abosalah's picture
Update README.md
de9f1c5 verified
|
raw
history blame
3.41 kB
---
dataset_info:
features:
- name: audio
struct:
- name: bytes
dtype: binary
- name: path
dtype: string
- name: duration
dtype: float64
- name: text
dtype: string
- name: reciter
dtype: string
splits:
- name: train
num_bytes: 2315694478.08891
num_examples: 4000
- name: test
num_bytes: 868385429.2833413
num_examples: 1500
download_size: 3081675303
dataset_size: 3184079907.3722515
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
task_categories:
- automatic-speech-recognition
language:
- ar
tags:
- quran
- ASR
- Islam
- tarteel
- verses
- arabic
- religion
size_categories:
- 1K<n<10K
pretty_name: Quran_data_everyayah
---
## Dataset Details
Part of (tarteel_ai_everyayah_dataset) with shuffle applaying on it
This dataset is a collection of Quranic verses and their transcriptions,
with diacritization, by different reciters.
## NOTE
# make sure you use the function dataset.cast_column("audio", Audio(sampling_rate=16_000)) on dataset
# to convert audio from a Byte to structure in Data Instances.
### Dataset Description
This data was created specifically because the original data (tarteel_ai_everyayah_dataset) is very large in size,
which may cause problems during downloading and of course a large space, whether the device space or one of the cloud sites is used,
and it is sufficient to train models such as ASR and reciter classification.
## هذه البيانات قد تم عملها خصيصا بسب ان البيانات الاصلية
## حجمها كبير جدا مما قد يسبب مشاكل اثناء تحميلها و بطبع مساحة كبيرة سواء تم استخدام مساحة الجهاز او احد مواقع السحابية
## و هي كافية لتدريب النماذج
- **Curated by:** [abo_salah , tarteel Ai company]
- **Language(s) (NLP):** [Arabic]
### Dataset Sources
<!-- Provide the basic links for the dataset. -->
https://huggingface.co/datasets/tarteel-ai/everyayah
- **Repository:** [tarteel-ai/everyayah]
## Data Instances
A typical data point comprises the audio file audio, and its transcription called text.
The duration is in seconds, and the author is reciter.
An example from the dataset is:
{
## 'audio': {
'path': None,
'array': array([ 0. , 0. , 0. , ..., -0.00057983,
-0.00085449, -0.00061035]),
'sampling_rate': 16000
}
## 'duration': 6.478375,
## 'text': 'بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ',
## 'reciter': 'abdulsamad'
}
# Data Fields
# audio: A dictionary containing the path to the downloaded audio file, the decoded audio array,
# and the sampling rate. Note that when accessing the audio column: dataset[0]["audio"] the audio file is automatically decoded and resampled to dataset.features["audio"].
# sampling_rate. Decoding and resampling of a large number of audio files might take a significant amount of time.
# Thus it is important to first query the sample index before the "audio" column, i.e. dataset[0]["audio"] should
# always be preferred over dataset["audio"][0].
# text: The transcription of the audio file.
# duration: The duration of the audio file.
# reciter: The reciter of the verses.
## Data Splits
## Train Test
## 4000 1500