parquet-converter
commited on
Commit
•
5b76c51
1
Parent(s):
277cbfc
Update parquet files
Browse files- README.md +0 -45
- data/test-00000-of-00001-60f575898aa3c10b.parquet → allenai--cochrane_dense_max/parquet-test.parquet +2 -2
- data/train-00000-of-00001-e8251c1268a8f5ca.parquet → allenai--cochrane_dense_max/parquet-train.parquet +2 -2
- data/validation-00000-of-00001-9deddf656b14add0.parquet → allenai--cochrane_dense_max/parquet-validation.parquet +2 -2
- dataset_infos.json +0 -1
README.md
DELETED
@@ -1,45 +0,0 @@
|
|
1 |
-
---
|
2 |
-
annotations_creators:
|
3 |
-
- expert-generated
|
4 |
-
language_creators:
|
5 |
-
- expert-generated
|
6 |
-
language:
|
7 |
-
- en
|
8 |
-
license:
|
9 |
-
- apache-2.0
|
10 |
-
multilinguality:
|
11 |
-
- monolingual
|
12 |
-
size_categories:
|
13 |
-
- 10K<n<100K
|
14 |
-
source_datasets:
|
15 |
-
- extended|other-MS^2
|
16 |
-
- extended|other-Cochrane
|
17 |
-
task_categories:
|
18 |
-
- summarization
|
19 |
-
- text2text-generation
|
20 |
-
paperswithcode_id: multi-document-summarization
|
21 |
-
pretty_name: MSLR Shared Task
|
22 |
-
---
|
23 |
-
|
24 |
-
This is a copy of the [Cochrane](https://huggingface.co/datasets/allenai/mslr2022) dataset, except the input source documents of its `validation` split have been replaced by a __dense__ retriever. The retrieval pipeline used:
|
25 |
-
|
26 |
-
- __query__: The `target` field of each example
|
27 |
-
- __corpus__: The union of all documents in the `train`, `validation` and `test` splits. A document is the concatenation of the `title` and `abstract`.
|
28 |
-
- __retriever__: [`facebook/contriever-msmarco`](https://huggingface.co/facebook/contriever-msmarco) via [PyTerrier](https://pyterrier.readthedocs.io/en/latest/) with default settings
|
29 |
-
- __top-k strategy__: `"max"`, i.e. the number of documents retrieved, `k`, is set as the maximum number of documents seen across examples in this dataset, in this case `k==25`
|
30 |
-
|
31 |
-
Retrieval results on the `train` set:
|
32 |
-
|
33 |
-
| Recall@100 | Rprec | Precision@k | Recall@k |
|
34 |
-
| ----------- | ----------- | ----------- | ----------- |
|
35 |
-
| 0.7790 | 0.4487 | 0.1959 | 0.6268 |
|
36 |
-
|
37 |
-
Retrieval results on the `validation` set:
|
38 |
-
|
39 |
-
| Recall@100 | Rprec | Precision@k | Recall@k |
|
40 |
-
| ----------- | ----------- | ----------- | ----------- |
|
41 |
-
| 0.7856 | 0.4424 | 0.1995 | 0.6433 |
|
42 |
-
|
43 |
-
Retrieval results on the `test` set:
|
44 |
-
|
45 |
-
N/A. Test set is blind so we do not have any queries.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
data/test-00000-of-00001-60f575898aa3c10b.parquet → allenai--cochrane_dense_max/parquet-test.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:97c51b23e5c8cda40081d198aa376d93a41241d074b5bb9f2322cff9532d3851
|
3 |
+
size 4248304
|
data/train-00000-of-00001-e8251c1268a8f5ca.parquet → allenai--cochrane_dense_max/parquet-train.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f07a03cc12f108f601360ed9e86d420c635eef3fe42066570f863a4c2a967348
|
3 |
+
size 31494448
|
data/validation-00000-of-00001-9deddf656b14add0.parquet → allenai--cochrane_dense_max/parquet-validation.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:955640a557dfccb593547f684e3baaef40f1fa3f339978f4772871d979d18223
|
3 |
+
size 219522369
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"allenai--cochrane_dense_max": {"description": "The Multidocument Summarization for Literature Review (MSLR) Shared Task aims to study how medical\nevidence from different clinical studies are summarized in literature reviews. Reviews provide the\nhighest quality of evidence for clinical care, but are expensive to produce manually.\n(Semi-)automation via NLP may facilitate faster evidence synthesis without sacrificing rigor.\nThe MSLR shared task uses two datasets to assess the current state of multidocument summarization\nfor this task, and to encourage the development of modeling contributions, scaffolding tasks, methods\nfor model interpretability, and improved automated evaluation methods in this domain.\n", "citation": "@inproceedings{DeYoung2021MS2MS,\n title = {MS\u02c62: Multi-Document Summarization of Medical Studies},\n author = {Jay DeYoung and Iz Beltagy and Madeleine van Zuylen and Bailey Kuehl and Lucy Lu Wang},\n booktitle = {EMNLP},\n year = {2021}\n}\n@article{Wallace2020GeneratingN,\n title = {Generating (Factual?) Narrative Summaries of RCTs: Experiments with Neural Multi-Document Summarization},\n author = {Byron C. Wallace and Sayantani Saha and Frank Soboczenski and Iain James Marshall},\n year = 2020,\n journal = {AMIA Annual Symposium},\n volume = {abs/2008.11293}\n}\n", "homepage": "https://github.com/allenai/mslr-shared-task", "license": "Apache-2.0", "features": {"review_id": {"dtype": "string", "id": null, "_type": "Value"}, "pmid": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "title": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "abstract": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "mslr2022", "config_name": "cochrane", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 65116046, "num_examples": 3752, "dataset_name": "cochrane_dense_max"}, "test": {"name": "test", "num_bytes": 8824448, "num_examples": 470, "dataset_name": "cochrane_dense_max"}, "validation": {"name": "validation", "num_bytes": 441379978, "num_examples": 470, "dataset_name": "cochrane_dense_max"}}, "download_checksums": null, "download_size": 255209581, "post_processing_size": null, "dataset_size": 515320472, "size_in_bytes": 770530053}}
|
|
|
|