|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research""" |
|
|
|
import gzip |
|
import json |
|
import os |
|
from typing import List |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research |
|
""" |
|
|
|
_URL_LISTS = { |
|
"v1": "urls/v1.txt", |
|
"v1_5": "urls/v1_5.txt", |
|
"v1_5-sample": "urls/v1_5-sample.txt", |
|
"v1_6": "urls/v1_6.txt", |
|
"v1_6-sample": "urls/v1_6-sample.txt", |
|
} |
|
_VERSIONS = { |
|
"v1": "1.0.0", |
|
"v1_5": "1.5.0", |
|
"v1_5-sample": "1.5.0", |
|
"v1_6": "1.6.0", |
|
"v1_6-sample": "1.6.0", |
|
} |
|
_DATES = { |
|
"v1": "(Aug 2023)", |
|
"v1_5": "(Oct 2023)", |
|
"v1_5-sample": "(Oct 2023)", |
|
"v1_6": "(Jan 2024)", |
|
"v1_6-sample": "(Jan 2024)", |
|
} |
|
_BASE_URL = "https://olmo-data.org" |
|
|
|
_DATA_DIR = os.environ.get("DOLMA_DATA_DIR", None) |
|
|
|
_CITATION = """\ |
|
@article{dolma, |
|
title = {{Dolma: An Open Corpus of Three Trillion Tokens for Language Model Pretraining Research}}, |
|
author = { |
|
Luca Soldaini and Rodney Kinney and Akshita Bhagia and Dustin Schwenk and David Atkinson and |
|
Russell Authur and Ben Bogin and Khyathi Chandu and Jennifer Dumas and Yanai Elazar and |
|
Valentin Hofmann and Ananya Harsh Jha and Sachin Kumar and Li Lucy and Xinxi Lyu and Ian Magnusson and |
|
Jacob Morrison and Niklas Muennighoff and Aakanksha Naik and Crystal Nam and Matthew E. Peters and |
|
Abhilasha Ravichander and Kyle Richardson and Zejiang Shen and Emma Strubell and Nishant Subramani and |
|
Oyvind Tafjord and Evan Pete Walsh and Hannaneh Hajishirzi and Noah A. Smith and Luke Zettlemoyer and |
|
Iz Beltagy and Dirk Groeneveld and Jesse Dodge and Kyle Lo |
|
}, |
|
year = {2024}, |
|
journal={arXiv preprint}, |
|
} |
|
""" |
|
|
|
|
|
class Dolma(datasets.GeneratorBasedBuilder): |
|
"""Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research""" |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name=name, |
|
version=_VERSIONS[name], |
|
description=f"{_DESCRIPTION} {_DATES[name]}", |
|
) |
|
for name in _URL_LISTS.keys() |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "v1_6" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
|
|
"added": datasets.Value("string"), |
|
"created": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
path = dl_manager.download(_URL_LISTS[self.config.name]) |
|
|
|
with open(path, mode="rt", encoding="utf-8") as f: |
|
subset_urls = f.read().splitlines() |
|
|
|
if _DATA_DIR is not None: |
|
subset_files = [os.path.join(_DATA_DIR, url.replace(_BASE_URL, "").lstrip("/")) for url in subset_urls] |
|
else: |
|
subset_files = dl_manager.download(subset_urls) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"files": subset_files}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, files: List[str]): |
|
"""This function returns the examples in the raw (text) form.""" |
|
for fn in files: |
|
logger.info("generating examples from = %s", fn) |
|
|
|
with gzip.open(fn, mode="rt", encoding="utf-8") as f: |
|
for line in f: |
|
row = json.loads(line) |
|
yield row["id"], { |
|
"id": row["id"], |
|
"text": row["text"], |
|
"added": row.get("added", ""), |
|
"created": row.get("created", ""), |
|
"source": row.get("source", ""), |
|
} |
|
|