Datasets:

Modalities:
Image
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
ahmed-ai commited on
Commit
ffd8271
1 Parent(s): b7054fe

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -0
README.md CHANGED
@@ -44,3 +44,50 @@ configs:
44
  - split: test
45
  path: data/test-*
46
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44
  - split: test
45
  path: data/test-*
46
  ---
47
+
48
+ # Skin Lesions Dataset
49
+ A dataset for 14 types of skin lesions classification consisted of merging [HAM10000(2019)](https://www.kaggle.com/datasets/andrewmvd/isic-2019) and [MSLDv2.0](https://www.kaggle.com/datasets/joydippaul/mpox-skin-lesion-dataset-version-20-msld-v20)
50
+
51
+ The dataset consisted of 14 categories:
52
+ - Actinic keratoses
53
+ - Basal cell carcinoma
54
+ - Benign keratosis-like-lesions
55
+ - Chickenpox
56
+ - Cowpox
57
+ - Dermatofibroma
58
+ - Healthy
59
+ - HFMD
60
+ - Measles
61
+ - Melanocytic nevi
62
+ - Melanoma
63
+ - Monkeypox
64
+ - Squamous cell carcinoma
65
+ - Vascular lesions
66
+
67
+ ## Download the dataset locally
68
+ Follow [Kaggle API guide](https://www.kaggle.com/docs/api) to get started
69
+ ```bash
70
+ kaggle datasets download -d ahmedxc4/skin-ds
71
+ ```
72
+
73
+
74
+ Citation for the original datasets
75
+
76
+ ### MSLDv2.0
77
+ ```
78
+ @article{Nafisa2023,
79
+ title={A Web-based Mpox Skin Lesion Detection System Using State-of-the-art Deep Learning Models Considering Racial Diversity},
80
+ author={Ali, Shams Nafisa and Ahmed, Md. Tazuddin and Jahan, Tasnim and Paul, Joydip and Sani, S. M. Sakeef and Noor, Nawshaba and Asma, Anzirun Nahar and Hasan, Taufiq},
81
+ journal={arXiv preprint arXiv:2306.14169},
82
+ year={2023}
83
+ }
84
+ ```
85
+
86
+ ### HAM10000 (2019)
87
+ ```
88
+ BCN_20000 Dataset: (c) Department of Dermatology, Hospital Clínic de Barcelona
89
+
90
+ HAM10000 Dataset: (c) by ViDIR Group, Department of Dermatology, Medical University of Vienna; https://doi.org/10.1038/sdata.2018.161
91
+
92
+ MSK Dataset: (c) Anonymous; https://arxiv.org/abs/1710.05006; https://arxiv.org/abs/1902.03368
93
+ ```