|
1 |
|
00:00:19,760 --> 00:00:25,200 |
|
ุจุณู
ุงููู ุงูุฑุญู
ู ุงูุฑุญูู
ููุชูู ุงูุงู ุฅูู ุดุจุชุฑ ุชุณุนุฉ |
|
|
|
2 |
|
00:00:25,200 --> 00:00:31,020 |
|
ุดุจุชุฑ ุชุณุนุฉ ุจุชุญุฏุซ ุนู ูุจูุงุณู transforms ุชุญูููุงุช |
|
|
|
3 |
|
00:00:31,020 --> 00:00:36,440 |
|
ูุจูุงุณูููุด ุงูุชุญูููุงุช ูุฐูุ ูุฐู ุฃุญูุงูุงู ุจูููู ุงูุฏุงูุฉ |
|
|
|
4 |
|
00:00:36,440 --> 00:00:41,860 |
|
ุตุนุจุฉ ุงูุชุนุงู
ู ู
ุนุงูุง ูุจูุญูููุง ุฅูู ุตูุฑุฉ ู
ูุงูุฆุฉ ููุง |
|
|
|
5 |
|
00:00:41,860 --> 00:00:46,520 |
|
ุณูู ุงูุชุนุงู
ู ู
ุนุงูุง ูุฐู ุงูุชุญูููุฉ ุจูุณู
ููุง ุชุญูููุฉ |
|
|
|
6 |
|
00:00:46,520 --> 00:00:51,580 |
|
Laplace ูุฅู ูู ุงููู ุงูุชุดู ุงูุดุบู ูุฐูุจูุฃุฎุฏ ุฃูู |
|
|
|
7 |
|
00:00:51,580 --> 00:00:55,340 |
|
section ูู ูุฐุง ุงูุดุจุชุฑ ุงููู ูู the place transform |
|
|
|
8 |
|
00:00:55,340 --> 00:01:00,700 |
|
ููุนุทู ุชุนุฑูู ูู
ู ุซู
ูุงุฎุฏ ุฃู
ุซูุฉ ู
ุฎุชููุฉ ุนูู ููููุฉ |
|
|
|
9 |
|
00:01:00,700 --> 00:01:07,060 |
|
ุญุณุงุจ the place transform ููุฏูุงู ุงูู
ุฎุชููุฉ ุจูููู |
|
|
|
10 |
|
00:01:07,060 --> 00:01:11,000 |
|
ุงูุชุฑุถ ุงู ุงู f of t ุจูู function ู
ุนุฑูุฉ ุนูู ุงููุชุฑุฉ |
|
|
|
11 |
|
00:01:11,000 --> 00:01:15,830 |
|
ู
ู zero ู infinityLaplace transform the function f |
|
|
|
12 |
|
00:01:15,830 --> 00:01:20,670 |
|
of t denoted by ูุจูู Laplace transform ูุฏุงูุฉ f of |
|
|
|
13 |
|
00:01:20,670 --> 00:01:26,870 |
|
t ูุง ุจุนุทููู ุฑู
ุฒ L of f of t ูุนูู Laplace ู F of T |
|
|
|
14 |
|
00:01:26,870 --> 00:01:32,330 |
|
ุงู L ูุฐู ุงูุญุฑู ุงูุฃูู ู
ุง ููู
ุช Laplace or capital F |
|
|
|
15 |
|
00:01:32,330 --> 00:01:36,650 |
|
of S ูุนูู ุจุงุนุชุจุฑู function ูู ู
ูุ function ูู S |
|
|
|
16 |
|
00:01:36,650 --> 00:01:41,010 |
|
ููุด function ูู Sุ ูุฐุง ู
ุซูุง ูุฌูุจ ุนููู ุจุนุฏ ูููู |
|
|
|
17 |
|
00:01:41,580 --> 00:01:45,760 |
|
ุจูููู ููุงุจูุงูุณุชุฑุงูุณูู ุงู F of T ุงู ุงู F of S is |
|
|
|
18 |
|
00:01:45,760 --> 00:01:52,680 |
|
defined by ูุงุจุชุงู F of S ูุณูู ุชูุงู
ู ู
ู 0 ูุฅูููููุชู |
|
|
|
19 |
|
00:01:52,680 --> 00:01:58,620 |
|
ูู E ููุต ST ูู F of T ุฏู T ุญูุซ S parameter ุงู any |
|
|
|
20 |
|
00:01:58,620 --> 00:02:03,100 |
|
real number ูุฐุง ุงูุงู ูุงุถุญ ุงูู improper integral |
|
|
|
21 |
|
00:02:03,100 --> 00:02:04,340 |
|
ุจุณุจุจ ูุฌูุฏ man |
|
|
|
22 |
|
00:02:12,050 --> 00:02:16,210 |
|
ุนู ุทุฑูู ุงูู Limit ุจูุจุฏุฃ ุชุฐูุจ ุฅูู ุงูู Infinity ูู
ูุ |
|
|
|
23 |
|
00:02:16,210 --> 00:02:17,850 |
|
ูุชูู
ู ู
ู Zero ุฅูู B |
|
|
|
24 |
|
00:02:21,360 --> 00:02:26,240 |
|
ุจูุฎููู P ุชุฑูุญ ู Infinity ูุจุงูุชุงูู ุงูุฌุฏูุง ูู Placid |
|
|
|
25 |
|
00:02:26,240 --> 00:02:31,460 |
|
transform ูุชูุฌุชู ุงูุชูุงู
ู ูุงุฒู
ุชุทูุน function ูู S |
|
|
|
26 |
|
00:02:31,460 --> 00:02:37,320 |
|
ูู
ู ููุง ููููุง F of S ุถุฑูุฑู ุฌุฏุง ูุงุฒู
ุชุทูุน function |
|
|
|
27 |
|
00:02:37,320 --> 00:02:41,650 |
|
ูู S ุฒู ู
ุง ููุดูู ุงูุขูุฃูู ู
ุซุงู ูุงู ูู ุฎุฏ ูู F of T |
|
|
|
28 |
|
00:02:41,650 --> 00:02:45,450 |
|
ู ุณูู E ุฃุณ AT ู T greater than or equal to zero |
|
|
|
29 |
|
00:02:45,450 --> 00:02:49,770 |
|
ูุงู ูู ูุงุชู ูุฃ plus ูู E ุฃุณ AT ุทุจุนุง ุงู area number |
|
|
|
30 |
|
00:02:49,770 --> 00:02:54,470 |
|
ู ูุงุชู ูุฃ plus ูู ูุงุญุฏ ู ูุฃ plus ู E ุฃุณ ูุงูุต AT ู |
|
|
|
31 |
|
00:02:54,470 --> 00:02:58,630 |
|
ูุฃ plus ู E ุฃุณ ูุงูุต ุฎู
ุณุฉ T ูุนูู ุชุทุจูู ู
ุจุงุดุฑ ุฏู |
|
|
|
32 |
|
00:02:58,630 --> 00:03:05,000 |
|
ุชุทุจูู ู
ุจุงุดุฑ ุนูู Cุฅุฐุง ุจุฏูุง ูุญุณุจ ูุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
33 |
|
00:03:05,000 --> 00:03:11,760 |
|
ูุฏุงูุฉ ุงูุฃููู ูุจูู ูุฐุง ูุจูุงุณ ุชุฑุงูุณููุฑู
ูู E ุฃูุณ AT |
|
|
|
34 |
|
00:03:11,760 --> 00:03:16,520 |
|
ุจุฏู ุฃุฑุฌุน ููุชุนุฑูู ูุจูู ูู ุชูุงู
ู ู
ู Zero ุฅูู |
|
|
|
35 |
|
00:03:16,520 --> 00:03:23,180 |
|
Infinity ูู E ุฃูุณ ูุงูุต ST ุงู F of T ุฃูุง ู
ุงุฎุฏูุง E |
|
|
|
36 |
|
00:03:23,180 --> 00:03:26,340 |
|
ุฃูุณ AT ููู ูู DT |
|
|
|
37 |
|
00:03:34,330 --> 00:03:40,950 |
|
ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู limit ู ูู ุชูุงู
ู ู
ู zero |
|
|
|
38 |
|
00:03:40,950 --> 00:03:49,630 |
|
ุฅูู B ูู
ุง B tends to infinity ูู E ุฃุณ ูุงูุต S ูุงูุต |
|
|
|
39 |
|
00:03:49,630 --> 00:03:57,170 |
|
A ููู ูู T dtูุจูู ูุชุงุจุช ูุฐุง ุงูุชูุงู
ู ุนูู ุดูู limit |
|
|
|
40 |
|
00:03:57,170 --> 00:04:02,750 |
|
ูุนูู ุจุฏู ุฃูุงู
ู ูุฐู ุงูุฏุงูุฉ ุซู
ุฃุฑูุญ ุฃุฎุฏููุง ุงู limit |
|
|
|
41 |
|
00:04:02,750 --> 00:04:10,770 |
|
ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู ูุจูู ุงู plus ูู E ุฃูุณ AT ุจุฏู |
|
|
|
42 |
|
00:04:10,770 --> 00:04:15,490 |
|
ูุณุงูู ูู ุงู limit ููุฐุง ุงู B ุจุฏูุง ุชุฑูุญ ูู infinity |
|
|
|
43 |
|
00:04:16,130 --> 00:04:20,470 |
|
ุฃุธู ูุง ุจูุงุช ุชูุงู
ู ุงู exponential ุจููุณ ุงู |
|
|
|
44 |
|
00:04:20,470 --> 00:04:26,830 |
|
exponential itself ู
ูุณูู
ุง ุนูู ุชูุงุถู S ุฅู ูุงูุช ุงููS |
|
|
|
45 |
|
00:04:26,830 --> 00:04:30,710 |
|
ู
ู ุงูุฏุฑุฌุฉ ุงูุฃููู ูุฒู ู
ุง ุงูุชูุง ุดุงูููู ูู ู
ู ุงูุฏุฑุฌุฉ |
|
|
|
46 |
|
00:04:30,710 --> 00:04:37,230 |
|
ุงูุฃููู ูู T ูุจูู ู
ูุณูู
ุง ุนูู ูุงูุต ุงู S ูุงูุต ุงู A |
|
|
|
47 |
|
00:04:37,230 --> 00:04:43,240 |
|
ูุงูุญูู ูุฐุง ููู ู
ู Zero ููููุ ู
ู Zero ูุบุงูุฉ Bุฅุฐุง |
|
|
|
48 |
|
00:04:43,240 --> 00:04:48,160 |
|
ุจุฏูุง ูุนูุถ ุจุญุฏูุฏ ุงูุชูุงู
ู ูุจูู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู |
|
|
|
49 |
|
00:04:48,160 --> 00:04:54,100 |
|
ุงู limit ูู
ุง B tends to infinity ูู E ุฃุณ ูุงูุต S |
|
|
|
50 |
|
00:04:54,100 --> 00:05:01,260 |
|
ูุงูุต ุงู A ูู B ุนูู ู
ูู ุนูู ูุงูุต ุงู S ูุงูุต ุงู A |
|
|
|
51 |
|
00:05:01,260 --> 00:05:06,850 |
|
ูุงูุต ู
ุน ูุงูุต ุจุงูุตูุฑ ุฒุงุฆุฏุจุฏู ุฃุดูู ุงูู T ู ุฃุถุน |
|
|
|
52 |
|
00:05:06,850 --> 00:05:10,950 |
|
ู
ูุงููุง Zero ูุจูู ูุฐุง ุงูู Plus ูุตุจุญ E ู ุงู Zero |
|
|
|
53 |
|
00:05:10,950 --> 00:05:19,350 |
|
ูุจูู ุฏุงุดุฑ ุจูุงุญุฏ ูุจูู ุฒุงุฆุฏ ูุงุญุฏ ุนูู S ูุงูุต ุงูู A |
|
|
|
54 |
|
00:05:19,350 --> 00:05:24,630 |
|
ุจุงูุดูู ุงููู ุนูุฏูุง ููุง ูุจูู ุฃุตุจุญ ูุจูุงุณ Transform |
|
|
|
55 |
|
00:05:24,630 --> 00:05:32,370 |
|
ูุฏูุฉ E ุฃุณ A T ุจุฏู ุฃุณุงูู ุทุจุนุง ูุฐุง ุงูู O ุงูุณุงูุจู
ู
ูู |
|
|
|
56 |
|
00:05:32,370 --> 00:05:37,110 |
|
ุงูุงุฒูู ุชุญุช ุงูุด ุจูุตูุฑุ ุจูุตูุฑ ู
ูุฌุจ ูุจูู ุจูุตูุฑ limit |
|
|
|
57 |
|
00:05:37,110 --> 00:05:45,870 |
|
ูู
ุง B tends to infinity ููุงุญุฏ ุนูู ูุงูุต ุงู S ูุงูุต |
|
|
|
58 |
|
00:05:45,870 --> 00:05:55,990 |
|
ุงู A ูู E ุฃุณ S ูุงูุต ุงู A ููู ูู B ุฒุงุฆุฏ ูุงุญุฏ ุนูู S |
|
|
|
59 |
|
00:05:55,990 --> 00:06:01,940 |
|
ูุงูุต ุงู Aุงูุญูู ูู
ุง ุจูุจุฏุฃ ุชุฑูุญ ู zero ูุฐุง ุงูู
ูุฏุงุฑ |
|
|
|
60 |
|
00:06:01,940 --> 00:06:09,220 |
|
ููู ุจูุฏุงุดุ ูู
ุง ุชุฑูุญ ู ู
ุงูุฉ ููุงูุฉ ูุฐุง ุงูู
ูุฏุงุฑ ููู |
|
|
|
61 |
|
00:06:09,220 --> 00:06:10,940 |
|
ู
ุงูุฉ ููุงูุฉ ูู ุฑูู
|
|
|
|
62 |
|
00:06:14,430 --> 00:06:19,930 |
|
ูุจูู ูุฐุง ููู ุฑุงุญ ุจุฒูุฑู ูุจูู ุถูุฉ ุงููุชูุฌุฉ ูุงุญุฏ ุนูู S |
|
|
|
63 |
|
00:06:19,930 --> 00:06:25,550 |
|
ููุต ุงู A ุจุดุฑุท ุงู ุงู S is greater than A ูุจูู ุจูุงุก |
|
|
|
64 |
|
00:06:25,550 --> 00:06:29,510 |
|
ุนููู ู
ู ุงูุขู ูุง ุณุงุนุฏุง Laplace transform ูู |
|
|
|
65 |
|
00:06:29,510 --> 00:06:34,490 |
|
exponential function E ุฃุณ AT ูู ุนุจุงุฑุฉ ุนู ูุงุญุฏ ุนูู |
|
|
|
66 |
|
00:06:34,490 --> 00:06:39,880 |
|
S ูุงูุต ุงู A ุงูุชูููุง ู
ููุงุทูุจ ุงู ุงูู
ุทููุจ ุงูุฃูู |
|
|
|
67 |
|
00:06:39,880 --> 00:06:45,820 |
|
ุจูุฏุงุฌู ููู
ุทููุจ ุงูุซุงูู ูู
ุฑุง ุจู ูู
ุฑุง ุจู ุงููุฉ ุงุฎุฑ ุดุฑุท |
|
|
|
68 |
|
00:06:45,820 --> 00:06:49,820 |
|
ููุตูุง ุงูุชุฑ ู
ู ุงููุ ุจุฏู ู
ุดุงู ุงุถู
ู ุงูู ู
ุงุตูุชุด ุณุงูุจุฉ |
|
|
|
69 |
|
00:06:49,820 --> 00:06:54,880 |
|
ุฏุงุฆู
ุง ุงูุง ุจุฏู ููุต ุณุฌุฑูุชุฑ ุฏู ููุตู ุทูุจ ุงูุงู ุจูุฏุงุฌู |
|
|
|
70 |
|
00:06:54,880 --> 00:07:00,180 |
|
ููู
ุฑุง ุจู ูู
ุฑุง ุจู ุจุฏู ู plus ูู one ูู ุจูุฏุฑ ุงุฌุฑุจ ุงู |
|
|
|
71 |
|
00:07:00,180 --> 00:07:07,320 |
|
ุงุชุฌูุจ ุงููุงุญุฏ ุงูุตุญูุญ ู
ู ุงู E ุฃุณ ET ูุฐู |
|
|
|
72 |
|
00:07:07,320 --> 00:07:13,490 |
|
ููุฏุฑุูู ุญุทููุง ุงู a ุจูุฏุฑุดุ Zero ูุจูู ุจุงุฌู ุจูููู ููุง |
|
|
|
73 |
|
00:07:13,490 --> 00:07:22,130 |
|
F ุงู a ุชุณุงูู zero then Laplace transform ูู e ุงู |
|
|
|
74 |
|
00:07:22,130 --> 00:07:27,850 |
|
ุงู zero ูู Laplace transform ูู
ูุ ูู ูุงุญุฏ ูุนูู ููุง |
|
|
|
75 |
|
00:07:27,850 --> 00:07:33,830 |
|
ูุดูู ุงู a ู ุฃุญุท ู
ูุงููุง zero ูุจูู ูุงุญุฏ ุนูู s ูุงูุต |
|
|
|
76 |
|
00:07:33,830 --> 00:07:40,620 |
|
ุงู zero ูุจูู ุจูููู ุจูุฏุฑุด1 ุนูู S ุฅุฐุง ู
ู ุงูุขู ูุตุงุนุฏุง |
|
|
|
77 |
|
00:07:40,620 --> 00:07:48,480 |
|
ู plus transform ูููุงุญุฏ ุงูุตุญูุญ ูู 1 ุนูู S ุทูุจ ูู
ุฑู |
|
|
|
78 |
|
00:07:48,480 --> 00:07:57,560 |
|
C ุฌุงู ุจูุฏู ู plus transform ูู E ุฃุณ ูุงูุต AT ูุฐู |
|
|
|
79 |
|
00:07:57,560 --> 00:08:03,340 |
|
ูู
ุฑู C ุดู ุจุชูุฑุฌ ุนู ุงู Aุุจุณ ุงูู A ุจุงูุณุงูุจ. ุฅุฐุง ุจุฏู |
|
|
|
80 |
|
00:08:03,340 --> 00:08:06,620 |
|
ุฃุฎุฏ ุงูุฅุฌุงุจุฉ ุงููู ุญุตูุช ุนูููุง ููู ู ุฃุญุท ุงูู A |
|
|
|
81 |
|
00:08:06,620 --> 00:08:12,860 |
|
ุจุงูุณุงูุจ. ูุจูู ูุฐุง ุงูููุงู
ุฏู ุณูุงุก 1 ุนูู S ูุงูุต ุจุฏู |
|
|
|
82 |
|
00:08:12,860 --> 00:08:20,310 |
|
ุงูู A ุงุฌุงูุจ ูุงูุต A ูุจูู 1 ุนูู S ุฒุงุฆุฏ ุงูู A.ูู
ุฑ ุฏู |
|
|
|
83 |
|
00:08:20,310 --> 00:08:27,310 |
|
ุฌุงูู ูุชูู plus transform ู E ุฃุณ ูุงูุต ุฎู
ุณุฉ T ูุจูู |
|
|
|
84 |
|
00:08:27,310 --> 00:08:33,330 |
|
ูุงุญุฏ ุนูู S ุฒุงุฆุฏ ุฎู
ุณุฉ ูุฃู ูุฐุง ูู ุญุงูุฉ ุฎุงุตุฉ ููู |
|
|
|
85 |
|
00:08:33,330 --> 00:08:39,110 |
|
ุนูุฏูุง ูุฐุง ุงูู ุจูู ุญุณุจูุง plus transform ูุฏูุงููู |
|
|
|
86 |
|
00:08:39,110 --> 00:08:41,670 |
|
ู
ุฎุชููุฉ example two |
|
|
|
87 |
|
00:08:51,800 --> 00:08:57,540 |
|
ุจููู find ูู
ุฑุง |
|
|
|
88 |
|
00:08:57,540 --> 00:09:10,360 |
|
A ูุจูุงุณ ุชุฑุงูุณููุฑู
ูุตูู AT ูู
ุฑุง B ูุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
89 |
|
00:09:10,360 --> 00:09:24,710 |
|
ููู ุตูู ATูู
ุฑ ุงู c ู plus transform ู cos cos 5t |
|
|
|
90 |
|
00:09:24,710 --> 00:09:35,410 |
|
ุฎูู |
|
|
|
91 |
|
00:09:35,410 --> 00:09:43,800 |
|
ุจุฑูุชูุจุฏูู ุงุฎุฏ ูู
ุฑุฉ ุงูู ุจุฏู ูุจูุงุณ ุชุฑุงูุณููุฑู
ูุตูู ุงู |
|
|
|
92 |
|
00:09:43,800 --> 00:09:48,580 |
|
ุชู ุจุฏู ุงุฑุฌุน ููุชุนุฑูู ุงููู ุนูุฏูุง ูุจูู ูู ุชูุงู
ู ู
ู |
|
|
|
93 |
|
00:09:48,580 --> 00:09:58,520 |
|
zero ู infinity ูู E ุฃุณ ูุงูุต ST ูุตูู ุงู ุชู ุฏู ุชู |
|
|
|
94 |
|
00:09:58,520 --> 00:10:06,480 |
|
ุทุจุนุง ูุจูู ูุฐุง ูู ุนุจุงุฑุฉ ุนู ู
ูู ุนุจุงุฑุฉ ุนู limitูู
ุง B |
|
|
|
95 |
|
00:10:06,480 --> 00:10:13,320 |
|
tends to infinity ูุชูู
ู ู
ู zero ู B ู E ุฃุณ ูุงูุต ST |
|
|
|
96 |
|
00:10:13,320 --> 00:10:24,340 |
|
cosine AT sin AT DT sin AT DT |
|
|
|
97 |
|
00:10:24,340 --> 00:10:28,380 |
|
ุทุจ |
|
|
|
98 |
|
00:10:28,380 --> 00:10:34,340 |
|
ููู ุจููู
ู ูุฐุง ูุง ู
ูุงุณูุ ุดู ุงูุทุฑููุฉุ ุจู calculate B |
|
|
|
99 |
|
00:10:36,410 --> 00:10:39,210 |
|
ุจุฏู ูุงุญุฏุฉ ุชุญูู ุงูุง ู
ุงุชุฏูุด ุงููู
ุงู
ุงุช ุจุฏู ูุงุญุฏุฉ ุชุฑูุน |
|
|
|
100 |
|
00:10:39,210 --> 00:10:41,950 |
|
ุฃูุฏููุง ู ุชุญูู ุงู integration by parts integration |
|
|
|
101 |
|
00:10:41,950 --> 00:10:45,370 |
|
by parts ุชู
ุงู
ุ ู ููุง ุฒู ู
ุง ูููููุง ุถุฑุจ ุงูุนู
ูุงู |
|
|
|
102 |
|
00:10:45,370 --> 00:10:49,110 |
|
ุงูุตูู ุงูุด ู
ุง ุชุงุฎุฏ ุตุญ ุงู ุงุฎุฏุช ุงู U ุชุณุงูู ุงู |
|
|
|
103 |
|
00:10:49,110 --> 00:10:53,150 |
|
exponential ู ุงู DV ุชุณุงูู ุงู cosine ู
ุงุดู ุงู ุงุนู
ูุช |
|
|
|
104 |
|
00:10:53,150 --> 00:10:58,270 |
|
ุงูุนู
ููุฉ ุงูุนูุณูุฉ ุงุฎุฏุช ุงู U ูู ุงู sine ู ุงู DV ูู ุงู |
|
|
|
105 |
|
00:10:58,270 --> 00:11:02,600 |
|
exponential ู
ุงุนูุงุด ู
ุดููุฉูุจูู ูู ู
ุง ุชุงุฎุฏ ุงูุงุชููู |
|
|
|
106 |
|
00:11:02,600 --> 00:11:10,140 |
|
ุตุญูุญ ูุจูู ุงูุง ุจุฏู ุงุฎุฏ ุงู U ุชุณุงูู E ุฃุณ ูุงูุต ST ู |
|
|
|
107 |
|
00:11:10,140 --> 00:11:19,820 |
|
ุจุฏู ุงุฎุฏ ุงู DV Sin AT ุจุฏู ุงู DU ูุจูู ูุงูุต S E ุฃุณ |
|
|
|
108 |
|
00:11:19,820 --> 00:11:32,010 |
|
ูุงูุต ST DT ุจุฏู ุงู V ูุงูุต Cos AT ุนูู Aูุจูู ุงููุชูุฌุฉ |
|
|
|
109 |
|
00:11:32,010 --> 00:11:39,290 |
|
ูุฐู ุจุฏูุง ุชุณุงูู limit ูู
ุง B tends to infinity ูู
ูุ |
|
|
|
110 |
|
00:11:39,290 --> 00:11:44,510 |
|
ู ุงู U ูู ุงู V ูุจูู ูู ุงู U ู ุงู V ุงููู ูู ูุงูุต |
|
|
|
111 |
|
00:11:44,510 --> 00:11:56,510 |
|
ูุงุญุฏ ุนูู A ูู A ุฃุณ ูุงูุต ST ูู cosine AT ูุฐุง ุงู U |
|
|
|
112 |
|
00:11:56,510 --> 00:12:06,050 |
|
ูู ุงู V ูุงูุต ุชูุงู
ู V ุฏู UV ูุงูุต cosine AT ุนูู A |
|
|
|
113 |
|
00:12:06,050 --> 00:12:16,750 |
|
ุฏุงููู ูุงูุต S ููุณ ูุงูุต ST ููู ุจุงููุณุจุฉ ุงูู DTุทุจุนุง |
|
|
|
114 |
|
00:12:16,750 --> 00:12:21,910 |
|
ูููู ูุงู
ู ุชุจูู ุญุฏูุฏ ุงูุชูุงู
ู ูุฐู ูุชุจูู ู
ู ููู ููููุ |
|
|
|
115 |
|
00:12:21,910 --> 00:12:30,010 |
|
ู
ู zero ูุบุงูุฉ B ููุฐุง ูู
ุงู ุชูุงู
ู ู
ู zero ูุบุงูุฉ B ู |
|
|
|
116 |
|
00:12:30,010 --> 00:12:34,570 |
|
limit ูููู ู
ู ููุง ูู
ุง ููู
ู ู
ู ููุง |
|
|
|
117 |
|
00:12:42,160 --> 00:12:47,560 |
|
ุจุชุนูุถ ุจุงูููู
ุฉ ุงููู ููู ูุงูุต ุงูููู
ุฉ ุงููู ุงุชุงูุง ูุจูู |
|
|
|
118 |
|
00:12:47,560 --> 00:12:59,450 |
|
ููุง ูุงูุต cosine a b ุนูู a ูู a ุฃุณ Sbูุฒูุช ุงู |
|
|
|
119 |
|
00:12:59,450 --> 00:13:03,910 |
|
exponential ุชุญุช ุจุฅุดุงุฑุฉ ู
ูุฌุจุฉ ูุฐุง ุงูุชุนููู ุงูุฃูู |
|
|
|
120 |
|
00:13:03,910 --> 00:13:11,630 |
|
ูุงูุต ู
ุน ูุงูุต ุจุตูุฑ ุฒุงุฆุฏ ูุณูู ุตูุฑ ุจูุงุญุฏ ู E of zero |
|
|
|
121 |
|
00:13:11,630 --> 00:13:19,020 |
|
ุจูุงุญุฏ ุจุธู ุนูุฏู ููุง ุจุณ ูุฏูุด ูุงุญุฏ ุนูู ุงููู ุฃู limit |
|
|
|
122 |
|
00:13:19,020 --> 00:13:24,280 |
|
ูููู ูุฌู ููู ุจุนุฏ ูุฐู ุนูุฏู ููุง ูุงูุต ู ููุง ูุงูุต ู |
|
|
|
123 |
|
00:13:24,280 --> 00:13:31,160 |
|
ููุง ูุงูุต ูุจูู ุชูุงุชุฉ ุจุงููุงูุต ุนูุฏู S ู ููุง A ู
ูุงุฏูุฑ |
|
|
|
124 |
|
00:13:31,160 --> 00:13:36,540 |
|
ุซุงุจุชุฉ ูุจูู ุจูุฏุฑ ุงุฎุฏูุง ุจุฑุง ุงูุชูุงู
ู ู ุจุตูุฑ ุชูุงู
ู ู
ู |
|
|
|
125 |
|
00:13:36,540 --> 00:13:44,920 |
|
zero ุฅูู B ูู E ุฃุณ ูุงูุต ST ู cosine ATDT |
|
|
|
126 |
|
00:13:47,530 --> 00:13:50,510 |
|
ุฎููู ุจุงูู ููุง ุทุจุนุง ูุฐุง ุญุงููุง ูููุงู ููุงุตู ุจุณ ุฃูุง |
|
|
|
127 |
|
00:13:50,510 --> 00:13:55,190 |
|
ุจุฏูุฑ ุชุฐููุฑ ูุจูู ุฃูุง ุฃุฎุฏุช ุงู U ููุง ุจุงู exponential |
|
|
|
128 |
|
00:13:55,190 --> 00:14:02,450 |
|
ู ุฃุฎุฏุช ุงู DV ุจsin 80 ุงุดุชูุช ู ููุง ูุงู
ู ูุจูู ูุฐู ุงู |
|
|
|
129 |
|
00:14:02,450 --> 00:14:10,330 |
|
U ูู ุงู Vู
ุงูุต ุชูุงู
ู Vุฏุงูููู ุจุฏู ุฃุนูุฏ ุงูุชุฑุชูุจ ู |
|
|
|
130 |
|
00:14:10,330 --> 00:14:13,530 |
|
ุฃุนูุถ ุจุงูููู
ุฉ ุงููู ููู ูุงูุต ุงูููู
ุฉ ุงููู ููู ูุฐู |
|
|
|
131 |
|
00:14:13,530 --> 00:14:18,410 |
|
ุงูุณูุฉ ุงููู ุจุฏู ุฃูุฒููุง ุชุญุช ุจุตูุฑ ู
ุฌุจุฑุฉ ุจูุจูู Cos AB |
|
|
|
132 |
|
00:14:18,410 --> 00:14:24,540 |
|
ุนูู A ูู Sููุง ูุงูุต ู
ุน ูุงูุต ุฒุงุฆุฏ ุจุฏู ุฃุดูู ุงู T ู |
|
|
|
133 |
|
00:14:24,540 --> 00:14:27,900 |
|
ุฃุถุน ู
ูุงููุง Zero ู ุงู cosine ุตูุฑ ุจูุงุญุฏ E ู ุงู Zero |
|
|
|
134 |
|
00:14:27,900 --> 00:14:33,380 |
|
ุจูุงุญุฏ ุจูุถู ุจุณ ูุฏูุด ูุงุญุฏ ุนูู A ููุง ุนูุฏูุง S ุนูู A |
|
|
|
135 |
|
00:14:33,380 --> 00:14:38,780 |
|
ุจุฑุง ุนูุฏู ูุงูุต ูุงูุต ูุงูุต ูุจูู ุชูุงุชุฉ ุจุงููุงูุต ุจูุตูุฑ |
|
|
|
136 |
|
00:14:38,780 --> 00:14:43,500 |
|
ุนูุฏูุง ูุงูุต S ุนูู A ุชูู
ู ู
ู Zero ู B ูู E ู ูุงูุต ุงู |
|
|
|
137 |
|
00:14:43,500 --> 00:14:48,840 |
|
T cosine ATDTุชุนุงูู ูุญุณุจ ุงูุญุณุจุฉ ุงููู ุนูุฏูุง ูุฐู ูุฐุง |
|
|
|
138 |
|
00:14:48,840 --> 00:14:53,740 |
|
ุงูููุงู
ูุณุงูู ูู ุฃุฎุฏุช limit ููุฐุง ุงูู
ูุฏุงุฑ ูุงุจุงูุงุช |
|
|
|
139 |
|
00:14:53,740 --> 00:15:00,060 |
|
ูุฏูุด ุจุทูุน ููุง ุงูู ุงุดูู ุนูู ุงูุณุฑูุน ูุฏูุด ูุงุญุฏ ุนูู |
|
|
|
140 |
|
00:15:00,060 --> 00:15:07,480 |
|
ุงูู ูุฐุง term ุงูุงูู term ุงูุงูู ูุตููู
ู ู
ุญุตุฑ ู
ู ูุงุญุฏ |
|
|
|
141 |
|
00:15:07,480 --> 00:15:12,510 |
|
ู ุณุงูุจ ูุงุญุฏ ู ูุฐุง ุจูู ุจูุฑูุญู
ุง ูุง ูุง ูุจูู ุนูู ุฌุฏ |
|
|
|
142 |
|
00:15:12,510 --> 00:15:16,030 |
|
ูุงุดู ุฒูุฑู ุนูู ุทูู ุงูุฎุท ุงู ุจุชููููุง ููู cos a b |
|
|
|
143 |
|
00:15:16,030 --> 00:15:19,590 |
|
ู
ุญุตูุฑ ู
ู ูุงุญุฏ ู ุณุงูุจ ูุงุญุฏ ู ุจุฏู ุงุถุฑุจ ุงูุทุฑููู ูู |
|
|
|
144 |
|
00:15:19,590 --> 00:15:24,410 |
|
ูุงุญุฏ ุนูู a ูู e ุฃุณ s a b ู ุงุฎุฏ ุงููู ู
ุง ุจุตูุฑ ููุง |
|
|
|
145 |
|
00:15:24,410 --> 00:15:27,110 |
|
ุฒูุฑู ููุง ุฒูุฑู ู ุจูุฌูุจ ุณุงูุฏูุดุชูู ู ุงููู ูู ุงููุต |
|
|
|
146 |
|
00:15:27,110 --> 00:15:32,130 |
|
ุจูุฒูุฑูุฅุฐุง ูุฐุง ุงู limit ุงููู ูู ููู ุจู0 ูุงุญุฏ ุนูู |
|
|
|
147 |
|
00:15:32,130 --> 00:15:36,250 |
|
ุฅูู ู
ูุฏุงุฑ ุซุงุจุชุ ู
ุงููุด ุฏุนูุฉ ุจุงู limit ุชู
ุงู
ุ ูุงูููุช |
|
|
|
148 |
|
00:15:36,250 --> 00:15:40,230 |
|
ุงูู
ูุฏุงุฑ ุงูุซุงุจุช ุจุงูู
ูุฏุงุฑ ุงูุซุงุจุช itself ูุจูู ูุงุญุฏ |
|
|
|
149 |
|
00:15:40,230 --> 00:15:46,450 |
|
ุนูู ุฅูู ูุงูุต S ุนูู ุฅูู ูู limit ูู
ุง B tends to |
|
|
|
150 |
|
00:15:46,450 --> 00:15:52,970 |
|
infinity ูุชูุงู
ู ู
ู zero ุฅูู B ูู E ุฃุณ ูุงูุต ST |
|
|
|
151 |
|
00:15:52,970 --> 00:15:56,190 |
|
cosine ATDT |
|
|
|
152 |
|
00:16:12,880 --> 00:16:18,440 |
|
ุงูุงู ุจุฑุถู ุจูุนู
ู ูุฐู integration by parts ุชู
ุงู
ุ |
|
|
|
153 |
|
00:16:18,440 --> 00:16:21,940 |
|
ุจุฑุถู ููุณ ุงูุชุนููุถ ุงููู ุฃุฎุฏุช U ููุง ุจุฏู ุฃุฎุฏูุง U ููุง |
|
|
|
154 |
|
00:16:21,940 --> 00:16:25,760 |
|
ุจุงูุถุจุท ูุฅู ูู ุนู
ูุช ุงูุนู
ููุฉ ุงูุนูุณูุฉ ู
ุงุนุฑูุด ุงููู |
|
|
|
155 |
|
00:16:25,760 --> 00:16:29,100 |
|
ุงุดุชุบูุช ู ุฎุฑุจุช ู ุฑุฌุนุช ู ู
ุงุณููุด ุดูุก ุดูุกูุจูู ุจุถุงูุฉ |
|
|
|
156 |
|
00:16:29,100 --> 00:16:35,180 |
|
ุงูู
ุงุดู ุจููุณ ุงูุงุชุฌุงู ุฅุฐุง ุจุฏู ุฃุฎุฏ ุงู U ุชุณุงูู E ุฃุณ |
|
|
|
157 |
|
00:16:35,180 --> 00:16:47,130 |
|
ูุงูุต ST ู DV ููู cosine ATDTูุจูู ุงูู DU ูููู ูุงูุต |
|
|
|
158 |
|
00:16:47,130 --> 00:16:56,610 |
|
SE ุฃูุณ ูุงูุต ST ูู DT ูุงูู V ุจูSin AT ุนูู A ูุจูู |
|
|
|
159 |
|
00:16:56,610 --> 00:17:01,630 |
|
ุฃุตุจุญ ุนูุฏู ุงููู ูู ู
ู ูุจูุงุณุฑ ุชุฑุงูุณููุฑู
ุงููู ูู |
|
|
|
160 |
|
00:17:01,630 --> 00:17:07,330 |
|
ุงููSin AT ุจุฏู ุณููุฉ ูุงุญุฏ ุนูู A ุงูุซุงุจุช ุงููู ุนูุฏูุง |
|
|
|
161 |
|
00:17:07,330 --> 00:17:16,080 |
|
ูุงูุตS ุนูู A ูู ุงูู limit ูู
ุง B tends to infinity ู |
|
|
|
162 |
|
00:17:16,080 --> 00:17:21,480 |
|
ูุฐุง ุงูู goose ุงููู ุนูุฏูุง ุจูุฑูุญ ููุชุจ U ูู V ูุฐุง ุงูู |
|
|
|
163 |
|
00:17:21,480 --> 00:17:29,680 |
|
U ู ูุฐุง ุงูู V ูุจูู E ุฃุณ ูุงูุต ST ูู Sin AT ููู ุนูู |
|
|
|
164 |
|
00:17:29,680 --> 00:17:40,940 |
|
ุฌุฏุงุด ุนูู A ูุงูุต ุชูุงู
ูV ุงูุชู ูู ุงููSin AT ุนูู A W |
|
|
|
165 |
|
00:17:40,940 --> 00:17:50,160 |
|
ุงูุชู ูู ูุงูุต SEOS ูุงูุต ST ูู ูุฐุง ุงูููุงู
ุจุงููุณุจุฉ |
|
|
|
166 |
|
00:17:50,160 --> 00:17:57,360 |
|
ุฅูู ู
ูู ุฅูู DT ูููุฌูููุง ุงูุฌูุฒ ุจุงูุดูู ุงููู ุนูุฏูุงูุฐุง |
|
|
|
167 |
|
00:17:57,360 --> 00:18:02,800 |
|
ุงูููุงู
ูุจุฏู ูุณุงูู 1 ุนูู a ูุฒููุงูุง ุฒู ู
ุง ูู ูุงูุต s |
|
|
|
168 |
|
00:18:02,800 --> 00:18:07,600 |
|
ุนูู a ุฒู ู
ุง ูู ู ุฌููุง ุจุฏูุง ูุงุฎุฏ a ุจุณ ูุฐู ูุง ุจูุงุช |
|
|
|
169 |
|
00:18:07,600 --> 00:18:13,460 |
|
ุจูุนูุฏ ุจุญุฏูุฏ ุงูุชูุงู
ู ู
ู zero ุฅูู b ููุฐู ู
ู zero ุฅูู |
|
|
|
170 |
|
00:18:13,460 --> 00:18:20,680 |
|
b ูุฐูู ูุจูู ูุฐู ุจุฏูุง ุงูุตูุฑุฉ ุงููู ู
ุงุชูู
ุง ุงูู B ุจุฏูุง |
|
|
|
171 |
|
00:18:20,680 --> 00:18:24,920 |
|
ุชุฑูุญ ุฅูู infinity ููุฌูุฒุ ุจุชุนูุถ ุจุงูููู
ุฉ ุงููู ููู |
|
|
|
172 |
|
00:18:24,920 --> 00:18:35,350 |
|
ูุงูุต ุงููู ุชุญุชู ุจุฌุง ุตูู A B ุนูู A ูู E ุฃุณ S Bููุต |
|
|
|
173 |
|
00:18:35,350 --> 00:18:43,130 |
|
ููุต |
|
|
|
174 |
|
00:18:43,130 --> 00:18:46,250 |
|
ููุต |
|
|
|
175 |
|
00:18:46,250 --> 00:18:53,490 |
|
ููุต ููุต |
|
|
|
176 |
|
00:18:53,490 --> 00:18:57,730 |
|
ููุต |
|
|
|
177 |
|
00:18:57,730 --> 00:19:03,650 |
|
ููุต ููุต ููุต |
|
|
|
178 |
|
00:19:05,270 --> 00:19:11,130 |
|
ุทูุจ ูุฐุง ุงููู ู
ุง ุชูุฒุด ุจุชุนุทููู ุงุจูุงุช ูู
ุงู0 ูุจูู ุตุงุฑุฉ |
|
|
|
179 |
|
00:19:11,130 --> 00:19:18,530 |
|
ุฅู ุงููุชูุฌุฉ 1 ุนูู a ูุงูุต s ุนูู a ุจ a ูู s ุนูู a s |
|
|
|
180 |
|
00:19:18,530 --> 00:19:25,790 |
|
ุชุฑุจูุน ุนูู a ุชุฑุจูุน ุชู
ุงู
ุ ูู limit ูู
ูุ ูู
ุง ุงู b |
|
|
|
181 |
|
00:19:25,790 --> 00:19:32,550 |
|
tends to infinity ูุชูุงู
ู ู
ู 0 ุฅูู b ูู e ุฃุณ ูุงูุต |
|
|
|
182 |
|
00:19:32,550 --> 00:19:42,530 |
|
st ูู sin a t ูู dtุฃู ุงู ุดุฆุชูุง ูููููุง ูุงุญุฏ ุนูู ุฅูู |
|
|
|
183 |
|
00:19:42,530 --> 00:19:48,150 |
|
ูุงูุต S ุชุฑุจูุน ุนูู ุฅูู ุชุฑุจูุน ู
ุด ูุฐู ูู ุงูุชุนุฑูู |
|
|
|
184 |
|
00:19:48,150 --> 00:19:53,470 |
|
ุงูุฃุณุงุณู ุงููู ู
ูุฌูุฏ ุนูุฏูุง ุงููู ูู ูุฐุง ูุนูู ูุฐู ุจูุฏุฑ |
|
|
|
185 |
|
00:19:53,470 --> 00:20:00,090 |
|
ุฃููู ูู ุชูุงู
ู ู
ู zero ุฅูู infinity ูู E ุฃุณ ูุงูุต ST |
|
|
|
186 |
|
00:20:00,090 --> 00:20:03,810 |
|
ู sign ATDT |
|
|
|
187 |
|
00:20:06,160 --> 00:20:11,660 |
|
ู
ุตุจูุทุ ูุฐู ูููุง plus ููุฐู ุฅุฐุง ุจุฏู ุฃุฑุฌุนูุง ูุนูู ุตุงุฑ |
|
|
|
188 |
|
00:20:11,660 --> 00:20:18,140 |
|
ูุฐุง ุนูุฏูุง ูุงูุชุงูู ุตุงุฑ ุนูุฏูุง ุจุงูุดูู ุงูุชุงูู ูุฐู ูู |
|
|
|
189 |
|
00:20:19,660 --> 00:20:25,980 |
|
ุงููู ูู S ุชุฑุจูุน ุนูู A ุชุฑุจูุน ููู ุงููุงูุต ููู ูุงุญุฏ |
|
|
|
190 |
|
00:20:25,980 --> 00:20:31,260 |
|
ุนูู A ุชุณุงูู ุชุณุงูู ุงููู ูู ุชูุงู
ู ู
ู Zero ุฅูู |
|
|
|
191 |
|
00:20:31,260 --> 00:20:40,480 |
|
Infinity ูู E ุฃูุณ ูุงูุต ST ููSin ATDT ูู ุงููู ุจุฏุฃุช |
|
|
|
192 |
|
00:20:40,480 --> 00:20:45,580 |
|
ูููุง ู
ุด ูู ุงูุชุนุฑูู ูุฐุง ูุฅู ูุชุจุชู ุฒู ู
ุง ูู ุทุจ ุฅูุด |
|
|
|
193 |
|
00:20:45,580 --> 00:20:51,300 |
|
ุฑุฃูู ุงู term ูุฐุง ู
ุด ูู ุงู term ูุฐุงูุจูู ุฎูููู ุฃูููู |
|
|
|
194 |
|
00:20:51,300 --> 00:20:57,920 |
|
ุนูุฏู ุจูุฌููู ุจุดุฑุท ู
ููุ ู
ูุฌุฉ ูุจูู ุจุตูุฑ ุนูุง ููุง ูุงุญุฏ |
|
|
|
195 |
|
00:20:57,920 --> 00:21:07,080 |
|
ุฒุงุฆุฏ ุงููู ูู S ุชุฑุจูุน ุนูู A ุชุฑุจูุน ููู ูุฏูู ูุงุจูุงุณ |
|
|
|
196 |
|
00:21:07,080 --> 00:21:15,320 |
|
ุชุฑุงูุณููุฑู
ูุตูู AT ุจุฏู ูุณูู ูุฏุงุด1 ุนูู a ูุจูู ูุฐุง |
|
|
|
197 |
|
00:21:15,320 --> 00:21:23,240 |
|
ู
ุนูุงู ุงู a ุชุฑุจูุน ุฒุงุฆุฏ s ุชุฑุจูุน ุนูู a ุชุฑุจูุน ูู ูุฐุง |
|
|
|
198 |
|
00:21:23,240 --> 00:21:30,000 |
|
ุงูููุงู
ูู ูุงุจูุงุณู ุชุฑุงูุณ ููุฑู
ูุตูู at ุณูู 1 ุนูู a |
|
|
|
199 |
|
00:21:30,510 --> 00:21:37,050 |
|
ูุจูู ุจูุงุก ุฃู ุนูู ุฃุตุจุญ ูุจูุงุณ ุงู transform ู sign AT |
|
|
|
200 |
|
00:21:37,050 --> 00:21:44,690 |
|
ุฃุถุฑุจ A ุจุตูุฑ ุงู A ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ A ุชุฑุจูุน ู
ูู ุงููู |
|
|
|
201 |
|
00:21:44,690 --> 00:21:51,110 |
|
ุจุฏูุง ุชุณุฃูุ ุงู ุงููุฉ ูู
ุงุฐุงุ |
|
|
|
202 |
|
00:21:51,110 --> 00:21:55,170 |
|
ุทุจ ุงูุง ุจุฌุฒุฑ ู ูุณู ุจุชูุงูุด ุงูุง ููุงู ู ุงูุง ุจุงุดุฑุน |
|
|
|
203 |
|
00:21:55,170 --> 00:22:01,800 |
|
ุงูุชูุงู
ู ูุฐุงุชูุงู
ู ูุฐุง ูุงูููุตุจูุฉ ุจูุช ุงูุญูุงู ู ุงุตููู |
|
|
|
204 |
|
00:22:01,800 --> 00:22:05,940 |
|
ุชุจูู ุนุฑูุงุฉ ู ุงุตูู ุญูุธู ุงููุชูุฌุฉ ูุงู
ุดู ููู ุงูุง ุจุญุตูู |
|
|
|
205 |
|
00:22:05,940 --> 00:22:09,280 |
|
ุงุชูุตูู ู ุจุฐูุฑ ุชุฐููุฑ ูุงู ุงูุนูู ู
ุด ุฏุงูู
ุง ู
ูุฌูุฏ |
|
|
|
206 |
|
00:22:09,280 --> 00:22:17,330 |
|
ุนุจุฏุงููู ุจูุฌู ุจูุนุฏุฑุทูุจ ูุจูู ู
ุฑุฉ ุชุงููุฉ ุจููู ุงุญูุง |
|
|
|
207 |
|
00:22:17,330 --> 00:22:21,650 |
|
ุฎูุตูุง ุงูุญู ุดู ุงููู ุนู
ููุงู ู ุงูู ุชูุตููุง ุงุญูุง ุจุฏูุง |
|
|
|
208 |
|
00:22:21,650 --> 00:22:26,450 |
|
ูุจูุงุณ ุชุฑุงูุณููุฑู
ูุตูู ุงุชู ุงูุง ู
ุงุนูุฏูุด ุงูุง ุงูุชุนุฑูู |
|
|
|
209 |
|
00:22:26,450 --> 00:22:31,410 |
|
ูุจูู ุจุฏู ุงุถุฑุจ ูุฏู E ูุงูุณุงูู
ST ููู
ู ู
ู Zero ุงูู |
|
|
|
210 |
|
00:22:31,410 --> 00:22:35,580 |
|
Infinity ุงูุดูู ุงููู ุนูุฏูุงุงูุงู ูุฐุง ุงูู improper |
|
|
|
211 |
|
00:22:35,580 --> 00:22:39,540 |
|
integral ูุจูู ุฎุงุชู ู limit integration by parts |
|
|
|
212 |
|
00:22:39,540 --> 00:22:44,480 |
|
ุจุฏู ุงุนู
ููุง ู
ุฑุชูู ุฅุฐุง ุนู
ูุชูุง ู
ุฑุชูู ุจุชุจูู ู
ุณุฃูุฉ T |
|
|
|
213 |
|
00:22:44,480 --> 00:22:49,580 |
|
ุฎูุตุช ููุฐุง ูุงู ู
ุนูุง ุณุคุงู ูู calculus B ุฅุฐุง ู
ุฐุงูุฑูู |
|
|
|
214 |
|
00:22:49,580 --> 00:22:53,380 |
|
ู
ูุฌูุฏ ูุงู ู
ุนูุง ูู calculus B ูู ุงู integration by |
|
|
|
215 |
|
00:22:53,380 --> 00:22:56,920 |
|
parts ุจุณ ุฏู ู
ุฌููู integration by parts ู
ุน ุงู |
|
|
|
216 |
|
00:22:56,920 --> 00:23:02,640 |
|
improper integralูุจูู ูุฐุง ุงูุชูุงู
ู ุจุฏู ุฃุฎุฏ ูุฐู U ู |
|
|
|
217 |
|
00:23:02,640 --> 00:23:08,940 |
|
ูุฐู DV ูุจุงูุชุงูู ุณูู
ุช U ูู V ูุงูุต ุชูุงู
ู V ุฏุงููู |
|
|
|
218 |
|
00:23:08,940 --> 00:23:14,500 |
|
ุงูุงู ุจุฏู ุฃุนูุฏ ุงูุชุฑุชูุจ ูุฐู ุจุฏู ุฃุนูุถ ุจุงูููู
ุงููู ููู |
|
|
|
219 |
|
00:23:14,500 --> 00:23:18,480 |
|
ูุงูุต ุงููู ุชุญุชู ุจุฏู ุฃุดูู ูู T ู ุฃุญุท ู
ูุงููุง |
|
|
|
220 |
|
00:23:25,040 --> 00:23:31,240 |
|
ููุต ููุต ููุต ูุจูู ุชูุงุชุฉ ุจุงูุณุงูุจ ุจุตูุฑ ุนูุฏูุง ุณุงูุจ S |
|
|
|
221 |
|
00:23:31,240 --> 00:23:35,860 |
|
ุนูู A ุซุงุจุช ุจุฏู ุฃุฎุฏู ุจุฑุง ุจุถุงู ุชูุงุจู ู
ู Zero ุฅูู B |
|
|
|
222 |
|
00:23:35,860 --> 00:23:42,890 |
|
ูุฅููุ ู ุงุฐุง ูุงูุต ST Cos ATDTุจุนุฏ ุฐูู ุจุฏู ูุฒู ูุฐู ุฒู |
|
|
|
223 |
|
00:23:42,890 --> 00:23:47,610 |
|
ู
ุง ูู ูุฐู ุฒู ู
ุง ูู ููู ุงู limit ุงู exponential |
|
|
|
224 |
|
00:23:47,610 --> 00:23:53,150 |
|
ุงููู ุนูุฏูุง ูุนูู ุงูุชูููุง ู
ู E ุฃุณ ุณุงูุจ ST ู sine AT |
|
|
|
225 |
|
00:23:53,150 --> 00:23:59,550 |
|
ุฅูู ุชูุงู
ู ูู E ุฃุณ ููู ST cosine AT ูุจูู ูู ูู
ูุช |
|
|
|
226 |
|
00:23:59,550 --> 00:24:04,250 |
|
ูู
ุงู ู
ุฑุฉ ุจุฑุฌุน ูุฑุงุณู ุงูู
ุณุฃูุฉ ุงููู ููู ุฅุฐุง ุจุฏู ุฃุฑูุญ |
|
|
|
227 |
|
00:24:04,250 --> 00:24:08,330 |
|
ูุงู
ู ูู
ุงู ู
ุฑุฉ ุจุฏู ุฃุฎุฏ ูุฐู U ููุฐู DV |
|
|
|
228 |
|
00:24:15,840 --> 00:24:22,700 |
|
ูุฐู ุชูุงู
ููุง ุจูsin at ุนูููุง ุจููุณู
ุนูู ุชูุงุถู ุงูุฒุงููุฉ |
|
|
|
229 |
|
00:24:22,700 --> 00:24:28,810 |
|
ุฅู ูุงูุช ุงูุฒุงููุฉ ู
ู ุงูุฏุฑุฌุฉ ุงูุฃูููุทูุจ ุจุฏูุง ูุจุฏุฃ ูุนูุถ |
|
|
|
230 |
|
00:24:28,810 --> 00:24:34,090 |
|
ูุจูู 1 ุนูู a ูุงูุต s ุนูู a ูู limit ุงููู ูู ู
ูุฌูุฏุฉ |
|
|
|
231 |
|
00:24:34,090 --> 00:24:39,670 |
|
ุนูุฏูุง ููุง ุจุงูุถุบุท ุชู
ุงู
ุง ุงูุงู ุจุฏุงุฌู ุงูููู ุงู U ูู ุงู |
|
|
|
232 |
|
00:24:39,670 --> 00:24:46,290 |
|
V ุฃููุง ู
ู a ู
ู zero ู b ูุงูุต ุชูู
ู ู
ู zero ู b ูู V |
|
|
|
233 |
|
00:24:46,290 --> 00:24:52,090 |
|
ุฏู ุงู U ูุฐุง ุงู V ููุฐู ุฏู ุงู U ูุชุจุชูุง ุฒู ู
ุงููุทูุจ 1 |
|
|
|
234 |
|
00:24:52,090 --> 00:24:56,930 |
|
ุนูู a ูุฒูุช ุณุงูุจ s a ุนูู a ูุฒูุช ุงู limit ูู
ุง ูู ูุฐู |
|
|
|
235 |
|
00:24:56,930 --> 00:25:01,890 |
|
ูู
ุง ุชูุฒู ุจู ุชุญุช ุจุตูุฑ sin a ุจู ุนูู a ูู ุงู s ุจู |
|
|
|
236 |
|
00:25:01,890 --> 00:25:05,730 |
|
ุทุจุนุง ูุฐู ุงู limit ุงููู ูุจุฒูุฑ ูุงูู
ุง ุจู ุชุฑูุญ ูู
ุง ูุง |
|
|
|
237 |
|
00:25:05,730 --> 00:25:09,790 |
|
ููุงูุฉ ููุด ุงูู ุงู sin a ุจู ู
ุญุตูุฑ ู
ู ูุงุญุฏ ูุณุงูุจ ูุงุญุฏ |
|
|
|
238 |
|
00:25:09,790 --> 00:25:13,910 |
|
ุถุฑุจูุง ูู ูุงุญุฏ ุนูู ุงู exponential ูุฎูุช ุจู ุชุฑูุญ ูู
ุง |
|
|
|
239 |
|
00:25:13,910 --> 00:25:19,550 |
|
ูุง ููุงูุฉ ุจุตูุฑ ุนุฏุฏ ุนูู ู
ุง ูุง ููุงูุฉ ูููุจุฒูุฑู ูุจูู |
|
|
|
240 |
|
00:25:19,550 --> 00:25:25,410 |
|
ูุฐู zero ุฏุงุฆู
ุง ู ุฃุจุฏุง ุงูุงู ูุงูุต ุจุฏู ุฃุถุน ููุง zero |
|
|
|
241 |
|
00:25:25,410 --> 00:25:31,210 |
|
ูููุง zero ูุฐู ูุงุญุฏ ููุฐู ุฒูุฑู ุนูู ุฃู ุนุฏุฏ ุจูุฏุฑ ุจุฒูุฑู |
|
|
|
242 |
|
00:25:31,210 --> 00:25:37,330 |
|
ูุตููุง ููุฐู ุงู S ุนูู A ุจุฑุฉ ููุงูุต ู
ุน ูุงูุต ุจุตูุฑ ุฒุงุฏ |
|
|
|
243 |
|
00:25:37,330 --> 00:25:45,330 |
|
ูE ุฃูุต ูุงูุต ST sin ATDT ูู ูู
ุง ููุฅุฐุง ุงูุตุฑุช ุงูู
ุณุฃูุฉ |
|
|
|
244 |
|
00:25:45,330 --> 00:25:50,690 |
|
ุงูุชูุงู
ู ุงูุฃุณุงุณู elemental ูุงููsin AT ูุฐุง ุจุฏู ุฃุณุงูู |
|
|
|
245 |
|
00:25:50,690 --> 00:25:54,430 |
|
ู
ููุ ุจุฏู ุฃุณุงูู ูุงุญุฏ ุนูู ุฅููุ ูุงูุตุ ูุนูุฏู ููุง S |
|
|
|
246 |
|
00:25:54,430 --> 00:25:59,090 |
|
ุนููู ูููุง S ุนูู ุฅููุ S ุชุฑุจูุน ุนูู ุชุฑุจูุน limit ูู
ุง |
|
|
|
247 |
|
00:25:59,090 --> 00:26:04,030 |
|
ุงููP ุจุฏุฃ ุชุฑูุญ ูู infinity ููุชูุงู
ู ุงููู ุนูุฏูุง ูุฐุง |
|
|
|
248 |
|
00:26:04,340 --> 00:26:09,480 |
|
ุงูุชูุงู
ู ูุฃู ูุฐุง ูู ููุณ ุงูุชูุงู
ู ูุฐุง ุชู
ุงู
ุจุณ ุจุฏู |
|
|
|
249 |
|
00:26:09,480 --> 00:26:13,700 |
|
ุฃุฑุฌุน ูุฐุง ุฅูู ุฃุตูู ูุจู ุงู limit ูุจูู ุฑุฌุนุชู ุฅูู ุฃุตูู |
|
|
|
250 |
|
00:26:13,700 --> 00:26:17,340 |
|
ุจุฏู ู
ุง ูู limit ุดููุชู ู ูุชุจุช ุชูุงู
ู ู
ู zero ุฅูู |
|
|
|
251 |
|
00:26:17,340 --> 00:26:23,420 |
|
infinity ูู EOS ูุงูุต STDD ูุฐุง ูู ุงูุทุฑู ุงูุดู
ุงู ูุจูู |
|
|
|
252 |
|
00:26:23,420 --> 00:26:27,640 |
|
ุจุฏู ุฃุฏูู ุนูุฏู ู ุฃุฌู
ุน ุจุฏู ู
ุง ูุงูุช ุดุฑุทู ุณูู
ุฉ ุจุตูุฑู |
|
|
|
253 |
|
00:26:27,640 --> 00:26:33,560 |
|
ุดุฑุทู ู
ูุฌุจุฉ ูุจูู ุจุธู ููุง ูุงุญุฏูููุง ุจูุธู S ุชุฑุจูุน ุนูู |
|
|
|
254 |
|
00:26:33,560 --> 00:26:36,820 |
|
A ุชุฑุจูุน ููู ูู ุงูุชูุงู
ู ูุฐุง ุงููู ูู Laplace |
|
|
|
255 |
|
00:26:36,820 --> 00:26:41,240 |
|
transform ูsin A T ุจูุธู ุงูุทุฑู ุงููู
ูู ููุท ุงููู ูู |
|
|
|
256 |
|
00:26:41,240 --> 00:26:47,500 |
|
ุฌุฏุงุด 1 ุนูู Aุงูุฃู ูุญุฏูุง ุงูู
ูุงู
ุงุช ููุฐู ุตูุฑุฉ a ุชุฑุจูุฉ |
|
|
|
257 |
|
00:26:47,500 --> 00:26:52,780 |
|
ุฒุงุฆุฏ s ุชุฑุจูุฉ ุนูู a ุชุฑุจูุฉ ุจุฏู ูุณุงูู ูุงุญุฏ ุนูู a ุงูุงู |
|
|
|
258 |
|
00:26:52,780 --> 00:26:59,260 |
|
ุจุฏูุง ูุฌุณู
ุนูู ูุฐู ุจูุตูุฑ a ุชุฑุจูุฉ ุนูู s ุชุฑุจูุฉ ุฒุงุฆุฏ a |
|
|
|
259 |
|
00:26:59,260 --> 00:27:04,260 |
|
ุชุฑุจูุฉ ูู a ุชุฑุจูุฉ ุจุชุฑูุญ ุงู a ู
ุน ุงู a ุจูุธูุฑ ุฃู a ูู |
|
|
|
260 |
|
00:27:04,260 --> 00:27:09,960 |
|
s ุชุฑุจูุฉ ุนุงู ุฒุงุฆุฏ a ุชุฑุจูุฉ ูุฐุง ู plus transform ู |
|
|
|
261 |
|
00:27:09,960 --> 00:27:16,650 |
|
sign atูุฐูู ูู
ููุง ู
ุฑุชูู ู ุชูุตููุง ุฅูู ุชูุช ุงูุชูุงู
ู ู |
|
|
|
262 |
|
00:27:16,650 --> 00:27:19,750 |
|
ูุจู ุดููุฉ ูู
ุง ุฏู ุงูุง ุงุนุทููุง ุชุนุฑูู ูุจูุงูุณุชุฑุงูุณููู |
|
|
|
263 |
|
00:27:19,750 --> 00:27:25,690 |
|
ุงููู ูู ูุง ุจููู L of F of T ูุง ุงู
ุง F of S ูุญุธุฉ ู
ู |
|
|
|
264 |
|
00:27:25,690 --> 00:27:30,750 |
|
ุญุฏ ู
ุง ุงููู
ู ุจุทูุน ุนูุฏู ุฏุงูุฉ ูู ู
ููุุฏุงูุฉ ูู S ู ููุง |
|
|
|
265 |
|
00:27:30,750 --> 00:27:34,250 |
|
ุฏุงูุฉ ูู S ู ููุง ุฏุงูุฉ ูู S ู ููุง ุฏุงูุฉ ูู S ู ููู |
|
|
|
266 |
|
00:27:34,250 --> 00:27:39,090 |
|
ุฏุงูุฉ ูู S ู ุณุฃูุชู ูุฐุง ุงูุณุคุงู ููุด ุงู F of S ูุจูู |
|
|
|
267 |
|
00:27:39,090 --> 00:27:43,030 |
|
ุงููุชูุฌุฉ ุจุนุฏ ู
ุง ููู
ู ู ูุนูุถ ูููุง ุจุชุทูุน function ูู |
|
|
|
268 |
|
00:27:43,030 --> 00:27:48,170 |
|
S ููุท ู
ุถุงูุด ุนูุฏ ู
ู T ู ุจุงูุชุงูู ุฌูุจ ุฏุงูุฉ ูุงูุฉ ู
ู |
|
|
|
269 |
|
00:27:48,170 --> 00:27:52,330 |
|
ุงูุฏุงูุฉ ุงูุฃุตููุฉ ุทุจ ุงุญูุง ุงูุฃู ุฌูุจูุง |
|
|
|
270 |
|
00:27:59,930 --> 00:28:04,430 |
|
ุจุชุนู
ูู ุงูุฎุทูุงุช ุงููู ุนู
ูุชูุง ุจุณ ุจุฏู ุงูุตูู ุจุชุญุท ู
ุนูุง |
|
|
|
271 |
|
00:28:04,430 --> 00:28:05,530 |
|
ููุตูู |
|
|
|
272 |
|
00:28:11,800 --> 00:28:18,920 |
|
ูุฐู ูู
ุฑ ุจูู Similarly ุงููู ูู Laplace transform La |
|
|
|
273 |
|
00:28:18,920 --> 00:28:27,400 |
|
cosine AT ุจุฏูู ุณุงููุฉ ุจูุงุช S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ A |
|
|
|
274 |
|
00:28:27,400 --> 00:28:33,190 |
|
ุชุฑุจูุนูุฐู ุงููSin ุจุฏู ุงููConstant ุจูุฌููู S ูููุณ |
|
|
|
275 |
|
00:28:33,190 --> 00:28:37,470 |
|
Constantุ ุจุณ ููุง ูุงูุช ุฅุนุงุฏุฉ ุงููSin Constant ูููุง S |
|
|
|
276 |
|
00:28:37,470 --> 00:28:44,050 |
|
ููุฐู ุชุดู ุจุฑุงุญุชูุ ุฑูุญ ุฃุนู
ููุง ูู ุงูุฏุงุฑุ ุดูู ุนูููุงุทูุจ |
|
|
|
277 |
|
00:28:44,050 --> 00:28:49,850 |
|
ู
ู B ุจุฏู ุฃุฑูุญ ุฃุฌูุจ C ูุจูู ุจุฏู C ุจุฏู ู plus |
|
|
|
278 |
|
00:28:49,850 --> 00:28:58,630 |
|
transform ู cosine 5T ุงููู ุนุจุงุฑุฉ ุนู S ุนูู S ุชุฑุจูุน |
|
|
|
279 |
|
00:28:58,630 --> 00:29:07,570 |
|
ุฒุงุฆุฏ ุฎู
ุณุฉ ููู ุชุฑุจูุน ูุนูู S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ ุฎู
ุณุฉ |
|
|
|
280 |
|
00:29:07,570 --> 00:29:16,620 |
|
ูุนุดุฑูู ุญุฏ ูููู
ุจุชุญุจ ุชุณุฃู ุฃุณุฆูุฉ ููุงุุฎูุงุตุ ูุง ูุง ุจูุช |
|
|
|
281 |
|
00:29:16,620 --> 00:29:21,540 |
|
ุงูุญูุงู ุงูุช ูุนุจุชู ุชูุตุจู ููุง ูุงุ ุฎูุงุต ูุนููุ ูุฑุฌุช |
|
|
|
282 |
|
00:29:21,540 --> 00:29:23,640 |
|
ูููุช ูููููุง ุชูุฑุฌูุงุ |
|
|
|
283 |
|
00:29:42,720 --> 00:29:48,600 |
|
ู
ุง ุจุนุฏ ุงูุถููุฉ ุจูุงุช ุฅูุง ุงููุณุนุฉุ ูู
ุง ุจุนุฏ ุงูุนุณุฑ ุฅูุง |
|
|
|
284 |
|
00:29:48,600 --> 00:29:55,240 |
|
ุงููุณุฑุ ูููุฐุง ูุงู ุงููู ุชุนุงูู ูุฅู ู
ุน ุงูุนุณุฑ ูุณุฑุงุ ูุฅู |
|
|
|
285 |
|
00:29:55,240 --> 00:29:59,660 |
|
ู
ุน ุงูุนุณุฑ ูุณุฑุงุ ููู ูุบูุจ ุนุณุฑุง ูุณุฑูู ุฃู ูู
ุง ูุงู ุตูู |
|
|
|
286 |
|
00:29:59,660 --> 00:30:03,470 |
|
ุงููู ุนููู ูุณูู
.ูุนูู ูุฏุด ุจุชุฏุงูู ูู ูุญุธุฉ ุชู
ุงู
ู ุจุนุฏ |
|
|
|
287 |
|
00:30:03,470 --> 00:30:07,830 |
|
ุดููุฉ ุจุชุชูุณุน ู ูุฐู ุทุจูุนุฉ ุงูุฏููุง ุจุถูุด ุงููุงุญุฏ ุนูุฏู |
|
|
|
288 |
|
00:30:07,830 --> 00:30:13,030 |
|
ุนุตุฑ ุนูู ุทูู ููุง ุจุถู ุนูุฏู ุงููุฑุงุฌุฉ ุนูู ุทูู ุงููู ูุฎูุถ |
|
|
|
289 |
|
00:30:13,030 --> 00:30:18,670 |
|
ุงููุตุฉ ู ูุฑูุนูุง ู ูุฐู ุทุจุนุง ู
ู ุจุฏููุงุช ุงููู ูู ุนู
ู |
|
|
|
290 |
|
00:30:18,670 --> 00:30:26,550 |
|
ุงููู ุณุจุญุงูู ู ุชุนุงูู ุทูุจ ูุฑุฌุน ุงูุขู ู ููู
ู ูู ุนูุฏูุง |
|
|
|
291 |
|
00:30:26,550 --> 00:30:30,170 |
|
ูุธุฑูุฉ ุจุชููู ู
ุง ูุฃุชู theorem |
|
|
|
292 |
|
00:30:34,330 --> 00:30:44,450 |
|
ูุงุจูุงุณ ุชุญููู ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
293 |
|
00:30:44,450 --> 00:30:53,230 |
|
ูุงุจูุงุณ |
|
|
|
294 |
|
00:30:53,230 --> 00:30:53,550 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
295 |
|
00:30:53,550 --> 00:30:53,930 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
296 |
|
00:30:53,930 --> 00:30:54,070 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
297 |
|
00:30:54,070 --> 00:30:54,690 |
|
ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ ูุงุจูุงุณ |
|
|
|
298 |
|
00:31:04,380 --> 00:31:14,120 |
|
ูู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูู F1 and ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูู |
|
|
|
299 |
|
00:31:14,120 --> 00:31:27,260 |
|
F2 are both exist ูู ูุงููุง exist for ูู S ุงููู |
|
|
|
300 |
|
00:31:27,260 --> 00:31:30,320 |
|
ุฃูุจุฑ ู
ู S node then |
|
|
|
301 |
|
00:31:52,040 --> 00:31:59,900 |
|
ุฃู ุจูุฏุฑ ุฃููู C1 F1 |
|
|
|
302 |
|
00:31:59,900 --> 00:32:16,940 |
|
of Sุฒุงุฆุฏ C2 capital F2 of S example ูู
ุฑุฉ |
|
|
|
303 |
|
00:32:16,940 --> 00:32:30,900 |
|
A find Laplace transform ู ุชู
ุงููุฉ ูุฐุง ูู
ุฑุฉ A ูู
ุฑุฉ |
|
|
|
304 |
|
00:32:30,900 --> 00:32:45,060 |
|
Bูุจุฏุฃ ุจุงูู Plastic Transform ูู 3 Cos 2T 3 Cos 2T |
|
|
|
305 |
|
00:32:45,060 --> 00:32:59,120 |
|
ูุงูุต ุฎู
ุณุฉ E ุฃุณ ูุงูุต ุชูุงุชุฉ T ูู
ุฑู C Find |
|
|
|
306 |
|
00:33:01,390 --> 00:33:12,550 |
|
Laplace transform La cosine ุชุฑุจูุน AT Cosine ุชุฑุจูุน |
|
|
|
307 |
|
00:33:12,550 --> 00:33:26,770 |
|
ุงุชููู T ูู
ุฑุฉ D find Laplace transform Lagosh AT |
|
|
|
308 |
|
00:33:39,130 --> 00:33:45,090 |
|
ุฎููู ุจุงูู ููุงุ ุงููู ุจุชุญูู ููุงูุ ุฎููู ุจุงูู ููุง ูุจูู |
|
|
|
309 |
|
00:33:45,090 --> 00:33:51,050 |
|
ุจุงุฌู ู ุจููู ุจุฏูุง ุงูุขู ูุฌูุน ูุธุฑูุฉ ูุฐู ู ูุญุงูู ูุทุจู |
|
|
|
310 |
|
00:33:51,050 --> 00:33:54,930 |
|
ูุฐู ุงููุธุฑูุฉุ ูุฐู ุงููุธุฑูุฉ ุจุชููู ูู ุฃู ุงููplacid |
|
|
|
311 |
|
00:33:54,930 --> 00:34:00,430 |
|
transform ุนุจุงุฑุฉ ุนู ู
ุคุซุฑ ุฎุทูุ ุดู ูุนูู ู
ุคุซุฑ ุฎุทูุ ูุฐุง |
|
|
|
312 |
|
00:34:00,430 --> 00:34:05,200 |
|
ุงููู ุจุฏูุง ูุนุฑูุจูููู ููุง ูุฃ ุจูุงุณ ุชุฑุงูุณููุฑู
is a |
|
|
|
313 |
|
00:34:05,200 --> 00:34:11,000 |
|
linear operator ู
ุคุซุฑ ุฎุทู ุฐุงุชู an ูู ูุงู ูุงุจูุงุณ |
|
|
|
314 |
|
00:34:11,000 --> 00:34:15,640 |
|
ุชุฑุงูุณููุฑู
ูุฏุงูู f1 ู ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ูุฏุงูู f2 |
|
|
|
315 |
|
00:34:15,640 --> 00:34:21,920 |
|
ุงุชููู ู
ุนุฑููู ูุจูู ูู ูุฐู ุงูุญุงูุฉ ุจุฏู ูุงุจูุงุณ ู c1 f1 |
|
|
|
316 |
|
00:34:21,920 --> 00:34:28,660 |
|
ุฒุงุฏ c2 f2 ูู
ุง ุงููู ู
ุคุซุฑ ุฎุทู ู
ุนูุงุชู ูุงุจูุงุณ ุจุฏู ูุฏุฎู |
|
|
|
317 |
|
00:34:28,660 --> 00:34:33,120 |
|
ุนูู ูู term ู
ู ูุฐูู ุงูtermูููุจูู ุจุตูุฑ Laplace |
|
|
|
318 |
|
00:34:33,120 --> 00:34:37,960 |
|
ููุฃูู ุฒู Laplace ููุซุงูู ุงู constant ุจููุฏุฑ ูุทูุนู |
|
|
|
319 |
|
00:34:37,960 --> 00:34:43,600 |
|
ุจุฑุง Laplace ูุจูู C1 Laplace ูู F1 ุฒู C2 Laplace ูู |
|
|
|
320 |
|
00:34:43,600 --> 00:34:48,880 |
|
F2 Laplace ูู F1 ูู ุนุฏูุชูุง ุฑู
ุฒ capital F1 of S |
|
|
|
321 |
|
00:34:48,880 --> 00:34:56,310 |
|
ูุจูู ุจุตูุฑ C1 F1 of S ูุงูุชุงููุฉ C2 F2 of Sุจูุฑูุญ |
|
|
|
322 |
|
00:34:56,310 --> 00:35:00,030 |
|
ูุณุชุฎุฏู
ูุฐุง ุงูููุงู
ูู ุฅูุฌุงุฏ Laplace ุงู transform |
|
|
|
323 |
|
00:35:00,030 --> 00:35:07,190 |
|
ููุฏูุงูู ุงูู
ุฎุชููุฉ ู ูุฐูู ุจุงุณุชุฎุฏุงู
ุงูู
ุซุงููู ุงูุณุงุจููู |
|
|
|
324 |
|
00:35:07,190 --> 00:35:14,310 |
|
ุงููู ุฃุฎุฐูุงูู
ูุจู ูููู ูุจูู ุจุฏุงูุฌู ููู
ุฑุฉ A ุจูููู |
|
|
|
325 |
|
00:35:14,310 --> 00:35:19,110 |
|
ููุง Laplace ู ุชู
ุงููุฉุจููู ู
ุด ุจุนุฑููู ุงู place ุฃูุง |
|
|
|
326 |
|
00:35:19,110 --> 00:35:24,730 |
|
ุจุนุฑู ุงู place ูููุงุญุฏ ุตุญ ุจูุฏุฑ ุฃููู ูู ูุฐู ุงู place |
|
|
|
327 |
|
00:35:24,730 --> 00:35:32,400 |
|
ู ุชู
ุงููุฉ ูู ูุงุญุฏ ู
ุธุจูุทุงูุชู
ุงููุฉ ูู ุงูู
ูุฏุงุฑ ุงูุซุงุจุช |
|
|
|
328 |
|
00:35:32,400 --> 00:35:38,100 |
|
ุจูุฏุฑ ุงุทูุนู ุจุฑุง ูุงุด ุจุฑุง Laplace ูุจูู ูุฐู ุชู
ุงููุฉ ูู |
|
|
|
329 |
|
00:35:38,100 --> 00:35:44,440 |
|
Laplace ูููุงุญุฏ ุชู
ุงููุฉ ูุฏุงุด Laplace ูููุงุญุฏ ูุงุญุฏ ุนูู |
|
|
|
330 |
|
00:35:44,440 --> 00:35:52,260 |
|
ุงุณ ููุท ูุบูุฑ ูุจูู ุชู
ุงููุฉ ุนูู ุงุณ ูุฐุง Laplace ูุชู
ุงููุฉ |
|
|
|
331 |
|
00:35:52,260 --> 00:35:57,080 |
|
ุทุจ Laplace Laplace ูู
ูุฉ ู
ููุงู
ูุฉ ููุณ ุญุท ุงูุฑูู
ุงููู |
|
|
|
332 |
|
00:35:57,080 --> 00:36:00,560 |
|
ุจุฏู ุงูุงู ุจุณ ุงูุง ููุช ุจุงุนูู ุงุณู
ู ู ุฌุจุช ุงู plus ุงูู |
|
|
|
333 |
|
00:36:00,560 --> 00:36:04,740 |
|
ุงูููุ ูุฐุง ุจุงููุณุจุงูู ุงููุ ุจุฏูุง ูู
ุฑุฃ ุจูู ูู
ุฑุฃ ุจูู |
|
|
|
334 |
|
00:36:04,740 --> 00:36:10,680 |
|
ููู ุงู plus ุงููุฉ ูุฐู ุงููู ูู ุงู plus ูู
ููุ ุงููู |
|
|
|
335 |
|
00:36:10,680 --> 00:36:18,140 |
|
ุชูุงุชุฉ cosine ุงุชููู T ูุงูุต ุฎู
ุณุฉ E ุฃุณ ูุงูุต ุชูุงุชุฉ T |
|
|
|
336 |
|
00:36:18,140 --> 00:36:26,670 |
|
ูุชุณุงูู ูุฐู ูู ูุฐู ุจุงูุถุจุท ุตุญุู
ุธุจูุทุ ูุจูู ุจุฏุฃ ุฃููู |
|
|
|
337 |
|
00:36:26,670 --> 00:36:29,690 |
|
ุงููconstant ูู Laplace ููุฏุงูุฉ ุงูุฃูููุ ูุงูุต |
|
|
|
338 |
|
00:36:29,690 --> 00:36:33,310 |
|
ุงููconstant ูู Laplace ููุฏุงูุฉ ุงูุซุงููุฉุ ูุจูู ูุฐุง |
|
|
|
339 |
|
00:36:33,310 --> 00:36:42,950 |
|
ุนุจุงุฑุฉ ุนู ุชูุงุชุฉ Laplace ูู
ููุ ูููุ Cos 2T ูุงูุต ุฎู
ุณุฉ |
|
|
|
340 |
|
00:36:42,950 --> 00:36:49,600 |
|
ูู Laplace ููุฅูููุณ ูุงูุต ุชูุงุชุฉ Tูุฐุง ุงูููุงู
ูุณูู |
|
|
|
341 |
|
00:36:49,600 --> 00:36:55,320 |
|
ุชูุงุชุฉ ููู ุจุฏููุง ุจูุงุณูุง ููุตูู ุงุชููู T ุงููู ูู ุนุจุงุฑุฉ |
|
|
|
342 |
|
00:36:55,320 --> 00:37:04,940 |
|
ุนู S ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ ูู
ุ ุงุชููู ุชุฑุจูุน ุญุณุจูุงูุง ูุจู |
|
|
|
343 |
|
00:37:04,940 --> 00:37:11,210 |
|
ููููุ ู
ุธุจูุทุ ููููุง ูู ุชุดููุง ูุนููู
ุธุจูุทุ ูุจูู ุดูููุง |
|
|
|
344 |
|
00:37:11,210 --> 00:37:15,050 |
|
ุงู a ูุญุทููุง ุงููู ูู ุงูุฑูู
ุงููู ู
ุถุฑูู ูู ุงูุฒุงููุฉ |
|
|
|
345 |
|
00:37:15,050 --> 00:37:20,910 |
|
ุงููู ูู ุงูุฃุซููู ูุฐู ุงูุฃูููุ ุงูุชุงููุฉ ูุงูุต ุฎู
ุณุฉ ูู |
|
|
|
346 |
|
00:37:20,910 --> 00:37:30,430 |
|
ููุฌู ููุฐู ุงู exponential ุงููู ูู ูุงุญุฏ ุนูู Sุฅุฐุง |
|
|
|
347 |
|
00:37:30,430 --> 00:37:38,350 |
|
ุตุงุฑุช ุงูู
ุณุฃูุฉ ูู ุชูุงุชุฉ S ุนูู S ุชุฑุงุจูุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ |
|
|
|
348 |
|
00:37:38,350 --> 00:37:46,270 |
|
ูุงูุต ุฎู
ุณุฉ ุนูู S ุฒุงุฆุฏ ุชูุงุชุฉุฃุธู ุฃู ูุฐุง ูู ุงูู
ุถุงุนู |
|
|
|
349 |
|
00:37:46,270 --> 00:37:54,610 |
|
ุงูู
ุดุชุฑู ููู S ุชุฑุจูุน ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูู S ุฒุงุฆุฏ ุชูุงุชุฉ ูุฐู |
|
|
|
350 |
|
00:37:54,610 --> 00:38:05,470 |
|
ุจูุตูุฑ ุชูุงุชุฉ S ูู S ุฒุงุฆุฏ ุชูุงุชุฉ ูุงูุต ุฎู
ุณุฉ ูู S ุชุฑุจูุน |
|
|
|
351 |
|
00:38:05,470 --> 00:38:13,940 |
|
ุฒุงุฆุฏ ุฃุฑุจุนุฉุงููุชูุฌุฉ ุนูู ุงูุดูู ุงูุชุงูู ุชุณุงูู ูุฐู ุชูุงุชุฉ |
|
|
|
352 |
|
00:38:13,940 --> 00:38:23,180 |
|
ุฃุณ ุชุฑุจูุน ุฒุงุฆุฏ ุชุณุนุฉ ุฃุณุงูู term ุงูุชุงูู ูุงูุต ุฎู
ุณุฉ |
|
|
|
353 |
|
00:38:23,180 --> 00:38:31,260 |
|
ุงุณุชุฑุจูุน ูุงูุต ุนุดุฑูู ููู ุนูู ุงูู
ูุงู
ุงููู ูู ุงุณุชุฑุจูุน |
|
|
|
354 |
|
00:38:31,260 --> 00:38:38,340 |
|
ุฒุงุฆุฏ ุฃุฑุจุนุฉ ูู S ุฒุงุฆุฏ ุชูุงุชุฉ ูุจูู ุงููุชูุฌุฉ ุนูู ุงููุฌู |
|
|
|
355 |
|
00:38:38,340 --> 00:38:47,870 |
|
ุงูุชุงูู ูุงูุต ุงุชููู ุงุณุชุฑุจูุนูููุง ุฒุงุฆุฏ ุชุณุนุฉ S ูููุง |
|
|
|
356 |
|
00:38:47,870 --> 00:38:57,130 |
|
ูุงูุต ุนุดุฑูู ููู ู
ูุณูู
ุง ุนูู S ุชุฑุจูุน ุฒุงุฆุฏ ุฃุฑุจุน ูู ู
ูู |
|
|
|
357 |
|
00:38:57,130 --> 00:39:03,770 |
|
ูู S ุฒุงุฆุฏ ุชูุงุชุฉ ูุจูู ูุฐุง ู plus transform ููุฏุงูุฉ |
|
|
|
358 |
|
00:39:03,770 --> 00:39:08,370 |
|
ูุฐู ุทุจ ูุฐู ูุง ุจูุงุช ูู ุนู
ูุชููุง partial fraction |
|
|
|
359 |
|
00:39:08,370 --> 00:39:16,730 |
|
ูุณูุฑ ุฌุฒุก ูู
ูู ุจุทูุน ุจุทูุน ูุฐุงุตุญุ ู
ุด ูุฐุง ูุญุฏูุง |
|
|
|
360 |
|
00:39:16,730 --> 00:39:20,510 |
|
ุงูู
ูุงู
ุงุชุ ูุจูู ูู ุจุฏู ุฃุนู
ู ูุณูุฑุฒ ุจุชููู ุนูุฏู ูุฐู |
|
|
|
361 |
|
00:39:20,510 --> 00:39:24,650 |
|
ุจุงูุฏุฑุฌุฉ ุนูู ุงูุฃุตู ุชุจุนูุงุ ูุจูู ูุฐุง ูู ุงูุฃุตู ุชุจุนูุง |
|
|
|
362 |
|
00:39:24,650 --> 00:39:30,130 |
|
ุทุจุนุง ููุด ูู ุจููููู ูุฏู ุงูููุงู
ุฃูู ุณููุฒู
ูุง ุจุนุฏ ุดููุฉ |
|
|
|
363 |
|
00:39:30,130 --> 00:39:35,350 |
|
ุงู ุดุงุก ุงููู ูุถุทุฑ ูุนู
ู ูุณูุฑ ุฌุฒุฆูุฉ ูู
ูุฏุงุฑ ู
ุซู ูุฐุง |
|
|
|
364 |
|
00:39:35,350 --> 00:39:40,310 |
|
ุงูู
ูุฏุงุฑ ู
ุด ูููุฏุฑ ููุฌุฏ Laplace transform ูู ุฃู ููุฌุฏ |
|
|
|
365 |
|
00:39:40,310 --> 00:39:42,710 |
|
ู
ุนููุณ Laplace transform |
|
|
|
366 |
|
00:39:55,960 --> 00:40:03,920 |
|
ูุฐุง ูู
ุฑุฉ ุจูุจุฏุฃ ูุฌู ููู
ุฑุฉ C ูู
ุฑุฉ C ุจูููู ุงููู ุจุฏู |
|
|
|
367 |
|
00:40:03,920 --> 00:40:10,760 |
|
ูุจูุงุณ ุชุฑุงูุณ ููุฑุงูุฏ C ูุจูุงุณ ูููุณูู ุชุฑุจูุน ุจุฏูุง ูุจูุงุณ |
|
|
|
368 |
|
00:40:10,760 --> 00:40:19,240 |
|
ูููุณูู ุชุฑุจูุน ุงุชููู T ูุจูู ูุฐู ูุจูุงุณ ุชุฑุงูุณ ููุฑู
ูู
ุต |
|
|
|
369 |
|
00:40:19,240 --> 00:40:27,020 |
|
ูู ูุงุญุฏ ุฒุงุฆุฏ ููุณูู ูุฏู ุดุงุจูุงุชุุฃุฑุจุนุฉ T ู
ู ุญุณุงุจ |
|
|
|
370 |
|
00:40:27,020 --> 00:40:35,300 |
|
ุงูู
ุซูุซุงุช ูุจูู ูุฐู ูุฃููุง Laplace transform ููุต ุฒุงุฆุฏ |
|
|
|
371 |
|
00:40:35,300 --> 00:40:43,960 |
|
ูุต ููุณุงูู ุฃุฑุจุนุฉ Tูุฐุง ุงูููุงู
ุจุฏู ูุณูู ูุต ู plus |
|
|
|
372 |
|
00:40:43,960 --> 00:40:51,620 |
|
transform ูููุงุญุฏ ุฒุงุฆุฏ ูุต ู plus transform ู cosine |
|
|
|
373 |
|
00:40:51,620 --> 00:40:58,860 |
|
ุฃุฑุจุนุฉ T ููุณูู ูุฐุง ูุต ู ู plus transform ูููุงุญุฏ |
|
|
|
374 |
|
00:40:58,860 --> 00:41:06,880 |
|
ุงููู ูู ุจูุฏุงุด ุจูุงุญุฏ ุนูู S ุชููุฆูุง ู
ูู ุฒุงุฆุฏ ูู
ุงู ูุต |
|
|
|
375 |
|
00:41:07,510 --> 00:41:13,630 |
|
ูุฐู ููุตููุฉ ุฃุฑุจุนุฉ ุช ุงููู ุจุงุณ ุนูู ุงุณ ุชุฑุจูุฉ ุฒุงุฆุฏ |
|
|
|
376 |
|
00:41:13,630 --> 00:41:18,860 |
|
ุฃุฑุจุนุฉ ุชุฑุจูุฉ ุงููู ุจูุฏุงุด ุจุณุชุงุดุฉูู ุญุจูุช ุงุญุทูุง ูู |
|
|
|
377 |
|
00:41:18,860 --> 00:41:24,560 |
|
ุงูุตูุบุฉ ุงูููุงุฆูุฉ ูุจูู ูุต ุนุงู
ู ู
ุดุชุฑู ุจูุธู ุงูู
ูุงู
S |
|
|
|
378 |
|
00:41:24,560 --> 00:41:34,380 |
|
ูู S ุชุฑุจูุน ุฒุงุฆุฏ 16 ูุจูู ููุง S ุชุฑุจูุน ุฒุงุฆุฏ 16 ุฒุงุฆุฏ |
|
|
|
379 |
|
00:41:34,380 --> 00:41:42,180 |
|
ุงููู ูู ู
ู S ุชุฑุจูุน ุงูุดูู ุงููู ุนูุฏูุงูุจูู ูุฐุง ูุตูุฑ |
|
|
|
380 |
|
00:41:42,180 --> 00:41:52,840 |
|
ูุตู ุงุชููู ุงุณุชุฑุจูุน ุฒุงุฆุฏ ุณุชุงุด ุนูู ุงุณ ูู ุงุณุชุฑุจูุน ุฒุงุฆุฏ |
|
|
|
381 |
|
00:41:52,840 --> 00:41:54,880 |
|
ุณุชุงุด ููุณุงูู |
|
|
|
382 |
|
00:42:09,410 --> 00:42:17,350 |
|
ูุฐุง ูุจูุงุณ ุชุฑุงูุณูุฑู
ููููุณุงูู ุชูุฑููุง ูู
ุฑุฃ ุฏูู ูู
ุฑุฃ |
|
|
|
383 |
|
00:42:17,350 --> 00:42:27,630 |
|
ุฏู ูุงู ูุจูุงุณ ููููุด AT ุจุฏู ูุจูุงุณ ููููุด AT ุทุจุนุง |
|
|
|
384 |
|
00:42:27,630 --> 00:42:33,810 |
|
ุฅุฐุง ุจุฏู ุฃุจุฏุฃ ุฒู ู
ุง ุฌูุจ ูุจูุงุณ ููุตูู ุตุญุูุนูู ุจุฏู |
|
|
|
385 |
|
00:42:33,810 --> 00:42:39,210 |
|
ุฃููู EOS ููุต ST ูู ุฌูุด AT ููุงู
ู ู
ุฑุชูู integration |
|
|
|
386 |
|
00:42:39,210 --> 00:42:46,130 |
|
by parts ููู ุงููู ุนุงุฑู ุงููุธุฑูุฉ ูู ุนูุฏูุง ุทุฑููุฉ ุฃุณูู |
|
|
|
387 |
|
00:42:46,130 --> 00:42:53,600 |
|
ู
ู ุฐูู ููู ูุชุงุจุฉ ุงูุฌูุด ุจุฏูุงูุฉExponential ุชู
ุงู
ูุจูู |
|
|
|
388 |
|
00:42:53,600 --> 00:42:59,320 |
|
ุจุชูุฏุฑ ุชูููู ูุฐุง ุงูููุงู
ุจุฏู ูุณุงูู Laplace transform |
|
|
|
389 |
|
00:42:59,320 --> 00:43:09,580 |
|
ูู E ุฃุณ AT ุฒุงุฆุฏ ุงู E ุฃุณ ูุงูุต AT ููู ุนูู ุงุชููู ุงู |
|
|
|
390 |
|
00:43:10,140 --> 00:43:16,980 |
|
ุชููู ูู ูุฐุง ุงูููุงู
ูุต ุจุฑุง ููู ูุต ุจุฑุง ูุจุธู ุงูู
ูู |
|
|
|
391 |
|
00:43:16,980 --> 00:43:25,080 |
|
ูุจูุงุณ ุชุฑุงูุณููุฑู
ูู E ุฃุณ AT ุฒุงุฆุฏ ูุจูุงุณ ุชุฑุงูุณููุฑู
ูู |
|
|
|
392 |
|
00:43:25,080 --> 00:43:34,580 |
|
E ุฃุณ ูุงูุต AT ููู ููููุง ุงูุฌุฒุกูุฐุง ุงูููุงู
ูุณุงูู ูู ูุต |
|
|
|
393 |
|
00:43:34,580 --> 00:43:41,720 |
|
ุจุฑุง ู
ุงููุด ุฏุนูุฉ ู plus ูู E ุฃุณ AT ูู ู
ู ูุงุญุฏ ุนูู S |
|
|
|
394 |
|
00:43:41,720 --> 00:43:51,370 |
|
ูุงูุต ุงู A ุฒุงุฆุฏ ูุงุญุฏ ุนูู S ุฒุงุฆุฏ ุงู Aูุจูู ูุฐุง ุงูููุงู
|
|
|
|
395 |
|
00:43:51,370 --> 00:44:00,550 |
|
ู
ูุต ูุงุญุฏ ุงูู
ูุงู
ุงุช S ูุงูุต ุงููA S ุฒุงุฆุฏ ุงููA ูู ุฌูุช |
|
|
|
396 |
|
00:44:00,550 --> 00:44:07,970 |
|
ุฌู
ุนุช ุจุตูุฑ ุงููS ุฒุงุฆุฏ ุงููA ุฒุงุฆุฏ ุงููS ูุงูุต ุงููA |
|
|
|
397 |
|
00:44:07,970 --> 00:44:16,210 |
|
ููุณุงูู ุงุธู ุฒุงุฆุฏ A ููุงูุต A ู
ุน ุงูุณูุงู
ุฉุจูุธู ูุตู ุงุชููู |
|
|
|
398 |
|
00:44:16,210 --> 00:44:22,410 |
|
ุงุณ ุนุงูู
ูู ู
ุด ูุฐุง ูุฑู ุจูู ุงูู
ุฑุจุนูู ูุง ุจูุงุชูุจูู S |
|
|
|
399 |
|
00:44:22,410 --> 00:44:28,170 |
|
ุชุฑุจูุน ูุงูุต ุงู A ุชุฑุจูุน ูุต ู
ุน ุงุชููู ุงููู ุณูู ุนูููุง |
|
|
|
400 |
|
00:44:28,170 --> 00:44:36,470 |
|
ูุจูู ุงููุชูุฌุฉ S ุนูู S ุชุฑุจูุน ูุงูุต A ุชุฑุจูุน ุงุธู ุฒู ุงู |
|
|
|
401 |
|
00:44:36,470 --> 00:44:45,150 |
|
cosine ุจุณ ุงูุฅุดุงุฑุฉ ูู ุงูู
ูุงู
ุจุงูุณุงูุจ ูููุณ ุจุงูู
ูุฌุฉ |
|
|
|
402 |
|
00:44:45,150 --> 00:44:49,790 |
|
ููู |
|
|
|
403 |
|
00:44:49,790 --> 00:44:50,390 |
|
ูููุ |
|
|
|
404 |
|
00:44:53,080 --> 00:44:58,040 |
|
ูุง ุชุญูุธูุด ู ููุตูุฑูุง ูู ุงู ุดุงุก ุงููู ูู ุงู aplasia |
|
|
|
405 |
|
00:44:58,040 --> 00:45:02,880 |
|
transform ุจุฏู ุงูุฏุงูุฉ ุนุดุฑูู ุฏุงูุฉ ู ูุนุทูู ูุง ูููู
|
|
|
|
406 |
|
00:45:02,880 --> 00:45:08,460 |
|
ุชุนุงูู ุงุชูุถูู ูููุง ู
ุนุงูู ุงุณุชุฎุฏู
ููุง ู
ุชู ูุงุฒู
ุงูุฃู
ุฑ |
|
|
|
407 |
|
00:45:08,460 --> 00:45:13,220 |
|
ูุนูู ุงูุตูุญุฉ ุงูุฃุฎูุฑุฉ ูู ูุฑูุฉ ุงูุฃุณุฆูุฉ ุจุชููู ุงู |
|
|
|
408 |
|
00:45:13,220 --> 00:45:17,220 |
|
aplasia transform ููุฏูุงู ูููุง ุงููู ุจุชูุฒู
ู ู ุฒูุงุฏุฉ |
|
|
|
409 |
|
00:45:17,220 --> 00:45:23,250 |
|
ุดููุฉุจุณ ุจุฏู ุชุนุฑูู ูู ููุชูู use the definition to |
|
|
|
410 |
|
00:45:23,250 --> 00:45:26,850 |
|
find Laplace transform ูุฏูุฉ ููุงููุฉ ู ุฃุนุทูุชู ุฏูุฉ |
|
|
|
411 |
|
00:45:26,850 --> 00:45:32,990 |
|
ูุจูู ุจุฏู ุชุฑูุญ ุชุดุชุบูู ุงูุดุบู ูุฐุงุ ุชู
ุงู
ุ ููู ุฅุฐุง ู
ุง |
|
|
|
412 |
|
00:45:32,990 --> 00:45:36,850 |
|
ููุชุด ูุฐุง ุงูููุงู
ู ูุฒู
ู Laplace ูุงู ุฏูุฉ ุจุฌูุจูุง ู
ู |
|
|
|
413 |
|
00:45:36,850 --> 00:45:40,990 |
|
ุงูุฌุฏูู ุฏูุฑูุ ุงูุฌุฏูู ูุฐุง ููุนุทูููุง ููู
ู ุฐููุงูู
ุฑุฉ |
|
|
|
414 |
|
00:45:40,990 --> 00:45:44,270 |
|
ุงููุงุฏู
ุฉ ุฏุง ู
ู ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุฏู ูู ูุงุญุฏ ุฃููููุง ูููู |
|
|
|
415 |
|
00:45:44,270 --> 00:45:47,570 |
|
ุงูุชุจูุง ู
ุนุงูุง ูุฅูู ูู ุฌุฏูู ุจุฏู ุฃูููู ูุงูุง ุนุดุงู |
|
|
|
416 |
|
00:45:47,570 --> 00:45:52,390 |
|
ุชุชุนูุฏู ุชูุชุดู ู ุชุนุฑูู ููู ุชูููู ู
ู ุงูุฌุฏูู ู place |
|
|
|
417 |
|
00:45:52,390 --> 00:45:56,510 |
|
transform ูุฏุงูุฉ ู
ุง ูู ูุงุญุฏ ุงูู
ุฑุฉ ุงูุฌุงูุฉ ูููู |
|
|
|
418 |
|
00:45:56,510 --> 00:45:57,810 |
|
ุงูุชุจูุง ู
ุนุงูุง ุฏู ุฑุจุงููู
|
|
|
|
419 |
|
00:46:01,630 --> 00:46:06,770 |
|
ุทูุจ ูููุง ูู
ุงู ูุธุฑูุฉ ุจูุงุช ุจุชุฌูุจ ูุจูุงุณ ุชุฑุงูุณููุฑู
|
|
|
|
420 |
|
00:46:06,770 --> 00:46:12,390 |
|
ููู
ุดุชูุงุช ูุนูู ูู ุงุดุชููุง ุฏู ุงููู ุจุฏู ูุจูุงุณ ููู
ุดุชูุฉ |
|
|
|
421 |
|
00:46:12,390 --> 00:46:16,150 |
|
ูุฐู ุงููุธุฑูุฉ ุชูุต ุนูู ู
ุง ูููู |
|
|
|
422 |
|
00:46:19,780 --> 00:46:24,840 |
|
ุทุจ ููุด ุจุฏูุง Laplace transform ููุฐู ุงูู
ุดุชูุฏุ ูุฅู |
|
|
|
423 |
|
00:46:24,840 --> 00:46:29,940 |
|
ู
ูุถูุนูุง ู
ูุถูุน ู
ุนุงุฏูุงุช ุชูุงุถููุฉ ุจุฏูุง ูุฌูุจ ุญู |
|
|
|
424 |
|
00:46:29,940 --> 00:46:36,120 |
|
ุงูู
ุนุงุฏูุฉ ุงูุชูุงุถููุฉ ุจุงุณุชุฎุฏุงู
Laplace transform ูุจูู |
|
|
|
425 |
|
00:46:36,120 --> 00:46:43,560 |
|
ุงููุธุฑูุฉ ุจุชููู ู
ุง ูุงุชู theorem f |
|
|
|
426 |
|
00:46:43,560 --> 00:47:00,950 |
|
f of tis a function such that ุจุญูุซ ุงู both Laplace |
|
|
|
427 |
|
00:47:00,950 --> 00:47:12,190 |
|
transform both Laplace transform ูู F of T and |
|
|
|
428 |
|
00:47:12,190 --> 00:47:27,640 |
|
Laplace transformููู F' of T exists then |
|
|
|
429 |
|
00:47:27,640 --> 00:47:31,240 |
|
ุจุฏูุง |
|
|
|
430 |
|
00:47:31,240 --> 00:47:40,380 |
|
Laplace transform ูู F' of T ุจูุนุฑู ุนูู ุฅููุง S ูู |
|
|
|
431 |
|
00:47:40,380 --> 00:47:52,260 |
|
Laplace transform ูู F of Tูุงูุต ุงู F of Zero ูุฐู |
|
|
|
432 |
|
00:47:52,260 --> 00:47:59,940 |
|
ููุง ุตูุบุฉ ุชุงููุฉ ูู
ุงู ููู S ูู ู
ููุ ูู capital X as |
|
|
|
433 |
|
00:47:59,940 --> 00:48:07,640 |
|
a function of S ูุงูุต ุงู F of Zero ูุฐู ูู ูุงูุช |
|
|
|
434 |
|
00:48:07,640 --> 00:48:13,320 |
|
ุงูู
ุดุชูุฉ ุงูุฃููู ูู ุฌููุง ููู
ุดุชูุฉ ุงูุซุงููุฉ Similarly |
|
|
|
435 |
|
00:48:15,900 --> 00:48:22,260 |
|
ูุจูุงุณ ุชุฑุงูุณููุฑู
ููู
ุดุชูุฉ ุงูุซุงููุฉ as a function of T |
|
|
|
436 |
|
00:48:22,260 --> 00:48:34,360 |
|
ุจุฏู ุณุงูู S squared ูุจูุงุณ ูู F of T ูุงูุต ุงู S ูู ุงู |
|
|
|
437 |
|
00:48:34,360 --> 00:48:42,800 |
|
F of Zero ูุงูุต ุงู F prime of Zero in general |
|
|
|
438 |
|
00:48:46,850 --> 00:48:53,970 |
|
ุนูู ูุฌู ุงูุนู
ูู
ูุงุจูุงุณ ุชุฑุงูุณููุฑู
ููุชูุงุถู ุงููููู as |
|
|
|
439 |
|
00:48:53,970 --> 00:48:55,690 |
|
a function of T |
|
|
|
440 |
|
00:49:02,760 --> 00:49:13,960 |
|
ูุงูุต SN ูุงูุต ูุงุญุฏ ูู ุงู F of Zero ูุงูุต SN ูุงูุต |
|
|
|
441 |
|
00:49:13,960 --> 00:49:23,220 |
|
ุงุชููู ูู ุงู F prime of Zero ูุงูุต ูุงูุต ุงููู ูู ุงู S |
|
|
|
442 |
|
00:49:24,240 --> 00:49:30,300 |
|
ูู ุงู F to the derivative of N minus two ุนูุฏ ุงู |
|
|
|
443 |
|
00:49:30,300 --> 00:49:37,560 |
|
zero ูุงูุต F to the derivative of N minus one ุนูุฏ |
|
|
|
444 |
|
00:49:37,560 --> 00:49:38,160 |
|
ุงู zero |
|
|
|
445 |
|
00:49:57,000 --> 00:50:02,900 |
|
ุงูุญุณุงุจุงุช ุงููู ูุงุชุช ูุงูุช ูููุง ุญุณุงุจุงุช ูุจูุงุณ ููุฏูุงู |
|
|
|
446 |
|
00:50:02,900 --> 00:50:09,080 |
|
ููู ููุง ุจูุฌู ุญุณุงุจุงุช ูุจูุงุณ ูู
ุดุชูุงุช ุงูุฏูุงู ููุงุฎุฏ |
|
|
|
447 |
|
00:50:09,080 --> 00:50:12,820 |
|
ูุจูุงุณ ุงูู
ุดุชูุฉ ุงูุฃููู ูุจูุงุณ ุงูู
ุดุชูุฉ ุงูุซุงููุฉ ูู
ู ุซู
|
|
|
|
448 |
|
00:50:12,820 --> 00:50:18,280 |
|
ุงูุนู
ู
ูุจูุงุณ ุงูู
ุดุชูุฉ ุงูููููุฉ ูู ุฌููุง ุงูุฌุฏูู ูุฐุง |
|
|
|
449 |
|
00:50:18,280 --> 00:50:24,200 |
|
ูุชุญุช ููู ูู ุงููุชุงุจ ุจุชูุงูู ูุฐููุง ุฃุฎุฑ ูุจูุงุณ ูู |
|
|
|
450 |
|
00:50:24,200 --> 00:50:30,760 |
|
ุงูุฌุฏูู ุฃุณููู ุฃุฎุฑ ูุงุญุฏุฉุฃูุด ุจูููู ุงููุธุฑูุฉุ ุจูููู ูู |
|
|
|
451 |
|
00:50:30,760 --> 00:50:36,020 |
|
ู
ุง ูุฃุชู f of t ูู ุงู function ุจุญูุซ ูุงุจูุณุฉ ู f of t |
|
|
|
452 |
|
00:50:36,020 --> 00:50:41,340 |
|
ู ูุงุจูุณุฉ ุงูู
ุดุชูุฉ exist ุงู ุญุฏุซ ุฐูู ูุนูู ุงูู ุจูุฏุฑ |
|
|
|
453 |
|
00:50:41,340 --> 00:50:45,640 |
|
ุงุฌูุจ ูุงุจูุณุฉ ููู
ุดุชูุฉ ุจุฏูุงูุฉ ูุงุจูุณุฉ ููุฏุงูุฉ ูููุ |
|
|
|
454 |
|
00:50:45,640 --> 00:50:51,000 |
|
ูุงูุชุงูู ุจููู s ูู ูุงุจูุณุฉ ู f of t ูุงูุต ุงู f of |
|
|
|
455 |
|
00:50:51,000 --> 00:50:56,270 |
|
zeroุฃู ุงู F of T ู plus ุงููู ูุจูู ุนุจูุฑู ุนูู ุจุตูุบุฉ |
|
|
|
456 |
|
00:50:56,270 --> 00:51:02,430 |
|
X of S ูุนูู ูุฐู ุฃู
ุงูุงุช function ูููุง ูู S capital |
|
|
|
457 |
|
00:51:02,430 --> 00:51:08,190 |
|
X of S ู ููุง ูุงูุต ุงู F of Zero ูู ุนูุฏู ุงูู
ุดุชูุฉ |
|
|
|
458 |
|
00:51:08,190 --> 00:51:12,350 |
|
ุงูุซุงููุฉ ู ุจุฏู ุฃุฌูุจููุง ู plus ูุจูู ุจุงุจุฏุฃ ุงู S ุงูุฃุณ |
|
|
|
459 |
|
00:51:12,350 --> 00:51:17,940 |
|
ุชุงุจุนู ููุง ูุฏู ูุงููุฃู ุงูู
ุดุชูุฉ ูุงุญุฏ ููุง ู
ุดุชูุฉ ุชุงููุฉ |
|
|
|
460 |
|
00:51:17,940 --> 00:51:22,640 |
|
ุจุฏุฃุช ุจ S ุชุฑุจูุน S ุจุนุฏูุง ุชุนุฏู ู
ู ุงู S ุจุตูุฑ S of Zero |
|
|
|
461 |
|
00:51:22,640 --> 00:51:27,660 |
|
ูุจูู S ุชุฑุจูุน ู plus F of T ูุงูุต ุงู S ูู F of Zero |
|
|
|
462 |
|
00:51:27,660 --> 00:51:34,380 |
|
ูุงูุต F prime of Zeroูููุฐุง ุงูุงู ูู ุฌููุง ูุนู
ู
ูุง ูุจูู |
|
|
|
463 |
|
00:51:34,380 --> 00:51:40,300 |
|
ุงู plus ุงูู
ุดุชู ูุงููููุฉ ู F ูู S to the power N ูุฐุง |
|
|
|
464 |
|
00:51:40,300 --> 00:51:44,620 |
|
derivative ููุฐุง ุฃุณ ูู X to the power S ู function |
|
|
|
465 |
|
00:51:44,620 --> 00:51:49,700 |
|
ูุงูุต ุงู S ุจุฏู ููุฌุณ ุงูุฃุณ ุชุจุนูุง ูุงุญุฏ ูู ุงู F of Zero |
|
|
|
466 |
|
00:51:49,700 --> 00:51:54,300 |
|
ูุงูุต ุงู S ุงู N ุจุฏู ููุฌุณ ูุงุญุฏ ููุง ุนู ุงููู ุฌุงุจูููู |
|
|
|
467 |
|
00:51:54,300 --> 00:51:58,800 |
|
ุงู F prime of 0 ูุธู ู
ุงุดู ูุบุงูุฉ ู
ุง ููุตู S ู S ูุงุญุฏ |
|
|
|
468 |
|
00:51:58,800 --> 00:52:05,600 |
|
ุงูู
ุดุชูุฉ N ููุต ุงุชููู ููุต ุงู F N minus ุงู one ุนูุฏ Z |
|
|
|
469 |
|
00:52:05,600 --> 00:52:10,340 |
|
ุงูู
ุฑุฉ ุงููุงุฏู
ุฉ ุงู ุดุงุก ุงููู ุจุฏูุง ูุงุฎุฏ ุงู
ุซูุฉ ุนูู ููู |
|
|
|
470 |
|
00:52:10,340 --> 00:52:15,540 |
|
ูุญูู ู
ุนุงุฏูุฉ ุชูุงุถููุฉ ุจูุงุณุทุฉ Laplace transform |
|
|
|
471 |
|
00:52:15,540 --> 00:52:20,360 |
|
ูุจุงุณุชุฎุฏุงู
ูุฐู ุงููุธุฑูุฉ ุงู ุดุงุก ุงููู ุชุนุงูู ุงุนุทูููุง |
|
|
|
472 |
|
00:52:20,360 --> 00:52:20,580 |
|
ุงูุนูู |
|
|
|
|