Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 35,716 Bytes
cc2a0eb
 
6c960d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c62a75c
cc2a0eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c62a75c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc2a0eb
6c960d1
 
 
 
 
 
 
 
cc2a0eb
 
 
 
 
 
 
 
c62a75c
 
 
 
 
 
 
 
baa78c6
 
 
 
 
 
 
 
 
 
 
ee551b1
 
 
eddf83d
a8997fc
 
 
 
 
 
 
 
ac6d02a
d450c49
501fca8
e4aa581
 
 
 
 
 
a8997fc
 
 
 
 
 
 
d450c49
a8997fc
 
 
 
 
ee551b1
 
 
d450c49
ee551b1
 
 
d450c49
a8997fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee551b1
a8997fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
---
dataset_info:
- config_name: '16384'
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  - name: metadata
    struct:
    - name: domains
      sequence: string
    - name: input_context
      dtype: string
    - name: output_context
      dtype: string
    - name: source_type
      dtype: string
    - name: task_family
      dtype: string
  - name: _instance_id
    dtype: string
  splits:
  - name: train
    num_bytes: 651887545
    num_examples: 72646
  - name: validation
    num_bytes: 316306085
    num_examples: 34621
  - name: test
    num_bytes: 422473879
    num_examples: 41909
  download_size: 623896235
  dataset_size: 1390667509
- config_name: '4096'
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  - name: metadata
    struct:
    - name: domains
      sequence: string
    - name: input_context
      dtype: string
    - name: output_context
      dtype: string
    - name: source_type
      dtype: string
    - name: task_family
      dtype: string
  - name: _instance_id
    dtype: string
  splits:
  - name: train
    num_bytes: 388072842
    num_examples: 70521
  - name: validation
    num_bytes: 147030710
    num_examples: 30736
  - name: test
    num_bytes: 186329809
    num_examples: 35875
  download_size: 308815650
  dataset_size: 721433361
- config_name: '8192'
  features:
  - name: input
    dtype: string
  - name: output
    dtype: string
  - name: metadata
    struct:
    - name: domains
      sequence: string
    - name: input_context
      dtype: string
    - name: output_context
      dtype: string
    - name: source_type
      dtype: string
    - name: task_family
      dtype: string
  - name: _instance_id
    dtype: string
  splits:
  - name: train
    num_bytes: 546901470
    num_examples: 72367
  - name: validation
    num_bytes: 252982177
    num_examples: 34001
  - name: test
    num_bytes: 313157272
    num_examples: 40064
  download_size: 491399393
  dataset_size: 1113040919
configs:
- config_name: '16384'
  data_files:
  - split: train
    path: 16384/train-*
  - split: validation
    path: 16384/validation-*
  - split: test
    path: 16384/test-*
- config_name: '4096'
  data_files:
  - split: train
    path: 4096/train-*
  - split: validation
    path: 4096/validation-*
  - split: test
    path: 4096/test-*
- config_name: '8192'
  data_files:
  - split: train
    path: 8192/train-*
  - split: validation
    path: 8192/validation-*
  - split: test
    path: 8192/test-*
license: odc-by
language:
- en
tags:
- chemistry
- biomedicine
- clinical medicine
- artificial intelligence
- materials science
size_categories:
- 100K<n<1M
---
# SciRIFF

The SciRIFF dataset includes 137K instruction-following demonstrations for 54 scientific literature understanding tasks. The tasks cover five essential scientific literature categories and span five domains. The dataset is described in our paper [SciRIFF: A Resource to Enhance Language Model Instruction-Following over Scientific Literature](https://arxiv.org/abs/2406.07835).

There are three dataset configurations with different max context lengths: 4096, 8192, and 16384. All experiments in the paper are performed with the 4096 context window. You can load the dataset like:

```python
import datasets
ds = datasets.load_dataset("allenai/SciRIFF", "4096")
```

Code to create the dataset, train models on SciRIFF, and perform evaluation is available at our GitHub repo: https://github.com/allenai/SciRIFF. To train models on SciRIFF data, you should use the [SciRIFF train mix](https://huggingface.co/datasets/allenai/SciRIFF-train-mix) dataset.

**Table of Contents**

- [Dataset details](#dataset-details)
- [License](#license)
- [Task provenance](#task-provenance)
- [Task metadata](#task-metadata)

## Dataset details

Each instance in SciRIFF has the following fields:

- `input`: Task input (i.e. user message).
- `output`: Task output (i.e. expected model response).
- `_instance_id`: A unique id for the instance, formatted like `{task_name}:{split}:{instance_id}`. For instance, `qasa_abstractive_qa:test:182`.
- `metadata`: Task metadata. More information on the schema for task metadata can be found in the [SciRIFF GitHub repo](https://github.com/allenai/SciRIFF).
  - `task_family`: The category to which this task belongs. Options include `summarization`, `ie`, `qa`, `entailment`, and `classification`. Some categories have sub-categories which are largely self-explanatory; see the [repo](https://github.com/allenai/SciRIFF) for more information.
  - `domains`: Scientific field(s) that the task covers. Options include: `clinical_medicine`, `biomedicine`, `chemistry`, `artificial_intelligence`, `materials_science`, and `misc`.
  - `input_context`: Whether the input is a paragraph, full text, etc. Options include: `sentence`, `paragraph`, `multiple_paragraphs` (including full paper text), and `structured` (e.g. code for a LaTex table).
  - `source_type`: Indicates whether the input comes from a single paper or multiple. Options include `single_source`, `multiple_source`.
  - `output_context`: Options include: `label`, `sentence`, `paragraph`, `multiple_paragraphs`, `json`, `jsonlines`.

## License

SciRIFF is licensed under `ODC-By`. Licenses of the datasets from which SciRIFF is derived are listed [below](#task-provenance).

## Task provenance

SciRIFF was created by repurposing existing scientific literature understanding datasets. Below we provide information on the source data for each SciRIFF task, including license information on individual datasets where available. Where possible, we leveraged the [BigBIO](https://github.com/bigscience-workshop/biomedical) collection as a starting point, rather than reprocessing datasets from scratch. In the table below, we include the name of the BigBio subset for all tasks available in BigBio; these can be loaded like `datasets.load_dataset(bigbio/{bigbio_subset})`.

| SciRIFF Name                                                      | Paper Link                                                                                                                                                                 | License    | Website / Download Link                                                                    | BigBio Subset      |
| :---------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------- | :----------------------------------------------------------------------------------------- | :----------------- |
| `acl_arc_intent_classification`                                   | [ACL ARC](https://aclanthology.org/L08-1005/)                                                                                                                              | -          | <https://github.com/allenai/scicite/>                                                      |                    |
| `anat_em_ner`                                                     | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282)                                                                                                  | CC BY      | <https://nactem.ac.uk/anatomytagger/#AnatEM>                                               | `anat_em`          |
| `annotated_materials_syntheses_events`                            | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/)                                                                                             | MIT        | <https://github.com/olivettigroup/annotated-materials-syntheses>                           |                    |
| `bc7_litcovid_topic_classification`                               | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/)                                                                                                      | -          | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-5/>               | `bc7_litcovid`     |
| `bioasq_{factoid,general,list,yesno}_qa`                          | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6)                                                                                   | CC BY      | <http://bioasq.org/>                                                                       | `bioasq`           |
| `biored_ner`                                                      | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993)                                                                                                        | -          | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/>                                              | `biored`           |
| `cdr_ner`                                                         | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/)                                                                                                 | -          | <https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/>             | `bc5cdr`           |
| `chemdner_ner`                                                    | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2)                                                                                          | -          | <https://biocreative.bioinformatics.udel.edu/resources/biocreative-iv/chemdner-corpus/>    | `chemdner`         |
| `chemprot_{ner,re}`                                               | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | -          | <https://biocreative.bioinformatics.udel.edu/news/corpora/chemprot-corpus-biocreative-vi/> | `chemprot`         |
| `chemsum_single_document_summarization`                           | [ChemSum](https://aclanthology.org/2023.acl-long.587/)                                                                                                                     | -          | <https://github.com/griff4692/calibrating-summaries>                                       |                    |
| `chemtables_te`                                                   | [ChemTables](https://arxiv.org/abs/2305.14336)                                                                                                                             | GPL 3.0    | <https://huggingface.co/datasets/fbaigt/schema-to-json>                                    |                    |
| `chia_ner`                                                        | [Chia](https://www.nature.com/articles/s41597-020-00620-0)                                                                                                                 | CC BY      | <https://github.com/WengLab-InformaticsResearch/CHIA>                                      | `chia`             |
| `covid_deepset_qa`                                                | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/)                                                                                                               | Apache 2.0 | <https://github.com/deepset-ai/COVID-QA>                                                   | `covid_qa_deepset` |
| `covidfact_entailment`                                            | [CovidFact](https://aclanthology.org/2021.acl-long.165/)                                                                                                                   | -          | <https://github.com/asaakyan/covidfact>                                                    |                    |
| `craftchem_ner`                                                   | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53)                                                                                               | -          | <https://huggingface.co/datasets/ghadeermobasher/CRAFT-Chem>                               |                    |
| `data_reco_mcq_{mc,sc}`                                           | [DataFinder](https://aclanthology.org/2023.acl-long.573/)                                                                                                                  | Apache 2.0 | <https://github.com/viswavi/datafinder/tree/main>                                          |                    |
| `ddi_ner`                                                         | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123)                                                                                                 | CC BY      | <https://github.com/isegura/DDICorpus>                                                     | `ddi_corpus`       |
| `discomat_te`                                                     | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/)                                                                                                                    | CC BY-SA   | <https://github.com/M3RG-IITD/DiSCoMaT>                                                    |                    |
| `drug_combo_extraction_re`                                        | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/)                                                                                                         | -          | <https://github.com/allenai/drug-combo-extraction>                                         |                    |
| `evidence_inference`                                              | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/)                                                                                                           | MIT        | <https://evidence-inference.ebm-nlp.com/>                                                  |                    |
| `genia_ner`                                                       | [JNLPBA](https://aclanthology.org/W04-1213/)                                                                                                                               | CC BY      | <https://github.com/spyysalo/jnlpba>                                                       | `jnlpba`           |
| `gnormplus_ner`                                                   | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/)                                                                                                            | -          | <https://www.ncbi.nlm.nih.gov/research/bionlp/Tools/gnormplus/>                            | `gnormplus`        |
| `healthver_entailment`                                            | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/)                                                                                                             | nan        | <https://github.com/sarrouti/healthver>                                                    |                    |
| `linnaeus_ner`                                                    | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85)                                                                                   | CC BY      | <https://sourceforge.net/projects/linnaeus/>                                               | `linnaeus`         |
| `medmentions_ner`                                                 | [MedMentions](https://arxiv.org/abs/1902.09476)                                                                                                                            | CC 0       | <https://github.com/chanzuckerberg/MedMentions>                                            | `medmentions`      |
| `mltables_te`                                                     | [AxCell](https://aclanthology.org/2020.emnlp-main.692/)                                                                                                                    | Apache 2.0 | <https://github.com/paperswithcode/axcell>                                                 |                    |
| `mslr2022_cochrane_multidoc_summarization`                        | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/)                                                                                                          | Apache 2.0 | <https://github.com/allenai/mslr-shared-task>                                              |                    |
| `mslr2022_ms2_multidoc_summarization`                             | [MS^2](https://aclanthology.org/2021.emnlp-main.594/)                                                                                                                      | Apache 2.0 | <https://github.com/allenai/mslr-shared-task>                                              |                    |
| `multicite_intent_classification`                                 | [MultiCite](https://aclanthology.org/2022.naacl-main.137/)                                                                                                                 | CC BY-NC   | <https://github.com/allenai/multicite>                                                     |                    |
| `multixscience_multidoc_summarization`                            | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/)                                                                                                            | MIT        | <https://github.com/yaolu/Multi-XScience>                                                  |                    |
| `mup_single_document_summarization`                               | [MUP](https://aclanthology.org/2022.sdp-1.32/)                                                                                                                             | Apache 2.0 | <https://github.com/allenai/mup>                                                           |                    |
| `ncbi_ner`                                                        | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/)                                                                                                                  | CC 0       | <https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE/>                                  | `ncbi_disease`     |
| `nlmchem_ner`                                                     | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/)                                                                                                                      | CC 0       | <https://ftp.ncbi.nlm.nih.gov/pub/lu/BC7-NLM-Chem-track/>                                  | `nlmchem`          |
| `nlmgene_ner`                                                     | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/)                                                                                                                      | CC 0       | <https://ftp.ncbi.nlm.nih.gov/pub/lu/NLMGene/>                                             | `nlm_gene`         |
| `pico_ner`                                                        | [EBM-NLP PICO](https://aclanthology.org/P18-1019/)                                                                                                                         | -          | <https://github.com/bepnye/EBM-NLP>                                                        | `pico_extraction`  |
| `pubmedqa_qa`                                                     | [PubMedQA](https://aclanthology.org/D19-1259/)                                                                                                                             | MIT        | <https://github.com/pubmedqa/pubmedqa>                                                     | `pubmed_qa`        |
| `qasa_abstractive_qa`                                             | [QASA](https://proceedings.mlr.press/v202/lee23n)                                                                                                                          | MIT        | <https://github.com/lgresearch/QASA>                                                       |                    |
| `qasper_{abstractive,extractive}_qa`                              | [Qasper](https://aclanthology.org/2021.naacl-main.365/)                                                                                                                    | CC BY      | <https://allenai.org/data/qasper>                                                          |                    |
| `scicite_classification`                                          | [SciCite](https://aclanthology.org/N19-1361/)                                                                                                                              | -          | <https://allenai.org/data/scicite>                                                         |                    |
| `scientific_lay_summarisation_`<br>`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/)                                                                                                         | -          | <https://github.com/TGoldsack1/Corpora_for_Lay_Summarisation>                              |                    |
| `scientific_papers_summarization_`<br>`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/)                                                                                                                    | -          | <https://huggingface.co/datasets/armanc/scientific_papers>                                 |                    |
| `scierc_{ner,re}`                                                 | [SciERC](https://aclanthology.org/D18-1360/)                                                                                                                               | -          | <http://nlp.cs.washington.edu/sciIE/>                                                      |                    |
| `scifact_entailment`                                              | [SciFact](https://aclanthology.org/2020.emnlp-main.609/)                                                                                                                   | CC BY-NC   | <https://allenai.org/data/scifact>                                                         |                    |
| `scireviewgen_multidoc_summarization`                             | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/)                                                                                                            | CC BY-NC   | <https://github.com/tetsu9923/SciReviewGen>                                                |                    |
| `scitldr_aic`                                                     | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/)                                                                                                               | Apache 2.0 | <https://github.com/allenai/scitldr>                                                       |                    |

## Task metadata

Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).

| SciRIFF Name                                               | Task Family                 | Domains                                                            | Input Context       | Source Type     | Output Context |
| :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
| `acl_arc_intent_classification`                            | classification              | artificial_intelligence                                            | multiple_paragraphs | single_source   | label          |
| `anat_em_ner`                                              | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `annotated_materials_syntheses_events`                     | ie.event_extraction         | materials_science                                                  | paragraph           | single_source   | json           |
| `bc7_litcovid_topic_classification`                        | classification              | clinical_medicine                                                  | paragraph           | single_source   | json           |
| `bioasq_factoid_qa`                                        | qa.abstractive              | biomedicine                                                        | multiple_paragraphs | multiple_source | sentence       |
| `bioasq_general_qa`                                        | qa.abstractive              | biomedicine                                                        | multiple_paragraphs | multiple_source | sentence       |
| `bioasq_list_qa`                                           | qa.abstractive              | biomedicine                                                        | multiple_paragraphs | multiple_source | json           |
| `bioasq_yesno_qa`                                          | qa.yes_no                   | biomedicine                                                        | multiple_paragraphs | multiple_source | label          |
| `biored_ner`                                               | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `cdr_ner`                                                  | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `chemdner_ner`                                             | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `chemprot_ner`                                             | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `chemprot_re`                                              | ie.relation_extraction      | biomedicine                                                        | paragraph           | single_source   | json           |
| `chemsum_single_document_summarization`                    | summarization               | chemistry                                                          | multiple_paragraphs | single_source   | paragraph      |
| `chemtables_te`                                            | ie.structure_to_json        | chemistry                                                          | structured          | single_source   | jsonlines      |
| `chia_ner`                                                 | ie.named_entity_recognition | clinical_medicine                                                  | paragraph           | single_source   | json           |
| `covid_deepset_qa`                                         | qa.extractive               | biomedicine                                                        | paragraph           | single_source   | sentence       |
| `covidfact_entailment`                                     | entailment                  | biomedicine, clinical_medicine                                     | paragraph           | single_source   | json           |
| `craftchem_ner`                                            | ie.named_entity_recognition | biomedicine                                                        | sentence            | single_source   | json           |
| `data_reco_mcq_mc`                                         | qa.multiple_choice          | artificial_intelligence                                            | multiple_paragraphs | multiple_source | json           |
| `data_reco_mcq_sc`                                         | qa.multiple_choice          | artificial_intelligence                                            | multiple_paragraphs | multiple_source | label          |
| `ddi_ner`                                                  | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `discomat_te`                                              | ie.structure_to_json        | materials_science                                                  | structured          | single_source   | jsonlines      |
| `drug_combo_extraction_re`                                 | ie.relation_extraction      | clinical_medicine                                                  | paragraph           | single_source   | json           |
| `evidence_inference`                                       | ie.relation_extraction      | clinical_medicine                                                  | paragraph           | single_source   | json           |
| `genia_ner`                                                | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `gnormplus_ner`                                            | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `healthver_entailment`                                     | entailment                  | clinical_medicine                                                  | paragraph           | single_source   | json           |
| `linnaeus_ner`                                             | ie.named_entity_recognition | biomedicine                                                        | multiple_paragraphs | single_source   | json           |
| `medmentions_ner`                                          | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `mltables_te`                                              | ie.structure_to_json        | artificial_intelligence                                            | structured          | single_source   | jsonlines      |
| `mslr2022_cochrane_multidoc_summarization`                 | summarization               | clinical_medicine                                                  | paragraph           | multiple_source | paragraph      |
| `mslr2022_ms2_multidoc_summarization`                      | summarization               | clinical_medicine                                                  | paragraph           | multiple_source | paragraph      |
| `multicite_intent_classification`                          | classification              | artificial_intelligence                                            | paragraph           | single_source   | json           |
| `multixscience_multidoc_summarization`                     | summarization               | artificial_intelligence, biomedicine, <br> materials_science, misc | multiple_paragraphs | multiple_source | paragraph      |
| `mup_single_document_summarization`                        | summarization               | artificial_intelligence                                            | multiple_paragraphs | single_source   | paragraph      |
| `ncbi_ner`                                                 | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `nlmchem_ner`                                              | ie.named_entity_recognition | biomedicine                                                        | multiple_paragraphs | single_source   | json           |
| `nlmgene_ner`                                              | ie.named_entity_recognition | biomedicine                                                        | paragraph           | single_source   | json           |
| `pico_ner`                                                 | ie.named_entity_recognition | clinical_medicine                                                  | paragraph           | single_source   | json           |
| `pubmedqa_qa`                                              | qa.yes_no                   | biomedicine                                                        | paragraph           | single_source   | label          |
| `qasa_abstractive_qa`                                      | qa.abstractive              | artificial_intelligence                                            | multiple_paragraphs | single_source   | paragraph      |
| `qasper_abstractive_qa`                                    | qa.abstractive              | artificial_intelligence                                            | multiple_paragraphs | single_source   | json           |
| `qasper_extractive_qa`                                     | qa.extractive               | artificial_intelligence                                            | multiple_paragraphs | single_source   | json           |
| `scicite_classification`                                   | classification              | artificial_intelligence                                            | paragraph           | single_source   | label          |
| `scientific_lay_summarisation_`<br>`elife_single_doc_summ` | summarization               | biomedicine                                                        | multiple_paragraphs | single_source   | paragraph      |
| `scientific_lay_summarisation_`<br>`plos_single_doc_summ`  | summarization               | biomedicine                                                        | multiple_paragraphs | single_source   | paragraph      |
| `scientific_papers_summarization_single_doc_arxiv`         | summarization               | artificial_intelligence, misc                                      | multiple_paragraphs | single_source   | paragraph      |
| `scientific_papers_summarization_single_doc_pubmed`        | summarization               | biomedicine                                                        | multiple_paragraphs | single_source   | paragraph      |
| `scierc_ner`                                               | ie.named_entity_recognition | artificial_intelligence                                            | paragraph           | single_source   | json           |
| `scierc_re`                                                | ie.relation_extraction      | artificial_intelligence                                            | paragraph           | single_source   | json           |
| `scifact_entailment`                                       | entailment                  | biomedicine, clinical_medicine                                     | paragraph           | single_source   | json           |
| `scireviewgen_multidoc_summarization`                      | summarization               | artificial_intelligence                                            | multiple_paragraphs | multiple_source | paragraph      |
| `scitldr_aic`                                              | summarization               | artificial_intelligence                                            | multiple_paragraphs | single_source   | sentence       |