"""TODO(quoref): Add a description here.""" from __future__ import absolute_import, division, print_function import json import os import datasets # TODO(quoref): BibTeX citation _CITATION = """\ @article{allenai:quoref, author = {Pradeep Dasigi and Nelson F. Liu and Ana Marasovic and Noah A. Smith and Matt Gardner}, title = {Quoref: A Reading Comprehension Dataset with Questions Requiring Coreferential Reasoning}, journal = {arXiv:1908.05803v2 }, year = {2019}, } """ # TODO(quoref): _DESCRIPTION = """\ Quoref is a QA dataset which tests the coreferential reasoning capability of reading comprehension systems. In this span-selection benchmark containing 24K questions over 4.7K paragraphs from Wikipedia, a system must resolve hard coreferences before selecting the appropriate span(s) in the paragraphs for answering questions. """ _URL = "https://quoref-dataset.s3-us-west-2.amazonaws.com/train_and_dev/quoref-train-dev-v0.1.zip" class Quoref(datasets.GeneratorBasedBuilder): """TODO(quoref): Short description of my dataset.""" # TODO(quoref): Set up version. VERSION = datasets.Version("0.1.0") def _info(self): # TODO(quoref): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "id": datasets.Value("string"), "question": datasets.Value("string"), "context": datasets.Value("string"), "title": datasets.Value("string"), "url": datasets.Value("string"), "answers": datasets.features.Sequence( { "answer_start": datasets.Value("int32"), "text": datasets.Value("string"), } ) # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://leaderboard.allenai.org/quoref/submissions/get-started", citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(quoref): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs dl_dir = dl_manager.download_and_extract(_URL) data_dir = os.path.join(dl_dir, "quoref-train-dev-v0.1") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "quoref-train-v0.1.json")}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={"filepath": os.path.join(data_dir, "quoref-dev-v0.1.json")}, ), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(quoref): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: data = json.load(f) for article in data["data"]: title = article.get("title", "").strip() url = article.get("url", "").strip() for paragraph in article["paragraphs"]: context = paragraph["context"].strip() for qa in paragraph["qas"]: question = qa["question"].strip() id_ = qa["id"] answer_starts = [answer["answer_start"] for answer in qa["answers"]] answers = [answer["text"].strip() for answer in qa["answers"]] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. yield id_, { "title": title, "context": context, "question": question, "id": id_, "answers": { "answer_start": answer_starts, "text": answers, }, "url": url, }