Commit
•
521533d
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- dataset_infos.json +1 -0
- dummy/claims/1.0.0/dummy_data.zip +3 -0
- dummy/corpus/1.0.0/dummy_data.zip +3 -0
- scifact.py +167 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"corpus": {"description": "SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales\n", "citation": "@inproceedings{scifact2020\n title={ Fact or Fiction: Verifying Scientific Claims},\n author={David, Wadden and Kyle, Lo and Lucy Lu, Wang and Shanchuan, Lin and Madeleine van, Zuylen and Arman, Cohan and Hannaneh, Hajishirzi},\n booktitle={2011 AAAI Spring Symposium Series},\n year={2020},\n}\n", "homepage": "https://scifact.apps.allenai.org/", "license": "", "features": {"doc_id": {"dtype": "int32", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "abstract": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "structured": {"dtype": "bool", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scifact", "config_name": "corpus", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8002556, "num_examples": 5183, "dataset_name": "scifact"}}, "download_checksums": {"https://ai2-s2-scifact.s3-us-west-2.amazonaws.com/release/2020-05-01/data.tar.gz": {"num_bytes": 2848693, "checksum": "108c19d1a6e2522f20055fe503450c6af8c9c12a095fd727f21894cc44eb47aa"}}, "download_size": 2848693, "dataset_size": 8002556, "size_in_bytes": 10851249}, "claims": {"description": "SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales\n", "citation": "@inproceedings{scifact2020\n title={ Fact or Fiction: Verifying Scientific Claims},\n author={David, Wadden and Kyle, Lo and Lucy Lu, Wang and Shanchuan, Lin and Madeleine van, Zuylen and Arman, Cohan and Hannaneh, Hajishirzi},\n booktitle={2011 AAAI Spring Symposium Series},\n year={2020},\n}\n", "homepage": "https://scifact.apps.allenai.org/", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "claim": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_label": {"dtype": "string", "id": null, "_type": "Value"}, "evidence_sentences": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "cited_doc_ids": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "supervised_keys": null, "builder_name": "scifact", "config_name": "claims", "version": {"version_str": "1.0.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 170070, "num_examples": 1261, "dataset_name": "scifact"}, "test": {"name": "test", "num_bytes": 33899, "num_examples": 300, "dataset_name": "scifact"}, "validation": {"name": "validation", "num_bytes": 60882, "num_examples": 450, "dataset_name": "scifact"}}, "download_checksums": {"https://ai2-s2-scifact.s3-us-west-2.amazonaws.com/release/2020-05-01/data.tar.gz": {"num_bytes": 2848693, "checksum": "108c19d1a6e2522f20055fe503450c6af8c9c12a095fd727f21894cc44eb47aa"}}, "download_size": 2848693, "dataset_size": 264851, "size_in_bytes": 3113544}}
|
dummy/claims/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43fc6639f7aa4c97cf8d77ffdffcae90df9c5231547af3be7b5bd382a7ff9189
|
3 |
+
size 1659
|
dummy/corpus/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0854510f54a4589c062b8f02f2afc868fd310caaa622a452385792b2e940c52d
|
3 |
+
size 2197
|
scifact.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""TODO(scifact): Add a description here."""
|
2 |
+
|
3 |
+
from __future__ import absolute_import, division, print_function
|
4 |
+
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
|
10 |
+
|
11 |
+
# TODO(scifact): BibTeX citation
|
12 |
+
_CITATION = """\
|
13 |
+
@inproceedings{scifact2020
|
14 |
+
title={ Fact or Fiction: Verifying Scientific Claims},
|
15 |
+
author={David, Wadden and Kyle, Lo and Lucy Lu, Wang and Shanchuan, Lin and Madeleine van, Zuylen and Arman, Cohan and Hannaneh, Hajishirzi},
|
16 |
+
booktitle={2011 AAAI Spring Symposium Series},
|
17 |
+
year={2020},
|
18 |
+
}
|
19 |
+
"""
|
20 |
+
|
21 |
+
# TODO(scifact):
|
22 |
+
_DESCRIPTION = """\
|
23 |
+
SciFact, a dataset of 1.4K expert-written scientific claims paired with evidence-containing abstracts, and annotated with labels and rationales
|
24 |
+
"""
|
25 |
+
|
26 |
+
_URL = "https://ai2-s2-scifact.s3-us-west-2.amazonaws.com/release/2020-05-01/data.tar.gz"
|
27 |
+
|
28 |
+
|
29 |
+
class ScifactConfig(datasets.BuilderConfig):
|
30 |
+
"""BuilderConfig for Scifact"""
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
"""
|
34 |
+
|
35 |
+
Args:
|
36 |
+
**kwargs: keyword arguments forwarded to super.
|
37 |
+
"""
|
38 |
+
super(ScifactConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
|
39 |
+
|
40 |
+
|
41 |
+
class Scifact(datasets.GeneratorBasedBuilder):
|
42 |
+
"""TODO(scifact): Short description of my dataset."""
|
43 |
+
|
44 |
+
# TODO(scifact): Set up version.
|
45 |
+
VERSION = datasets.Version("0.1.0")
|
46 |
+
BUILDER_CONFIGS = [
|
47 |
+
ScifactConfig(name="corpus", description=" The corpus of evidence documents"),
|
48 |
+
ScifactConfig(name="claims", description=" The claims are split into train, test, dev"),
|
49 |
+
]
|
50 |
+
|
51 |
+
def _info(self):
|
52 |
+
# TODO(scifact): Specifies the datasets.DatasetInfo object
|
53 |
+
if self.config.name == "corpus":
|
54 |
+
features = {
|
55 |
+
"doc_id": datasets.Value("int32"), # The document's S2ORC ID.
|
56 |
+
"title": datasets.Value("string"), # The title.
|
57 |
+
"abstract": datasets.features.Sequence(
|
58 |
+
datasets.Value("string")
|
59 |
+
), # The abstract, written as a list of sentences.
|
60 |
+
"structured": datasets.Value("bool"), # Indicator for whether this is a structured abstract.
|
61 |
+
}
|
62 |
+
else:
|
63 |
+
features = {
|
64 |
+
"id": datasets.Value("int32"), # An integer claim ID.
|
65 |
+
"claim": datasets.Value("string"), # The text of the claim.
|
66 |
+
"evidence_doc_id": datasets.Value("string"),
|
67 |
+
"evidence_label": datasets.Value("string"), # Label for the rationale.
|
68 |
+
"evidence_sentences": datasets.features.Sequence(datasets.Value("int32")), # Rationale sentences.
|
69 |
+
"cited_doc_ids": datasets.features.Sequence(datasets.Value("int32")), # The claim's "cited documents".
|
70 |
+
}
|
71 |
+
|
72 |
+
return datasets.DatasetInfo(
|
73 |
+
# This is the description that will appear on the datasets page.
|
74 |
+
description=_DESCRIPTION,
|
75 |
+
# datasets.features.FeatureConnectors
|
76 |
+
features=datasets.Features(
|
77 |
+
features
|
78 |
+
# These are the features of your dataset like images, labels ...
|
79 |
+
),
|
80 |
+
# If there's a common (input, target) tuple from the features,
|
81 |
+
# specify them here. They'll be used if as_supervised=True in
|
82 |
+
# builder.as_dataset.
|
83 |
+
supervised_keys=None,
|
84 |
+
# Homepage of the dataset for documentation
|
85 |
+
homepage="https://scifact.apps.allenai.org/",
|
86 |
+
citation=_CITATION,
|
87 |
+
)
|
88 |
+
|
89 |
+
def _split_generators(self, dl_manager):
|
90 |
+
"""Returns SplitGenerators."""
|
91 |
+
# TODO(scifact): Downloads the data and defines the splits
|
92 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
93 |
+
# download and extract URLs
|
94 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
95 |
+
|
96 |
+
if self.config.name == "corpus":
|
97 |
+
return [
|
98 |
+
datasets.SplitGenerator(
|
99 |
+
name=datasets.Split.TRAIN,
|
100 |
+
# These kwargs will be passed to _generate_examples
|
101 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "data", "corpus.jsonl"), "split": "train"},
|
102 |
+
),
|
103 |
+
]
|
104 |
+
else:
|
105 |
+
return [
|
106 |
+
datasets.SplitGenerator(
|
107 |
+
name=datasets.Split.TRAIN,
|
108 |
+
# These kwargs will be passed to _generate_examples
|
109 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "data", "claims_train.jsonl"), "split": "train"},
|
110 |
+
),
|
111 |
+
datasets.SplitGenerator(
|
112 |
+
name=datasets.Split.TEST,
|
113 |
+
# These kwargs will be passed to _generate_examples
|
114 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "data", "claims_test.jsonl"), "split": "test"},
|
115 |
+
),
|
116 |
+
datasets.SplitGenerator(
|
117 |
+
name=datasets.Split.VALIDATION,
|
118 |
+
# These kwargs will be passed to _generate_examples
|
119 |
+
gen_kwargs={"filepath": os.path.join(dl_dir, "data", "claims_dev.jsonl"), "split": "dev"},
|
120 |
+
),
|
121 |
+
]
|
122 |
+
|
123 |
+
def _generate_examples(self, filepath, split):
|
124 |
+
"""Yields examples."""
|
125 |
+
# TODO(scifact): Yields (key, example) tuples from the dataset
|
126 |
+
with open(filepath, encoding="utf-8") as f:
|
127 |
+
for id_, row in enumerate(f):
|
128 |
+
data = json.loads(row)
|
129 |
+
if self.config.name == "corpus":
|
130 |
+
yield id_, {
|
131 |
+
"doc_id": int(data["doc_id"]),
|
132 |
+
"title": data["title"],
|
133 |
+
"abstract": data["abstract"],
|
134 |
+
"structured": data["structured"],
|
135 |
+
}
|
136 |
+
else:
|
137 |
+
if split == "test":
|
138 |
+
yield id_, {
|
139 |
+
"id": data["id"],
|
140 |
+
"claim": data["claim"],
|
141 |
+
"evidence_doc_id": "",
|
142 |
+
"evidence_label": "",
|
143 |
+
"evidence_sentences": [],
|
144 |
+
"cited_doc_ids": [],
|
145 |
+
}
|
146 |
+
else:
|
147 |
+
evidences = data["evidence"]
|
148 |
+
if evidences:
|
149 |
+
for id1, doc_id in enumerate(evidences):
|
150 |
+
for id2, evidence in enumerate(evidences[doc_id]):
|
151 |
+
yield str(id_) + "_" + str(id1) + "_" + str(id2), {
|
152 |
+
"id": data["id"],
|
153 |
+
"claim": data["claim"],
|
154 |
+
"evidence_doc_id": doc_id,
|
155 |
+
"evidence_label": evidence["label"],
|
156 |
+
"evidence_sentences": evidence["sentences"],
|
157 |
+
"cited_doc_ids": data.get("cited_doc_ids", []),
|
158 |
+
}
|
159 |
+
else:
|
160 |
+
yield id_, {
|
161 |
+
"id": data["id"],
|
162 |
+
"claim": data["claim"],
|
163 |
+
"evidence_doc_id": "",
|
164 |
+
"evidence_label": "",
|
165 |
+
"evidence_sentences": [],
|
166 |
+
"cited_doc_ids": data.get("cited_doc_ids", []),
|
167 |
+
}
|