amanrangapur commited on
Commit
132edc5
1 Parent(s): 87283e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +0 -56
README.md CHANGED
@@ -15,19 +15,6 @@ size_categories:
15
  <h1 align="center">Fin-Fact - Financial Fact-Checking Dataset</h1>
16
 
17
 
18
- ## Table of Contents
19
-
20
- - [Overview](#overview)
21
- - [Dataset Description](#dataset-description)
22
- - [Dataset Usage](#dataset-usage)
23
- - [Leaderboard](#leaderboard)
24
- - [Dependencies](#dependencies)
25
- - [Run models for paper metrics](#run-models-for-paper-metrics)
26
- - [Citation](#citation)
27
- - [Contribution](#contribution)
28
- - [License](#license)
29
- - [Contact](#contact)
30
-
31
  ## Overview
32
 
33
  Welcome to the Fin-Fact repository! Fin-Fact is a comprehensive dataset designed specifically for financial fact-checking and explanation generation. This README provides an overview of the dataset, how to use it, and other relevant information. [Click here](https://arxiv.org/abs/2309.08793) to access the paper.
@@ -52,49 +39,6 @@ Fin-Fact is a valuable resource for researchers, data scientists, and fact-check
52
 
53
  4. **Fact Checking Experiments**: Train and evaluate machine learning models, including text and image analysis, using the dataset to enhance the accuracy of fact-checking systems.
54
 
55
- ## Leaderboard
56
-
57
- ## Dependencies
58
- We recommend you create an anaconda environment:
59
-
60
- `conda create --name finfact python=3.6 conda-build`
61
-
62
- Then, install Python requirements:
63
-
64
- `pip install -r requirements.txt`
65
-
66
-
67
- ## Run models for paper metrics
68
-
69
- We provide scripts let you easily run our dataset on existing state-of-the-art models and re-create the metrics published in paper. You should be able to reproduce our results from the paper by following these instructions. Please post an issue if you're unable to do this.
70
- To run existing ANLI models for fact checking.
71
-
72
- ### Run:
73
- 1. BART
74
- ```bash
75
- python anli.py --model_name 'ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
76
- ```
77
- 2. RoBERTa
78
- ```bash
79
- python anli.py --model_name 'ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
80
- ```
81
- 3. ELECTRA
82
- ```bash
83
- python anli.py --model_name 'ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
84
- ```
85
- 4. AlBERT
86
- ```bash
87
- python anli.py --model_name 'ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
88
- ```
89
- 5. XLNET
90
- ```bash
91
- python anli.py --model_name 'ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli' --data_file finfact.json --threshold 0.5
92
- ```
93
- 6. GPT-2
94
- ```bash
95
- python gpt2_nli.py --model_name 'fractalego/fact-checking' --data_file finfact.json
96
- ```
97
-
98
 
99
  ## Citation
100
 
 
15
  <h1 align="center">Fin-Fact - Financial Fact-Checking Dataset</h1>
16
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  ## Overview
19
 
20
  Welcome to the Fin-Fact repository! Fin-Fact is a comprehensive dataset designed specifically for financial fact-checking and explanation generation. This README provides an overview of the dataset, how to use it, and other relevant information. [Click here](https://arxiv.org/abs/2309.08793) to access the paper.
 
39
 
40
  4. **Fact Checking Experiments**: Train and evaluate machine learning models, including text and image analysis, using the dataset to enhance the accuracy of fact-checking systems.
41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Citation
44