|
{ |
|
"snli_format": { |
|
"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question\nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information\nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We\ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create\nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples\nwith neutral label\n", |
|
"citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", |
|
"homepage": "https://allenai.org/data/scitail", |
|
"license": "", |
|
"features": { |
|
"sentence1_binary_parse": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence1_parse": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence1": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence2_parse": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence2": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"annotator_labels": { |
|
"feature": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"_type": "Sequence" |
|
}, |
|
"gold_label": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
} |
|
}, |
|
"builder_name": "scitail", |
|
"dataset_name": "scitail", |
|
"config_name": "snli_format", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": "", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 22457379, |
|
"num_examples": 23596, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 2005142, |
|
"num_examples": 2126, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 1264378, |
|
"num_examples": 1304, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 7476483, |
|
"dataset_size": 25726899, |
|
"size_in_bytes": 33203382 |
|
}, |
|
"tsv_format": { |
|
"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question\nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information\nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We\ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create\nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples\nwith neutral label\n", |
|
"citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", |
|
"homepage": "https://allenai.org/data/scitail", |
|
"license": "", |
|
"features": { |
|
"premise": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"hypothesis": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
} |
|
}, |
|
"builder_name": "scitail", |
|
"dataset_name": "scitail", |
|
"config_name": "tsv_format", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": "", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 4606527, |
|
"num_examples": 23097, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 410267, |
|
"num_examples": 2126, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 260422, |
|
"num_examples": 1304, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 1836546, |
|
"dataset_size": 5277216, |
|
"size_in_bytes": 7113762 |
|
}, |
|
"dgem_format": { |
|
"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question\nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information\nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We\ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create\nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples\nwith neutral label\n", |
|
"citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", |
|
"homepage": "https://allenai.org/data/scitail", |
|
"license": "", |
|
"features": { |
|
"premise": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"hypothesis": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"label": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"hypothesis_graph_structure": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
} |
|
}, |
|
"builder_name": "scitail", |
|
"dataset_name": "scitail", |
|
"config_name": "dgem_format", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": "", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 6817626, |
|
"num_examples": 23088, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 606867, |
|
"num_examples": 2126, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 393209, |
|
"num_examples": 1304, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 2007018, |
|
"dataset_size": 7817702, |
|
"size_in_bytes": 9824720 |
|
}, |
|
"predictor_format": { |
|
"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question\nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information\nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We\ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create\nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples\nwith neutral label\n", |
|
"citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", |
|
"homepage": "https://allenai.org/data/scitail", |
|
"license": "", |
|
"features": { |
|
"answer": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence2_structure": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence1": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"sentence2": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"gold_label": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
}, |
|
"question": { |
|
"dtype": "string", |
|
"_type": "Value" |
|
} |
|
}, |
|
"builder_name": "scitail", |
|
"dataset_name": "scitail", |
|
"config_name": "predictor_format", |
|
"version": { |
|
"version_str": "1.1.0", |
|
"description": "", |
|
"major": 1, |
|
"minor": 1, |
|
"patch": 0 |
|
}, |
|
"splits": { |
|
"train": { |
|
"name": "train", |
|
"num_bytes": 8864108, |
|
"num_examples": 23587, |
|
"dataset_name": null |
|
}, |
|
"test": { |
|
"name": "test", |
|
"num_bytes": 795275, |
|
"num_examples": 2126, |
|
"dataset_name": null |
|
}, |
|
"validation": { |
|
"name": "validation", |
|
"num_bytes": 510140, |
|
"num_examples": 1304, |
|
"dataset_name": null |
|
} |
|
}, |
|
"download_size": 2169238, |
|
"dataset_size": 10169523, |
|
"size_in_bytes": 12338761 |
|
} |
|
} |