Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
ArXiv:
Libraries:
Datasets
pandas
License:
albertvillanova HF staff commited on
Commit
792db81
1 Parent(s): 1740c86

Convert dataset to Parquet (#3)

Browse files

- Convert dataset to Parquet (6bcab1cb9e2593b6ad4b3c0487d58c06defe659d)
- Delete loading script (4c592de4da0bddd9aa3511021ae8c73a0fb46a4e)
- Delete legacy dataset_infos.json (4ef68a2650bf5983b0f03fc039332515959f59c4)

README.md CHANGED
@@ -1,16 +1,15 @@
1
  ---
2
  annotations_creators:
3
  - crowdsourced
4
- language:
5
- - en
6
  language_creators:
7
  - found
8
  - crowdsourced
 
 
9
  license:
10
  - mit
11
  multilinguality:
12
  - monolingual
13
- pretty_name: CommonGen
14
  size_categories:
15
  - 10K<n<100K
16
  source_datasets:
@@ -19,6 +18,7 @@ task_categories:
19
  - text2text-generation
20
  task_ids: []
21
  paperswithcode_id: commongen
 
22
  tags:
23
  - concepts-to-text
24
  dataset_info:
@@ -31,16 +31,25 @@ dataset_info:
31
  dtype: string
32
  splits:
33
  - name: train
34
- num_bytes: 6724250
35
  num_examples: 67389
36
  - name: validation
37
- num_bytes: 408752
38
  num_examples: 4018
39
  - name: test
40
- num_bytes: 77530
41
  num_examples: 1497
42
- download_size: 1845699
43
- dataset_size: 7210532
 
 
 
 
 
 
 
 
 
44
  ---
45
 
46
  # Dataset Card for "common_gen"
 
1
  ---
2
  annotations_creators:
3
  - crowdsourced
 
 
4
  language_creators:
5
  - found
6
  - crowdsourced
7
+ language:
8
+ - en
9
  license:
10
  - mit
11
  multilinguality:
12
  - monolingual
 
13
  size_categories:
14
  - 10K<n<100K
15
  source_datasets:
 
18
  - text2text-generation
19
  task_ids: []
20
  paperswithcode_id: commongen
21
+ pretty_name: CommonGen
22
  tags:
23
  - concepts-to-text
24
  dataset_info:
 
31
  dtype: string
32
  splits:
33
  - name: train
34
+ num_bytes: 6724166
35
  num_examples: 67389
36
  - name: validation
37
+ num_bytes: 408740
38
  num_examples: 4018
39
  - name: test
40
+ num_bytes: 77518
41
  num_examples: 1497
42
+ download_size: 3434865
43
+ dataset_size: 7210424
44
+ configs:
45
+ - config_name: default
46
+ data_files:
47
+ - split: train
48
+ path: data/train-*
49
+ - split: validation
50
+ path: data/validation-*
51
+ - split: test
52
+ path: data/test-*
53
  ---
54
 
55
  # Dataset Card for "common_gen"
common_gen.py DELETED
@@ -1,109 +0,0 @@
1
- import json
2
- import os
3
- import random
4
-
5
- import datasets
6
-
7
-
8
- random.seed(42) # This is important, to ensure the same order for concept sets as the official script.
9
-
10
- _CITATION = """\
11
- @inproceedings{lin-etal-2020-commongen,
12
- title = "{C}ommon{G}en: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
13
- author = "Lin, Bill Yuchen and
14
- Zhou, Wangchunshu and
15
- Shen, Ming and
16
- Zhou, Pei and
17
- Bhagavatula, Chandra and
18
- Choi, Yejin and
19
- Ren, Xiang",
20
- booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
21
- month = nov,
22
- year = "2020",
23
- address = "Online",
24
- publisher = "Association for Computational Linguistics",
25
- url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
26
- doi = "10.18653/v1/2020.findings-emnlp.165",
27
- pages = "1823--1840"
28
- }
29
- """
30
-
31
- _DESCRIPTION = """\
32
- CommonGen is a constrained text generation task, associated with a benchmark dataset,
33
- to explicitly test machines for the ability of generative commonsense reasoning. Given
34
- a set of common concepts; the task is to generate a coherent sentence describing an
35
- everyday scenario using these concepts.
36
-
37
- CommonGen is challenging because it inherently requires 1) relational reasoning using
38
- background commonsense knowledge, and 2) compositional generalization ability to work
39
- on unseen concept combinations. Our dataset, constructed through a combination of
40
- crowd-sourcing from AMT and existing caption corpora, consists of 30k concept-sets and
41
- 50k sentences in total.
42
- """
43
- _URL = "https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip"
44
-
45
-
46
- class CommonGen(datasets.GeneratorBasedBuilder):
47
- VERSION = datasets.Version("2020.5.30")
48
-
49
- def _info(self):
50
- features = datasets.Features(
51
- {
52
- "concept_set_idx": datasets.Value("int32"),
53
- "concepts": datasets.Sequence(datasets.Value("string")),
54
- "target": datasets.Value("string"),
55
- }
56
- )
57
- return datasets.DatasetInfo(
58
- description=_DESCRIPTION,
59
- features=features,
60
- supervised_keys=datasets.info.SupervisedKeysData(input="concepts", output="target"),
61
- homepage="https://inklab.usc.edu/CommonGen/index.html",
62
- citation=_CITATION,
63
- )
64
-
65
- def _split_generators(self, dl_manager):
66
- """Returns SplitGenerators."""
67
-
68
- dl_dir = dl_manager.download_and_extract(_URL)
69
-
70
- return [
71
- datasets.SplitGenerator(
72
- name=datasets.Split.TRAIN,
73
- gen_kwargs={"filepath": os.path.join(dl_dir, "commongen.train.jsonl"), "split": "train"},
74
- ),
75
- datasets.SplitGenerator(
76
- name=datasets.Split.VALIDATION,
77
- gen_kwargs={"filepath": os.path.join(dl_dir, "commongen.dev.jsonl"), "split": "dev"},
78
- ),
79
- datasets.SplitGenerator(
80
- name=datasets.Split.TEST,
81
- gen_kwargs={"filepath": os.path.join(dl_dir, "commongen.test_noref.jsonl"), "split": "test"},
82
- ),
83
- ]
84
-
85
- def _generate_examples(self, filepath, split):
86
- """Yields examples."""
87
- with open(filepath, encoding="utf-8") as f:
88
- id_ = 0
89
- for idx, row in enumerate(f):
90
- row = row.replace(", }", "}") # Fix possible JSON format error
91
- data = json.loads(row)
92
-
93
- rand_order = [word for word in data["concept_set"].split("#")]
94
- random.shuffle(rand_order)
95
-
96
- if split == "test":
97
- yield idx, {
98
- "concept_set_idx": idx,
99
- "concepts": rand_order,
100
- "target": "",
101
- }
102
- else:
103
- for scene in data["scene"]:
104
- yield id_, {
105
- "concept_set_idx": idx,
106
- "concepts": rand_order,
107
- "target": scene,
108
- }
109
- id_ += 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9dbd388bb5e19c98cb1160dfddbac6feeac7bbc0d802d94492286c6b3fbb7f6
3
+ size 31157
data/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5641eb79211ff3022efd7f0d4df83ceb0e894e7c553340fd418d4075d319ea0c
3
+ size 3232448
data/validation-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa383822542c5df1bd2876830b6fb61c57a771fbe06d37a07846417dc3f0b6de
3
+ size 171260
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"default": {"description": "CommonGen is a constrained text generation task, associated with a benchmark dataset, \nto explicitly test machines for the ability of generative commonsense reasoning. Given \na set of common concepts; the task is to generate a coherent sentence describing an \neveryday scenario using these concepts.\n\nCommonGen is challenging because it inherently requires 1) relational reasoning using \nbackground commonsense knowledge, and 2) compositional generalization ability to work \non unseen concept combinations. Our dataset, constructed through a combination of \ncrowd-sourcing from AMT and existing caption corpora, consists of 30k concept-sets and \n50k sentences in total.\n", "citation": "@inproceedings{lin-etal-2020-commongen,\n author = {Bill Yuchen Lin and Wangchunshu Zhou and Ming Shen and Pei Zhou and Chandra Bhagavatula and Yejin Choi and Xiang Ren},\n title = {{C}ommon{G}en: A Constrained Text Generation Challenge for Generative Commonsense Reasoning},\n booktitle = {Findings of the Association for Computational Linguistics: EMNLP 2020},\n year = {2020}\n}\n", "homepage": "https://inklab.usc.edu/CommonGen/index.html", "license": "", "features": {"concept_set_idx": {"dtype": "int32", "id": null, "_type": "Value"}, "concepts": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "concepts", "output": "target"}, "builder_name": "common_gen", "config_name": "default", "version": {"version_str": "2020.5.30", "description": null, "datasets_version_to_prepare": null, "major": 2020, "minor": 5, "patch": 30}, "splits": {"train": {"name": "train", "num_bytes": 6724250, "num_examples": 67389, "dataset_name": "common_gen"}, "validation": {"name": "validation", "num_bytes": 408752, "num_examples": 4018, "dataset_name": "common_gen"}, "test": {"name": "test", "num_bytes": 77530, "num_examples": 1497, "dataset_name": "common_gen"}}, "download_checksums": {"https://storage.googleapis.com/huggingface-nlp/datasets/common_gen/commongen_data.zip": {"num_bytes": 1845699, "checksum": "a3f19ca607da4e874fc5f2dd1f53c13a6788a497f883d74cc3f9a1fcda44c594"}}, "download_size": 1845699, "post_processing_size": null, "dataset_size": 7210532, "size_in_bytes": 9056231}}