|
import os |
|
from enum import Enum |
|
from pathlib import Path |
|
|
|
import datasets |
|
from pandas import DataFrame |
|
|
|
_HOMEPAGE = "https://www.mvtec.com/company/research/datasets/mvtec-ad" |
|
_LICENSE = "cc-by-nc-sa-4.0" |
|
_CITATION = """\ |
|
@misc{ |
|
the-mvtec-anomaly-detection-dataset, |
|
title = { The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection }, |
|
type = { Open Source Dataset }, |
|
author = { Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten Steger }, |
|
howpublished = { \\url{ https://link.springer.com/article/10.1007%2Fs11263-020-01400-4 } }, |
|
url = { https://link.springer.com/article/10.1007%2Fs11263-020-01400-4 }, |
|
} |
|
""" |
|
|
|
|
|
class LabelName(int, Enum): |
|
NORMAL = 0 |
|
ABNORMAL = 1 |
|
|
|
|
|
class MVTECCapsule(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
_URL = "https://huggingface.co/datasets/alexsu52/mvtec_capsule/resolve/main/capsule.tar.xz" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"mask": datasets.Image(), |
|
"label": datasets.ClassLabel(names=["normal", "abnormal"]), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
folder_dir = dl_manager.download_and_extract(self._URL) |
|
category_dir = os.path.join(folder_dir, "capsule") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"category_dir": category_dir, |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"category_dir": category_dir, |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, category_dir, split): |
|
extensions = (".png", ".PNG") |
|
|
|
root = Path(category_dir) |
|
samples_list = [(str(root),) + f.parts[-3:] for f in root.glob(r"**/*") if f.suffix in extensions] |
|
if not samples_list: |
|
raise RuntimeError(f"Found 0 images in {root}") |
|
|
|
samples = DataFrame(samples_list, columns=["path", "split", "label", "image_path"]) |
|
|
|
|
|
samples["image_path"] = samples.path + "/" + samples.split + "/" + samples.label + "/" + samples.image_path |
|
|
|
|
|
samples.loc[(samples.label == "good"), "label_index"] = LabelName.NORMAL |
|
samples.loc[(samples.label != "good"), "label_index"] = LabelName.ABNORMAL |
|
samples.label_index = samples.label_index.astype(int) |
|
|
|
|
|
mask_samples = samples.loc[samples.split == "ground_truth"].sort_values(by="image_path", ignore_index=True) |
|
samples = samples[samples.split != "ground_truth"].sort_values(by="image_path", ignore_index=True) |
|
|
|
|
|
samples["mask_path"] = "" |
|
samples.loc[ |
|
(samples.split == "test") & (samples.label_index == LabelName.ABNORMAL), "mask_path" |
|
] = mask_samples.image_path.values |
|
|
|
|
|
if len(samples.loc[samples.label_index == LabelName.ABNORMAL]): |
|
assert ( |
|
samples.loc[samples.label_index == LabelName.ABNORMAL] |
|
.apply(lambda x: Path(x.image_path).stem in Path(x.mask_path).stem, axis=1) |
|
.all() |
|
), "Mismatch between anomalous images and ground truth masks. Make sure the mask files in 'ground_truth' \ |
|
folder follow the same naming convention as the anomalous images in the dataset (e.g. image: \ |
|
'000.png', mask: '000.png' or '000_mask.png')." |
|
|
|
if split: |
|
samples = samples[samples.split == split].reset_index(drop=True) |
|
|
|
for idx in range(len(samples)): |
|
image_path = samples.iloc[idx].image_path |
|
mask_path = samples.iloc[idx].mask_path |
|
label_index = samples.iloc[idx].label_index |
|
|
|
with open(image_path, "rb") as f: |
|
image_bytes = f.read() |
|
|
|
if mask_path: |
|
with open(mask_path, "rb") as f: |
|
mask_bytes = f.read() |
|
else: |
|
mask_bytes = bytes(len(image_bytes)) |
|
|
|
yield idx, { |
|
"image": {"path": image_path, "bytes": image_bytes}, |
|
"mask": {"path": mask_path, "bytes": mask_bytes}, |
|
"label": label_index, |
|
} |
|
|