parquet-converter
commited on
Commit
•
e6de5f7
1
Parent(s):
05954c1
Update parquet files
Browse files- .gitattributes +0 -27
- README.md +0 -316
- dataset_infos.json +0 -1
- dgem_format/scitail-test.parquet +3 -0
- dgem_format/scitail-train.parquet +3 -0
- dgem_format/scitail-validation.parquet +3 -0
- predictor_format/scitail-test.parquet +3 -0
- predictor_format/scitail-train.parquet +3 -0
- predictor_format/scitail-validation.parquet +3 -0
- scitail.py +0 -298
- snli_format/scitail-test.parquet +3 -0
- snli_format/scitail-train.parquet +3 -0
- snli_format/scitail-validation.parquet +3 -0
- tsv_format/scitail-test.parquet +3 -0
- tsv_format/scitail-train.parquet +3 -0
- tsv_format/scitail-validation.parquet +3 -0
.gitattributes
DELETED
@@ -1,27 +0,0 @@
|
|
1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
-
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
-
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
README.md
DELETED
@@ -1,316 +0,0 @@
|
|
1 |
-
---
|
2 |
-
language:
|
3 |
-
- en
|
4 |
-
paperswithcode_id: scitail
|
5 |
-
pretty_name: SciTail
|
6 |
-
dataset_info:
|
7 |
-
- config_name: snli_format
|
8 |
-
features:
|
9 |
-
- name: sentence1_binary_parse
|
10 |
-
dtype: string
|
11 |
-
- name: sentence1_parse
|
12 |
-
dtype: string
|
13 |
-
- name: sentence1
|
14 |
-
dtype: string
|
15 |
-
- name: sentence2_parse
|
16 |
-
dtype: string
|
17 |
-
- name: sentence2
|
18 |
-
dtype: string
|
19 |
-
- name: annotator_labels
|
20 |
-
sequence: string
|
21 |
-
- name: gold_label
|
22 |
-
dtype: string
|
23 |
-
splits:
|
24 |
-
- name: train
|
25 |
-
num_bytes: 22495833
|
26 |
-
num_examples: 23596
|
27 |
-
- name: test
|
28 |
-
num_bytes: 2008631
|
29 |
-
num_examples: 2126
|
30 |
-
- name: validation
|
31 |
-
num_bytes: 1266529
|
32 |
-
num_examples: 1304
|
33 |
-
download_size: 14174621
|
34 |
-
dataset_size: 25770993
|
35 |
-
- config_name: tsv_format
|
36 |
-
features:
|
37 |
-
- name: premise
|
38 |
-
dtype: string
|
39 |
-
- name: hypothesis
|
40 |
-
dtype: string
|
41 |
-
- name: label
|
42 |
-
dtype: string
|
43 |
-
splits:
|
44 |
-
- name: train
|
45 |
-
num_bytes: 4618115
|
46 |
-
num_examples: 23097
|
47 |
-
- name: test
|
48 |
-
num_bytes: 411343
|
49 |
-
num_examples: 2126
|
50 |
-
- name: validation
|
51 |
-
num_bytes: 261086
|
52 |
-
num_examples: 1304
|
53 |
-
download_size: 14174621
|
54 |
-
dataset_size: 5290544
|
55 |
-
- config_name: dgem_format
|
56 |
-
features:
|
57 |
-
- name: premise
|
58 |
-
dtype: string
|
59 |
-
- name: hypothesis
|
60 |
-
dtype: string
|
61 |
-
- name: label
|
62 |
-
dtype: string
|
63 |
-
- name: hypothesis_graph_structure
|
64 |
-
dtype: string
|
65 |
-
splits:
|
66 |
-
- name: train
|
67 |
-
num_bytes: 6832104
|
68 |
-
num_examples: 23088
|
69 |
-
- name: test
|
70 |
-
num_bytes: 608213
|
71 |
-
num_examples: 2126
|
72 |
-
- name: validation
|
73 |
-
num_bytes: 394040
|
74 |
-
num_examples: 1304
|
75 |
-
download_size: 14174621
|
76 |
-
dataset_size: 7834357
|
77 |
-
- config_name: predictor_format
|
78 |
-
features:
|
79 |
-
- name: answer
|
80 |
-
dtype: string
|
81 |
-
- name: sentence2_structure
|
82 |
-
dtype: string
|
83 |
-
- name: sentence1
|
84 |
-
dtype: string
|
85 |
-
- name: sentence2
|
86 |
-
dtype: string
|
87 |
-
- name: gold_label
|
88 |
-
dtype: string
|
89 |
-
- name: question
|
90 |
-
dtype: string
|
91 |
-
splits:
|
92 |
-
- name: train
|
93 |
-
num_bytes: 8884823
|
94 |
-
num_examples: 23587
|
95 |
-
- name: test
|
96 |
-
num_bytes: 797161
|
97 |
-
num_examples: 2126
|
98 |
-
- name: validation
|
99 |
-
num_bytes: 511305
|
100 |
-
num_examples: 1304
|
101 |
-
download_size: 14174621
|
102 |
-
dataset_size: 10193289
|
103 |
-
---
|
104 |
-
|
105 |
-
# Dataset Card for "scitail"
|
106 |
-
|
107 |
-
## Table of Contents
|
108 |
-
- [Dataset Description](#dataset-description)
|
109 |
-
- [Dataset Summary](#dataset-summary)
|
110 |
-
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
111 |
-
- [Languages](#languages)
|
112 |
-
- [Dataset Structure](#dataset-structure)
|
113 |
-
- [Data Instances](#data-instances)
|
114 |
-
- [Data Fields](#data-fields)
|
115 |
-
- [Data Splits](#data-splits)
|
116 |
-
- [Dataset Creation](#dataset-creation)
|
117 |
-
- [Curation Rationale](#curation-rationale)
|
118 |
-
- [Source Data](#source-data)
|
119 |
-
- [Annotations](#annotations)
|
120 |
-
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
121 |
-
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
122 |
-
- [Social Impact of Dataset](#social-impact-of-dataset)
|
123 |
-
- [Discussion of Biases](#discussion-of-biases)
|
124 |
-
- [Other Known Limitations](#other-known-limitations)
|
125 |
-
- [Additional Information](#additional-information)
|
126 |
-
- [Dataset Curators](#dataset-curators)
|
127 |
-
- [Licensing Information](#licensing-information)
|
128 |
-
- [Citation Information](#citation-information)
|
129 |
-
- [Contributions](#contributions)
|
130 |
-
|
131 |
-
## Dataset Description
|
132 |
-
|
133 |
-
- **Homepage:** [https://allenai.org/data/scitail](https://allenai.org/data/scitail)
|
134 |
-
- **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
135 |
-
- **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
136 |
-
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
137 |
-
- **Size of downloaded dataset files:** 54.07 MB
|
138 |
-
- **Size of the generated dataset:** 46.82 MB
|
139 |
-
- **Total amount of disk used:** 100.89 MB
|
140 |
-
|
141 |
-
### Dataset Summary
|
142 |
-
|
143 |
-
The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question
|
144 |
-
and the correct answer choice are converted into an assertive statement to form the hypothesis. We use information
|
145 |
-
retrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We
|
146 |
-
crowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create
|
147 |
-
the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples
|
148 |
-
with neutral label
|
149 |
-
|
150 |
-
### Supported Tasks and Leaderboards
|
151 |
-
|
152 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
153 |
-
|
154 |
-
### Languages
|
155 |
-
|
156 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
157 |
-
|
158 |
-
## Dataset Structure
|
159 |
-
|
160 |
-
### Data Instances
|
161 |
-
|
162 |
-
#### dgem_format
|
163 |
-
|
164 |
-
- **Size of downloaded dataset files:** 13.52 MB
|
165 |
-
- **Size of the generated dataset:** 7.47 MB
|
166 |
-
- **Total amount of disk used:** 20.99 MB
|
167 |
-
|
168 |
-
An example of 'train' looks as follows.
|
169 |
-
```
|
170 |
-
|
171 |
-
```
|
172 |
-
|
173 |
-
#### predictor_format
|
174 |
-
|
175 |
-
- **Size of downloaded dataset files:** 13.52 MB
|
176 |
-
- **Size of the generated dataset:** 9.72 MB
|
177 |
-
- **Total amount of disk used:** 23.24 MB
|
178 |
-
|
179 |
-
An example of 'validation' looks as follows.
|
180 |
-
```
|
181 |
-
|
182 |
-
```
|
183 |
-
|
184 |
-
#### snli_format
|
185 |
-
|
186 |
-
- **Size of downloaded dataset files:** 13.52 MB
|
187 |
-
- **Size of the generated dataset:** 24.58 MB
|
188 |
-
- **Total amount of disk used:** 38.10 MB
|
189 |
-
|
190 |
-
An example of 'validation' looks as follows.
|
191 |
-
```
|
192 |
-
|
193 |
-
```
|
194 |
-
|
195 |
-
#### tsv_format
|
196 |
-
|
197 |
-
- **Size of downloaded dataset files:** 13.52 MB
|
198 |
-
- **Size of the generated dataset:** 5.05 MB
|
199 |
-
- **Total amount of disk used:** 18.56 MB
|
200 |
-
|
201 |
-
An example of 'validation' looks as follows.
|
202 |
-
```
|
203 |
-
|
204 |
-
```
|
205 |
-
|
206 |
-
### Data Fields
|
207 |
-
|
208 |
-
The data fields are the same among all splits.
|
209 |
-
|
210 |
-
#### dgem_format
|
211 |
-
- `premise`: a `string` feature.
|
212 |
-
- `hypothesis`: a `string` feature.
|
213 |
-
- `label`: a `string` feature.
|
214 |
-
- `hypothesis_graph_structure`: a `string` feature.
|
215 |
-
|
216 |
-
#### predictor_format
|
217 |
-
- `answer`: a `string` feature.
|
218 |
-
- `sentence2_structure`: a `string` feature.
|
219 |
-
- `sentence1`: a `string` feature.
|
220 |
-
- `sentence2`: a `string` feature.
|
221 |
-
- `gold_label`: a `string` feature.
|
222 |
-
- `question`: a `string` feature.
|
223 |
-
|
224 |
-
#### snli_format
|
225 |
-
- `sentence1_binary_parse`: a `string` feature.
|
226 |
-
- `sentence1_parse`: a `string` feature.
|
227 |
-
- `sentence1`: a `string` feature.
|
228 |
-
- `sentence2_parse`: a `string` feature.
|
229 |
-
- `sentence2`: a `string` feature.
|
230 |
-
- `annotator_labels`: a `list` of `string` features.
|
231 |
-
- `gold_label`: a `string` feature.
|
232 |
-
|
233 |
-
#### tsv_format
|
234 |
-
- `premise`: a `string` feature.
|
235 |
-
- `hypothesis`: a `string` feature.
|
236 |
-
- `label`: a `string` feature.
|
237 |
-
|
238 |
-
### Data Splits
|
239 |
-
|
240 |
-
| name |train|validation|test|
|
241 |
-
|----------------|----:|---------:|---:|
|
242 |
-
|dgem_format |23088| 1304|2126|
|
243 |
-
|predictor_format|23587| 1304|2126|
|
244 |
-
|snli_format |23596| 1304|2126|
|
245 |
-
|tsv_format |23097| 1304|2126|
|
246 |
-
|
247 |
-
## Dataset Creation
|
248 |
-
|
249 |
-
### Curation Rationale
|
250 |
-
|
251 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
252 |
-
|
253 |
-
### Source Data
|
254 |
-
|
255 |
-
#### Initial Data Collection and Normalization
|
256 |
-
|
257 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
258 |
-
|
259 |
-
#### Who are the source language producers?
|
260 |
-
|
261 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
262 |
-
|
263 |
-
### Annotations
|
264 |
-
|
265 |
-
#### Annotation process
|
266 |
-
|
267 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
268 |
-
|
269 |
-
#### Who are the annotators?
|
270 |
-
|
271 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
272 |
-
|
273 |
-
### Personal and Sensitive Information
|
274 |
-
|
275 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
276 |
-
|
277 |
-
## Considerations for Using the Data
|
278 |
-
|
279 |
-
### Social Impact of Dataset
|
280 |
-
|
281 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
282 |
-
|
283 |
-
### Discussion of Biases
|
284 |
-
|
285 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
286 |
-
|
287 |
-
### Other Known Limitations
|
288 |
-
|
289 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
290 |
-
|
291 |
-
## Additional Information
|
292 |
-
|
293 |
-
### Dataset Curators
|
294 |
-
|
295 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
296 |
-
|
297 |
-
### Licensing Information
|
298 |
-
|
299 |
-
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
300 |
-
|
301 |
-
### Citation Information
|
302 |
-
|
303 |
-
```
|
304 |
-
inproceedings{scitail,
|
305 |
-
Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
|
306 |
-
Booktitle = {AAAI},
|
307 |
-
Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},
|
308 |
-
Year = {2018}
|
309 |
-
}
|
310 |
-
|
311 |
-
```
|
312 |
-
|
313 |
-
|
314 |
-
### Contributions
|
315 |
-
|
316 |
-
Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten), [@mariamabarham](https://github.com/mariamabarham), [@lewtun](https://github.com/lewtun), [@thomwolf](https://github.com/thomwolf) for adding this dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"snli_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"sentence1_binary_parse": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1_parse": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2_parse": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "annotator_labels": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "snli_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 22495833, "num_examples": 23596, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 2008631, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 1266529, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 25770993, "size_in_bytes": 39945614}, "tsv_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "tsv_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4618115, "num_examples": 23097, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 411343, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 261086, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 5290544, "size_in_bytes": 19465165}, "dgem_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis_graph_structure": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "dgem_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 6832104, "num_examples": 23088, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 608213, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 394040, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 7834357, "size_in_bytes": 22008978}, "predictor_format": {"description": "The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question \nand the correct answer choice are converted into an assertive statement to form the hypothesis. We use information \nretrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We \ncrowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create \nthe SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples \nwith neutral label\n", "citation": "inproceedings{scitail,\n Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},\n Booktitle = {AAAI},\n Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},\n Year = {2018}\n}\n", "homepage": "https://allenai.org/data/scitail", "license": "", "features": {"answer": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2_structure": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "gold_label": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "scitail", "config_name": "predictor_format", "version": {"version_str": "1.1.0", "description": "", "datasets_version_to_prepare": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8884823, "num_examples": 23587, "dataset_name": "scitail"}, "test": {"name": "test", "num_bytes": 797161, "num_examples": 2126, "dataset_name": "scitail"}, "validation": {"name": "validation", "num_bytes": 511305, "num_examples": 1304, "dataset_name": "scitail"}}, "download_checksums": {"http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip": {"num_bytes": 14174621, "checksum": "3fccd37350a94ca280b75998568df85fc2fc62843a3198d644fcbf858e6943d5"}}, "download_size": 14174621, "dataset_size": 10193289, "size_in_bytes": 24367910}}
|
|
|
|
dgem_format/scitail-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bb40add3d19967e2b095fa34fe01ea2f9237e088eaa7ef350d9a004968c7dd6c
|
3 |
+
size 185038
|
dgem_format/scitail-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:51cac6e69cf16946656a83fe2a2ba4ea802234beaeaf114aa520f28000453619
|
3 |
+
size 1709685
|
dgem_format/scitail-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eab76d65ad4aa8babb17491c799247ddd69fa653f778997c3bbcd92fc12fba37
|
3 |
+
size 112292
|
predictor_format/scitail-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:64a4be96180e2c48f7d17844eeea07868b29afd6144ba5f73cbfde87b0596c89
|
3 |
+
size 210213
|
predictor_format/scitail-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:354ef1123768935553de3219cacff148806218b949602e828b248945805687ef
|
3 |
+
size 1833841
|
predictor_format/scitail-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d555a289a300fe77e24968b029752b162ad1e67afc97a2b20ca9323f23f86d6
|
3 |
+
size 125181
|
scitail.py
DELETED
@@ -1,298 +0,0 @@
|
|
1 |
-
"""TODO(sciTail): Add a description here."""
|
2 |
-
|
3 |
-
|
4 |
-
import csv
|
5 |
-
import json
|
6 |
-
import os
|
7 |
-
import textwrap
|
8 |
-
|
9 |
-
import datasets
|
10 |
-
|
11 |
-
|
12 |
-
# TODO(sciTail): BibTeX citation
|
13 |
-
_CITATION = """\
|
14 |
-
inproceedings{scitail,
|
15 |
-
Author = {Tushar Khot and Ashish Sabharwal and Peter Clark},
|
16 |
-
Booktitle = {AAAI},
|
17 |
-
Title = {{SciTail}: A Textual Entailment Dataset from Science Question Answering},
|
18 |
-
Year = {2018}
|
19 |
-
}
|
20 |
-
"""
|
21 |
-
|
22 |
-
# TODO(sciTail):
|
23 |
-
_DESCRIPTION = """\
|
24 |
-
The SciTail dataset is an entailment dataset created from multiple-choice science exams and web sentences. Each question
|
25 |
-
and the correct answer choice are converted into an assertive statement to form the hypothesis. We use information
|
26 |
-
retrieval to obtain relevant text from a large text corpus of web sentences, and use these sentences as a premise P. We
|
27 |
-
crowdsource the annotation of such premise-hypothesis pair as supports (entails) or not (neutral), in order to create
|
28 |
-
the SciTail dataset. The dataset contains 27,026 examples with 10,101 examples with entails label and 16,925 examples
|
29 |
-
with neutral label
|
30 |
-
"""
|
31 |
-
|
32 |
-
_URL = "http://data.allenai.org.s3.amazonaws.com/downloads/SciTailV1.1.zip"
|
33 |
-
|
34 |
-
|
35 |
-
class ScitailConfig(datasets.BuilderConfig):
|
36 |
-
|
37 |
-
"""BuilderConfig for Xquad"""
|
38 |
-
|
39 |
-
def __init__(self, **kwargs):
|
40 |
-
"""
|
41 |
-
|
42 |
-
Args:
|
43 |
-
**kwargs: keyword arguments forwarded to super.
|
44 |
-
"""
|
45 |
-
super(ScitailConfig, self).__init__(version=datasets.Version("1.1.0", ""), **kwargs)
|
46 |
-
|
47 |
-
|
48 |
-
class Scitail(datasets.GeneratorBasedBuilder):
|
49 |
-
"""TODO(sciTail): Short description of my dataset."""
|
50 |
-
|
51 |
-
# TODO(sciTail): Set up version.
|
52 |
-
VERSION = datasets.Version("1.1.0")
|
53 |
-
BUILDER_CONFIGS = [
|
54 |
-
ScitailConfig(
|
55 |
-
name="snli_format",
|
56 |
-
description="JSONL format used by SNLI with a JSON object corresponding to each entailment example in each line.",
|
57 |
-
),
|
58 |
-
ScitailConfig(
|
59 |
-
name="tsv_format", description="Tab-separated format with three columns: premise hypothesis label"
|
60 |
-
),
|
61 |
-
ScitailConfig(
|
62 |
-
name="dgem_format",
|
63 |
-
description="Tab-separated format used by the DGEM model: premise hypothesis label hypothesis graph structure",
|
64 |
-
),
|
65 |
-
ScitailConfig(
|
66 |
-
name="predictor_format",
|
67 |
-
description=textwrap.dedent(
|
68 |
-
"""\
|
69 |
-
AllenNLP predictors work only with JSONL format. This folder contains the SciTail train/dev/test in JSONL format
|
70 |
-
so that it can be loaded into the predictors. Each line is a JSON object with the following keys:
|
71 |
-
gold_label : the example label from {entails, neutral}
|
72 |
-
sentence1: the premise
|
73 |
-
sentence2: the hypothesis
|
74 |
-
sentence2_structure: structure from the hypothesis """
|
75 |
-
),
|
76 |
-
),
|
77 |
-
]
|
78 |
-
|
79 |
-
def _info(self):
|
80 |
-
# TODO(sciTail): Specifies the datasets.DatasetInfo object
|
81 |
-
if self.config.name == "snli_format":
|
82 |
-
return datasets.DatasetInfo(
|
83 |
-
# This is the description that will appear on the datasets page.
|
84 |
-
description=_DESCRIPTION,
|
85 |
-
# datasets.features.FeatureConnectors
|
86 |
-
features=datasets.Features(
|
87 |
-
{
|
88 |
-
"sentence1_binary_parse": datasets.Value("string"),
|
89 |
-
"sentence1_parse": datasets.Value("string"),
|
90 |
-
"sentence1": datasets.Value("string"),
|
91 |
-
"sentence2_parse": datasets.Value("string"),
|
92 |
-
"sentence2": datasets.Value("string"),
|
93 |
-
"annotator_labels": datasets.features.Sequence(datasets.Value("string")),
|
94 |
-
"gold_label": datasets.Value("string")
|
95 |
-
# These are the features of your dataset like images, labels ...
|
96 |
-
}
|
97 |
-
),
|
98 |
-
# If there's a common (input, target) tuple from the features,
|
99 |
-
# specify them here. They'll be used if as_supervised=True in
|
100 |
-
# builder.as_dataset.
|
101 |
-
supervised_keys=None,
|
102 |
-
# Homepage of the dataset for documentation
|
103 |
-
homepage="https://allenai.org/data/scitail",
|
104 |
-
citation=_CITATION,
|
105 |
-
)
|
106 |
-
elif self.config.name == "tsv_format":
|
107 |
-
return datasets.DatasetInfo(
|
108 |
-
# This is the description that will appear on the datasets page.
|
109 |
-
description=_DESCRIPTION,
|
110 |
-
# datasets.features.FeatureConnectors
|
111 |
-
features=datasets.Features(
|
112 |
-
{
|
113 |
-
"premise": datasets.Value("string"),
|
114 |
-
"hypothesis": datasets.Value("string"),
|
115 |
-
"label": datasets.Value("string")
|
116 |
-
# These are the features of your dataset like images, labels ...
|
117 |
-
}
|
118 |
-
),
|
119 |
-
# If there's a common (input, target) tuple from the features,
|
120 |
-
# specify them here. They'll be used if as_supervised=True in
|
121 |
-
# builder.as_dataset.
|
122 |
-
supervised_keys=None,
|
123 |
-
# Homepage of the dataset for documentation
|
124 |
-
homepage="https://allenai.org/data/scitail",
|
125 |
-
citation=_CITATION,
|
126 |
-
)
|
127 |
-
elif self.config.name == "predictor_format":
|
128 |
-
return datasets.DatasetInfo(
|
129 |
-
# This is the description that will appear on the datasets page.
|
130 |
-
description=_DESCRIPTION,
|
131 |
-
# datasets.features.FeatureConnectors
|
132 |
-
features=datasets.Features(
|
133 |
-
{
|
134 |
-
"answer": datasets.Value("string"),
|
135 |
-
"sentence2_structure": datasets.Value("string"),
|
136 |
-
"sentence1": datasets.Value("string"),
|
137 |
-
"sentence2": datasets.Value("string"),
|
138 |
-
"gold_label": datasets.Value("string"),
|
139 |
-
"question": datasets.Value("string")
|
140 |
-
# These are the features of your dataset like images, labels ...
|
141 |
-
}
|
142 |
-
),
|
143 |
-
# If there's a common (input, target) tuple from the features,
|
144 |
-
# specify them here. They'll be used if as_supervised=True in
|
145 |
-
# builder.as_dataset.
|
146 |
-
supervised_keys=None,
|
147 |
-
# Homepage of the dataset for documentation
|
148 |
-
homepage="https://allenai.org/data/scitail",
|
149 |
-
citation=_CITATION,
|
150 |
-
)
|
151 |
-
elif self.config.name == "dgem_format":
|
152 |
-
return datasets.DatasetInfo(
|
153 |
-
# This is the description that will appear on the datasets page.
|
154 |
-
description=_DESCRIPTION,
|
155 |
-
# datasets.features.FeatureConnectors
|
156 |
-
features=datasets.Features(
|
157 |
-
{
|
158 |
-
"premise": datasets.Value("string"),
|
159 |
-
"hypothesis": datasets.Value("string"),
|
160 |
-
"label": datasets.Value("string"),
|
161 |
-
"hypothesis_graph_structure": datasets.Value("string")
|
162 |
-
# These are the features of your dataset like images, labels ...
|
163 |
-
}
|
164 |
-
),
|
165 |
-
# If there's a common (input, target) tuple from the features,
|
166 |
-
# specify them here. They'll be used if as_supervised=True in
|
167 |
-
# builder.as_dataset.
|
168 |
-
supervised_keys=None,
|
169 |
-
# Homepage of the dataset for documentation
|
170 |
-
homepage="https://allenai.org/data/scitail",
|
171 |
-
citation=_CITATION,
|
172 |
-
)
|
173 |
-
|
174 |
-
def _split_generators(self, dl_manager):
|
175 |
-
"""Returns SplitGenerators."""
|
176 |
-
# TODO(sciTail): Downloads the data and defines the splits
|
177 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
178 |
-
# download and extract URLs
|
179 |
-
dl_dir = dl_manager.download_and_extract(_URL)
|
180 |
-
data_dir = os.path.join(dl_dir, "SciTailV1.1")
|
181 |
-
snli = os.path.join(data_dir, "snli_format")
|
182 |
-
dgem = os.path.join(data_dir, "dgem_format")
|
183 |
-
tsv = os.path.join(data_dir, "tsv_format")
|
184 |
-
predictor = os.path.join(data_dir, "predictor_format")
|
185 |
-
if self.config.name == "snli_format":
|
186 |
-
return [
|
187 |
-
datasets.SplitGenerator(
|
188 |
-
name=datasets.Split.TRAIN,
|
189 |
-
# These kwargs will be passed to _generate_examples
|
190 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_train.txt")},
|
191 |
-
),
|
192 |
-
datasets.SplitGenerator(
|
193 |
-
name=datasets.Split.TEST,
|
194 |
-
# These kwargs will be passed to _generate_examples
|
195 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_test.txt")},
|
196 |
-
),
|
197 |
-
datasets.SplitGenerator(
|
198 |
-
name=datasets.Split.VALIDATION,
|
199 |
-
# These kwargs will be passed to _generate_examples
|
200 |
-
gen_kwargs={"filepath": os.path.join(snli, "scitail_1.0_dev.txt")},
|
201 |
-
),
|
202 |
-
]
|
203 |
-
elif self.config.name == "tsv_format":
|
204 |
-
return [
|
205 |
-
datasets.SplitGenerator(
|
206 |
-
name=datasets.Split.TRAIN,
|
207 |
-
# These kwargs will be passed to _generate_examples
|
208 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_train.tsv")},
|
209 |
-
),
|
210 |
-
datasets.SplitGenerator(
|
211 |
-
name=datasets.Split.TEST,
|
212 |
-
# These kwargs will be passed to _generate_examples
|
213 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_test.tsv")},
|
214 |
-
),
|
215 |
-
datasets.SplitGenerator(
|
216 |
-
name=datasets.Split.VALIDATION,
|
217 |
-
# These kwargs will be passed to _generate_examples
|
218 |
-
gen_kwargs={"filepath": os.path.join(tsv, "scitail_1.0_dev.tsv")},
|
219 |
-
),
|
220 |
-
]
|
221 |
-
elif self.config.name == "predictor_format":
|
222 |
-
return [
|
223 |
-
datasets.SplitGenerator(
|
224 |
-
name=datasets.Split.TRAIN,
|
225 |
-
# These kwargs will be passed to _generate_examples
|
226 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_train.jsonl")},
|
227 |
-
),
|
228 |
-
datasets.SplitGenerator(
|
229 |
-
name=datasets.Split.TEST,
|
230 |
-
# These kwargs will be passed to _generate_examples
|
231 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_test.jsonl")},
|
232 |
-
),
|
233 |
-
datasets.SplitGenerator(
|
234 |
-
name=datasets.Split.VALIDATION,
|
235 |
-
# These kwargs will be passed to _generate_examples
|
236 |
-
gen_kwargs={"filepath": os.path.join(predictor, "scitail_1.0_structure_dev.jsonl")},
|
237 |
-
),
|
238 |
-
]
|
239 |
-
elif self.config.name == "dgem_format":
|
240 |
-
return [
|
241 |
-
datasets.SplitGenerator(
|
242 |
-
name=datasets.Split.TRAIN,
|
243 |
-
# These kwargs will be passed to _generate_examples
|
244 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_train.tsv")},
|
245 |
-
),
|
246 |
-
datasets.SplitGenerator(
|
247 |
-
name=datasets.Split.TEST,
|
248 |
-
# These kwargs will be passed to _generate_examples
|
249 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_test.tsv")},
|
250 |
-
),
|
251 |
-
datasets.SplitGenerator(
|
252 |
-
name=datasets.Split.VALIDATION,
|
253 |
-
# These kwargs will be passed to _generate_examples
|
254 |
-
gen_kwargs={"filepath": os.path.join(dgem, "scitail_1.0_structure_dev.tsv")},
|
255 |
-
),
|
256 |
-
]
|
257 |
-
|
258 |
-
def _generate_examples(self, filepath):
|
259 |
-
"""Yields examples."""
|
260 |
-
# TODO(sciTail): Yields (key, example) tuples from the dataset
|
261 |
-
with open(filepath, encoding="utf-8") as f:
|
262 |
-
if self.config.name == "snli_format":
|
263 |
-
for id_, row in enumerate(f):
|
264 |
-
data = json.loads(row)
|
265 |
-
|
266 |
-
yield id_, {
|
267 |
-
"sentence1_binary_parse": data["sentence1_binary_parse"],
|
268 |
-
"sentence1_parse": data["sentence1_parse"],
|
269 |
-
"sentence1": data["sentence1"],
|
270 |
-
"sentence2_parse": data["sentence2_parse"],
|
271 |
-
"sentence2": data["sentence2"],
|
272 |
-
"annotator_labels": data["annotator_labels"],
|
273 |
-
"gold_label": data["gold_label"],
|
274 |
-
}
|
275 |
-
elif self.config.name == "tsv_format":
|
276 |
-
data = csv.reader(f, delimiter="\t")
|
277 |
-
for id_, row in enumerate(data):
|
278 |
-
yield id_, {"premise": row[0], "hypothesis": row[1], "label": row[2]}
|
279 |
-
elif self.config.name == "dgem_format":
|
280 |
-
data = csv.reader(f, delimiter="\t")
|
281 |
-
for id_, row in enumerate(data):
|
282 |
-
yield id_, {
|
283 |
-
"premise": row[0],
|
284 |
-
"hypothesis": row[1],
|
285 |
-
"label": row[2],
|
286 |
-
"hypothesis_graph_structure": row[3],
|
287 |
-
}
|
288 |
-
elif self.config.name == "predictor_format":
|
289 |
-
for id_, row in enumerate(f):
|
290 |
-
data = json.loads(row)
|
291 |
-
yield id_, {
|
292 |
-
"answer": data["answer"],
|
293 |
-
"sentence2_structure": data["sentence2_structure"],
|
294 |
-
"sentence1": data["sentence1"],
|
295 |
-
"sentence2": data["sentence2"],
|
296 |
-
"gold_label": data["gold_label"],
|
297 |
-
"question": data["question"],
|
298 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
snli_format/scitail-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:df259a293384bcff6b9258d30b204994d89530f3d09281b1376ddc1c90114be3
|
3 |
+
size 653111
|
snli_format/scitail-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a022f8c64d08d3a6c3d5703be944d267441f90e27fd86711d2d330539bbe1022
|
3 |
+
size 6423088
|
snli_format/scitail-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a80952692cc87a2afbd4a403d48a09b08a21868cd45744eb03d7a14abf15067c
|
3 |
+
size 400281
|
tsv_format/scitail-test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72801ad602378953ec301ade78b8fba265f42fe996c7bb6ca5f161d07c8c0f4f
|
3 |
+
size 162165
|
tsv_format/scitail-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0584a95cb429a963606df8b1f1e9407b33f87dfea8137fed6154a48857de2b82
|
3 |
+
size 1574549
|
tsv_format/scitail-validation.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fba715debcc2a433e01f73eaccc361cf930b931b14c57faa29b431fcd024a2d2
|
3 |
+
size 99829
|