File size: 5,540 Bytes
d5adfda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import os.path
import pickle
from pathlib import Path
from typing import Any, Callable, Optional, Tuple, Union

import numpy as np
from PIL import Image

from torchvision.datasets.utils import check_integrity, download_and_extract_archive
from torchvision.datasets.vision import VisionDataset


class CINIC10(VisionDataset):
    """`CINIC10 <https://github.com/BayesWatch/cinic-10>`_ Dataset.

    Args:
        root (str or ``pathlib.Path``): Root directory of dataset where directory
            ``cinic-10-batches-py`` exists or will be saved to if download is set to True.
        train (bool, optional): If True, creates dataset from training set, otherwise
            creates from test set.
        transform (callable, optional): A function/transform that takes in a PIL image
            and returns a transformed version. E.g, ``transforms.RandomCrop``
        target_transform (callable, optional): A function/transform that takes in the
            target and transforms it.
        download (bool, optional): If true, downloads the dataset from the internet and
            puts it in root directory. If dataset is already downloaded, it is not
            downloaded again.

    """

    base_folder = "cinic-10-batches-py"
    url = "https://huggingface.co/datasets/alexey-zhavoronkin/CINIC10/resolve/main/cinic-10-python.tar.gz?download=true"
    filename = "cinic-10-python.tar.gz"
    tgz_md5 = None
    train_list = [
        ["data_batch_1", None],
        ["data_batch_2", None],
        ["data_batch_3", None],
        ["data_batch_4", None],
        ["data_batch_5", None],
        ["data_batch_6", None],
        ["data_batch_7", None],
        ["data_batch_8", None],
        ["data_batch_9", None],
        ["data_batch_10", None],
        ["data_batch_11", None],
        ["data_batch_12", None],
        ["data_batch_13", None],
        ["data_batch_14", None],


    ]

    test_list = [
        ["test_batch_1", None],
        ["test_batch_2", None],
        ["test_batch_3", None],
        ["test_batch_4", None],
        ["test_batch_5", None],
        ["test_batch_6", None],
        ["test_batch_7", None],


    ]
    meta = {
        "filename": "batches.meta",
        "key": "label_names",
        "md5": None,
    }

    def __init__(
        self,
        root: Union[str, Path],
        train: bool = True,
        transform: Optional[Callable] = None,
        target_transform: Optional[Callable] = None,
        download: bool = False,
    ) -> None:

        super().__init__(root, transform=transform, target_transform=target_transform)

        self.train = train  # training set or test set

        if download:
            self.download()

        if not self._check_integrity():
            raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")

        if self.train:
            downloaded_list = self.train_list
        else:
            downloaded_list = self.test_list

        self.data: Any = []
        self.targets = []

        # now load the picked numpy arrays
        for file_name, checksum in downloaded_list:
            file_path = os.path.join(self.root, self.base_folder, file_name)
            with open(file_path, "rb") as f:
                entry = pickle.load(f, encoding="latin1")
                self.data.append(entry["data"])
                if "labels" in entry:
                    self.targets.extend(entry["labels"])
                else:
                    self.targets.extend(entry["fine_labels"])

        self.data = np.vstack(self.data).reshape(-1, 3, 32, 32)
        self.data = self.data.transpose((0, 2, 3, 1))  # convert to HWC

        self._load_meta()

    def _load_meta(self) -> None:
        path = os.path.join(self.root, self.base_folder, self.meta["filename"])
        if not check_integrity(path, self.meta["md5"]):
            raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it")
        with open(path, "rb") as infile:
            data = pickle.load(infile, encoding="latin1")
            self.classes = data[self.meta["key"]]
        self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)}

    def __getitem__(self, index: int) -> Tuple[Any, Any]:
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is index of the target class.
        """
        img, target = self.data[index], self.targets[index]

        # doing this so that it is consistent with all other datasets
        # to return a PIL Image
        img = Image.fromarray(img)

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target

    def __len__(self) -> int:
        return len(self.data)

    def _check_integrity(self) -> bool:
        for filename, md5 in self.train_list + self.test_list:
            fpath = os.path.join(self.root, self.base_folder, filename)
            if not check_integrity(fpath, md5):
                return False
        return True

    def download(self) -> None:
        if self._check_integrity():
            print("Files already downloaded and verified")
            return
        download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5)

    def extra_repr(self) -> str:
        split = "Train" if self.train is True else "Test"
        return f"Split: {split}"