 --> 00:32:45,060
B ู†ุจุฏุฃ ุจุงู„ู€ Laplace Transform ู„ู€ 3 Cos 2T 3 Cos 2T
305
00:32:45,060 --> 00:32:59,120
ู†ุงู‚ุต 5 E ุฃุณ ุณุงู„ุจ 3T ู†ู…ุฑุฉ C Find
306
00:33:01,390 --> 00:33:12,550
Laplace Transform La Cosine ุชุฑุจูŠุน AT Cosine ุชุฑุจูŠุน
307
00:33:12,550 --> 00:33:26,770
2T ู†ู…ุฑุฉ D find Laplace Transform ู„ู€ Cosh AT
308
00:33:39,130 --> 00:33:45,090
ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ุงู„ู„ูŠ ุจุชุญูƒูŠ ู‡ู†ุงูƒ ุฎู„ู‘ูŠ ุจุงู„ูƒ ู‡ู†ุง ูŠุจู‚ู‰
309
00:33:45,090 --> 00:33:51,050
ุจุงุฌูŠ ูˆุจู‚ูˆู„ ุจุฏู†ุง ุงู„ุขู† ู†ุฌู„ู‘ุน ู†ุธุฑูŠุฉ ู‡ุฐู‡ ูˆู†ุญุงูˆู„ ู†ุทุจู‘ู‚
310
00:33:51,050 --> 00:33:54,930
ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู„ูŠ ุฃู† ุงู„ู€ Laplace
311
00:33:54,930 --> 00:34:00,430
Transform ุนุจุงุฑุฉ ุนู† ู…ุคุซู‘ุฑ ุฎุทู‘ูŠ ุดูˆ ูŠุนู†ูŠ ู…ุคุซู‘ุฑ ุฎุทู‘ูŠุŸ ู‡ุฐุง
312
00:34:00,430 --> 00:34:05,200
ุงู„ู„ูŠ ุจุฏู†ุง ู†ุนุฑูู‡ ุจูŠู‚ูˆู„ ู‡ู†ุง ู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… is a
313
00:34:05,200 --> 00:34:11,000
linear operator ู…ุคุซู‘ุฑ ุฎุทู‘ูŠ ุฐุงุชูŠ an ู„ูˆ ูƒุงู† ู„ุงุจู„ุงุณ
314
00:34:11,000 --> 00:34:15,640
ุชุฑุงู†ุณููˆุฑู… ู„ุฏุงู„ุฉ F1 ูˆู„ุงุจู„ุงุณ ุชุฑุงู†ุณููˆุฑู… ู„ุฏุงู„ุฉ F2
315
00:34:15,640 --> 00:34:21,920
ุงุซู†ุชูŠู† ู…ุนุฑููŠู† ูŠุจู‚ู‰ ููŠ ู‡ุฐู‡ ุงู„ุญุงู„ุฉ ุจุฏูŠ ู„ุงุจู„ุงุณ ู„ู€ C1 F1
316
00:34:21,920 --> 00:34:28,660
ุฒุงุฆุฏ C2 F2 ู„ู…ุง ุฃู‚ูˆู„ ู…ุคุซู‘ุฑ ุฎุทู‘ูŠ ู…ุนู†ุงุชู‡ ู„ุงุจู„ุงุณ ุจุฏูŠ ูŠุฏุฎู„
317
00:34:28,660 --> 00:34:33,120
ุนู„ู‰ ูƒู„ Term ู…ู† ู‡ุฐูŠู† ุงู„ู€ TermูŠู† ูŠุจู‚ู‰ ุจุตูŠุฑ Laplace
318
00:34:33,120 --> 00:34:37,960
ู„ู„ุฃูˆู„ ุฒูŠ Laplace ู„ู„ุซุงู†ูŠ ุงู„ู€ Constant ุจู†ู‚ุฏุฑ ู†ุทู„ุนู‡
319
00:34:37,960 --> 00:34:43,600
ุจุฑู‡ Laplace ูŠุจู‚ู‰ C1 Laplace ู„ู„ู€ F1 ุฒูŠ C2 Laplace ู„ู„ู€
320
00:34:43,600 --> 00:34:48,880
F2 Laplace ู„ู„ู€ F1 ู„ูˆ ุนุฏู‘ูŠุชู‡ุง ุฑู…ุฒ Capital F1 of S
321
00:34:48,880 --> 00:34:56,310
ูŠุจู‚ู‰ ุจุตูŠุฑ C1 F1 of S ูˆุงู„ุซุงู†ูŠุฉ C2 F2 of S ุจู†ุฑูˆุญ
322
00:34:56,310 --> 00:35:00,030
ู†ุณุชุฎุฏู… ู‡ุฐุง ุงู„ูƒู„ุงู… ููŠ ุฅูŠุฌุงุฏ Laplace Transform
323
00:35:00,030 --> 00:35:07,190
ู„ู„ุฏูˆุงู„ ุงู„ู…ุฎุชู„ูุฉ ูˆูƒุฐู„ูƒ ุจุงุณุชุฎุฏุงู… ุงู„ู…ุซุงู„ูŠู† ุงู„ุณุงุจู‚ูŠู†
324
00:35:07,190 --> 00:35:14,310
ุงู„ู„ูŠ ุฃุฎุฐู†ุงู‡ู… ู‚ุจู„ ู‚ู„ูŠู„ ูŠุจู‚ู‰ ุจุฏู‘ูŠ ุฃุฌูŠ ู„ู†ู…ุฑุฉ A ุจูŠู‚ูˆู„
325
00:35:14,310 --> 00:35:19,110
ู„ู‡ุง Laplace ู„ู€ 8 ุจู‚ูˆู„ ู…ุง ุจุนุฑูู†ูŠ Laplace ุฃู†ุง
326
00:35:19,110 --> 00:35:24,730
ุจุนุฑู Laplace ู„ู„ูˆุงุญุฏ ุตุญ ุจู‚ุฏุฑ ุฃู‚ูˆู„ ู„ู‡ ู‡ุฐู‡ Laplace
327
00:35:24,730 --> 00:35:32,400
ู„ู€ 8 ููŠ 1 ู…ุธุจูˆุท ุงู„ู€ 8 ู‡ูŠ ุงู„ู…ู‚ุฏุงุฑ ุงู„ุซุงุจุช
328
00:35:32,400 --> 00:35:38,100
ุจู‚ุฏุฑ ุฃุทู„ุนู‡ ุจุฑุฉ ูŠุง ุด ุจุฑุฉ Laplace ูŠุจู‚ู‰ ู‡ุฐู‡ 8 ููŠ
329
00:35:38,100 --> 00:35:44,440
Laplace ู„ู„ูˆุงุญุฏ 8 ู‚ุฏู‘ูŠุด Laplace ู„ู„ูˆุงุญุฏ 1 ุนู„ู‰
330
00:35:44,440 --> 00:35:52,260
S ูู‚ุท ู„ุบูŠุฑ ูŠุจู‚ู‰ 8 ุนู„ู‰ S ู‡ุฐุง Laplace ู„ู„ู€ 8
331
00:35:52,260 --> 00:35:57,080
ุทุจ Laplace Laplace ู„ู€ 100 ู„ู…ูŠุฉ ู…ู†ู‡ู… 100 ู„ูŠุณ ุญุทู‘ ุงู„ุฑู‚ู… ุงู„ู„ูŠ
332
00:35:57,080 --> 00:36:00,560
ุจุฏู‘ูƒ ุงูŠุงู‡ ุจุณ ุฃู†ุง ูƒู†ุช ุจุฃุนู„ู‰ ุงุณู…ูƒ ูˆุฌุจุช Laplace ุฅูŠู‡
333
00:36:00,560 --> 00:36:04,740
ุงู„ู„ูŠุŸ ู‡ุฐุง ุจุงู„ู†ุณุจุงู„ูŠ ุฅูŠู‡ุŸ ุจุฏู†ุง ู†ู…ุฑู‘ ุจูŠู‡ ู†ู…ุฑู‘ ุจูŠู‡
334
00:36:04,740 --> 00:36:10,680
ู‚ู„ู‘ูŠ Laplace ุฃูŠูˆุฉ ู‡ุฐู‡ ุงู„ู„ูŠ ู‡ูŠ Laplace ู„ู…ูŠู†ุŸ ุงู„ู„ูŠ
335
00:36:10,680 --> 00:36:18,140
3 Cos 2T ู†ุงู‚ุต 5 E ุฃุณ ุณุงู„ุจ 3T
336
00:36:18,140 --> 00:36:26,670
ูˆุชุณุงูˆูŠ ู‡ุฐู‡ ู‡ูŠ ู‡ุฐู‡ ุจุงู„ุถุจุท ุตุญุŸ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุจุฏู‘ุง ุฃู‚ูˆู„
337
00:36:26,670 --> 00:36:29,690
ุงู„ู€ Constant ููŠ Laplace ู„ู„ุฏุงู„ุฉ ุงู„ุฃูˆู„ู‰ ู†ุงู‚ุต
338
00:36:29,690 --> 00:36:33,310
ุงู„ู€ Constant ููŠ Laplace ู„ู„ุฏุงู„ุฉ ุงู„ุซุงู†ูŠุฉ ูŠุจู‚ู‰ ู‡ุฐุง
339
00:36:33,310 --> 00:36:42,950
ุนุจุงุฑุฉ ุนู† 3 Laplace ู„ู…ูŠู†ุŸ ู„ูŠู‡ุŸ Cos 2T ู†ุงู‚ุต 5
340
00:36:42,950 --> 00:36:49,600
ููŠ Laplace ู„ู„ู€ E ุฃุณ ุณุงู„ุจ 3T ู‡ุฐุง ุงู„ูƒู„ุงู… ูŠุณุงูˆูŠ
341
00:36:49,600 --> 00:36:55,320
3 ููŠู‡ ุจุฏูŠ Laplace ู„ู€ Cos 2T ุงู„ู„ูŠ ู‡ูŠ ุนุจุงุฑุฉ
342
00:36:55,320 --> 00:37:04,940
ุนู† S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ ูƒู…ุŸ 2 ุชุฑุจูŠุน ุญุณุจู†ุงู‡ุง ู‚ุจู„
343
00:37:04,940 --> 00:37:11,210
ู‚ู„ูŠู„ ู…ุธุจูˆุทุŸ ูˆู‚ู„ู†ุง ู„ูƒ ุชุดูŠูƒู‡ุง ูŠุนู†ูŠ ู…ุธุจูˆุทุŸ ูŠุจู‚ู‰ ุดูŠู„ู†ุง
344
00:37:11,210 --> 00:37:15,050
ุงู„ู€ A ูˆุญุทูŠู†ุง ุงู„ู„ูŠ ู‡ูˆ ุงู„ุฑู‚ู… ุงู„ู„ูŠ ู…ุถุฑูˆุจ ููŠ ุงู„ุฒุงูˆูŠุฉ
345
00:37:15,050 --> 00:37:20,910
ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ 2 ู‡ุฐู‡ ุงู„ุฃูˆู„ู‰ ุงู„ุซุงู†ูŠุฉ ู†ุงู‚ุต 5 ููŠ
346
00:37:20,910 --> 00:37:30,430
ู†ูŠุฌูŠ ู„ู‡ุฐู‡ ุงู„ู€ Exponential ุงู„ู„ูŠ ู‡ูˆ 1 ุนู„ู‰ S ุฒุงุฆุฏ
347
00:37:30,430 --> 00:37:38,350
3 ุตุงุฑุช ุงู„ู…ุณุฃู„ุฉ ู‡ูŠ 3S ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ 4
348
00:37:38,350 --> 00:37:46,270
ู†ุงู‚ุต 5 ุนู„ู‰ S ุฒุงุฆุฏ 3 ุฃุธู† ุฃู† ู‡ุฐุง ู‡ูˆ ุงู„ู…ุถุงุนู
349
00:37:46,270 --> 00:37:54,610
ุงู„ู…ุดุชุฑูƒ ูƒู„ู‡ S ุชุฑุจูŠุน ุฒุงุฆุฏ 4 ููŠ S ุฒุงุฆุฏ 3 ู‡ุฐูŠ
350
00:37:54,610 --> 00:38:05,470
ุจูŠุตูŠุฑ 3S ููŠ S ุฒุงุฆุฏ 3 ู†ุงู‚ุต 5 ููŠ S ุชุฑุจูŠุน
351
00:38:05,470 --> 00:38:13,940
ุฒุงุฆุฏ 4 ุงู„ู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ุดูƒู„ ุงู„ุชุงู„ูŠ ุชุณุงูˆูŠ ู‡ุฐู‡ 3
352
00:38:13,940 --> 00:38:23,180
S ุชุฑุจูŠุน ุฒุงุฆุฏ 9S ุงู„ู€ Term ุงู„ุซุงู†ูŠ ู†ุงู‚ุต 5
353
00:38:23,180 --> 00:38:31,260
S ุชุฑุจูŠุน ู†ุงู‚ุต 20 ูƒู„ู‡ ุนู„ู‰ ุงู„ู…ู‚ุงู… ุงู„ู„ูŠ ู‡ูˆ S ุชุฑุจูŠุน
354
00:38:31,260 --> 00:38:38,340
ุฒุงุฆุฏ 4 ููŠ S ุฒุงุฆุฏ 3 ูŠุจู‚ู‰ ุงู„ู†ุชูŠุฌุฉ ุนู„ู‰ ุงู„ูˆุฌู‡
355
00:38:38,340 --> 00:38:47,870
ุงู„ุชุงู„ูŠ ู†ุงู‚ุต 2S ุชุฑุจูŠุน ูˆู‡ู†ุง ุฒุงุฆุฏ 9S ูˆู‡ู†ุง
356
00:38:47,870 --> 00:38:57,130
ู†ุงู‚ุต 20 ูƒู„ู‡ ู…ู‚ุณูˆู…ู‹ุง ุนู„ู‰ S ุชุฑุจูŠุน ุฒุงุฆุฏ 4 ููŠ ู…ูŠู†
357
00:38:57,130 --> 00:39:03,770
ููŠ S ุฒุงุฆุฏ 3 ูŠุจู‚ู‰ ู‡ุฐุง ู„ู€ Laplace Transform ู„ู„ุฏุงู„ุฉ
358
00:39:03,770 --> 00:39:08,370
ู‡ุฐู‡ ุทุจ ู‡ุฐู‡ ูŠุง ุจู†ุงุช ู„ูˆ ุนู…ู„ุชู„ู‡ุง Partial Fraction
359
00:39:08,370 --> 00:39:16,730
ูƒุณูˆุฑ ุฌุฒุฆูŠุฉ ุจุทู„ุน ุจุทู„ุน ู‡ุฐุง ุตุญุŸ ู…ุด ู‡ุฐุง ูˆุญุฏู†ุง
360
00:39:16,730 --> 00:39:20,510
ุงู„ู…ู‚ุงู…ุงุช ูŠุจู‚ู‰ ู„ูˆ ุจุฏู‘ุง ุฃุนู…ู„ ูƒุณูˆุฑ ุจุชูƒูˆู† ุนู†ุฏูŠ ู‡ุฐู‡
361
00:39:20,510 --> 00:39:24,650
ุจุงู„ุฏุฑุฌุฉ ุนู„ู‰ ุงู„ุฃุตู„ ุชุจุนู‡ุง ูŠุจู‚ู‰ ู‡ุฐุง ู‡ูˆ ุงู„ุฃุตู„ ุชุจุนู‡ุง
362
00:39:24,650 --> 00:39:30,130
ุทุจุนู‹ุง ู„ูŠุด ู‡ูˆ ุจูŠู‚ูˆู„ูƒ ูƒุฏู‡ ุงู„ูƒู„ุงู… ุฅู†ู‡ ุณูŠู„ุฒู…ู†ุง ุจุนุฏ ุดูˆูŠุฉ
363
00:39:30,130 --> 00:39:35,350
ุฅู† ุดุงุก ุงู„ู„ู‡ ู†ุถุทุฑ ู†ุนู…ู„ ูƒุณูˆุฑ ุฌุฒุฆูŠุฉ ู„ู…ู‚ุฏุงุฑ ู…ุซู„ ู‡ุฐุง
364
00:39:35,350 --> 00:39:40,310
ุงู„ู…ู‚ุฏุงุฑ ู…ุง ู‡ู†ู‚ุฏุฑุด ู†ูˆุฌุฏ Laplace Transform ู„ู‡ ุฃูˆ ู†ูˆุฌุฏ
365
00:39:40,310 --> 00:39:42,710
ู…ุนูƒูˆุณ Laplace Transform
366
00:39:55,960 --> 00:40:03,920
ู‡ุฐุง ู†ู…ุฑุฉ B ูŠุจุฏุฃ ูŠุฌูŠ ู„ู†ู…ุฑุฉ C ู†ู…ุฑุฉ C ุจูŠู‚ูˆู„ ุงู„ู„ูŠ ุจุฏู‘ู‡
367
00:40:03,920 --> 00:40:10,760
Laplace Transform ูˆูŠุฑุงุถูŠู‡ C Laplace ู„ู€ Cosine ุชุฑุจูŠุน ุจุฏู†ุง Laplace
368
0
401
00:44:36,470 --> 00:44:45,150
ูƒูˆุณุงูŠู† ุจุณ ุงู„ุฅุดุงุฑุฉ ููŠ ุงู„ู…ู‚ุงู… ุจุงู„ุณุงู„ุจ ูˆู„ูŠุณ ุจุงู„ู…ูˆุฌุจ
402
00:44:45,150 --> 00:44:49,790
ูƒูŠู
403
00:44:49,790 --> 00:44:50,390
ูƒูŠูุŸ
404
00:44:53,080 --> 00:44:58,040
ู„ุง ุชุญูุธูŠู‡ุงุŒ ูˆู‡ู†ุตูˆุฑู‡ุง ู„ูƒ ุฅู† ุดุงุก ุงู„ู„ู‡ ูƒู„ ุงู„ Laplace transform
405
00:44:58,040 --> 00:45:02,880
ุจุฏู„ ุงู„ุฏุงู„ุฉ ุงู„ุนุดุฑูŠู† ุฏุงู„ุฉ ูˆู†ุนุทูŠูƒ ูŠุง ููŠู„ู…
406
00:45:02,880 --> 00:45:08,460
ุชุนุงู„ูŠ ุชูุถู„ูŠ ู‡ูŠู‡ุง ู…ุนูƒู ุงุณุชุฎุฏู…ูŠู‡ุง ู…ุชู‰ ู…ุง ู„ุงุฒู… ุงู„ุฃู…ุฑ
407
00:45:08,460 --> 00:45:13,220
ูŠุนู†ูŠ ุงู„ุตูุญุฉ ุงู„ุฃุฎูŠุฑุฉ ููŠ ูˆุฑู‚ุฉ ุงู„ุฃุณุฆู„ุฉ ุจุชูƒูˆู† ุงู„
408
00:45:13,220 --> 00:45:17,220
Laplace transform ู„ู„ุฏูˆุงู„ ูƒู„ู‡ุง ุงู„ู„ูŠ ุจุชู„ุฒู…ูƒ ูˆุฒูŠุงุฏุฉ
409
00:45:17,220 --> 00:45:23,250
ุดูˆูŠุฉ ุจุณ ุจุฏูŠ ุชุนุฑููŠ ู„ูˆ ู‚ู„ุช ู„ูƒ use the definition to
410
00:45:23,250 --> 00:45:26,850
find Laplace transform ู„ุฏุงู„ุฉ ูู„ุงู†ูŠุฉ ูˆุฃุนุทูŠุชูƒ ุฏุงู„ุฉ
411
00:45:26,850 --> 00:45:32,990
ูŠุจู‚ู‰ ุจุฏูƒ ุชุฑูˆุญูŠ ุชุดุชุบู„ูŠ ุงู„ุดุบู„ ู‡ุฐุงุŒ ุชู…ุงู…ุŸ ู„ูƒู† ุฅุฐุง ู…ุง
412
00:45:32,990 --> 00:45:36,850
ู‚ู„ุชู ู‡ุฐุง ุงู„ูƒู„ุงู… ูˆู„ุฒู…ุช Laplace ู„ุฃูŠ ุฏุงู„ุฉ ุจุฌูŠุจู‡ุง ู…ู†
413
00:45:36,850 --> 00:45:40,990
ุงู„ุฌุฏูˆู„ ุฏูˆุฑูŠุŒ ุงู„ุฌุฏูˆู„ ู‡ุฐุง ู‡ู†ุนุทูŠูƒู… ุฅูŠุงู‡ ูŠูˆู… ุฐู„ูƒ ุงู„ู…ุฑุฉ
414
00:45:40,990 --> 00:45:44,270
ุงู„ู‚ุงุฏู…ุฉุŒ ุฏุง ู…ู† ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฏูŠ ูƒู„ ูˆุงุญุฏ ููŠูƒู… ูŠูƒูˆู†
415
00:45:44,270 --> 00:45:47,570
ูŠูƒุชุจู‡ุง ู…ุนุงู‡ุง ู„ุฅู†ู‡ ููŠ ุฌุฏูˆู„ ุจุฏูŠ ุฃู‚ูˆู„ ู„ูƒ ูŠุงู„ุง ุนุดุงู†
416
00:45:47,570 --> 00:45:52,390
ุชุชุนูˆุฏูŠ ุชูุชุดูŠ ูˆุชุนุฑููŠ ูƒูŠู ุชู‚ูˆู„ูŠ ู…ู† ุงู„ุฌุฏูˆู„ Laplace
417
00:45:52,390 --> 00:45:56,510
transform ู„ุฏุงู„ุฉ ู…ุง ูƒู„ ูˆุงุญุฏ ุงู„ู…ุฑุฉ ุงู„ุฌุงูŠุฉ ูŠูƒูˆู†
418
00:45:56,510 --> 00:45:57,810
ูŠูƒุชุจู‡ุง ู…ุนุงู‡ุง ุฏูŠ ุฑุจุงู„ูƒู…
419
00:46:01,630 --> 00:46:06,770
ุทูŠุจ ููŠู†ุง ูƒู…ุงู† ู†ุธุฑูŠุฉ ุจู†ุงุช ุจุชุฌูŠุจ Laplace transform
420
00:46:06,770 --> 00:46:12,390
ู„ู„ู…ุดุชู‚ุงุช ูŠุนู†ูŠ ู„ูˆ ุงุดุชู‚ูŠู†ุงุŒ ุฏู‡ ุงู„ู„ูŠ ุจุฏูŠ Laplace ู„ู„ู…ุดุชู‚ุฉ
421
00:46:12,390 --> 00:46:16,150
ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุชู†ุต ุนู„ู‰ ู…ุง ูŠู„ูŠ
422
00:46:19,780 --> 00:46:24,840
ุทุจ ู„ูŠุด ุจุฏู†ุง Laplace transform ู„ู‡ุฐู‡ ุงู„ู…ุดุชู‚ุฉุŸ ู„ุฃู†
423
00:46:24,840 --> 00:46:29,940
ู…ูˆุถูˆุนู†ุง ู…ูˆุถูˆุน ู…ุนุงุฏู„ุงุช ุชูุงุถู„ูŠุฉ ุจุฏู†ุง ู†ุฌูŠุจ ุญู„
424
00:46:29,940 --> 00:46:36,120
ุงู„ู…ุนุงุฏู„ุฉ ุงู„ุชูุงุถู„ูŠุฉ ุจุงุณุชุฎุฏุงู… Laplace transform ูŠุจู‚ู‰
425
00:46:36,120 --> 00:46:43,560
ุงู„ู†ุธุฑูŠุฉ ุจุชู‚ูˆู„ ู…ุง ูŠุฃุชูŠ Theorem:
426
00:46:43,560 --> 00:47:00,950
f of t is a function such that ุจุญูŠุซ ุฃู† both Laplace
427
00:47:00,950 --> 00:47:12,190
transform of both Laplace transform ู„ู„ู€ F of T and
428
00:47:12,190 --> 00:47:27,640
Laplace transform ู„ู„ู€ F' of T exists then
429
00:47:27,640 --> 00:47:31,240
ุจุฏู†ุง
430
00:47:31,240 --> 00:47:40,380
Laplace transform ู„ู„ู€ F' of T ุจู†ุนุฑู ุนู„ูŠู‡ุง ุฅู†ู‡ุง S ููŠ
431
00:47:40,380 --> 00:47:52,260
Laplace transform ู„ู„ู€ F of T ู†ุงู‚ุต ุงู„ู€ F of Zero ู‡ุฐู‡
432
00:47:52,260 --> 00:47:59,940
ู„ู‡ุง ุตูŠุบุฉ ุซุงู†ูŠุฉ ูƒู…ุงู† ูˆู‡ูŠ S ููŠ ู…ูŠู†ุŸ ููŠ Capital X as
433
00:47:59,940 --> 00:48:07,640
a function of S ู†ุงู‚ุต ุงู„ู€ F of Zero ู‡ุฐู‡ ู„ูˆ ูƒุงู†ุช
434
00:48:07,640 --> 00:48:13,320
ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ ู„ูˆ ุฌูŠู†ุง ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ Similarly
435
00:48:15,900 --> 00:48:22,260
Laplace transform ู„ู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ as a function of T
436
00:48:22,260 --> 00:48:34,360
ุจุฏูŠ ุฃุณุงูˆูŠ S squared Laplace ู„ู„ู€ F of T ู†ุงู‚ุต ุงู„ู€ S ููŠ ุงู„ู€
437
00:48:34,360 --> 00:48:42,800
F of Zero ู†ุงู‚ุต ุงู„ู€ F prime of Zero in general
438
00:48:46,850 --> 00:48:53,970
ุนู„ู‰ ูˆุฌู‡ ุงู„ุนู…ูˆู… Laplace transform ู„ู„ุชูุงุถู„ ุงู„ู†ูˆู†ูŠ as
439
00:48:53,970 --> 00:48:55,690
a function of T
440
00:49:02,760 --> 00:49:13,960
ู†ุงู‚ุต S<sup>n</sup> ู†ุงู‚ุต 1 ููŠ ุงู„ู€ F of Zero ู†ุงู‚ุต S<sup>n</sup> ู†ุงู‚ุต
441
00:49:13,960 --> 00:49:23,220
2 ููŠ ุงู„ู€ F prime of Zero ู†ุงู‚ุต ... ุงู„ู„ูŠ ู‡ูˆ ุงู„ู€ S
442
00:49:24,240 --> 00:49:30,300
ููŠ ุงู„ู€ F to the derivative of N minus 2 ุนู†ุฏ ุงู„
443
00:49:30,300 --> 00:49:37,560
Zero ู†ุงู‚ุต F to the derivative of N minus 1 ุนู†ุฏ
444
00:49:37,560 --> 00:49:38,160
ุงู„ Zero
445
00:49:57,000 --> 00:50:02,900
ุงู„ุญุณุงุจุงุช ุงู„ู„ูŠ ูุงุชุช ูƒุงู†ุช ูƒู„ู‡ุง ุญุณุงุจุงุช Laplace ู„ู„ุฏูˆุงู„
446
00:50:02,900 --> 00:50:09,080
ู„ูƒู† ู‡ู†ุง ุจูŠุฌูŠ ุญุณุงุจุงุช Laplace ู„ู…ุดุชู‚ุงุช ุงู„ุฏูˆุงู„ ู‡ู†ุงุฎุฏ
447
00:50:09,080 --> 00:50:12,820
Laplace ุงู„ู…ุดุชู‚ุฉ ุงู„ุฃูˆู„ู‰ Laplace ุงู„ู…ุดุชู‚ุฉ ุงู„ุซุงู†ูŠุฉ ูˆู…ู† ุซู…
448
00:50:12,820 --> 00:50:18,280
ู†ุนู…ู… Laplace ุงู„ู…ุดุชู‚ุฉ ุงู„ู†ูˆู†ูŠุฉ ู„ูˆ ุฌูŠู†ุง ู„ู„ุฌุฏูˆู„ ู‡ุฐุง
449
00:50:18,280 --> 00:50:24,200
ูุชุญุช ููŠู‡ ููŠ ุงู„ูƒุชุงุจ ุจุชู„ุงู‚ูŠ ู‡ุฐู‡ ู‡ูŠ ุขุฎุฑ Laplace ููŠ
450
00:50:24,200 --> 00:50:30,760
ุงู„ุฌุฏูˆู„ ุฃุณูู„ู‡ ุขุฎุฑ ูˆุงุญุฏุฉ ุฅูŠุด ุจูŠู‚ูˆู„ ุงู„ู†ุธุฑูŠุฉุŸ ุจูŠู‚ูˆู„ ู„ูŠ
451
00:50:30,760 --> 00:50:36,020
ู…ุง ูŠุฃุชูŠ f of t ู‡ูŠ ุงู„ function ุจุญูŠุซ Laplace ู„ู€ f of t
452
00:50:36,020 --> 00:50:41,340
ูˆู„aplace ู„ู„ู…ุดุชู‚ุฉ exist ุฅู† ุญุฏุซ ุฐู„ูƒ ูŠุนู†ูŠ ุฅูŠู‡ุŸ ุจู‚ุฏุฑ
453
00:50:41,340 --> 00:50:45,640
ุฃุฌูŠุจ Laplace ู„ู„ู…ุดุชู‚ุฉ ุจุฏู„ุงู„ุฉ Laplace ู„ู„ุฏุงู„ุฉ ูƒูŠูุŸ
454
00:50:45,640 --> 00:50:51,000
ูƒุงู„ุชุงู„ูŠ ุจู‚ูˆู„ S ููŠ Laplace ู„ู€ f of t ู†ุงู‚ุต ุงู„ู€ f of
455
00:50:51,000 --> 00:50:56,270
Zero ุฃูˆ ุงู„ู€ F of T ู„ู€ Laplace ุงู„ู„ูŠ ู‡ุจู‚ู‰ ุนุจู‘ุฑู‡ ุนู†ู‡ ุจุตูŠุบุฉ
456
00:50:56,270 --> 00:51:02,430
X of S ูŠุนู†ูŠ ู‡ุฐู‡ ุฃู…ุงู†ุงุช function ูƒู„ู‡ุง ููŠ S capital
457
00:51:02,430 --> 00:51:08,190
X of S ูˆู‡ู†ุง ู†ุงู‚ุต ุงู„ู€ F of Zero ู„ูˆ ุนู†ุฏูŠ ุงู„ู…ุดุชู‚ุฉ
458
00:51:08,190 --> 00:51:12,350
ุงู„ุซุงู†ูŠุฉ ูˆุจุฏูŠ ุฃุฌูŠุจู„ู‡ุง Laplace ูŠุจู‚ู‰ ุจุฃุจุฏุฃ ุงู„ู€ S ุงู„ุฃุณ
459
00:51:12,350 --> 00:51:17,940
ุงู„ุชุงุจุน ู‡ู†ุง ูƒุฏู‡ ูƒุงู† ู„ุฃู† ุงู„ู…ุดุชู‚ุฉ 1 ู‡ู†ุง ู…ุดุชู‚ุฉ ุซุงู†ูŠุฉ
460
00:51:17,940 --> 00:51:22,640
ุจุฏุฃุช ุจู€ S ุชุฑุจูŠุน S ุจุนุฏู‡ุง ุชุนุฏู‰ ู…ู† ุงู„ู€ S ุจุตูŠุฑ S of Zero
461
00:51:22,640 --> 00:51:27,660
ูŠุจู‚ู‰ S ุชุฑุจูŠุน Laplace F of T ู†ุงู‚ุต ุงู„ู€ S ููŠ F of Zero
462
00:51:27,660 --> 00:51:34,380
ู†ุงู‚ุต F prime of Zero ูˆู‡ูƒุฐุง ุงู„ุขู† ู„ูˆ ุฌูŠู†ุง ู†ุนู…ู…ู‡ุง ูŠุจู‚ู‰
463
00:51:34,380 --> 00:51:40,300
ุงู„ู€ Laplace ุงู„ู…ุดุชู‚ ู‚ุงู†ูˆู†ูŠุฉ ู„ู€ F ู‡ูˆ S to the power N ู‡ุฐุง
464
00:51:40,300 --> 00:51:44,620
derivative ูˆู‡ุฐุง ุฃุณ ููŠ X to the power S ูƒู€ function
465
00:51:44,620 --> 00:51:49,700
ู†ุงู‚ุต ุงู„ู€ S ุจุฏู‡ ูŠู†ู‚ุต ุงู„ุฃุณ ุชุจุนู‡ุง 1 ููŠ ุงู„ู€ F of Zero
466
00:51:49,700 --> 00:51:54,300
ู†ุงู‚ุต ุงู„ู€ S ุงู„ู€ N ุจุฏู‡ ูŠู†ู‚ุต 1 ู‡ู†ุง ุนู† ุงู„ู„ูŠ ู‚ุจู„ู‡ ููŠ
467
00:51:54,300 --> 00:51:58,800
ุงู„ู€ F prime of 0 ู†ุธู„ ู…ุงุดูŠ ู„ุบุงูŠุฉ ู…ุง ู†ูˆุตู„ S ูˆ S 1
468
00:51:58,800 --> 00:52:05,600
ุงู„ู…ุดุชู‚ุฉ N ู†ู‚ุต 2 ู†ู‚ุต ุงู„ู€ F N minus ุงู„ู€ 1 ุนู†ุฏ Z
469
00:52:05,600 --> 00:52:10,340
ุงู„ู…ุฑุฉ ุงู„ู‚ุงุฏู…ุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุจุฏู†ุง ู†ุฃุฎุฐ ุฃู…ุซู„ุฉ ุนู„ู‰ ูƒูŠู
470
00:52:10,340 --> 00:52:15,540
ู†ุญูŠู„ ู…ุนุงุฏู„ุฉ ุชูุงุถู„ูŠุฉ ุจูˆุงุณุทุฉ Laplace transform
471
00:52:15,540 --> 00:52:20,360
ูˆุจุงุณุชุฎุฏุงู… ู‡ุฐู‡ ุงู„ู†ุธุฑูŠุฉ ุฅู† ุดุงุก ุงู„ู„ู‡ ุชุนุงู„ู‰ ุฃุนุทูŠูƒู…
472
00:52:20,360 --> 00:52:20,580
ุงู„ุนููˆ