File size: 2,760 Bytes
4ed10db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from transformers import PegasusTokenizer, PegasusForConditionalGeneration
import json
class NLPFactGenerator:
def __init__(self, model_name="human-centered-summarization/financial-summarization-pegasus"):
self.max_length = 1024
self.tokenizer = PegasusTokenizer.from_pretrained(model_name)
self.model = PegasusForConditionalGeneration.from_pretrained(model_name)
self.sentences_list = []
self.justification_list = []
self.titles_list = []
self.labels_list = []
self.claim_list = []
def load_data(self, filename):
with open(filename, "r") as infile:
self.data = json.load(infile)
def preprocess_data(self):
max_seq_length = 1024
for entry in self.data:
if "data" in entry:
self.titles_list.append(entry["title"])
justification = ' '.join(entry["paragraphs"])
for evidence in self.sentences_list:
if len(evidence) > max_seq_length:
evidence = evidence[:max_seq_length]
_evidence = ' '.join([item["sentence"] for item in entry["data"]])
self.justification_list.append(justification)
self.sentences_list.append(_evidence)
self.labels_list.append(entry["label"])
def generate_fact(self):
max_seq_length = 1024
generated_facts = []
count = 0
for evidence in self.justification_list:
if len(evidence) > max_seq_length:
evidence = evidence[:max_seq_length]
input_ids = self.tokenizer(evidence, return_tensors="pt").input_ids
try:
output = self.model.generate(
input_ids,
max_length=64,
num_beams=5,
early_stopping=True
)
summary = self.tokenizer.decode(output[0], skip_special_tokens=True)
count+=1
print(count)
generated_facts.append(summary)
except:
print('Input ID: ', len(input_ids))
return generated_facts
if __name__ == "__main__":
fact_generator = NLPFactGenerator()
fact_generator.load_data("finfact_old.json")
fact_generator.preprocess_data()
generated_facts = fact_generator.generate_fact()
generated_data = []
for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts):
generated_data.append({"title": title, "evidence":evi, "generated_fact": fact})
with open("generated_facts_pegasus.json", "w") as outfile:
json.dump(generated_data, outfile, indent=4)
|