---
dataset_info:
- config_name: '16384'
features:
- name: input
dtype: string
- name: output
dtype: string
- name: metadata
struct:
- name: domains
sequence: string
- name: input_context
dtype: string
- name: output_context
dtype: string
- name: source_type
dtype: string
- name: task_family
dtype: string
- name: _instance_id
dtype: string
splits:
- name: train
num_bytes: 651887545
num_examples: 72646
- name: validation
num_bytes: 316306085
num_examples: 34621
- name: test
num_bytes: 422473879
num_examples: 41909
download_size: 623896235
dataset_size: 1390667509
- config_name: '4096'
features:
- name: input
dtype: string
- name: output
dtype: string
- name: metadata
struct:
- name: domains
sequence: string
- name: input_context
dtype: string
- name: output_context
dtype: string
- name: source_type
dtype: string
- name: task_family
dtype: string
- name: _instance_id
dtype: string
splits:
- name: train
num_bytes: 388072842
num_examples: 70521
- name: validation
num_bytes: 147030710
num_examples: 30736
- name: test
num_bytes: 186329809
num_examples: 35875
download_size: 308815650
dataset_size: 721433361
- config_name: '8192'
features:
- name: input
dtype: string
- name: output
dtype: string
- name: metadata
struct:
- name: domains
sequence: string
- name: input_context
dtype: string
- name: output_context
dtype: string
- name: source_type
dtype: string
- name: task_family
dtype: string
- name: _instance_id
dtype: string
splits:
- name: train
num_bytes: 546901470
num_examples: 72367
- name: validation
num_bytes: 252982177
num_examples: 34001
- name: test
num_bytes: 313157272
num_examples: 40064
download_size: 491399393
dataset_size: 1113040919
configs:
- config_name: '16384'
data_files:
- split: train
path: 16384/train-*
- split: validation
path: 16384/validation-*
- split: test
path: 16384/test-*
- config_name: '4096'
data_files:
- split: train
path: 4096/train-*
- split: validation
path: 4096/validation-*
- split: test
path: 4096/test-*
- config_name: '8192'
data_files:
- split: train
path: 8192/train-*
- split: validation
path: 8192/validation-*
- split: test
path: 8192/test-*
license: odc-by
language:
- en
tags:
- chemistry
- biomedicine
- clinical medicine
- artificial intelligence
- materials science
size_categories:
- 100K | |
| `anat_em_ner` | [AnatEM](https://academic.oup.com/bioinformatics/article/30/6/868/285282) | CC BY | | `anat_em` |
| `annotated_materials_syntheses_events` | [Materials Science Procedural Text Corpus](https://aclanthology.org/W19-4007/) | MIT | | |
| `bc7_litcovid_topic_classification` | [BioCreative VII LitCOVID](https://pubmed.ncbi.nlm.nih.gov/36043400/) | - | | `bc7_litcovid` |
| `bioasq_{factoid,general,list,yesno}_qa` | [BioASQ](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-015-0564-6) | CC BY | | `bioasq` |
| `biored_ner` | [BioRED](https://academic.oup.com/bib/article/23/5/bbac282/6645993) | - | | `biored` |
| `cdr_ner` | [BioCreative V CDR](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/) | - | | `bc5cdr` |
| `chemdner_ner` | [CHEMDNER](https://jcheminf.biomedcentral.com/articles/10.1186/1758-2946-7-S1-S2) | - | | `chemdner` |
| `chemprot_{ner,re}` | [BioCreative VI ChemProt](https://www.semanticscholar.org/paper/Overview-of-the-BioCreative-VI-chemical-protein-Krallinger-Rabal/eed781f498b563df5a9e8a241c67d63dd1d92ad5) | - | | `chemprot` |
| `chemsum_single_document_summarization` | [ChemSum](https://aclanthology.org/2023.acl-long.587/) | - | | |
| `chemtables_te` | [ChemTables](https://arxiv.org/abs/2305.14336) | GPL 3.0 | | |
| `chia_ner` | [Chia](https://www.nature.com/articles/s41597-020-00620-0) | CC BY | | `chia` |
| `covid_deepset_qa` | [COVID-QA](https://aclanthology.org/2020.nlpcovid19-acl.18/) | Apache 2.0 | | `covid_qa_deepset` |
| `covidfact_entailment` | [CovidFact](https://aclanthology.org/2021.acl-long.165/) | - | | |
| `craftchem_ner` | [CRAFT-Chem](https://link.springer.com/chapter/10.1007/978-94-024-0881-2_53) | - | | |
| `data_reco_mcq_{mc,sc}` | [DataFinder](https://aclanthology.org/2023.acl-long.573/) | Apache 2.0 | | |
| `ddi_ner` | [DDI](https://www.sciencedirect.com/science/article/pii/S1532046413001123) | CC BY | | `ddi_corpus` |
| `discomat_te` | [DISCoMaT](https://aclanthology.org/2023.acl-long.753/) | CC BY-SA | | |
| `drug_combo_extraction_re` | [Drug Combinations](https://aclanthology.org/2022.naacl-main.233/) | - | | |
| `evidence_inference` | [Evidence inference](https://aclanthology.org/2020.bionlp-1.13/) | MIT | | |
| `genia_ner` | [JNLPBA](https://aclanthology.org/W04-1213/) | CC BY | | `jnlpba` |
| `gnormplus_ner` | [GNormPlus](https://www.hindawi.com/journals/bmri/2015/918710/) | - | | `gnormplus` |
| `healthver_entailment` | [HealthVer](https://aclanthology.org/2021.findings-emnlp.297/) | nan | | |
| `linnaeus_ner` | [LINNAEUS](https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-85) | CC BY | | `linnaeus` |
| `medmentions_ner` | [MedMentions](https://arxiv.org/abs/1902.09476) | CC 0 | | `medmentions` |
| `mltables_te` | [AxCell](https://aclanthology.org/2020.emnlp-main.692/) | Apache 2.0 | | |
| `mslr2022_cochrane_multidoc_summarization` | [Cochrane](https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8378607/) | Apache 2.0 | | |
| `mslr2022_ms2_multidoc_summarization` | [MS^2](https://aclanthology.org/2021.emnlp-main.594/) | Apache 2.0 | | |
| `multicite_intent_classification` | [MultiCite](https://aclanthology.org/2022.naacl-main.137/) | CC BY-NC | | |
| `multixscience_multidoc_summarization` | [Multi-XScience](https://aclanthology.org/2020.emnlp-main.648/) | MIT | | |
| `mup_single_document_summarization` | [MUP](https://aclanthology.org/2022.sdp-1.32/) | Apache 2.0 | | |
| `ncbi_ner` | [NCBI Disease](https://pubmed.ncbi.nlm.nih.gov/24393765/) | CC 0 | | `ncbi_disease` |
| `nlmchem_ner` | [NLM-Chem](https://pubmed.ncbi.nlm.nih.gov/33767203/) | CC 0 | | `nlmchem` |
| `nlmgene_ner` | [NLM-Gene](https://pubmed.ncbi.nlm.nih.gov/33839304/) | CC 0 | | `nlm_gene` |
| `pico_ner` | [EBM-NLP PICO](https://aclanthology.org/P18-1019/) | - | | `pico_extraction` |
| `pubmedqa_qa` | [PubMedQA](https://aclanthology.org/D19-1259/) | MIT | | `pubmed_qa` |
| `qasa_abstractive_qa` | [QASA](https://proceedings.mlr.press/v202/lee23n) | MIT | | |
| `qasper_{abstractive,extractive}_qa` | [Qasper](https://aclanthology.org/2021.naacl-main.365/) | CC BY | | |
| `scicite_classification` | [SciCite](https://aclanthology.org/N19-1361/) | - | | |
| `scientific_lay_summarisation_`
`{elife,plos}_single_doc_summ` | [Lay Summarisation](https://aclanthology.org/2022.emnlp-main.724/) | - | | |
| `scientific_papers_summarization_`
`single_doc_{arxiv,pubmed}` | [Scientific Papers](https://aclanthology.org/N18-2097/) | - | | |
| `scierc_{ner,re}` | [SciERC](https://aclanthology.org/D18-1360/) | - | | |
| `scifact_entailment` | [SciFact](https://aclanthology.org/2020.emnlp-main.609/) | CC BY-NC | | |
| `scireviewgen_multidoc_summarization` | [SciReviewGen](https://aclanthology.org/2023.findings-acl.418/) | CC BY-NC | | |
| `scitldr_aic` | [SciTLDR](https://aclanthology.org/2020.findings-emnlp.428/) | Apache 2.0 | | |
## Task metadata
Below we include metadata on each task, as described in the metadata fields [above](#dataset-details).
| SciRIFF Name | Task Family | Domains | Input Context | Source Type | Output Context |
| :--------------------------------------------------------- | :-------------------------- | :----------------------------------------------------------------- | :------------------ | :-------------- | :------------- |
| `acl_arc_intent_classification` | classification | artificial_intelligence | multiple_paragraphs | single_source | label |
| `anat_em_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `annotated_materials_syntheses_events` | ie.event_extraction | materials_science | paragraph | single_source | json |
| `bc7_litcovid_topic_classification` | classification | clinical_medicine | paragraph | single_source | json |
| `bioasq_factoid_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
| `bioasq_general_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | sentence |
| `bioasq_list_qa` | qa.abstractive | biomedicine | multiple_paragraphs | multiple_source | json |
| `bioasq_yesno_qa` | qa.yes_no | biomedicine | multiple_paragraphs | multiple_source | label |
| `biored_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `cdr_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `chemdner_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `chemprot_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `chemprot_re` | ie.relation_extraction | biomedicine | paragraph | single_source | json |
| `chemsum_single_document_summarization` | summarization | chemistry | multiple_paragraphs | single_source | paragraph |
| `chemtables_te` | ie.structure_to_json | chemistry | structured | single_source | jsonlines |
| `chia_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
| `covid_deepset_qa` | qa.extractive | biomedicine | paragraph | single_source | sentence |
| `covidfact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
| `craftchem_ner` | ie.named_entity_recognition | biomedicine | sentence | single_source | json |
| `data_reco_mcq_mc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | json |
| `data_reco_mcq_sc` | qa.multiple_choice | artificial_intelligence | multiple_paragraphs | multiple_source | label |
| `ddi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `discomat_te` | ie.structure_to_json | materials_science | structured | single_source | jsonlines |
| `drug_combo_extraction_re` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
| `evidence_inference` | ie.relation_extraction | clinical_medicine | paragraph | single_source | json |
| `genia_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `gnormplus_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `healthver_entailment` | entailment | clinical_medicine | paragraph | single_source | json |
| `linnaeus_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
| `medmentions_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `mltables_te` | ie.structure_to_json | artificial_intelligence | structured | single_source | jsonlines |
| `mslr2022_cochrane_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
| `mslr2022_ms2_multidoc_summarization` | summarization | clinical_medicine | paragraph | multiple_source | paragraph |
| `multicite_intent_classification` | classification | artificial_intelligence | paragraph | single_source | json |
| `multixscience_multidoc_summarization` | summarization | artificial_intelligence, biomedicine,
materials_science, misc | multiple_paragraphs | multiple_source | paragraph |
| `mup_single_document_summarization` | summarization | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
| `ncbi_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `nlmchem_ner` | ie.named_entity_recognition | biomedicine | multiple_paragraphs | single_source | json |
| `nlmgene_ner` | ie.named_entity_recognition | biomedicine | paragraph | single_source | json |
| `pico_ner` | ie.named_entity_recognition | clinical_medicine | paragraph | single_source | json |
| `pubmedqa_qa` | qa.yes_no | biomedicine | paragraph | single_source | label |
| `qasa_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | paragraph |
| `qasper_abstractive_qa` | qa.abstractive | artificial_intelligence | multiple_paragraphs | single_source | json |
| `qasper_extractive_qa` | qa.extractive | artificial_intelligence | multiple_paragraphs | single_source | json |
| `scicite_classification` | classification | artificial_intelligence | paragraph | single_source | label |
| `scientific_lay_summarisation_`
`elife_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
| `scientific_lay_summarisation_`
`plos_single_doc_summ` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
| `scientific_papers_summarization_single_doc_arxiv` | summarization | artificial_intelligence, misc | multiple_paragraphs | single_source | paragraph |
| `scientific_papers_summarization_single_doc_pubmed` | summarization | biomedicine | multiple_paragraphs | single_source | paragraph |
| `scierc_ner` | ie.named_entity_recognition | artificial_intelligence | paragraph | single_source | json |
| `scierc_re` | ie.relation_extraction | artificial_intelligence | paragraph | single_source | json |
| `scifact_entailment` | entailment | biomedicine, clinical_medicine | paragraph | single_source | json |
| `scireviewgen_multidoc_summarization` | summarization | artificial_intelligence | multiple_paragraphs | multiple_source | paragraph |
| `scitldr_aic` | summarization | artificial_intelligence | multiple_paragraphs | single_source | sentence |