|
from transformers import PegasusTokenizer, PegasusForConditionalGeneration |
|
import json |
|
|
|
class NLPFactGenerator: |
|
def __init__(self, model_name="human-centered-summarization/financial-summarization-pegasus"): |
|
self.max_length = 1024 |
|
self.tokenizer = PegasusTokenizer.from_pretrained(model_name) |
|
self.model = PegasusForConditionalGeneration.from_pretrained(model_name) |
|
self.sentences_list = [] |
|
self.justification_list = [] |
|
self.titles_list = [] |
|
self.labels_list = [] |
|
self.claim_list = [] |
|
|
|
def load_data(self, filename): |
|
with open(filename, "r") as infile: |
|
self.data = json.load(infile) |
|
|
|
def preprocess_data(self): |
|
max_seq_length = 1024 |
|
for entry in self.data: |
|
if "data" in entry: |
|
self.titles_list.append(entry["title"]) |
|
justification = ' '.join(entry["paragraphs"]) |
|
for evidence in self.sentences_list: |
|
if len(evidence) > max_seq_length: |
|
evidence = evidence[:max_seq_length] |
|
_evidence = ' '.join([item["sentence"] for item in entry["data"]]) |
|
self.justification_list.append(justification) |
|
self.sentences_list.append(_evidence) |
|
self.labels_list.append(entry["label"]) |
|
|
|
def generate_fact(self): |
|
max_seq_length = 1024 |
|
generated_facts = [] |
|
count = 0 |
|
for evidence in self.justification_list: |
|
if len(evidence) > max_seq_length: |
|
evidence = evidence[:max_seq_length] |
|
input_ids = self.tokenizer(evidence, return_tensors="pt").input_ids |
|
try: |
|
output = self.model.generate( |
|
input_ids, |
|
max_length=64, |
|
num_beams=5, |
|
early_stopping=True |
|
) |
|
summary = self.tokenizer.decode(output[0], skip_special_tokens=True) |
|
count+=1 |
|
print(count) |
|
|
|
generated_facts.append(summary) |
|
except: |
|
print('Input ID: ', len(input_ids)) |
|
return generated_facts |
|
|
|
|
|
if __name__ == "__main__": |
|
fact_generator = NLPFactGenerator() |
|
fact_generator.load_data("finfact_old.json") |
|
fact_generator.preprocess_data() |
|
generated_facts = fact_generator.generate_fact() |
|
generated_data = [] |
|
|
|
for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts): |
|
generated_data.append({"title": title, "evidence":evi, "generated_fact": fact}) |
|
with open("generated_facts_pegasus.json", "w") as outfile: |
|
json.dump(generated_data, outfile, indent=4) |
|
|
|
|
|
|