File size: 13,917 Bytes
aab6dc1 ffed337 aab6dc1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
"""TODO(sciTail): Add a description here."""
import csv
import json
import os
import textwrap
import datasets
# TODO(sciTail): BibTeX citation
_CITATION = """\
inproceedings{scitail,
Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
Booktitle = {AAAI},
Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},
Year = {2018}
}
"""
# TODO(sciTail):
_DESCRIPTION = """\
The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question
and the correct answer choice are converted into an assertive statement to form the hypothesis. We use information
retrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We
crowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create
the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples
with neutral label
"""
_URL = "http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip"
class ScitailConfig(datasets.BuilderConfig):
"""BuilderConfig for Xquad"""
def __init__(self, **kwargs):
"""
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(ScitailConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
class Scitail(datasets.GeneratorBasedBuilder):
"""TODO(sciTail): Short description of my dataset."""
# TODO(sciTail): Set up version.
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
ScitailConfig(
name="snli_format",
description="JSONL format used by SNLI with a JSON object corresponding to each entailment example in each line.",
),
ScitailConfig(
name="tsv_format", description="Tab-separated format with three columns: premise hypothesis label"
),
ScitailConfig(
name="dgem_format",
description="Tab-separated format used by the DGEM model: premise hypothesis label hypothesis graph structure",
),
ScitailConfig(
name="predictor_format",
description=textwrap.dedent(
"""\
AllenNLP predictors work only with JSONL format. This folder contains the SciTail train/dev/test in JSONL format
so that it can be loaded into the predictors. Each line is a JSON object with the following keys:
gold_label : the example label from {entails, neutral}
sentence1: the premise
sentence2: the hypothesis
sentence2_structure: structure from the hypothesis """
),
),
]
def _info(self):
# TODO(sciTail): Specifies the datasets.DatasetInfo object
if self.config.name == "snli_format":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"sentence1_binary_parse": datasets.Value("string"),
"sentence1_parse": datasets.Value("string"),
"sentence1": datasets.Value("string"),
"sentence2_parse": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"annotator_labels": datasets.features.Sequence(datasets.Value("string")),
"gold_label": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://allenai.org/data/scitail",
citation=_CITATION,
)
elif self.config.name == "tsv_format":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://allenai.org/data/scitail",
citation=_CITATION,
)
elif self.config.name == "predictor_format":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"answer": datasets.Value("string"),
"sentence2_structure": datasets.Value("string"),
"sentence1": datasets.Value("string"),
"sentence2": datasets.Value("string"),
"gold_label": datasets.Value("string"),
"question": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://allenai.org/data/scitail",
citation=_CITATION,
)
elif self.config.name == "dgem_format":
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.Value("string"),
"hypothesis_graph_structure": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://allenai.org/data/scitail",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(sciTail): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
data_dir = os.path.join(dl_dir, "SciTailV1.1")
snli = os.path.join(data_dir, "snli_format")
dgem = os.path.join(data_dir, "dgem_format")
tsv = os.path.join(data_dir, "tsv_format")
predictor = os.path.join(data_dir, "predictor_format")
if self.config.name == "snli_format":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_train.txt")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_test.txt")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_dev.txt")},
),
]
elif self.config.name == "tsv_format":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_train.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_test.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_dev.tsv")},
),
]
elif self.config.name == "predictor_format":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_train.jsonl")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_test.jsonl")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_dev.jsonl")},
),
]
elif self.config.name == "dgem_format":
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_train.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_test.tsv")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_dev.tsv")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(sciTail): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
if self.config.name == "snli_format":
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"sentence1_binary_parse": data["sentence1_binary_parse"],
"sentence1_parse": data["sentence1_parse"],
"sentence1": data["sentence1"],
"sentence2_parse": data["sentence2_parse"],
"sentence2": data["sentence2"],
"annotator_labels": data["annotator_labels"],
"gold_label": data["gold_label"],
}
elif self.config.name == "tsv_format":
data = csv.reader(f, delimiter="\t")
for id_, row in enumerate(data):
yield id_, {"premise": row[0], "hypothesis": row[1], "label": row[2]}
elif self.config.name == "dgem_format":
data = csv.reader(f, delimiter="\t")
for id_, row in enumerate(data):
yield id_, {
"premise": row[0],
"hypothesis": row[1],
"label": row[2],
"hypothesis_graph_structure": row[3],
}
elif self.config.name == "predictor_format":
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"answer": data["answer"],
"sentence2_structure": data["sentence2_structure"],
"sentence1": data["sentence1"],
"sentence2": data["sentence2"],
"gold_label": data["gold_label"],
"question": data["question"],
}
|