achang commited on
Commit
4a3a9ec
1 Parent(s): 4f7a7e9

Add dataset card for plotQA

Browse files
Files changed (1) hide show
  1. README.md +86 -0
README.md ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc
3
+ task_categories:
4
+ - visual-question-answering
5
+ language:
6
+ - en
7
+ tags:
8
+ - plotQA
9
+ pretty_name: PlotQA
10
+ ---
11
+
12
+ # Dataset Card for PlotQA
13
+
14
+ ## Dataset Description
15
+
16
+ - **PlotQA from here:** [PlotQA](https://github.com/NiteshMethani/PlotQA)
17
+
18
+ ### Dataset Summary
19
+
20
+ PlotQA is a VQA dataset with 28.9 million question-answer pairs grounded over 224,377 plots on data from real-world sources and questions based on crowd-sourced question templates.
21
+
22
+ ## Dataset Structure
23
+
24
+ ### Data Fields
25
+
26
+ List and describe the fields present in the dataset. Mention their data type, and whether they are used as input or output in any of the tasks the dataset currently supports. If the data has span indices, describe their attributes, such as whether they are at the character level or word level, whether they are contiguous or not, etc. If the datasets contains example IDs, state whether they have an inherent meaning, such as a mapping to other datasets or pointing to relationships between data points.
27
+
28
+ - `image`: PIL image of a plot
29
+ - `text`: string of json data 'models'. See notes below.
30
+
31
+ From [here](https://github.com/NiteshMethani/PlotQA/blob/master/PlotQA_Dataset.md):
32
+ 'models': It is a list of dictionaries. Depending on the type of the plot (single or 2,3,4-multi), the length of the dictionary can vary from 1 to 4. Each dictionary contains the following keys-
33
+ name: Label corresponding to the datapoint.
34
+ color: Color corresponding to the `name` datapoint.
35
+ bboxes: Bounding boxes corresponding to the `name` datapoints in the plot.
36
+ label: label corresponding to the datapoint which will appear as the legend (same as the `name` field).
37
+ x: x-value of the datapoints.
38
+ y: y-value of the datapoints.
39
+
40
+
41
+ [json2token](https://github.com/clovaai/donut/blob/b317b4bbf1eecec7c62e7666f2097e1e90a6b441/donut/model.py#L495) function was used to convert json to string.
42
+
43
+ The new tokens are already loaded in plotQA processor:
44
+ ```
45
+ from transformers import DonutProcessor
46
+ processor = DonutProcessor.from_pretrained("[achang/donut-plotqa-trained](https://huggingface.co/achang/donut-plotqa-trained)")
47
+ ```
48
+
49
+ ### Data Splits
50
+
51
+ ```
52
+ validation: Dataset({
53
+ features: ['image', 'text'],
54
+ num_rows: 33650
55
+ })
56
+ train: Dataset({
57
+ features: ['image', 'text'],
58
+ num_rows: 157070
59
+ })
60
+ test: Dataset({
61
+ features: ['image', 'text'],
62
+ num_rows: 33657
63
+ })
64
+ ```
65
+
66
+
67
+
68
+ ## Misc
69
+
70
+ Dataset Creation, Annotations, Considerations for Using the Data, Social Impact of Dataset, Additional Information, Licensing Information look at [plotQA](https://github.com/NiteshMethani/PlotQA)
71
+
72
+
73
+ ### Citation Information
74
+
75
+ Please cite the following if you use the PlotQA dataset in your work:
76
+ ```
77
+ @InProceedings{Methani_2020_WACV,
78
+ author = {Methani, Nitesh and Ganguly, Pritha and Khapra, Mitesh M. and Kumar, Pratyush},
79
+ title = {PlotQA: Reasoning over Scientific Plots},
80
+ booktitle = {The IEEE Winter Conference on Applications of Computer Vision (WACV)},
81
+ month = {March},
82
+ year = {2020}
83
+ }
84
+ ```
85
+
86
+