school_notebooks_EN / school_notebooks_EN.py
Stanislav Kalinin
feat: Add splits to train val test
b946dca
raw
history blame
2.05 kB
import os
import json
import datasets
class SchoolNotebooks(datasets.GeneratorBasedBuilder):
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features(
{
"image": datasets.Image(),
}
)
)
def _split_generators(self, dl_manager):
_URLS = {
"images": "images.zip",
"train_data": "annotations_train.json",
"test_data": "annotations_test.json",
"val_data": "annotations_val.json"
}
data_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"image_paths": dl_manager.iter_files(data_files["images"]),
"annotation_path": data_files["train_data"],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"image_paths": dl_manager.iter_files(data_files["images"]),
"annotation_path": data_files["test_data"],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"image_paths": dl_manager.iter_files(data_files["images"]),
"annotation_path": data_files["val_data"],
},
)
]
def _generate_examples(self, image_paths, annotation_path):
"""Generate examples."""
with open(annotation_path, 'r') as f:
data = json.load(f)
image_names = set()
for image_data in data['images']:
image_names.add(image_data['file_name'])
for idx, image_path in enumerate(image_paths):
if os.path.basename(image_path) in image_names:
example = {
"image": image_path,
}
yield idx, example