|
1 |
|
00:00:19,760 --> 00:00:25,200 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ููุชูู ุงูุขู ุฅูู ุดุจุชุฑ ุชุณุนุฉ |
|
|
|
2 |
|
00:00:25,200 --> 00:00:31,020 |
|
ุดุจุชุฑ ุชุณุนุฉ ูุชุญุฏุซ ุนู ูุงุจูุงุณ transforms ุชุญูููุงุช |
|
|
|
3 |
|
00:00:31,020 --> 00:00:36,440 |
|
ูุงุจูุงุณ ุงูุชุญูููุงุช ูุฐูุ ูุฐู ุฃุญูุงููุง ุจูููู ุงูุฏุงูุฉ |
|
|
|
4 |
|
00:00:36,440 --> 00:00:41,860 |
|
ุตุนุจุฉ ุงูุชุนุงู
ู ู
ุนูุง ููุญูููุง ุฅูู ุตูุฑุฉ ู
ูุงูุฆุฉ ููุง |
|
|
|
5 |
|
00:00:41,860 --> 00:00:46,520 |
|
ุณูู ุงูุชุนุงู
ู ู
ุนูุง ูุฐู ุงูุชุญูููุฉ ูุณู
ููุง ุชุญูููุฉ |
|
|
|
6 |
|
00:00:46,520 --> 00:00:51,580 |
|
Laplace ูุฃู ูู ุงูุฐู ุงูุชุดู ุงูุดุบู ูุฐู. ูุฃุฎุฐ ุฃูู |
|
|
|
7 |
|
00:00:51,580 --> 00:00:55,340 |
|
section ูู ูุฐุง ุงูุดุจุชุฑ ุงููู ูู the Laplace transform |
|
|
|
8 |
|
00:00:55,340 --> 00:01:00,700 |
|
ุณูุนุทู ุชุนุฑูู ูู
ู ุซู
ูุฃุฎุฐ ุฃู
ุซูุฉ ู
ุฎุชููุฉ ุนูู ููููุฉ |
|
|
|
9 |
|
00:01:00,700 --> 00:01:07,060 |
|
ุญุณุงุจ the Laplace transform ููุฏูุงู ุงูู
ุฎุชููุฉ. ูููู |
|
|
|
10 |
|
00:01:07,060 --> 00:01:11,000 |
|
ุงูุชุฑุถ ุฃู ุงูู f of t ูู function ู
ุนุฑูุฉ ุนูู ุงููุชุฑุฉ |
|
|
|
11 |
|
00:01:11,000 --> 00:01:15,830 |
|
ู
ู zero ุฅูู infinity. Laplace transform the function f |
|
|
|
12 |
|
00:01:15,830 --> 00:01:20,670 |
|
of t denoted by ูุจูู Laplace transform ูุฏุงูุฉ f of |
|
|
|
13 |
|
00:01:20,670 --> 00:01:26,870 |
|
t ูุนุทูู ุฑู
ุฒ L of f of t ูุนูู Laplace ูู F of T |
|
|
|
14 |
|
00:01:26,870 --> 00:01:32,330 |
|
ุงูู L ูุฐู ุงูุญุฑู ุงูุฃูู ูููู
ุฉ Laplace ุฃู capital F |
|
|
|
15 |
|
00:01:32,330 --> 00:01:36,650 |
|
of S ูุนูู ูุนุชุจุฑู function ูู ู
ูุ function ูู S |
|
|
|
16 |
|
00:01:36,650 --> 00:01:41,010 |
|
ูู
ุงุฐุง function ูู Sุ ูุฐุง ู
ุซููุง ูุฌูุจ ุนููู ุจุนุฏ ูููู |
|
|
|
17 |
|
00:01:41,580 --> 00:01:45,760 |
|
ูููู ููุงุจูุงุณ ุชุฑุงูุณููุฑู
ุงูู F of T ุฃู ุงูู F of S is |
|
|
|
18 |
|
00:01:45,760 --> 00:01:52,680 |
|
defined by ูุงุจูุชุงู F of S ูุณุงูู ุชูุงู
ู ู
ู 0 ุฅูู ุฅูููููุชู |
|
|
|
19 |
|
00:01:52,680 --> 00:01:58,620 |
|
ููู E ูุงูุต ST ููู F of T ุฏู T ุญูุซ S parameter ุฃู any |
|
|
|
20 |
|
00:01:58,620 --> 00:02:03,100 |
|
real number. ูุฐุง ุงูุขู ูุงุถุญ ุฃูู improper integral |
|
|
|
21 |
|
00:02:03,100 --> 00:02:04,340 |
|
ุจุณุจุจ ูุฌูุฏ man |
|
|
|
22 |
|
00:02:12,050 --> 00:02:16,210 |
|
ุนู ุทุฑูู ุงูู Limit ุจูุจุฏุฃ ุชุฐูุจ ุฅูู ุงูู Infinity ูู
ูุ |
|
|
|
23 |
|
00:02:16,210 --> 00:02:17,850 |
|
ูุชูุงู
ู ู
ู Zero ุฅูู B |
|
|
|
24 |
|
00:02:21,360 --> 00:02:26,240 |
|
ููุฎูู P ุชุฑูุญ ูู Infinity ูุจุงูุชุงูู ุฃูุฌุฏูุง ูู Laplace |
|
|
|
25 |
|
00:02:26,240 --> 00:02:31,460 |
|
transform. ูุชูุฌุชู ุงูุชูุงู
ู ูุงุฒู
ุชุทูุน function ูู S |
|
|
|
26 |
|
00:02:31,460 --> 00:02:37,320 |
|
ูู
ู ููุง ููููุง F of S ุถุฑูุฑู ุฌุฏุง ูุงุฒู
ุชุทูุน function |
|
|
|
27 |
|
00:02:37,320 --> 00:02:41,650 |
|
ูู S ุฒู ู
ุง ููุดูู ุงูุขู. ุฃูู ู
ุซุงู ูุงู ูู ุฎุฐ ููู F of T |
|
|
|
28 |
|
00:02:41,650 --> 00:02:45,450 |
|
ู ุณู E ุฃุณ AT ู T greater than or equal to zero |
|
|
|
29 |
|
00:02:45,450 --> 00:02:49,770 |
|
ูุงู ูู ูุงุชู ูุงุจูุงุณ ููู E ุฃุณ AT ุทุจุนูุง ุงูู area number |
|
|
|
30 |
|
00:02:49,770 --> 00:02:54,470 |
|
ู ูุงุชู ูุงุจูุงุณ ูููุงุญุฏ ู ูุงุจูุงุณ ูู E ุฃุณ ูุงูุต AT ู |
|
|
|
31 |
|
00:02:54,470 --> 00:02:58,630 |
|
ูุงุจูุงุณ ูู E ุฃุณ ูุงูุต ุฎู
ุณุฉ T. ูุนูู ุชุทุจูู ู
ุจุงุดุฑ ุฏู |
|
|
|
32 |
|
00:02:58,630 --> 00:03:05,000 |
|
ุชุทุจูู ู
ุจุงุดุฑ ุนูู C. ุฅุฐุง ุจุฏุฃูุง ูุญุณุจ ูุงุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
33 |
|
00:03:05,000 --> 00:03:11,760 |
|
ููุฏุงูุฉ ุงูุฃููู ูุจูู ูุฐุง ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ููู E ุฃูุณ AT |
|
|
|
34 |
|
00:03:11,760 --> 00:03:16,520 |
|
ุจุฏู ุฃุฑุฌุน ููุชุนุฑูู ูุจูู ูู ุชูุงู
ู ู
ู Zero ุฅูู |
|
|
|
35 |
|
00:03:16,520 --> 00:03:23,180 |
|
Infinity ููู E ุฃูุณ ูุงูุต ST ุงูู F of T ุฃูุง ู
ุงุฎุฐูุง E |
|
|
|
36 |
|
00:03:23,180 --> 00:03:26,340 |
|
ุฃูุณ AT ููู ูู DT |
|
|
|
37 |
|
00:03:34,330 --> 00:03:40,950 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู limit ููู ุชูุงู
ู ู
ู zero |
|
|
|
38 |
|
00:03:40,950 --> 00:03:49,630 |
|
ุฅูู B ูู
ุง B tends to infinity ููู E ุฃุณ ูุงูุต S ูุงูุต |
|
|
|
39 |
|
00:03:49,630 --> 00:03:57,170 |
|
A ููู ูู T dt. ูุจูู ูุชุงุจุฉ ูุฐุง ุงูุชูุงู
ู ุนูู ุดูู limit |
|
|
|
40 |
|
00:03:57,170 --> 00:04:02,750 |
|
ูุนูู ุจุฏู ุฃูุงู
ู ูุฐู ุงูุฏุงูุฉ ุซู
ุฃุฑูุญ ุขุฎุฐ ููุง ุงูู limit |
|
|
|
41 |
|
00:04:02,750 --> 00:04:10,770 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู. ูุจูู ูุงุจูุงุณ ููู E ุฃูุณ AT ุจุฏู |
|
|
|
42 |
|
00:04:10,770 --> 00:04:15,490 |
|
ูุณุงูู ูู ุงูู limit ููุฐุง ุงูู B ุจุฏูุง ุชุฑูุญ ููู infinity |
|
|
|
43 |
|
00:04:16,130 --> 00:04:20,470 |
|
ุฃุธู ูุง ุจูุงุช ุชูุงู
ู ุงูู exponential ุจููุณ ุงูู |
|
|
|
44 |
|
00:04:20,470 --> 00:04:26,830 |
|
exponential itself ู
ูุณูู
ุง ุนูู ุชูุงุถู S ุฅู ูุงูุช ุงููS |
|
|
|
45 |
|
00:04:26,830 --> 00:04:30,710 |
|
ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูุฒู ู
ุง ุฃูุชู
ุดุงูููู ูู ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
46 |
|
00:04:30,710 --> 00:04:37,230 |
|
ุงูุฃููู ูู T ูุจูู ู
ูุณูู
ุง ุนูู ูุงูุต ุงูู S ูุงูุต ุงูู A |
|
|
|
47 |
|
00:04:37,230 --> 00:04:43,240 |
|
ูุงูุญูู ูุฐุง ููู ู
ู Zero ููููุ ู
ู Zero ูุบุงูุฉ B. ุฅุฐุง |
|
|
|
48 |
|
00:04:43,240 --> 00:04:48,160 |
|
ุจุฏูุง ูุนูุถ ุจุญุฏูุฏ ุงูุชูุงู
ู ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
49 |
|
00:04:48,160 --> 00:04:54,100 |
|
ุงูู limit ูู
ุง B tends to infinity ููู E ุฃุณ ูุงูุต S |
|
|
|
50 |
|
00:04:54,100 --> 00:05:01,260 |
|
ูุงูุต ุงูู A ูู B ุนูู ู
ููุ ุนูู ูุงูุต ุงูู S ูุงูุต ุงูู A |
|
|
|
51 |
|
00:05:01,260 --> 00:05:06,850 |
|
ูุงูุต ู
ุน ูุงูุต ุจุตูุฑ ุฒุงุฆุฏ. ุจุฏู ุฃุดูู ุงูู T ูุฃุถุน |
|
|
|
52 |
|
00:05:06,850 --> 00:05:10,950 |
|
ู
ูุงููุง Zero ูุจูู ูุฐุง ุงูู Laplace ูุตุจุญ E ู ุงูู Zero |
|
|
|
53 |
|
00:05:10,950 --> 00:05:19,350 |
|
ูุจูู ุฏุงุดุฑ ุจูุงุญุฏ ูุจูู ุฒุงุฆุฏ ูุงุญุฏ ุนูู S ูุงูุต ุงูู A |
|
|
|
54 |
|
00:05:19,350 --> 00:05:24,630 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ููุง. ูุจูู ุฃุตุจุญ ูุงุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
55 |
|
00:05:24,630 --> 00:05:32,370 |
|
ููุฏุงูุฉ E ุฃุณ A T ุจุฏู ุฃุณุงูู ุทุจุนูุง ูุฐุง ุงูู O ุงูุณุงูุจ ู
ู
ูู |
|
|
|
56 |
|
00:05:32,370 --> 00:05:37,110 |
|
ุฃูุฒููู ุชุญุช ุฅูุด ุจูุตูุฑุ ุจูุตูุฑ ู
ูุฌุจ. ูุจูู ุจูุตูุฑ limit |
|
|
|
57 |
|
00:05:37,110 --> 00:05:45,870 |
|
ูู
ุง B tends to infinity ููุงุญุฏ ุนูู ูุงูุต ุงูู S ูุงูุต |
|
|
|
58 |
|
00:05:45,870 --> 00:05:55,990 |
|
ุงูู A ูู E ุฃุณ S ูุงูุต ุงูู A ููู ูู B ุฒุงุฆุฏ ูุงุญุฏ ุนูู S |
|
|
|
59 |
|
00:05:55,990 --> 00:06:01,940 |
|
ูุงูุต ุงูู A. ุงูุญูู ูู
ุง ุจูุจุฏุฃ ุชุฑูุญ ูู zero ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
60 |
|
00:06:01,940 --> 00:06:09,220 |
|
ููู ุจูุฏุงุดุ ูู
ุง ุชุฑูุญ ูู
ุงููุง ููุงูุฉ ูุฐุง ุงูู
ูุฏุงุฑ ููู |
|
|
|
61 |
|
00:06:09,220 --> 00:06:10,940 |
|
ู
ุงููุง ููุงูุฉ ูู ุฑูู
|
|
|
|
62 |
|
00:06:14,430 --> 00:06:19,930 |
|
ูุจูู ูุฐุง ููู ุฑุงุญ ุจุฒูุฑู ูุจูู ุถููุช ุงููุชูุฌุฉ ูุงุญุฏ ุนูู S |
|
|
|
63 |
|
00:06:19,930 --> 00:06:25,550 |
|
ูุงูุต ุงูู A ุจุดุฑุท ุฃู ุงูู S is greater than A ูุจูู ุจูุงุก |
|
|
|
64 |
|
00:06:25,550 --> 00:06:29,510 |
|
ุนููู ู
ู ุงูุขู ูุตุงุนุฏูุง Laplace transform ููู |
|
|
|
65 |
|
00:06:29,510 --> 00:06:34,490 |
|
exponential function E ุฃุณ AT ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู |
|
|
|
66 |
|
00:06:34,490 --> 00:06:39,880 |
|
S ูุงูุต ุงูู A. ุงูุชูููุง ู
ููุง. ุทูุจ ุฃู ุงูู
ุทููุจ ุงูุฃูู |
|
|
|
67 |
|
00:06:39,880 --> 00:06:45,820 |
|
ุจูุฏูุงุฌู ููู
ุทููุจ ุงูุซุงูู. ูู
ุฑุง ุจูุ ูู
ุฑุง ุจู ุฃููุฉุ ุขุฎุฑ ุดุฑุท |
|
|
|
68 |
|
00:06:45,820 --> 00:06:49,820 |
|
ููุตูุง ุฃูุซุฑ ู
ู ุฅููุ ุจุฏู ู
ุดุงู ุฃุถู
ู ุฃูู ู
ุง ุตููุชุด ุณุงูุจุฉ |
|
|
|
69 |
|
00:06:49,820 --> 00:06:54,880 |
|
ุฏุงุฆู
ูุง ุฃูุง ุจุฏู S ุฌุฑูุชุฑ ุฏู ููุตูุง. ุทูุจ ุงูุขู ุจูุฏูุงุฌู |
|
|
|
70 |
|
00:06:54,880 --> 00:07:00,180 |
|
ููู
ุฑุง ุจูุ ูู
ุฑุง ุจู. ุจุฏู ูุงุจูุงุณ ููู one. ูู ุจูุฏุฑ ุฃุฌุฑุจ ุฃู |
|
|
|
71 |
|
00:07:00,180 --> 00:07:07,320 |
|
ุฃูุฌูุจ ุงููุงุญุฏ ุงูุตุญูุญ ู
ู ุงูู E ุฃุณ ET ูุฐู |
|
|
|
72 |
|
00:07:07,320 --> 00:07:13,490 |
|
ููุฏุฑุ ูู ุญุทููุง ุงูู a ุจูุฏ ุฅูุดุ Zero. ูุจูู ุจุฃุฌู ุจููู ูู ููุง |
|
|
|
73 |
|
00:07:13,490 --> 00:07:22,130 |
|
F ุงูู a ุชุณุงูู zero then Laplace transform ููู e ุฃู |
|
|
|
74 |
|
00:07:22,130 --> 00:07:27,850 |
|
ุงูู zero ูู Laplace transform ูู
ูุ ูููุงุญุฏ. ูุนูู ููุง |
|
|
|
75 |
|
00:07:27,850 --> 00:07:33,830 |
|
ูุดูู ุงูู a ูุฃุญุท ู
ูุงููุง zero ูุจูู ูุงุญุฏ ุนูู s ูุงูุต |
|
|
|
76 |
|
00:07:33,830 --> 00:07:40,620 |
|
ุงูู zero ูุจูู ุจูููุฉ ุจูุฏุฑ 1 ุนูู S. ุฅุฐุง ู
ู ุงูุขู ูุตุงุนุฏูุง |
|
|
|
77 |
|
00:07:40,620 --> 00:07:48,480 |
|
ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูููุงุญุฏ ุงูุตุญูุญ ูู 1 ุนูู S. ุทูุจ ูู
ุฑุง |
|
|
|
78 |
|
00:07:48,480 --> 00:07:57,560 |
|
C ุฌุงูู ุจุฏูู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ููู E ุฃุณ ูุงูุต AT ูุฐู |
|
|
|
79 |
|
00:07:57,560 --> 00:08:03,340 |
|
ูู
ุฑุง C ุดู ุจุชูุฑุฌ ุนู ุงูู Aุ ุจุณ ุงูู A ุจุงูุณุงูุจ. ุฅุฐุง ุจุฏู |
|
|
|
80 |
|
00:08:03,340 --> 00:08:06,620 |
|
ุขุฎุฐ ุงูุฅุฌุงุจุฉ ุงููู ุญุตูุช ุนูููุง ููู ูุฃุญุท ุงูู A |
|
|
|
81 |
|
00:08:06,620 --> 00:08:12,860 |
|
ุจุงูุณุงูุจ. ูุจูู ูุฐุง ุงูููุงู
ุฏู ุณูุงุก 1 ุนูู S ูุงูุต ุจุฏู |
|
|
|
82 |
|
00:08:12,860 --> 00:08:20,310 |
|
ุงูู A ุฃุฌุงููุจ ูุงูุต A ูุจูู 1 ุนูู S ุฒุงุฆุฏ ุงูู A. ูู
ุฑุง ุฏู |
|
|
|
83 |
|
00:08:20,310 --> 00:08:27,310 |
|
ุฌุงูู ูุชูู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูู E ุฃุณ ูุงูุต ุฎู
ุณุฉ T ูุจูู |
|
|
|
84 |
|
00:08:27,310 --> 00:08:33,330 |
|
ูุงุญุฏ ุนูู S ุฒุงุฆุฏ ุฎู
ุณุฉ ูุฃู ูุฐุง ูู ุญุงูุฉ ุฎุงุตุฉ ููู |
|
|
|
85 |
|
00:08:33,330 --> 00:08:39,110 |
|
ุนูุฏูุง. ูุฐุง ุฅููุ ุจูู ุญุณุจูุง ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูุฏูุงููู |
|
|
|
86 |
|
00:08:39,110 --> 00:08:41,670 |
|
ู
ุฎุชููุฉ. example two |
|
|
|
87 |
|
00:08:51,800 --> 00:08:57,540 |
|
ุจููู find ูู
ุฑุง |
|
|
|
88 |
|
00:08:57,540 --> 00:09:10,360 |
|
A ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูู sin AT ูู
ุฑุง B ูุงุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
89 |
|
00:09:10,360 --> 00:09:24,710 |
|
ูู cos AT. ูู
ุฑุง ุงูู c ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูู cos cos 5t |
|
|
|
90 |
|
00:09:24,710 --> 00:09:35,410 |
|
ุฎูู |
|
|
|
91 |
|
00:09:35,410 --> 00:09:43,800 |
|
ุจุฑูุชู. ุจุฏูู ุขุฎุฐ ูู
ุฑุง ุฅููุ ุจุฏู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูู sin A |
|
|
|
92 |
|
00:09:43,800 --> 00:09:48,580 |
|
ุชู. ุจุฏู ุฃุฑุฌุน ููุชุนุฑูู ุงููู ุนูุฏูุง ูุจูู ูู ุชูุงู
ู ู
ู |
|
|
|
93 |
|
00:09:48,580 --> 00:09:58,520 |
|
zero ุฅูู infinity ููู E ุฃุณ ูุงูุต ST ูู sin A ุชู ุฏู ุชู |
|
|
|
94 |
|
00:09:58,520 --> 00:10:06,480 |
|
ุทุจุนูุง ูุจูู ูุฐุง ูู ุนุจุงุฑุฉ ุนู ู
ููุ ุนุจุงุฑุฉ ุนู limit ูู
ุง B |
|
|
|
95 |
|
00:10:06,480 --> 00:10:13,320 |
|
tends to infinity ูุชูุงู
ู ู
ู zero ูู B ูู E ุฃุณ ูุงูุต ST |
|
|
|
96 |
|
00:10:13,320 --> 00:10:24,340 |
|
cosine AT sin AT DT sin AT DT |
|
|
|
97 |
|
00:10:24,340 --> 00:10:28,380 |
|
ุทุจ |
|
|
|
98 |
|
00:10:28,380 --> 00:10:34,340 |
|
ููู ุจููู
ู ูุฐุง ูุง ู
ูุงุณูุ ุดู ุงูุทุฑููุฉุ ุจู calculate B |
|
|
|
99 |
|
00:10:36,410 --> 00:10:39,210 |
|
ุจุฏู ูุงุญุฏุฉ ุชุญูู ุฃูุง ู
ุง ุฃุฏููุด ุงููู
ูุงู
ุงุช. ุจุฏู ูุงุญุฏุฉ ุชุฑูุน |
|
|
|
100 |
|
00:10:39,210 --> 00:10:41,950 |
|
ุฅูุฏููุง ูุชุญูู ุขู integration by parts integration |
|
|
|
101 |
|
00:10:41,950 --> 00:10:45,370 |
|
by parts. ุชู
ุงู
ุ ูููุง ุฒู ู
ุง ูููููุง ุถุฑุจ ุงูุนู
ูุงู |
|
|
|
102 |
|
00:10:45,370 --> 00:10:49,110 |
|
ุงูุตูู ุฅูุด ู
ุง ุชุฃุฎุฐ ุตุญ ุฅู ุฃุฎุฐุช ุงูู U ุชุณุงูู ุงูู |
|
|
|
103 |
|
00:10:49,110 --> 00:10:53,150 |
|
exponential ูุงูู DV ุชุณุงูู ุงูู cosine. ู
ุงุดูุ ุฅู ุนู
ูุช |
|
|
|
104 |
|
00:10:53,150 --> 00:10:58,270 |
|
ุงูุนู
ููุฉ ุงูุนูุณูุฉ ุฃุฎุฐุช ุงูู U ูู ุงูู sine ูุงูู DV ูู ุงูู |
|
|
|
105 |
|
00:10:58,270 --> 00:11:02,600 |
|
exponential ู
ุงุนูุฏูุงุด ู
ุดููุฉ. ูุจูู ูู ู
ุง ุชุฃุฎุฐ ุงูุงุชููู |
|
|
|
106 |
|
00:11:02,600 --> 00:11:10,140 |
|
ุตุญูุญ. ูุจูู ุฃูุง ุจุฏู ุขุฎุฐ ุงูู U ุชุณุงูู E ุฃุณ ูุงูุต ST ู |
|
|
|
107 |
|
00:11:10,140 --> 00:11:19,820 |
|
ุจุฏู ุขุฎุฐ ุงูู DV Sin AT. ุจุฏู ุงูู DU ูุจูู ูุงูุต S E ุฃุณ |
|
|
|
108 |
|
00:11:19,820 --> 00:11:32,010 |
|
ูุงูุต ST DT. ุจุฏู ุงูู V ูุงูุต Cos AT ุนูู A. ูุจูู ุงููุชูุฌุฉ |
|
|
|
109 |
|
00:11:32,010 --> 00:11:39,290 |
|
ูุฐู ุจุฏูุง ุชุณุงูู limit ูู
ุง B tends to infinity ูู
ูุ |
|
|
|
110 |
|
00:11:39,290 --> 00:11:44,510 |
|
ูู ุงูู U ูู ุงูู V ูุจูู ูู ุงูู U ูุงูู V ุงููู ูู ูุงูุต |
|
|
|
111 |
|
00:11:44,510 --> 00:11:56,510 |
|
ูุงุญุฏ ุนูู A ูู E ุฃุณ ูุงูุต ST ูู cosine AT. ูุฐุง ุงูู U |
|
|
|
112 |
|
00:11:56,510 --> 00:12:06,050 |
|
ูู ุงูู V. ูุงูุต ุชูุงู
ู V ุฏู. UV ูุงูุต cosine AT ุนูู A |
|
|
|
113 |
|
00:12:06,050 --> 00:12:16,750 |
|
ุฏุงูุฉ ูุงูุต S E ุฃูุณ ูุงูุต ST ููู ุจุงููุณุจุฉ ุฅูู DT. ุทุจุนูุง |
|
|
|
114 |
|
00:12:16,750 --> 00:12:21,910 |
|
ูููู ูุงู
ู ุชุจูู ุญุฏูุฏ ุงูุชูุงู
ู ูุฐู ูุชุจูู ู
ู ููู ููููุ |
|
|
|
115 |
|
00:12:21,910 --> 00:12:30,010 |
|
ู
ู zero ูุบุงูุฉ B ููุฐุง ูู
ุงู ุชูุงู
ู ู
ู zero ูุบุงูุฉ B ู |
|
|
|
116 |
|
00:12:30,010 --> 00:12:34,570 |
|
limit ูููู ู
ู ููุง ูู
ุง ููู
ู ู
ู ููุง |
|
|
|
117 |
|
00:12:42,160 --> 00:12:47,560 |
|
ุจุชุนูุถ ุจุงูููู
ุฉ ุงููู ููู ูุงูุต ุงูููู
ุฉ ุงููู ุชุญุชูุง. ูุจูู |
|
|
|
118 |
|
00:12:47,560 --> 00:12:59,450 |
|
ููุง ูุงูุต cosine AB ุนูู A ูู E ุฃุณ SB. ูุฒูุช ุงูู |
|
|
|
119 |
|
00:12:59,450 --> 00:13:03,910 |
|
exponential ุชุญุช ุจุฅุดุงุฑุฉ ู
ูุฌุจุฉ. ูุฐุง ุงูุชุนููุถ ุงูุฃูู |
|
|
|
120 |
|
00:13:03,910 --> 00:13:11,630 |
|
ูุงูุต ู
ุน ูุงูุต ุจุตูุฑ ุฒุงุฆุฏ. ููุณุงูู ุตูุฑ ุจูุงุญุฏ ู E of zero |
|
|
|
121 |
|
00:13:11,630 --> 00:13:19,020 |
|
ุจูุงุญุฏ ุจุธู ุนูุฏู ููุง ุจุณ ูุฏูุด ูุงุญุฏ ุนูู ุฅูู. ู ุฃู limit |
|
|
|
122 |
|
00:13:19,020 --> 00:13:24,280 |
|
ูููู. ูุฌู ููู ุจุนุฏ ูุฐู. ุนูุฏู ููุง ูุงูุต ูููุง ูุงูุต ู |
|
|
|
123 |
|
00:13:24,280 --> 00:13:31,160 |
|
ููุง ูุงูุต ูุจูู ุซูุงุซุฉ ุจุงููุงูุต ุนูุฏู S ูููุง A ู
ูุงุฏูุฑ |
|
|
|
124 |
|
00:13:31,160 --> 00:13:36,540 |
|
ุซุงุจุชุฉ ูุจูู ุจูุฏุฑ ุขุฎุฐูุง ุจุฑุฉ ุงูุชูุงู
ู ูุจุตูุฑ ุชูุงู
ู ู
ู |
|
|
|
125 |
|
00:13:36,540 --> 00:13:44,920 |
|
zero ุฅูู B ููู E ุฃุณ ูุงูุต ST ูู cosine ATDT |
|
|
|
126 |
|
00:13:47,530 --> 00:13:50,510 |
|
ุฎููู ุจุงูู ููุง ุทุจุนูุง ูุฐุง ุญุงููุง ูู ุชูุงู
ู ููุงุตู ุจุณ ุฃูุง |
|
|
|
127 |
|
00:13:50,510 --> 00:13:55,190 |
|
ุจุฐูุฑ ุชุฐููุฑ ูุจูู ุฃูุง ุฃุฎุฐุช ุงูู U ููุง ุจุงูู exponential |
|
|
|
128 |
|
00:13:55,190 --> 00:14:02,450 |
|
ูุฃุฎุฐุช ุงูู DV ุจู sin 80 ุงุดุชูุช ูููุง ูุงู
ู ูุจูู ูุฐู ุงูู |
|
|
|
129 |
|
00:14:02,450 --> 00:14:10,330 |
|
U ูู ุงูู V ู
ุง ููุต ุชูุงู
ู Vุฏุงููุฉ. ุจุฏู ุฃุนูุฏ ุงูุชุฑุชูุจ ูุฃ |
|
|
|
130 |
|
00:14:10,330 --> 00:14:13,530 |
|
ุนูุถ ุจุงูููู
ุฉ ุงููู ููู ูุงูุต ุงูููู
ุฉ ุงููู ููู ูุฐู |
|
|
|
131 |
|
00:14:13,530 --> 00:14:18,410 |
|
ุงูุณููุฉ ุงููู ุจุฏู ุฃูุฒููุง ุชุญุช ุจุตูุฑ ู
ุฌุจุฑุฉ ุจูุจูู Cos AB |
|
|
|
132 |
|
00:14:18,410 --> 00:14:24,540 |
|
ุนูู A ูู S ููุง ูุงูุต ู
ุน ูุงูุต ุฒุงุฆุฏ. ุจุฏู ุฃุดูู ุงูู T ู |
|
|
|
133 |
|
00:14:24,540 --> 00:14:27,900 |
|
ุฃุถุน ู
ูุงููุง Zero ูุงูู cosine ุตูุฑ ุจูุงุญุฏ. E ู ุงูู Zero |
|
|
|
134 |
|
00:14:27,900 --> 00:14:33,380 |
|
ุจูุงุญุฏ ุจูุถู ุจุณ ูุฏูุด ูุงุญุฏ ุนูู A ููุง ุนูุฏูุง S ุนูู A |
|
|
|
135 |
|
00:14:33,380 --> 00:14:38,780 |
|
ุจุฑู ุนูุฏู ูุงูุต ูุงูุต ูุงูุต ูุจูู ุซูุงุซุฉ ุจุงููุงูุต ุจูุตูุฑ |
|
|
|
136 |
|
00:14:38,780 --> 00:14:43,500 |
|
ุนูุฏูุง ูุงูุต S ุนูู A ุชูุงู
ู ู
ู Zero ูู B ููู E ููุงูุต ุงูู |
|
|
|
137 |
|
00:14:43,500 --> 00:14:48,840 |
|
T cosine ATDT. ุชุนุงู ูุญุณุจ ุงูุญุณุจุฉ ุงููู ุนูุฏูุง ูุฐู. ูุฐุง |
|
|
|
138 |
|
00:14:48,840 --> 00:14:53,740 |
|
ุงูููุงู
ูุณุงูู ูู ุฃุฎุฐุช limit ููุฐุง ุงูู
ูุฏุงุฑ ูุง ุจูุงุช |
|
|
|
139 |
|
00:14:53,740 --> 00:15:00,060 |
|
ูุฏูุด ุจุทูุน ููุง ุฅูู ุฃุดูู ุนูู ุงูุณุฑูุน ูุฏูุด ูุงุญุฏ ุนูู |
|
|
|
140 |
|
00:15:00,060 --> 00:15:07,480 |
|
ุฅูู ูุฐุง ุงูู term ุงูุฃูู. term ุงูุฃูู ููุณุงูู ู
ุญุตูุฑ ู
ู ูุงุญุฏ |
|
|
|
141 |
|
00:15:07,480 --> 00:15:12,510 |
|
ูุณุงูุจ ูุงุญุฏ ููุฐุง ุจูู ุจูุฑูุญ. ู
ุง ูุง ูุง ูุจูู ุนูู ุฌุฏ |
|
|
|
142 |
|
00:15:12,510 --> 00:15:16,030 |
|
ูุง ุดู ุฒูุฑู ุนูู ุทูู ุงูุฎุท ุฃู ุจุชููููุง ููู cos AB |
|
|
|
143 |
|
00:15:16,030 --> 00:15:19,590 |
|
ู
ุญุตูุฑ ู
ู ูุงุญุฏ ูุณุงูุจ ูุงุญุฏ ูุจุฏู ุฃุถุฑุจ ุงูุทุฑููู ูู |
|
|
|
144 |
|
00:15:19,590 --> 00:15:24,410 |
|
ูุงุญุฏ ุนูู A ูู E ุฃุณ S AB ูุฃุฎุฐ ุงููู ู
ุง ุจุตูุฑ ููุง |
|
|
|
145 |
|
00:15:24,410 --> 00:15:27,110 |
|
ุฒูุฑู ููุง ุฒูุฑู ูุจูุฌูุจ ุณุงูุฏูุดุชูู ูุงููู ูู ุงููุต |
|
|
|
146 |
|
00:15:27,110 --> 00:15:32,130 |
|
ุจูุฒูุฑู. ุฅุฐุง ูุฐุง ุงูู limit ุงููู ูู ููู ุจู0. ูุงุญุฏ ุนูู |
|
|
|
147 |
|
00:15:32,130 --> 00:15:36,250 |
|
ุฅููุ ู
ูุฏุงุฑ ุซุงุจุชุ ู
ุง ูู ุฏุนูุฉ ุจุงูู limit ุชู
ุงู
ุ ูุฃููููุช |
|
|
|
148 |
|
00:15:36,250 --> 00:15:40,230 |
|
ุงูู
ูุฏุงุฑ ุงูุซุงุจุช ุจุงูู
ูุฏุงุฑ ุงูุซุงุจุช itself ูุจูู ูุงุญุฏ |
|
|
|
149 |
|
00:15:40,230 --> 00:15:46,450 |
|
ุนูู ุฅููุ ูุงูุต S ุนูู ุฅููุ ูู limit ูู
ุง B tends to |
|
|
|
150 |
|
00:15:46,450 --> 00:15:52,970 |
|
infinity ูุชูุงู
ู ู
ู zero ุฅูู B ููู E ุฃุณ ูุงูุต ST |
|
|
|
151 |
|
00:15:52,970 --> 00:15:56,190 |
|
cosine ATDT |
|
|
|
152 |
|
00:16:12,880 --> 00:16:18,440 |
|
ุงูุขู ุจุฑุถู ุจูุนู
ู ูุฐู integration by parts. ุชู
ุงู
ุ |
|
|
|
153 |
|
00:16:18,440 --> 00:16:21,940 |
|
ุจุฑุถู ููุณ ุงูุชุนููุถ ุงููู ุฃุฎุฐุช U ููุง ุจุฏู ุขุฎุฐูุง U ููุง |
|
|
|
154 |
|
00:16:21,940 --> 00:16:25,760 |
|
ุจุงูุถุจุท ูุฅู ูู ุนู
ูุช ุงูุนู
ููุฉ ุงูุนูุณูุฉ ู
ุง ุนุฑูุด ุงููู |
|
|
|
155 |
|
00:16:25,760 --> 00:16:29,100 |
|
ุงุดุชุบูุช ูุฎุฑุจุช ูุฑุฌุนุช ูู
ุง ุณููุช ุดูุก ุดูุก. ูุจูู ุจุถูู |
|
|
|
156 |
|
00:16:29,100 --> 00:16:35,180 |
|
ุงูู
ุงุดู ุจููุณ ุงูุงุชุฌุงู. ุฅุฐุง ุจุฏู ุขุฎุฐ ุงูู U ุชุณุงูู E ุฃุณ |
|
|
|
157 |
|
00:16:35,180 --> 00:16:47,130 |
|
ูุงูุต ST ู DV ููู cosine ATDT. ูุจูู ุงูู DU ูููู ูุงูุต |
|
|
|
158 |
|
00:16:47,130 --> 00:16:56,610 |
|
SE ุฃูุณ ูุงูุต ST ูู DT ูุงูู V ุจู Sin AT ุนูู A. ูุจูู |
|
|
|
159 |
|
00:16:56,610 --> 00:17:01,630 |
|
ุฃุตุจุญ ุนูุฏู ุงููู ูู ู
ู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ุงููู ูู |
|
|
|
160 |
|
00:17:01,630 --> 00:17:07,330 |
|
ุงูู Sin AT ุจุฏู ุณูููุฉ ูุงุญุฏ ุนูู A ุงูุซุงุจุช ุงููู ุนูุฏูุง |
|
|
|
161 |
|
00:17:07,330 --> 00:17:16,080 |
|
ูุงูุต S ุนูู A ูู ุงูู limit ูู
ุง B tends to infinity ู |
|
|
|
162 |
|
00:17:16,080 --> 00:17:21,480 |
|
ูุฐุง ุงูู cos ุงููู ุนูุฏูุง. ุจูุฑูุญ ููุชุจ U ูู V ูุฐุง ุงูู |
|
|
|
163 |
|
00:17:21,480 --> 00:17:29,680 |
|
U ููุฐุง ุงูู V ูุจูู E ุฃุณ ูุงูุต ST ูู Sin AT ููู ุนูู |
|
|
|
164 |
|
00:17:29,680 --> 00:17:40,940 |
|
ูุฏ ุฅูุดุ ุนูู A. ูุงูุต ุชูุงู
ู V ุงูุชู ูู ุงูู Sin AT ุนูู A W |
|
|
|
165 |
|
00:17:40,940 --> 00:17:50,160 |
|
ุงูุชู ูู ูุงูุต SE ุฃูุณ ูุงูุต ST ูู ูุฐุง ุงูููุงู
ุจุงููุณุจุฉ |
|
|
|
166 |
|
00:17:50,160 --> 00:17:57,360 |
|
ุฅูู ู
ููุ ุฅูู DT. ููููุฌูููุง ุงูุฌูุฒ ุจุงูุดูู ุงููู ุนูุฏูุง. ูุฐุง |
|
|
|
167 |
|
00:17:57,360 --> 00:18:02,800 |
|
ุงูููุงู
ูุจุฏู ูุณุงูู 1 ุนูู A ูุฒููุงูุง ุฒู ู
ุง ูู ูุงูุต S |
|
|
|
1 |
|
|
|
201 |
|
00:21:44,690 --> 00:21:51,110 |
|
ุจุฏูุง ุชุณุฃูุ ุงู ุฃููุฉ ูู
ุงุฐุงุ |
|
|
|
202 |
|
00:21:51,110 --> 00:21:55,170 |
|
ุทุจ ุฃูุง ุจุฌูุฒ ู ูุณู ุจุชูุงูุด ุฃูุง ูุฅูุงู ูุฃูุง ุจุงุดุฑุญ |
|
|
|
203 |
|
00:21:55,170 --> 00:22:01,800 |
|
ุงูุชูุงู
ู ูุฐุง ุชูุงู
ู ูุฐุง ูุงูููู ุตุนุจูุฉ ุจูุช ุงูุญูุงู ูุฃุตููู |
|
|
|
204 |
|
00:22:01,800 --> 00:22:05,940 |
|
ุชุจูู ุนุฑูุงุชู ูุฃุตูู ุญูุธู ุงููุชูุฌุฉ ูุงู
ุดู ููู ุฃูุง ุจุญุตูู |
|
|
|
205 |
|
00:22:05,940 --> 00:22:09,280 |
|
ุชูุตูู ูุจุฐูุฑ ุชุฐููุฑ ูุฃู ุงูุนูู ู
ุด ุฏุงูู
ูุง ู
ูุฌูุฏ |
|
|
|
206 |
|
00:22:09,280 --> 00:22:17,330 |
|
ุนุจุฏุงููู ุจูุฌู ุจูุนุฏู ุทูุจ ูุจูู ู
ุฑุฉ ุซุงููุฉ ุจููู ุงุญูุง |
|
|
|
207 |
|
00:22:17,330 --> 00:22:21,650 |
|
ุฎูุตูุง ุงูุญู ุดู ุงููู ุนู
ููุงู ูุฃูู ุชูุตููุง ุงุญูุง ุจุฏูุง |
|
|
|
208 |
|
00:22:21,650 --> 00:22:26,450 |
|
ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ููู Sin AT ุฃูุง ู
ุง ุนูุฏูุด ุฅูุง ุงูุชุนุฑูู |
|
|
|
209 |
|
00:22:26,450 --> 00:22:31,410 |
|
ูุจูู ุจุฏู ุงุถุฑุจ ูู ุงูู E ุฃุณ ุณุงูุจ ST ูุงูู Sin ST ููู
ู ู
ู Zero ุฅูู |
|
|
|
210 |
|
00:22:31,410 --> 00:22:35,580 |
|
Infinity ุงูุดูู ุงููู ุนูุฏูุง ุงูุขู ูุฐุง ุงูู improper |
|
|
|
211 |
|
00:22:35,580 --> 00:22:39,540 |
|
integral ูุจูู ุฎุงุชู ู limit integration by parts |
|
|
|
212 |
|
00:22:39,540 --> 00:22:44,480 |
|
ุจุฏู ุฃุนู
ููุง ู
ุฑุชูู ุฅุฐุง ุนู
ูุชูุง ู
ุฑุชูู ุจุชุจูู ู
ุณุฃูุฉ T |
|
|
|
213 |
|
00:22:44,480 --> 00:22:49,580 |
|
ุฎูุตุช ููุฐุง ูุงู ู
ุนูุง ุณุคุงู ูู Calculus B ุฅุฐุง ู
ุฐุงูุฑูู |
|
|
|
214 |
|
00:22:49,580 --> 00:22:53,380 |
|
ู
ูุฌูุฏ ูุงู ู
ุนูุง ูู Calculus B ูู ุงู integration by |
|
|
|
215 |
|
00:22:53,380 --> 00:22:56,920 |
|
parts ุจุณ ุฏู ู
ุฌููู integration by parts ู
ุน ุงู |
|
|
|
216 |
|
00:22:56,920 --> 00:23:02,640 |
|
improper integral ูุจูู ูุฐุง ุงูุชูุงู
ู ุจุฏู ุฃุฎุฏ ูุฐู U ููุฐู |
|
|
|
217 |
|
00:23:02,640 --> 00:23:08,940 |
|
DV ูุจุงูุชุงูู ุณูู
ุช U ูู V ูุงูุต ุชูุงู
ู V ุฏุงู U |
|
|
|
218 |
|
00:23:08,940 --> 00:23:14,500 |
|
ุงูุขู ุจุฏู ุฃุนูุฏ ุงูุชุฑุชูุจ ูุฐู ุจุฏู ุฃุนูุถ ุจุงูููู
ุงููู ููู |
|
|
|
219 |
|
00:23:14,500 --> 00:23:18,480 |
|
ูุงูุต ุงููู ุชุญุชู ุจุฏู ุฃุดูู ูู T ูุฃุญุท ู
ูุงููุง |
|
|
|
220 |
|
00:23:25,040 --> 00:23:31,240 |
|
ูุงูุต ููุต ููุต ูุจูู ุซูุงุซุฉ ุจุงูุณุงูุจ ุจุตูุฑ ุนูุฏูุง ุณุงูุจ S |
|
|
|
221 |
|
00:23:31,240 --> 00:23:35,860 |
|
ุนูู A ุซุงุจุช ุจุฏู ุฃุฎุฏู ุจุฑุฉ ุจุถุฑุจ ุชูุงู
ู ู
ู Zero ุฅูู B |
|
|
|
222 |
|
00:23:35,860 --> 00:23:42,890 |
|
ูุฅููุ ูุฅุฐุง ูุงูุต ST Cos ATDT ุจุนุฏ ุฐูู ุจุฏู ุฃูุฒู ูุฐู ุฒู |
|
|
|
223 |
|
00:23:42,890 --> 00:23:47,610 |
|
ู
ุง ูู ูุฐู ุฒู ู
ุง ูู ููู ุงู limit ุงูู Exponential |
|
|
|
224 |
|
00:23:47,610 --> 00:23:53,150 |
|
ุงููู ุนูุฏูุง ูุนูู ุงูุชูููุง ู
ู E ุฃุณ ุณุงูุจ ST ูู Sin AT |
|
|
|
225 |
|
00:23:53,150 --> 00:23:59,550 |
|
ุฅูู ุชูุงู
ู ููู E ุฃุณ ุณุงูุจ ST Cos AT ูุจูู ูู ูู
ูุช |
|
|
|
226 |
|
00:23:59,550 --> 00:24:04,250 |
|
ูู
ุงู ู
ุฑุฉ ุจุฑุฌุน ูุฑุฃุณู ุงูู
ุณุฃูุฉ ุงููู ููู ุฅุฐุง ุจุฏู ุฃุฑูุญ |
|
|
|
227 |
|
00:24:04,250 --> 00:24:08,330 |
|
ูุงู
ู ูู
ุงู ู
ุฑุฉ ุจุฏู ุฃุฎุฏ ูุฐู U ููุฐู DV |
|
|
|
228 |
|
00:24:15,840 --> 00:24:22,700 |
|
ูุฐู ุชูุงู
ููุง ุจู Sin AT ุนูููุง ุจููุณู
ุนูู ุชูุงุถู ุงูุฒุงููุฉ |
|
|
|
229 |
|
00:24:22,700 --> 00:24:28,810 |
|
ุฅู ูุงูุช ุงูุฒุงููุฉ ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ุทูุจ ุจุฏูุง ูุจุฏุฃ ูุนููุถ |
|
|
|
230 |
|
00:24:28,810 --> 00:24:34,090 |
|
ูุจูู 1 ุนูู A ูุงูุต S ุนูู A ูู Limit ุงููู ูู ู
ูุฌูุฏุฉ |
|
|
|
231 |
|
00:24:34,090 --> 00:24:39,670 |
|
ุนูุฏูุง ููุง ุจุงูุถุจุท ุชู
ุงู
ูุง ุงูุขู ุจุฏูู ุฃุฌู ุฃููู ูู ุงู U ูู ุงูู |
|
|
|
232 |
|
00:24:39,670 --> 00:24:46,290 |
|
V ุฃููุง ู
ู A ู
ู Zero ูู B ูุงูุต ุชูุงู
ู ู
ู Zero ูู B ููู V |
|
|
|
233 |
|
00:24:46,290 --> 00:24:52,090 |
|
ุฏู ุงู U ูุฐุง ุงู V ููุฐู ุฏู ุงู U ูุชุจุชูุง ุฒู ู
ุง ูู ุทูุจ 1 |
|
|
|
234 |
|
00:24:52,090 --> 00:24:56,930 |
|
ุนูู A ูุฒูุช ุณุงูุจ S A ุนูู A ูุฒูุช ุงูู Limit ูู
ุง ูู ูุฐู |
|
|
|
235 |
|
00:24:56,930 --> 00:25:01,890 |
|
ูู
ุง ุชูุฒู ุจู ุชุญุช ุจุตูุฑ Sin AB ุนูู A ูู ุงูู SB |
|
|
|
236 |
|
00:25:01,890 --> 00:25:05,730 |
|
ุทุจุนูุง ูุฐู ุงูู Limit ุงููู ูุชุจูู ุฒูุฑู ูุฅูู
ุง ุจู ุชุฑูุญ ูู
ุง ูุง |
|
|
|
237 |
|
00:25:05,730 --> 00:25:09,790 |
|
ููุงูุฉ ููุด ุฅูู ุงูู Sin AB ู
ุญุตูุฑ ู
ู ูุงุญุฏ ูุณุงูุจ ูุงุญุฏ |
|
|
|
238 |
|
00:25:09,790 --> 00:25:13,910 |
|
ุถุฑุจูุง ูู ูุงุญุฏ ุนูู ุงูู Exponential ูุฎูุช ุจู ุชุฑูุญ ูู
ุง |
|
|
|
239 |
|
00:25:13,910 --> 00:25:19,550 |
|
ูุง ููุงูุฉ ุจุตูุฑ ุนุฏุฏ ุนูู ู
ุง ูุง ููุงูุฉ ูู ููู ุฒูุฑู ูุจูู |
|
|
|
240 |
|
00:25:19,550 --> 00:25:25,410 |
|
ูุฐู ุฒูุฑู ุฏุงุฆู
ูุง ูุฃุจุฏูุง ุงูุขู ูุงูุต ุจุฏู ุฃุถุน ููุง ุฒูุฑู |
|
|
|
241 |
|
00:25:25,410 --> 00:25:31,210 |
|
ูููุง ุฒูุฑู ูุฐู ูุงุญุฏ ููุฐู ุฒูุฑู ุนูู ุฃู ุนุฏุฏ ุจูุฏุฑ ุจุฒูุฑู |
|
|
|
242 |
|
00:25:31,210 --> 00:25:37,330 |
|
ูุตููุง ููุฐู ุงูู S ุนูู A ุจุฑุฉ ููุงูุต ู
ุน ูุงูุต ุจุตูุฑ ุฒุงุฆุฏ |
|
|
|
243 |
|
00:25:37,330 --> 00:25:45,330 |
|
ูุงูู E ุฃุณ ุณุงูุจ ST Sin ATDT ูู ูู
ุง ูู ุฅุฐุง ุงูููุจุช ุงูู
ุณุฃูุฉ |
|
|
|
244 |
|
00:25:45,330 --> 00:25:50,690 |
|
ุงูุชูุงู
ู ุงูุฃุณุงุณู ุงูู Elemental ูุงูู Sin AT ูุฐุง ุจุฏู ุฃุณุงูู |
|
|
|
245 |
|
00:25:50,690 --> 00:25:54,430 |
|
ู
ููุ ุจุฏู ุฃุณุงูู ูุงุญุฏ ุนูู ุฅููุ ูุงูุต ูุนูุฏู ููุง S |
|
|
|
246 |
|
00:25:54,430 --> 00:25:59,090 |
|
ุนููู ูููุง S ุนูู ุฅููุ S ุชุฑุจูุน ุนูู A ุชุฑุจูุน Limit ูู
ุง |
|
|
|
247 |
|
00:25:59,090 --> 00:26:04,030 |
|
ุงูู P ุจุฏุฃุช ุชุฑูุญ ููู Infinity ููุชูุงู
ู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
248 |
|
00:26:04,340 --> 00:26:09,480 |
|
ุงูุชูุงู
ู ูุฃู ูุฐุง ูู ููุณ ุงูุชูุงู
ู ูุฐุง ุชู
ุงู
ุจุณ ุจุฏูู |
|
|
|
249 |
|
00:26:09,480 --> 00:26:13,700 |
|
ุฃุฑุฌุน ูุฐุง ุฅูู ุฃุตูู ูุจู ุงูู Limit ูุจูู ุฑุฌุนุชู ุฅูู ุฃุตูู |
|
|
|
250 |
|
00:26:13,700 --> 00:26:17,340 |
|
ุจุฏู ู
ุง ูู Limit ุดููุชู ููุชุจุช ุชูุงู
ู ู
ู Zero ุฅูู |
|
|
|
251 |
|
00:26:17,340 --> 00:26:23,420 |
|
Infinity ููู E ุฃุณ ุณุงูุจ STDT ูุฐุง ูู ุงูุทุฑู ุงูุดู
ุงู ูุจูู |
|
|
|
252 |
|
00:26:23,420 --> 00:26:27,640 |
|
ุจุฏูู ุฃุฏููู ุนูุฏูู ูุฃุฌู
ุน ุจุฏู ู
ุง ูุงูุช ุดุฑุทุฉ ุณุงูุจุฉ ุจุตูุฑ |
|
|
|
253 |
|
00:26:27,640 --> 00:26:33,560 |
|
ุดุฑุทุฉ ู
ูุฌุจุฉ ูุจูู ุจุธู ููุง ูุงุญุฏ ูููุง ุจูุธู S ุชุฑุจูุน ุนูู |
|
|
|
254 |
|
00:26:33,560 --> 00:26:36,820 |
|
A ุชุฑุจูุน ููู ูู ุงูุชูุงู
ู ูุฐุง ุงููู ูู Laplace |
|
|
|
255 |
|
00:26:36,820 --> 00:26:41,240 |
|
transform ูู Sin AT ุจูุธู ุงูุทุฑู ุงููู
ูู ููุท ุงููู ูู |
|
|
|
256 |
|
00:26:41,240 --> 00:26:47,500 |
|
ุฌุฏููุง 1 ุนูู A ุงูุขู ูุญุฏูุง ุงูู
ูุงู
ุงุช ููุฐู ุตูุฑุฉ A ุชุฑุจูุน |
|
|
|
257 |
|
00:26:47,500 --> 00:26:52,780 |
|
ุฒุงุฆุฏ S ุชุฑุจูุน ุนูู A ุชุฑุจูุน ุจุฏู ูุณุงูู ูุงุญุฏ ุนูู A ุงูุขู |
|
|
|
258 |
|
00:26:52,780 --> 00:26:59,260 |
|
ุจุฏูุง ูุฌุณู
ุนูู ูุฐู ุจูุตูุฑ A ุชุฑุจูุน ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ A |
|
|
|
259 |
|
00:26:59,260 --> 00:27:04,260 |
|
ุชุฑุจูุน ูู A ุชุฑุจูุน ุจุชุฑูุญ ุงู A ู
ุน ุงู A ุจูุธูุฑ ุฃู A ูู |
|
|
|
260 |
|
00:27:04,260 --> 00:27:09,960 |
|
S ุชุฑุจูุน ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ A ุชุฑุจูุน ูุฐุง ูู Laplace Transform ู |
|
|
|
261 |
|
00:27:09,960 --> 00:27:16,650 |
|
Sin AT ูุฐูู ูู
ููุง ู
ุฑุชูู ููุตููุง ุฅูู ูุชูุฌุฉ ุงูุชูุงู
ู ููุจู |
|
|
|
262 |
|
00:27:16,650 --> 00:27:19,750 |
|
ุดููุฉ ูู
ุง ุฏู ุฃูุง ุฃุนุทููุง ุชุนุฑูู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
263 |
|
00:27:19,750 --> 00:27:25,690 |
|
ุฃููู ูู ูุง ุจููู L of F of T ูุง ุฅู
ุง F of S ูุญุธุฉ ู
ู |
|
|
|
264 |
|
00:27:25,690 --> 00:27:30,750 |
|
ุญุฏ ู
ุง ุฅููู
ู ุจุทูุน ุนูุฏู ุฏุงูุฉ ูู ู
ููุ ุฏุงูุฉ ูู S ูููุง |
|
|
|
265 |
|
00:27:30,750 --> 00:27:34,250 |
|
ุฏุงูุฉ ูู S ูููุง ุฏุงูุฉ ูู S ูููุง ุฏุงูุฉ ูู S ูููู |
|
|
|
266 |
|
00:27:34,250 --> 00:27:39,090 |
|
ุฏุงูุฉ ูู S ูุณุฃูุชู ูุฐุง ุงูุณุคุงู ููุด ุงู F of S ูุจูู |
|
|
|
267 |
|
00:27:39,090 --> 00:27:43,030 |
|
ุงููุชูุฌุฉ ุจุนุฏ ู
ุง ููู
ู ููุนูุถ ูููุง ุจุชุทูุน Function ูู |
|
|
|
268 |
|
00:27:43,030 --> 00:27:48,170 |
|
S ููุท ู
ุง ุถูู ุนูุฏูุง ู
ู T ูุจุงูุชุงูู ุฌูุจ ุฏุงูุฉ ูุงูุฉ ู
ู |
|
|
|
269 |
|
00:27:48,170 --> 00:27:52,330 |
|
ุงูุฏุงูุฉ ุงูุฃุตููุฉ ุทุจ ุงุญูุง ุงูุขู ุฌุจูุง |
|
|
|
270 |
|
00:27:59,930 --> 00:28:04,430 |
|
ุจุชุนู
ูู ุงูุฎุทูุงุช ุงููู ุนู
ูุชูุง ุจุณ ุจุฏู ุงูู Sin ุจุชุญุทู ู
ุนูุง |
|
|
|
271 |
|
00:28:04,430 --> 00:28:05,530 |
|
ูู Cosine |
|
|
|
272 |
|
00:28:11,800 --> 00:28:18,920 |
|
ูุฐู ูู
ุฑู ุจูู Similarly ุงููู ูู Laplace Transform La |
|
|
|
273 |
|
00:28:18,920 --> 00:28:27,400 |
|
Cosine AT ุจุฏูู ุณุงูู ุจูุงุช S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ A |
|
|
|
274 |
|
00:28:27,400 --> 00:28:33,190 |
|
ุชุฑุจูุน ูุฐู ุงูู Sin ุจุฏู ุงูู Constant ุจูุฌููู S ูููุณ |
|
|
|
275 |
|
00:28:33,190 --> 00:28:37,470 |
|
Constant ุจุณ ููุง ูุงูุช ุฅุนุงุฏุฉ ุงูู Sin Constant ูููุง S |
|
|
|
276 |
|
00:28:37,470 --> 00:28:44,050 |
|
ููุฐู ุชุดูู ุจุฑุงุญุชู ุฑูุญ ุฃุนู
ููุง ูู ุงูุฏุงุฑ ุดูู ุนูููุง ุทูุจ |
|
|
|
277 |
|
00:28:44,050 --> 00:28:49,850 |
|
ู
ู B ุจุฏู ุฃุฑูุญ ุฃุฌูุจ C ูุจูู ุจุฏู C ุจุฏู ูู Laplace |
|
|
|
278 |
|
00:28:49,850 --> 00:28:58,630 |
|
Transform ูู Cosine 5T ุงููู ุนุจุงุฑุฉ ุนู S ุนูู S ุชุฑุจูุน |
|
|
|
279 |
|
00:28:58,630 --> 00:29:07,570 |
|
ุฒุงุฆุฏ ุฎู
ุณุฉ ููู ุชุฑุจูุน ูุนูู S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ 25 |
|
|
|
280 |
|
00:29:07,570 --> 00:29:16,620 |
|
ู25 ุญุฏ ูููู
ุจุชุญุจ ุชุณุฃู ุฃุณุฆูุฉ ููุงุ ุฎูุงุตุ ูุง ูุง ุจูุช |
|
|
|
281 |
|
00:29:16,620 --> 00:29:21,540 |
|
ุงูุญูุงู ุฃูุช ูุนุจุชู ุชูุตูุจู ููุง ูุงุ ุฎูุงุต ูุนููุ ูุฑุฌุช |
|
|
|
282 |
|
00:29:21,540 --> 00:29:23,640 |
|
ููุงูุช ููููููุง ุชูุฑุฌูุงุ |
|
|
|
283 |
|
00:29:42,720 --> 00:29:48,600 |
|
ู
ุง ุจุนุฏ ุงูุถููุฉ ุจูุงุช ุฅูุง ุงููุณุนุฉ ูู
ุง ุจุนุฏ ุงูุนุณุฑ ุฅูุง |
|
|
|
284 |
|
00:29:48,600 --> 00:29:55,240 |
|
ุงููุณุฑ ูููุฐุง ูุงู ุงููู ุชุนุงูู ูุฅู ู
ุน ุงูุนุณุฑ ูุณุฑุง ูุฅู |
|
|
|
285 |
|
00:29:55,240 --> 00:29:59,660 |
|
ู
ุน ุงูุนุณุฑ ูุณุฑุง ููู ูุบูุจ ุนุณุฑุง ูุณุฑูู ุฃู ูู
ุง ูุงู ุตูู |
|
|
|
286 |
|
00:29:59,660 --> 00:30:03,470 |
|
ุงููู ุนููู ูุณูู
ูุนูู ูุฏููุด ุจุชุฏุงูู ูู ูุญุธุฉ ุชู
ุงู
ูุจุนุฏ |
|
|
|
287 |
|
00:30:03,470 --> 00:30:07,830 |
|
ุดููุฉ ุจุชุชูุณูุน ููุฐู ุทุจูุนุฉ ุงูุฏููุง ุจุถููุด ุงููุงุญุฏ ุนูุฏู |
|
|
|
288 |
|
00:30:07,830 --> 00:30:13,030 |
|
ุนุณุฑ ุนูู ุทูู ููุง ุจุถู ุนูุฏู ุงููุฑุงุฌุฉ ุนูู ุทูู ุงููู ูุฎูุถ |
|
|
|
289 |
|
00:30:13,030 --> 00:30:18,670 |
|
ุงููุตุฉ ููุฑูุนูุง ููุฐู ุทุจุนูุง ู
ู ุจุฏูููุงุช ุงููู ูู ุนู
ู |
|
|
|
290 |
|
00:30:18,670 --> 00:30:26,550 |
|
ุงููู ุณุจุญุงูู ูุชุนุงูู ุทูุจ ูุฑุฌุน ุงูุขู ูููู
ู ูู ุนูุฏูุง |
|
|
|
291 |
|
00:30:26,550 --> 00:30:30,170 |
|
ูุธุฑูุฉ ุจุชููู ู
ุง ูุฃุชู Theorem |
|
|
|
292 |
|
00:30:34,330 --> 00:30:44,450 |
|
ูุงุจูุงุณ ุชุญููู ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
293 |
|
00:30:44,450 --> 00:30:53,230 |
|
ูุงุจูุงุณ |
|
|
|
294 |
|
00:30:53,230 --> 00:30:53,550 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
295 |
|
00:30:53,550 --> 00:30:53,930 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
296 |
|
00:30:53,930 --> 00:30:54,070 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
297 |
|
00:30:54,070 --> 00:30:54,690 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
298 |
|
00:31:04,380 --> 00:31:14,120 |
|
ูู Laplace Transform ููู F1 ูLaplace Transform ููู |
|
|
|
299 |
|
00:31:14,120 --> 00:31:27,260 |
|
F2 are both exist ูู ูุงููุง Exist for ููู S ุงููู |
|
|
|
300 |
|
00:31:27,260 --> 00:31:30,320 |
|
ุฃูุจุฑ ู
ู S node then |
|
|
|
301 |
|
00:31:52,040 --> 00:31:59,900 |
|
ุฃู ุจูุฏุฑ ุฃููู C1 F1 |
|
|
|
302 |
|
00:31:59,900 --> 00:32:16,940 |
|
of S ุฒุงุฆุฏ C2 Capital F2 of S example ูู
ุฑุฉ |
|
|
|
303 |
|
00:32:16,940 --> 00:32:30,900 |
|
A find Laplace Transform ูู 8 ูุฐุง ูู
ุฑุฉ A ูู
ุฑุฉ |
|
|
|
304 |
|
00:32:30,900 --> 00:32:45,060 |
|
B ูุจุฏุฃ ุจุงูู Laplace Transform ูู 3 Cos 2T 3 Cos 2T |
|
|
|
305 |
|
00:32:45,060 --> 00:32:59,120 |
|
ูุงูุต 5 E ุฃุณ ุณุงูุจ 3T ูู
ุฑุฉ C Find |
|
|
|
306 |
|
00:33:01,390 --> 00:33:12,550 |
|
Laplace Transform La Cosine ุชุฑุจูุน AT Cosine ุชุฑุจูุน |
|
|
|
307 |
|
00:33:12,550 --> 00:33:26,770 |
|
2T ูู
ุฑุฉ D find Laplace Transform ูู Cosh AT |
|
|
|
308 |
|
00:33:39,130 --> 00:33:45,090 |
|
ุฎููู ุจุงูู ููุง ุงููู ุจุชุญูู ููุงู ุฎููู ุจุงูู ููุง ูุจูู |
|
|
|
309 |
|
00:33:45,090 --> 00:33:51,050 |
|
ุจุงุฌู ูุจููู ุจุฏูุง ุงูุขู ูุฌููุน ูุธุฑูุฉ ูุฐู ููุญุงูู ูุทุจูู |
|
|
|
310 |
|
00:33:51,050 --> 00:33:54,930 |
|
ูุฐู ุงููุธุฑูุฉ ูุฐู ุงููุธุฑูุฉ ุจุชููู ูู ุฃู ุงูู Laplace |
|
|
|
311 |
|
00:33:54,930 --> 00:34:00,430 |
|
Transform ุนุจุงุฑุฉ ุนู ู
ุคุซูุฑ ุฎุทูู ุดู ูุนูู ู
ุคุซูุฑ ุฎุทููุ ูุฐุง |
|
|
|
312 |
|
00:34:00,430 --> 00:34:05,200 |
|
ุงููู ุจุฏูุง ูุนุฑูู ุจูููู ููุง ูุงุจูุงุณ ุชุฑุงูุณููุฑู
is a |
|
|
|
313 |
|
00:34:05,200 --> 00:34:11,000 |
|
linear operator ู
ุคุซูุฑ ุฎุทูู ุฐุงุชู an ูู ูุงู ูุงุจูุงุณ |
|
|
|
314 |
|
00:34:11,000 --> 00:34:15,640 |
|
ุชุฑุงูุณููุฑู
ูุฏุงูุฉ F1 ููุงุจูุงุณ ุชุฑุงูุณููุฑู
ูุฏุงูุฉ F2 |
|
|
|
315 |
|
00:34:15,640 --> 00:34:21,920 |
|
ุงุซูุชูู ู
ุนุฑููู ูุจูู ูู ูุฐู ุงูุญุงูุฉ ุจุฏู ูุงุจูุงุณ ูู C1 F1 |
|
|
|
316 |
|
00:34:21,920 --> 00:34:28,660 |
|
ุฒุงุฆุฏ C2 F2 ูู
ุง ุฃููู ู
ุคุซูุฑ ุฎุทูู ู
ุนูุงุชู ูุงุจูุงุณ ุจุฏู ูุฏุฎู |
|
|
|
317 |
|
00:34:28,660 --> 00:34:33,120 |
|
ุนูู ูู Term ู
ู ูุฐูู ุงูู Termูู ูุจูู ุจุตูุฑ Laplace |
|
|
|
318 |
|
00:34:33,120 --> 00:34:37,960 |
|
ููุฃูู ุฒู Laplace ููุซุงูู ุงูู Constant ุจููุฏุฑ ูุทูุนู |
|
|
|
319 |
|
00:34:37,960 --> 00:34:43,600 |
|
ุจุฑู Laplace ูุจูู C1 Laplace ููู F1 ุฒู C2 Laplace ููู |
|
|
|
320 |
|
00:34:43,600 --> 00:34:48,880 |
|
F2 Laplace ููู F1 ูู ุนุฏููุชูุง ุฑู
ุฒ Capital F1 of S |
|
|
|
321 |
|
00:34:48,880 --> 00:34:56,310 |
|
ูุจูู ุจุตูุฑ C1 F1 of S ูุงูุซุงููุฉ C2 F2 of S ุจูุฑูุญ |
|
|
|
322 |
|
00:34:56,310 --> 00:35:00,030 |
|
ูุณุชุฎุฏู
ูุฐุง ุงูููุงู
ูู ุฅูุฌุงุฏ Laplace Transform |
|
|
|
323 |
|
00:35:00,030 --> 00:35:07,190 |
|
ููุฏูุงู ุงูู
ุฎุชููุฉ ููุฐูู ุจุงุณุชุฎุฏุงู
ุงูู
ุซุงููู ุงูุณุงุจููู |
|
|
|
324 |
|
00:35:07,190 --> 00:35:14,310 |
|
ุงููู ุฃุฎุฐูุงูู
ูุจู ูููู ูุจูู ุจุฏูู ุฃุฌู ููู
ุฑุฉ A ุจูููู |
|
|
|
325 |
|
00:35:14,310 --> 00:35:19,110 |
|
ููุง Laplace ูู 8 ุจููู ู
ุง ุจุนุฑููู Laplace ุฃูุง |
|
|
|
326 |
|
00:35:19,110 --> 00:35:24,730 |
|
ุจุนุฑู Laplace ูููุงุญุฏ ุตุญ ุจูุฏุฑ ุฃููู ูู ูุฐู Laplace |
|
|
|
327 |
|
00:35:24,730 --> 00:35:32,400 |
|
ูู 8 ูู 1 ู
ุธุจูุท ุงูู 8 ูู ุงูู
ูุฏุงุฑ ุงูุซุงุจุช |
|
|
|
328 |
|
00:35:32,400 --> 00:35:38,100 |
|
ุจูุฏุฑ ุฃุทูุนู ุจุฑุฉ ูุง ุด ุจุฑุฉ Laplace ูุจูู ูุฐู 8 ูู |
|
|
|
329 |
|
00:35:38,100 --> 00:35:44,440 |
|
Laplace ูููุงุญุฏ 8 ูุฏููุด Laplace ูููุงุญุฏ 1 ุนูู |
|
|
|
330 |
|
00:35:44,440 --> 00:35:52,260 |
|
S ููุท ูุบูุฑ ูุจูู 8 ุนูู S ูุฐุง Laplace ููู 8 |
|
|
|
331 |
|
00:35:52,260 --> 00:35:57,080 |
|
ุทุจ Laplace Laplace ูู 100 ูู
ูุฉ ู
ููู
100 ููุณ ุญุทู ุงูุฑูู
ุงููู |
|
|
|
332 |
|
00:35:57,080 --> 00:36:00,560 |
|
ุจุฏูู ุงูุงู ุจุณ ุฃูุง ููุช ุจุฃุนูู ุงุณู
ู ูุฌุจุช Laplace ุฅูู |
|
|
|
333 |
|
00:36:00,560 --> 00:36:04,740 |
|
ุงูููุ ูุฐุง ุจุงููุณุจุงูู ุฅููุ ุจุฏูุง ูู
ุฑู ุจูู ูู
ุฑู ุจูู |
|
|
|
334 |
|
00:36:04,740 --> 00:36:10,680 |
|
ูููู Laplace ุฃููุฉ ูุฐู ุงููู ูู Laplace ูู
ููุ ุงููู |
|
|
|
335 |
|
00:36:10,680 --> 00:36:18,140 |
|
3 Cos 2T ูุงูุต 5 E ุฃุณ ุณุงูุจ 3T |
|
|
|
336 |
|
00:36:18,140 --> 00:36:26,670 |
|
ูุชุณุงูู ูุฐู ูู ูุฐู ุจุงูุถุจุท ุตุญุ ู
ุธุจูุทุ ูุจูู ุจุฏูุง ุฃููู |
|
|
|
337 |
|
00:36:26,670 --> 00:36:29,690 |
|
ุงูู Constant ูู Laplace ููุฏุงูุฉ ุงูุฃููู ูุงูุต |
|
|
|
338 |
|
00:36:29,690 --> 00:36:33,310 |
|
ุงูู Constant ูู Laplace ููุฏุงูุฉ ุงูุซุงููุฉ ูุจูู ูุฐุง |
|
|
|
339 |
|
00:36:33,310 --> 00:36:42,950 |
|
ุนุจุงุฑุฉ ุนู 3 Laplace ูู
ููุ ูููุ Cos 2T ูุงูุต 5 |
|
|
|
340 |
|
00:36:42,950 --> 00:36:49,600 |
|
ูู Laplace ููู E ุฃุณ ุณุงูุจ 3T ูุฐุง ุงูููุงู
ูุณุงูู |
|
|
|
341 |
|
00:36:49,600 --> 00:36:55,320 |
|
3 ููู ุจุฏู Laplace ูู Cos 2T ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
342 |
|
00:36:55,320 --> 00:37:04,940 |
|
ุนู S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ ูู
ุ 2 ุชุฑุจูุน ุญุณุจูุงูุง ูุจู |
|
|
|
343 |
|
00:37:04,940 --> 00:37:11,210 |
|
ูููู ู
ุธุจูุทุ ููููุง ูู ุชุดูููุง ูุนูู ู
ุธุจูุทุ ูุจูู ุดูููุง |
|
|
|
344 |
|
00:37:11,210 --> 00:37:15,050 |
|
ุงูู A ูุญุทููุง ุงููู ูู ุงูุฑูู
ุงููู ู
ุถุฑูุจ ูู ุงูุฒุงููุฉ |
|
|
|
345 |
|
00:37:15,050 --> 00:37:20,910 |
|
ุงููู ูู ุงูู 2 ูุฐู ุงูุฃููู ุงูุซุงููุฉ ูุงูุต 5 ูู |
|
|
|
346 |
|
00:37:20,910 --> 00:37:30,430 |
|
ููุฌู ููุฐู ุงูู Exponential ุงููู ูู 1 ุนูู S ุฒุงุฆุฏ |
|
|
|
347 |
|
00:37:30,430 --> 00:37:38,350 |
|
3 ุตุงุฑุช ุงูู
ุณุฃูุฉ ูู 3S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ 4 |
|
|
|
348 |
|
00:37:38,350 --> 00:37:46,270 |
|
ูุงูุต 5 ุนูู S ุฒุงุฆุฏ 3 ุฃุธู ุฃู ูุฐุง ูู ุงูู
ุถุงุนู |
|
|
|
349 |
|
00:37:46,270 --> 00:37:54,610 |
|
ุงูู
ุดุชุฑู ููู S ุชุฑุจูุน ุฒุงุฆุฏ 4 ูู S ุฒุงุฆุฏ 3 ูุฐู |
|
|
|
350 |
|
00:37:54,610 --> 00:38:05,470 |
|
ุจูุตูุฑ 3S ูู S ุฒุงุฆุฏ 3 ูุงูุต 5 ูู S ุชุฑุจูุน |
|
|
|
351 |
|
00:38:05,470 --> 00:38:13,940 |
|
ุฒุงุฆุฏ 4 ุงููุชูุฌุฉ ุนูู ุงูุดูู ุงูุชุงูู ุชุณุงูู ูุฐู 3 |
|
|
|
352 |
|
00:38:13,940 --> 00:38:23,180 |
|
S ุชุฑุจูุน ุฒุงุฆุฏ 9S ุงูู Term ุงูุซุงูู ูุงูุต 5 |
|
|
|
353 |
|
00:38:23,180 --> 00:38:31,260 |
|
S ุชุฑุจูุน ูุงูุต 20 ููู ุนูู ุงูู
ูุงู
ุงููู ูู S ุชุฑุจูุน |
|
|
|
354 |
|
00:38:31,260 --> 00:38:38,340 |
|
ุฒุงุฆุฏ 4 ูู S ุฒุงุฆุฏ 3 ูุจูู ุงููุชูุฌุฉ ุนูู ุงููุฌู |
|
|
|
355 |
|
00:38:38,340 --> 00:38:47,870 |
|
ุงูุชุงูู ูุงูุต 2S ุชุฑุจูุน ูููุง ุฒุงุฆุฏ 9S ูููุง |
|
|
|
356 |
|
00:38:47,870 --> 00:38:57,130 |
|
ูุงูุต 20 ููู ู
ูุณูู
ูุง ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ 4 ูู ู
ูู |
|
|
|
357 |
|
00:38:57,130 --> 00:39:03,770 |
|
ูู S ุฒุงุฆุฏ 3 ูุจูู ูุฐุง ูู Laplace Transform ููุฏุงูุฉ |
|
|
|
358 |
|
00:39:03,770 --> 00:39:08,370 |
|
ูุฐู ุทุจ ูุฐู ูุง ุจูุงุช ูู ุนู
ูุชููุง Partial Fraction |
|
|
|
359 |
|
00:39:08,370 --> 00:39:16,730 |
|
ูุณูุฑ ุฌุฒุฆูุฉ ุจุทูุน ุจุทูุน ูุฐุง ุตุญุ ู
ุด ูุฐุง ูุญุฏูุง |
|
|
|
360 |
|
00:39:16,730 --> 00:39:20,510 |
|
ุงูู
ูุงู
ุงุช ูุจูู ูู ุจุฏูุง ุฃุนู
ู ูุณูุฑ ุจุชููู ุนูุฏู ูุฐู |
|
|
|
361 |
|
00:39:20,510 --> 00:39:24,650 |
|
ุจุงูุฏุฑุฌุฉ ุนูู ุงูุฃุตู ุชุจุนูุง ูุจูู ูุฐุง ูู ุงูุฃุตู ุชุจุนูุง |
|
|
|
362 |
|
00:39:24,650 --> 00:39:30,130 |
|
ุทุจุนูุง ููุด ูู ุจููููู ูุฏู ุงูููุงู
ุฅูู ุณููุฒู
ูุง ุจุนุฏ ุดููุฉ |
|
|
|
363 |
|
00:39:30,130 --> 00:39:35,350 |
|
ุฅู ุดุงุก ุงููู ูุถุทุฑ ูุนู
ู ูุณูุฑ ุฌุฒุฆูุฉ ูู
ูุฏุงุฑ ู
ุซู ูุฐุง |
|
|
|
364 |
|
00:39:35,350 --> 00:39:40,310 |
|
ุงูู
ูุฏุงุฑ ู
ุง ูููุฏุฑุด ููุฌุฏ Laplace Transform ูู ุฃู ููุฌุฏ |
|
|
|
365 |
|
00:39:40,310 --> 00:39:42,710 |
|
ู
ุนููุณ Laplace Transform |
|
|
|
366 |
|
00:39:55,960 --> 00:40:03,920 |
|
ูุฐุง ูู
ุฑุฉ B ูุจุฏุฃ ูุฌู ููู
ุฑุฉ C ูู
ุฑุฉ C ุจูููู ุงููู ุจุฏูู |
|
|
|
367 |
|
00:40:03,920 --> 00:40:10,760 |
|
Laplace Transform ููุฑุงุถูู C Laplace ูู Cosine ุชุฑุจูุน ุจุฏูุง Laplace |
|
|
|
368 |
|
0 |
|
|
|
401 |
|
00:44:36,470 --> 00:44:45,150 |
|
ููุณุงูู ุจุณ ุงูุฅุดุงุฑุฉ ูู ุงูู
ูุงู
ุจุงูุณุงูุจ ูููุณ ุจุงูู
ูุฌุจ |
|
|
|
402 |
|
00:44:45,150 --> 00:44:49,790 |
|
ููู |
|
|
|
403 |
|
00:44:49,790 --> 00:44:50,390 |
|
ูููุ |
|
|
|
404 |
|
00:44:53,080 --> 00:44:58,040 |
|
ูุง ุชุญูุธููุงุ ูููุตูุฑูุง ูู ุฅู ุดุงุก ุงููู ูู ุงู Laplace transform |
|
|
|
405 |
|
00:44:58,040 --> 00:45:02,880 |
|
ุจุฏู ุงูุฏุงูุฉ ุงูุนุดุฑูู ุฏุงูุฉ ููุนุทูู ูุง ูููู
|
|
|
|
406 |
|
00:45:02,880 --> 00:45:08,460 |
|
ุชุนุงูู ุชูุถูู ูููุง ู
ุนูู ุงุณุชุฎุฏู
ููุง ู
ุชู ู
ุง ูุงุฒู
ุงูุฃู
ุฑ |
|
|
|
407 |
|
00:45:08,460 --> 00:45:13,220 |
|
ูุนูู ุงูุตูุญุฉ ุงูุฃุฎูุฑุฉ ูู ูุฑูุฉ ุงูุฃุณุฆูุฉ ุจุชููู ุงู |
|
|
|
408 |
|
00:45:13,220 --> 00:45:17,220 |
|
Laplace transform ููุฏูุงู ูููุง ุงููู ุจุชูุฒู
ู ูุฒูุงุฏุฉ |
|
|
|
409 |
|
00:45:17,220 --> 00:45:23,250 |
|
ุดููุฉ ุจุณ ุจุฏู ุชุนุฑูู ูู ููุช ูู use the definition to |
|
|
|
410 |
|
00:45:23,250 --> 00:45:26,850 |
|
find Laplace transform ูุฏุงูุฉ ููุงููุฉ ูุฃุนุทูุชู ุฏุงูุฉ |
|
|
|
411 |
|
00:45:26,850 --> 00:45:32,990 |
|
ูุจูู ุจุฏู ุชุฑูุญู ุชุดุชุบูู ุงูุดุบู ูุฐุงุ ุชู
ุงู
ุ ููู ุฅุฐุง ู
ุง |
|
|
|
412 |
|
00:45:32,990 --> 00:45:36,850 |
|
ููุชู ูุฐุง ุงูููุงู
ููุฒู
ุช Laplace ูุฃู ุฏุงูุฉ ุจุฌูุจูุง ู
ู |
|
|
|
413 |
|
00:45:36,850 --> 00:45:40,990 |
|
ุงูุฌุฏูู ุฏูุฑูุ ุงูุฌุฏูู ูุฐุง ููุนุทููู
ุฅูุงู ููู
ุฐูู ุงูู
ุฑุฉ |
|
|
|
414 |
|
00:45:40,990 --> 00:45:44,270 |
|
ุงููุงุฏู
ุฉุ ุฏุง ู
ู ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฏู ูู ูุงุญุฏ ูููู
ูููู |
|
|
|
415 |
|
00:45:44,270 --> 00:45:47,570 |
|
ููุชุจูุง ู
ุนุงูุง ูุฅูู ูู ุฌุฏูู ุจุฏู ุฃููู ูู ูุงูุง ุนุดุงู |
|
|
|
416 |
|
00:45:47,570 --> 00:45:52,390 |
|
ุชุชุนูุฏู ุชูุชุดู ูุชุนุฑูู ููู ุชูููู ู
ู ุงูุฌุฏูู Laplace |
|
|
|
417 |
|
00:45:52,390 --> 00:45:56,510 |
|
transform ูุฏุงูุฉ ู
ุง ูู ูุงุญุฏ ุงูู
ุฑุฉ ุงูุฌุงูุฉ ูููู |
|
|
|
418 |
|
00:45:56,510 --> 00:45:57,810 |
|
ููุชุจูุง ู
ุนุงูุง ุฏู ุฑุจุงููู
|
|
|
|
419 |
|
00:46:01,630 --> 00:46:06,770 |
|
ุทูุจ ูููุง ูู
ุงู ูุธุฑูุฉ ุจูุงุช ุจุชุฌูุจ Laplace transform |
|
|
|
420 |
|
00:46:06,770 --> 00:46:12,390 |
|
ููู
ุดุชูุงุช ูุนูู ูู ุงุดุชูููุงุ ุฏู ุงููู ุจุฏู Laplace ููู
ุดุชูุฉ |
|
|
|
421 |
|
00:46:12,390 --> 00:46:16,150 |
|
ูุฐู ุงููุธุฑูุฉ ุชูุต ุนูู ู
ุง ููู |
|
|
|
422 |
|
00:46:19,780 --> 00:46:24,840 |
|
ุทุจ ููุด ุจุฏูุง Laplace transform ููุฐู ุงูู
ุดุชูุฉุ ูุฃู |
|
|
|
423 |
|
00:46:24,840 --> 00:46:29,940 |
|
ู
ูุถูุนูุง ู
ูุถูุน ู
ุนุงุฏูุงุช ุชูุงุถููุฉ ุจุฏูุง ูุฌูุจ ุญู |
|
|
|
424 |
|
00:46:29,940 --> 00:46:36,120 |
|
ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุจุงุณุชุฎุฏุงู
Laplace transform ูุจูู |
|
|
|
425 |
|
00:46:36,120 --> 00:46:43,560 |
|
ุงููุธุฑูุฉ ุจุชููู ู
ุง ูุฃุชู Theorem: |
|
|
|
426 |
|
00:46:43,560 --> 00:47:00,950 |
|
f of t is a function such that ุจุญูุซ ุฃู both Laplace |
|
|
|
427 |
|
00:47:00,950 --> 00:47:12,190 |
|
transform of both Laplace transform ููู F of T and |
|
|
|
428 |
|
00:47:12,190 --> 00:47:27,640 |
|
Laplace transform ููู F' of T exists then |
|
|
|
429 |
|
00:47:27,640 --> 00:47:31,240 |
|
ุจุฏูุง |
|
|
|
430 |
|
00:47:31,240 --> 00:47:40,380 |
|
Laplace transform ููู F' of T ุจูุนุฑู ุนูููุง ุฅููุง S ูู |
|
|
|
431 |
|
00:47:40,380 --> 00:47:52,260 |
|
Laplace transform ููู F of T ูุงูุต ุงูู F of Zero ูุฐู |
|
|
|
432 |
|
00:47:52,260 --> 00:47:59,940 |
|
ููุง ุตูุบุฉ ุซุงููุฉ ูู
ุงู ููู S ูู ู
ููุ ูู Capital X as |
|
|
|
433 |
|
00:47:59,940 --> 00:48:07,640 |
|
a function of S ูุงูุต ุงูู F of Zero ูุฐู ูู ูุงูุช |
|
|
|
434 |
|
00:48:07,640 --> 00:48:13,320 |
|
ุงูู
ุดุชูุฉ ุงูุฃููู ูู ุฌููุง ููู
ุดุชูุฉ ุงูุซุงููุฉ Similarly |
|
|
|
435 |
|
00:48:15,900 --> 00:48:22,260 |
|
Laplace transform ููู
ุดุชูุฉ ุงูุซุงููุฉ as a function of T |
|
|
|
436 |
|
00:48:22,260 --> 00:48:34,360 |
|
ุจุฏู ุฃุณุงูู S squared Laplace ููู F of T ูุงูุต ุงูู S ูู ุงูู |
|
|
|
437 |
|
00:48:34,360 --> 00:48:42,800 |
|
F of Zero ูุงูุต ุงูู F prime of Zero in general |
|
|
|
438 |
|
00:48:46,850 --> 00:48:53,970 |
|
ุนูู ูุฌู ุงูุนู
ูู
Laplace transform ููุชูุงุถู ุงููููู as |
|
|
|
439 |
|
00:48:53,970 --> 00:48:55,690 |
|
a function of T |
|
|
|
440 |
|
00:49:02,760 --> 00:49:13,960 |
|
ูุงูุต S<sup>n</sup> ูุงูุต 1 ูู ุงูู F of Zero ูุงูุต S<sup>n</sup> ูุงูุต |
|
|
|
441 |
|
00:49:13,960 --> 00:49:23,220 |
|
2 ูู ุงูู F prime of Zero ูุงูุต ... ุงููู ูู ุงูู S |
|
|
|
442 |
|
00:49:24,240 --> 00:49:30,300 |
|
ูู ุงูู F to the derivative of N minus 2 ุนูุฏ ุงู |
|
|
|
443 |
|
00:49:30,300 --> 00:49:37,560 |
|
Zero ูุงูุต F to the derivative of N minus 1 ุนูุฏ |
|
|
|
444 |
|
00:49:37,560 --> 00:49:38,160 |
|
ุงู Zero |
|
|
|
445 |
|
00:49:57,000 --> 00:50:02,900 |
|
ุงูุญุณุงุจุงุช ุงููู ูุงุชุช ูุงูุช ูููุง ุญุณุงุจุงุช Laplace ููุฏูุงู |
|
|
|
446 |
|
00:50:02,900 --> 00:50:09,080 |
|
ููู ููุง ุจูุฌู ุญุณุงุจุงุช Laplace ูู
ุดุชูุงุช ุงูุฏูุงู ููุงุฎุฏ |
|
|
|
447 |
|
00:50:09,080 --> 00:50:12,820 |
|
Laplace ุงูู
ุดุชูุฉ ุงูุฃููู Laplace ุงูู
ุดุชูุฉ ุงูุซุงููุฉ ูู
ู ุซู
|
|
|
|
448 |
|
00:50:12,820 --> 00:50:18,280 |
|
ูุนู
ู
Laplace ุงูู
ุดุชูุฉ ุงูููููุฉ ูู ุฌููุง ููุฌุฏูู ูุฐุง |
|
|
|
449 |
|
00:50:18,280 --> 00:50:24,200 |
|
ูุชุญุช ููู ูู ุงููุชุงุจ ุจุชูุงูู ูุฐู ูู ุขุฎุฑ Laplace ูู |
|
|
|
450 |
|
00:50:24,200 --> 00:50:30,760 |
|
ุงูุฌุฏูู ุฃุณููู ุขุฎุฑ ูุงุญุฏุฉ ุฅูุด ุจูููู ุงููุธุฑูุฉุ ุจูููู ูู |
|
|
|
451 |
|
00:50:30,760 --> 00:50:36,020 |
|
ู
ุง ูุฃุชู f of t ูู ุงู function ุจุญูุซ Laplace ูู f of t |
|
|
|
452 |
|
00:50:36,020 --> 00:50:41,340 |
|
ููaplace ููู
ุดุชูุฉ exist ุฅู ุญุฏุซ ุฐูู ูุนูู ุฅููุ ุจูุฏุฑ |
|
|
|
453 |
|
00:50:41,340 --> 00:50:45,640 |
|
ุฃุฌูุจ Laplace ููู
ุดุชูุฉ ุจุฏูุงูุฉ Laplace ููุฏุงูุฉ ูููุ |
|
|
|
454 |
|
00:50:45,640 --> 00:50:51,000 |
|
ูุงูุชุงูู ุจููู S ูู Laplace ูู f of t ูุงูุต ุงูู f of |
|
|
|
455 |
|
00:50:51,000 --> 00:50:56,270 |
|
Zero ุฃู ุงูู F of T ูู Laplace ุงููู ูุจูู ุนุจูุฑู ุนูู ุจุตูุบุฉ |
|
|
|
456 |
|
00:50:56,270 --> 00:51:02,430 |
|
X of S ูุนูู ูุฐู ุฃู
ุงูุงุช function ูููุง ูู S capital |
|
|
|
457 |
|
00:51:02,430 --> 00:51:08,190 |
|
X of S ูููุง ูุงูุต ุงูู F of Zero ูู ุนูุฏู ุงูู
ุดุชูุฉ |
|
|
|
458 |
|
00:51:08,190 --> 00:51:12,350 |
|
ุงูุซุงููุฉ ูุจุฏู ุฃุฌูุจููุง Laplace ูุจูู ุจุฃุจุฏุฃ ุงูู S ุงูุฃุณ |
|
|
|
459 |
|
00:51:12,350 --> 00:51:17,940 |
|
ุงูุชุงุจุน ููุง ูุฏู ูุงู ูุฃู ุงูู
ุดุชูุฉ 1 ููุง ู
ุดุชูุฉ ุซุงููุฉ |
|
|
|
460 |
|
00:51:17,940 --> 00:51:22,640 |
|
ุจุฏุฃุช ุจู S ุชุฑุจูุน S ุจุนุฏูุง ุชุนุฏู ู
ู ุงูู S ุจุตูุฑ S of Zero |
|
|
|
461 |
|
00:51:22,640 --> 00:51:27,660 |
|
ูุจูู S ุชุฑุจูุน Laplace F of T ูุงูุต ุงูู S ูู F of Zero |
|
|
|
462 |
|
00:51:27,660 --> 00:51:34,380 |
|
ูุงูุต F prime of Zero ูููุฐุง ุงูุขู ูู ุฌููุง ูุนู
ู
ูุง ูุจูู |
|
|
|
463 |
|
00:51:34,380 --> 00:51:40,300 |
|
ุงูู Laplace ุงูู
ุดุชู ูุงููููุฉ ูู F ูู S to the power N ูุฐุง |
|
|
|
464 |
|
00:51:40,300 --> 00:51:44,620 |
|
derivative ููุฐุง ุฃุณ ูู X to the power S ูู function |
|
|
|
465 |
|
00:51:44,620 --> 00:51:49,700 |
|
ูุงูุต ุงูู S ุจุฏู ูููุต ุงูุฃุณ ุชุจุนูุง 1 ูู ุงูู F of Zero |
|
|
|
466 |
|
00:51:49,700 --> 00:51:54,300 |
|
ูุงูุต ุงูู S ุงูู N ุจุฏู ูููุต 1 ููุง ุนู ุงููู ูุจูู ูู |
|
|
|
467 |
|
00:51:54,300 --> 00:51:58,800 |
|
ุงูู F prime of 0 ูุธู ู
ุงุดู ูุบุงูุฉ ู
ุง ููุตู S ู S 1 |
|
|
|
468 |
|
00:51:58,800 --> 00:52:05,600 |
|
ุงูู
ุดุชูุฉ N ููุต 2 ููุต ุงูู F N minus ุงูู 1 ุนูุฏ Z |
|
|
|
469 |
|
00:52:05,600 --> 00:52:10,340 |
|
ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฅู ุดุงุก ุงููู ุจุฏูุง ูุฃุฎุฐ ุฃู
ุซูุฉ ุนูู ููู |
|
|
|
470 |
|
00:52:10,340 --> 00:52:15,540 |
|
ูุญูู ู
ุนุงุฏูุฉ ุชูุงุถููุฉ ุจูุงุณุทุฉ Laplace transform |
|
|
|
471 |
|
00:52:15,540 --> 00:52:20,360 |
|
ูุจุงุณุชุฎุฏุงู
ูุฐู ุงููุธุฑูุฉ ุฅู ุดุงุก ุงููู ุชุนุงูู ุฃุนุทููู
|
|
|
|
472 |
|
00:52:20,360 --> 00:52:20,580 |
|
ุงูุนูู |
|
|