albertvillanova HF staff commited on
Commit
58fdf71
1 Parent(s): 013210d

Delete Python files

Browse files
Files changed (10) hide show
  1. Fin-Fact.py +0 -79
  2. anli.py +0 -90
  3. bart_eval.py +0 -95
  4. bart_explaination_gen.py +0 -61
  5. bert_gen.py +0 -83
  6. data_crawler.py +0 -76
  7. data_generator.py +0 -171
  8. gpt2_nli.py +0 -70
  9. pegasus_gen.py +0 -70
  10. xl_sum_gen.py +0 -80
Fin-Fact.py DELETED
@@ -1,79 +0,0 @@
1
- """Fin-Fact dataset."""
2
-
3
- import json
4
- import datasets
5
-
6
- _CITATION = """\
7
- @misc{rangapur2023finfact,
8
- title={Fin-Fact: A Benchmark Dataset for Multimodal Financial Fact Checking and Explanation Generation},
9
- author={Aman Rangapur and Haoran Wang and Kai Shu},
10
- year={2023},
11
- eprint={2309.08793},
12
- archivePrefix={arXiv},
13
- primaryClass={cs.AI}
14
- }
15
- """
16
-
17
- _DESCRIPTION = """\
18
- Fin-Fact is a comprehensive dataset designed specifically for financial fact-checking and explanation generation.
19
- The dataset consists of 3121 claims spanning multiple financial sectors.
20
- """
21
-
22
- _HOMEPAGE = "https://github.com/IIT-DM/Fin-Fact"
23
- _LICENSE = "Apache 2.0"
24
- _URL = "https://huggingface.co/datasets/amanrangapur/Fin-Fact/resolve/main/finfact.json"
25
-
26
- class FinFact(datasets.GeneratorBasedBuilder):
27
- """Fin-Fact dataset for financial fact-checking and text generation."""
28
-
29
- VERSION = datasets.Version("1.0.0")
30
- BUILDER_CONFIGS = [
31
- datasets.BuilderConfig(
32
- name="generation",
33
- version=VERSION,
34
- description="The Fin-Fact dataset for financial fact-checking and text generation",
35
- ),
36
- ]
37
-
38
- DEFAULT_CONFIG_NAME = "generation"
39
-
40
- def _info(self):
41
- return datasets.DatasetInfo(
42
- description=_DESCRIPTION,
43
- features=datasets.Features(
44
- {
45
- "url": datasets.Value("string"),
46
- "claim": datasets.Value("string"),
47
- "author": datasets.Value("string"),
48
- "posted": datasets.Value("string"),
49
- "label": datasets.Value("string"),
50
- }
51
- ),
52
- supervised_keys=None,
53
- homepage=_HOMEPAGE,
54
- license=_LICENSE,
55
- citation=_CITATION,
56
- )
57
-
58
- def _split_generators(self, dl_manager):
59
- downloaded_file = dl_manager.download(_URL)
60
- return [
61
- datasets.SplitGenerator(
62
- name=datasets.Split.TRAIN,
63
- gen_kwargs={
64
- "filepath": downloaded_file,
65
- },
66
- ),
67
- ]
68
-
69
- def _generate_examples(self, filepath):
70
- with open(filepath, encoding="utf-8") as f:
71
- data = json.load(f)
72
- for id_, row in enumerate(data):
73
- yield id_, {
74
- "url": row.get("url", ""),
75
- "claim": row.get("claim", ""),
76
- "author": row.get("author", ""),
77
- "posted": row.get("posted", ""),
78
- "label": row.get("label", ""),
79
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
anli.py DELETED
@@ -1,90 +0,0 @@
1
- from transformers import AutoTokenizer, AutoModelForSequenceClassification
2
- import torch
3
- import argparse
4
- import json
5
- from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, classification_report, f1_score
6
-
7
- class FactCheckerApp:
8
- def __init__(self, hg_model_hub_name='ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli'):
9
- # hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli"
10
- # hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli"
11
- # hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli"
12
- # hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli"
13
- # hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli"
14
-
15
- self.max_length = 248
16
- self.tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name)
17
- self.model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name)
18
- self.sentences_list = []
19
- self.titles_list = []
20
- self.labels_list = []
21
- self.claim_list = []
22
-
23
- def load_data(self, filename):
24
- with open(filename, "r") as infile:
25
- self.data = json.load(infile)
26
-
27
- def preprocess_data(self):
28
- for entry in self.data:
29
- if "data" in entry:
30
- self.titles_list.append(entry["title"])
31
- _evidence = ' '.join([item["sentence"] for item in entry["data"]])
32
- self.sentences_list.append(_evidence)
33
- self.labels_list.append(entry["label"])
34
-
35
- def validate_claims(self, threshold=0.5):
36
- for title, evidence in zip(self.titles_list, self.sentences_list):
37
- tokenized_input_seq_pair = self.tokenizer.encode_plus(evidence, title,
38
- max_length=self.max_length,
39
- return_token_type_ids=True, truncation=True)
40
- input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0)
41
- token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0)
42
- attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0)
43
- outputs = self.model(input_ids,
44
- attention_mask=attention_mask,
45
- labels=None)
46
- predicted_probability = torch.softmax(outputs.logits, dim=1)[0].tolist()
47
- entailment_prob = predicted_probability[0]
48
- neutral_prob = predicted_probability[1]
49
- contradiction_prob = predicted_probability[2]
50
-
51
- if entailment_prob > threshold:
52
- is_claim_true = "true"
53
- elif neutral_prob > threshold:
54
- is_claim_true = "neutral"
55
- else:
56
- is_claim_true = "false"
57
-
58
- print(is_claim_true)
59
- self.claim_list.append(is_claim_true)
60
-
61
- def calculate_metrics(self):
62
- precision = precision_score(self.labels_list, self.claim_list, average='macro')
63
- accuracy = accuracy_score(self.labels_list, self.claim_list)
64
- f1_scoree = f1_score(self.labels_list, self.claim_list, average='macro')
65
- conf_matrix = confusion_matrix(self.labels_list, self.claim_list)
66
- recall_metric = recall_score(self.labels_list, self.claim_list, pos_label="true", average="macro")
67
- cls_report = classification_report(self.labels_list, self.claim_list, labels=["true", "false", "neutral"])
68
- return precision, accuracy, f1_scoree, conf_matrix, recall_metric, cls_report
69
-
70
- def parse_args():
71
- parser = argparse.ArgumentParser(description="Fact Checker Application")
72
- parser.add_argument("--model_name", default="ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli", help="Name of the pre-trained model to use")
73
- parser.add_argument("--data_file", required=True, help="Path to the JSON data file")
74
- parser.add_argument("--threshold", type=float, default=0.5, help="Threshold for claim validation")
75
- return parser.parse_args()
76
-
77
- if __name__ == "__main__":
78
- args = parse_args()
79
- fact_checker_app = FactCheckerApp(hg_model_hub_name=args.model_name)
80
- fact_checker_app.load_data(args.data_file)
81
- fact_checker_app.preprocess_data()
82
- fact_checker_app.validate_claims(threshold=args.threshold)
83
- precision, accuracy, f1_scoree, conf_matrix, recall_metric, cls_report = fact_checker_app.calculate_metrics()
84
- print("Precision:", precision)
85
- print("Accuracy:", accuracy)
86
- print("F1 score:", f1_scoree)
87
- print("Recall: ", recall_metric)
88
- print("Confusion Matrix:\n", conf_matrix)
89
- print("Report:\n", cls_report)
90
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bart_eval.py DELETED
@@ -1,95 +0,0 @@
1
- import json, itertools, pyter
2
- from nltk.translate.bleu_score import SmoothingFunction, corpus_bleu
3
-
4
-
5
- class NLPFactGenerator:
6
- def __init__(self):
7
- self.gen_fact_list = []
8
- self.evidence_list = []
9
-
10
- def _split_into_words(self, sentences):
11
- return list(itertools.chain(*[_.split(" ") for _ in sentences]))
12
-
13
- def _get_word_ngrams(self, n, sentences):
14
- assert len(sentences) > 0
15
- assert n > 0
16
- words = self._split_into_words(sentences)
17
- return self._get_ngrams(n, words)
18
-
19
- def _get_ngrams(self, n, text):
20
- ngram_set = set()
21
- text_length = len(text)
22
- max_index_ngram_start = text_length - n
23
- for i in range(max_index_ngram_start + 1):
24
- ngram_set.add(tuple(text[i:i + n]))
25
- return ngram_set
26
-
27
- def load_data(self, filename):
28
- with open(filename, "r") as infile:
29
- self.data = json.load(infile)
30
-
31
- def get_title_evidence_generated_facts(self):
32
- titles = []
33
- evidences = []
34
- generated_facts = []
35
-
36
- for entry in self.data:
37
- titles.append(entry["title"])
38
- evidences.append(entry["evidence"])
39
- generated_facts.append(entry["generated_fact"])
40
-
41
- return evidences, generated_facts
42
-
43
- def ter(self):
44
- ref, gen = self.get_title_evidence_generated_facts()
45
- if len(ref) == 1:
46
- total_score = pyter.ter(gen[0].split(), ref[0].split())
47
- else:
48
- total_score = 0
49
- for i in range(len(gen)):
50
- total_score = total_score + pyter.ter(gen[i].split(), ref[i].split())
51
- total_score = total_score/len(gen)
52
- return total_score
53
-
54
- def bleu(self):
55
- evidence_list, gen_fact_list = self.get_title_evidence_generated_facts()
56
- ref_bleu = []
57
- gen_bleu = []
58
- for l in evidence_list:
59
- gen_bleu.append(l.split())
60
- for i,l in enumerate(gen_fact_list):
61
- ref_bleu.append([l.split()])
62
- cc = SmoothingFunction()
63
- score_bleu = corpus_bleu(ref_bleu, gen_bleu, weights=(0, 1, 0, 0), smoothing_function=cc.method4)
64
- return score_bleu
65
-
66
- def rouge_one(self,n=3):
67
- evidence_list, gen_fact_list = self.get_title_evidence_generated_facts()
68
- evaluated_ngrams = self._get_word_ngrams(n, evidence_list)
69
- reference_ngrams = self._get_word_ngrams(n, gen_fact_list)
70
- reference_count = len(reference_ngrams)
71
- evaluated_count = len(evaluated_ngrams)
72
- overlapping_ngrams = evaluated_ngrams.intersection(reference_ngrams)
73
- overlapping_count = len(overlapping_ngrams)
74
- if evaluated_count == 0:
75
- precision = 0.0
76
- else:
77
- precision = overlapping_count / evaluated_count
78
-
79
- if reference_count == 0:
80
- recall = 0.0
81
- else:
82
- recall = overlapping_count / reference_count
83
-
84
- f1_score = 2.0 * ((precision * recall) / (precision + recall + 1e-8))
85
- return recall
86
-
87
-
88
- if __name__ == "__main__":
89
- fact_generator = NLPFactGenerator()
90
- fact_generator.load_data("generated_facts_xlsum.json")
91
- rouge_one_score = fact_generator.rouge_one()
92
- blue_score = fact_generator.bleu()
93
- print(blue_score)
94
- print(rouge_one_score)
95
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bart_explaination_gen.py DELETED
@@ -1,61 +0,0 @@
1
- from transformers import BartTokenizer, BartForConditionalGeneration
2
- import json
3
-
4
- class NLPFactGenerator:
5
- def __init__(self, model_name="facebook/bart-large-cnn"):
6
- self.max_length = 1024
7
- self.model = BartForConditionalGeneration.from_pretrained(model_name)
8
- self.tokenizer = BartTokenizer.from_pretrained(model_name)
9
- self.sentences_list = []
10
- self.justification_list = []
11
- self.titles_list = []
12
- self.labels_list = []
13
- self.claim_list = []
14
-
15
- def load_data(self, filename):
16
- with open(filename, "r") as infile:
17
- self.data = json.load(infile)
18
-
19
- def preprocess_data(self):
20
- max_seq_length = 1024
21
- for entry in self.data:
22
- if "data" in entry:
23
- self.titles_list.append(entry["title"])
24
- justification = ' '.join(entry["paragraphs"])
25
- for evidence in self.sentences_list:
26
- if len(evidence) > max_seq_length:
27
- evidence = evidence[:max_seq_length]
28
- _evidence = ' '.join([item["sentence"] for item in entry["data"]])
29
- self.justification_list.append(justification)
30
- self.sentences_list.append(_evidence)
31
- self.labels_list.append(entry["label"])
32
-
33
- def generate_fact(self):
34
- max_seq_length = 1024
35
- generated_facts = []
36
- for evidence in self.justification_list:
37
- if len(evidence) > max_seq_length:
38
- evidence = evidence[:max_seq_length]
39
- input_ids = self.tokenizer.encode(evidence, return_tensors="pt")
40
- try:
41
- generated_ids = self.model.generate(input_ids, max_length=self.max_length, num_return_sequences=1)
42
- generated_text = self.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
43
- print('Done')
44
- print('*'*50)
45
- generated_facts.append(generated_text)
46
- except:
47
- print('Input ID: ', len(input_ids))
48
- return generated_facts
49
-
50
-
51
- if __name__ == "__main__":
52
- fact_generator = NLPFactGenerator()
53
- fact_generator.load_data("finfact_old.json")
54
- fact_generator.preprocess_data()
55
- generated_facts = fact_generator.generate_fact()
56
- generated_data = []
57
-
58
- for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts):
59
- generated_data.append({"title": title, "evidence":evi, "generated_fact": fact})
60
- with open("generated_facts.json", "w") as outfile:
61
- json.dump(generated_data, outfile, indent=4)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bert_gen.py DELETED
@@ -1,83 +0,0 @@
1
- import torch
2
- from transformers import BertTokenizerFast, EncoderDecoderModel
3
- import json
4
-
5
- class NLPFactGenerator:
6
- def __init__(self, ckpt="mrm8488/bert2bert_shared-german-finetuned-summarization"):
7
- self.max_length = 1024
8
- self.tokenizer = BertTokenizerFast.from_pretrained(ckpt)
9
- self.model = EncoderDecoderModel.from_pretrained(ckpt)
10
- self.sentences_list = []
11
- self.justification_list = []
12
- self.titles_list = []
13
- self.labels_list = []
14
- self.claim_list = []
15
-
16
- def load_data(self, filename):
17
- with open(filename, "r") as infile:
18
- self.data = json.load(infile)
19
-
20
- def preprocess_data(self):
21
- max_seq_length = 1024
22
- for entry in self.data:
23
- if "data" in entry:
24
- self.titles_list.append(entry["title"])
25
- justification = ' '.join(entry["paragraphs"])
26
- for evidence in self.sentences_list:
27
- if len(evidence) > max_seq_length:
28
- evidence = evidence[:max_seq_length]
29
- _evidence = ' '.join([item["sentence"] for item in entry["data"]])
30
- self.justification_list.append(justification)
31
- self.sentences_list.append(_evidence)
32
- self.labels_list.append(entry["label"])
33
-
34
- def generate_fact(self):
35
- max_seq_length = 1024
36
- generated_facts = []
37
- count = 0
38
- for evidence in self.justification_list:
39
- if len(evidence) > max_seq_length:
40
- evidence = evidence[:max_seq_length]
41
- inputs = self.tokenizer([evidence], padding="max_length", truncation=True, max_length=1024, return_tensors="pt")
42
- input_ids = inputs.input_ids
43
- attention_mask = inputs.attention_mask
44
- try:
45
-
46
- output = self.model.generate(input_ids, attention_mask=attention_mask)
47
- summary = self.tokenizer.decode(output[0], skip_special_tokens=True)
48
- count+=1
49
- print(count)
50
- generated_facts.append(summary)
51
- except:
52
- print('Input ID: ', len(input_ids))
53
- return generated_facts
54
-
55
-
56
- if __name__ == "__main__":
57
- fact_generator = NLPFactGenerator()
58
- fact_generator.load_data("finfact_old.json")
59
- fact_generator.preprocess_data()
60
- generated_facts = fact_generator.generate_fact()
61
- generated_data = []
62
-
63
- for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts):
64
- generated_data.append({"title": title, "evidence":evi, "generated_fact": fact})
65
- with open("generated_facts_bert.json", "w") as outfile:
66
- json.dump(generated_data, outfile, indent=4)
67
-
68
-
69
-
70
- device = 'cuda' if torch.cuda.is_available() else 'cpu'
71
- ckpt = 'mrm8488/bert2bert_shared-german-finetuned-summarization'
72
- tokenizer = BertTokenizerFast.from_pretrained(ckpt)
73
- model = EncoderDecoderModel.from_pretrained(ckpt).to(device)
74
- def generate_summary(text):
75
- inputs = tokenizer([text], padding="max_length", truncation=True, max_length=512, return_tensors="pt")
76
- input_ids = inputs.input_ids.to(device)
77
- attention_mask = inputs.attention_mask.to(device)
78
- output = model.generate(input_ids, attention_mask=attention_mask)
79
- return tokenizer.decode(output[0], skip_special_tokens=True)
80
-
81
- text = "Your text here..."
82
-
83
- generate_summary(text)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data_crawler.py DELETED
@@ -1,76 +0,0 @@
1
- from bs4 import BeautifulSoup
2
- import pandas as pd
3
- import requests
4
- import json
5
-
6
- class FactCheckerScraper:
7
- def __init__(self):
8
- self.authors = []
9
- self.statements = []
10
- self.sources = []
11
- self.targets = []
12
- self.href_list = []
13
-
14
- def scrape_website(self, page_number, source):
15
- page_num = str(page_number)
16
- URL = 'https://www.politifact.com/factchecks/list/?category=income&page={}&source={}'.format(page_num, source)
17
- webpage = requests.get(URL)
18
- soup = BeautifulSoup(webpage.text, "html.parser")
19
- statement_footer = soup.find_all('footer', attrs={'class':'m-statement__footer'})
20
- statement_quote = soup.find_all('div', attrs={'class':'m-statement__quote'})
21
- statement_meta = soup.find_all('div', attrs={'class':'m-statement__meta'})
22
- target = soup.find_all('div', attrs={'class':'m-statement__meter'})
23
-
24
- for i in statement_footer:
25
- link1 = i.text.strip()
26
- name_and_date = link1.split()
27
- first_name = name_and_date[1]
28
- last_name = name_and_date[2]
29
- full_name = first_name+' '+last_name
30
- self.authors.append(full_name)
31
-
32
- for i in statement_quote:
33
- link2 = i.find_all('a')
34
- self.statements.append(link2[0].text.strip())
35
-
36
- for i in statement_meta:
37
- link3 = i.find_all('a')
38
- source_text = link3[0].text.strip()
39
- self.sources.append(source_text)
40
-
41
- for i in target:
42
- fact = i.find('div', attrs={'class':'c-image'}).find('img').get('alt')
43
- self.targets.append(fact)
44
-
45
- for i in statement_quote:
46
- href = i.find('a')['href']
47
- href = 'https://www.politifact.com' + href
48
- self.href_list.append(href)
49
-
50
- def scrape_multiple_pages(self, num_pages, source):
51
- for i in range(1, num_pages):
52
- self.scrape_website(i, source)
53
-
54
- def create_dataframe(self):
55
- data = pd.DataFrame(columns=['author', 'statement', 'links', 'source', 'date', 'target'])
56
- data['author'] = self.authors
57
- data['statement'] = self.statements
58
- data['links'] = self.href_list
59
- data['source'] = self.sources
60
- data['target'] = self.targets
61
- return data
62
-
63
- def save_to_json(self, filename):
64
- data_json = {
65
- "url": self.href_list,
66
- "label": self.targets
67
- }
68
-
69
- with open(filename, "w") as outfile:
70
- json.dump(data_json, outfile)
71
-
72
- if __name__ == "__main__":
73
- scraper = FactCheckerScraper()
74
- scraper.scrape_multiple_pages(70, source='covid')
75
- data = scraper.create_dataframe()
76
- scraper.save_to_json("./income.json")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data_generator.py DELETED
@@ -1,171 +0,0 @@
1
- from bs4 import BeautifulSoup
2
- import datetime
3
- import requests
4
- import nltk
5
- import json
6
-
7
- class WebScraper:
8
- def __init__(self, url):
9
- self.URL = url
10
- try:
11
- self.webpage = requests.get(self.URL)
12
- except requests.exceptions.RequestException as e:
13
- print(f"Error: {e}")
14
- if self.webpage:
15
- try:
16
- self.soup = BeautifulSoup(self.webpage.text, "html.parser")
17
- except:
18
- print("Error: Failed to create BeautifulSoup object.")
19
-
20
- def remove_unicode(self, string):
21
- return string.encode('ascii', 'ignore').decode('utf-8')
22
-
23
- def get_page_title(self):
24
- try:
25
- div_element = self.soup.find('div', class_='m-statement__quote')
26
- title = div_element.get_text(strip=True)
27
- cleaned_title = self.remove_unicode(title)
28
- cleaned_title = cleaned_title.replace('\"', '')
29
- except AttributeError:
30
- return None # Error: Failed to get page title.
31
- return cleaned_title
32
-
33
- def get_page_author(self):
34
- try:
35
- author_element = self.soup.find('div', class_='m-author__content').find('a')
36
- author = author_element.get_text(strip=True)
37
- except AttributeError:
38
- return None # Error: Failed to get page author.
39
- return author
40
-
41
- def get_page_posted_date(self):
42
- date_element = None
43
- try:
44
- date_element = self.soup.find('span', class_='m-author__date')
45
- date = date_element.get_text(strip=True)
46
- date_obj = datetime.datetime.strptime(date, "%B %d, %Y")
47
- formatted_date = date_obj.strftime("%m/%d/%Y")
48
- except (AttributeError, ValueError):
49
- return None # Error: Failed to get page posted date.
50
- return formatted_date
51
-
52
- def get_sci_check_digest(self):
53
- try:
54
- div_element = self.soup.find('div', class_='short-on-time')
55
- li_tags = div_element.find_all('li') if div_element else []
56
- sci_digest_list = [li.get_text(strip=True) for li in li_tags]
57
- final_sci_digest = ", ".join(sci_digest_list)
58
- cleaned_sci_digest = self.remove_unicode(final_sci_digest)
59
- cleaned_sci_digest = cleaned_sci_digest.replace('\"', '')
60
- tokenised_sci_digest = nltk.sent_tokenize(cleaned_sci_digest)
61
- except AttributeError:
62
- return None # Error: Failed to get SciCheck digest.
63
- return tokenised_sci_digest
64
-
65
- def get_paragraph_list(self):
66
- try:
67
- paragraph_list = []
68
- article_element = self.soup.find('article', class_='m-textblock')
69
- p_elements = article_element.find_all('p')
70
- text_list = [p.get_text(strip=True) for p in p_elements]
71
- for text in text_list:
72
- paragraph_list.append(text)
73
- final_paragraphs = " ".join(paragraph_list)
74
- cleaned_paragraphs = final_paragraphs.replace('\u00a0', ' ')
75
- cleaned_paragraphs = self.remove_unicode(cleaned_paragraphs)
76
- cleaned_paragraphs = cleaned_paragraphs.replace('\"', '')
77
- tokenized_paragraphs = nltk.sent_tokenize(cleaned_paragraphs)
78
- except AttributeError:
79
- return None, None # Error: Failed to get paragraphs.
80
- return paragraph_list, tokenized_paragraphs
81
-
82
- def get_sentences_citations(self):
83
- try:
84
- p_elements = self.soup.select('article.m-textblock p')
85
- citation_list = []
86
- for p in p_elements:
87
- href = p.find('a')
88
- if href and 'href' in href.attrs:
89
- href_text = href['href']
90
- sentence = p.get_text(strip=True)
91
- cleaned_sentence = sentence.replace('\u00a0', ' ')
92
- cleaned_sentence = self.remove_unicode(cleaned_sentence)
93
- cleaned_sentence = cleaned_sentence.replace('\"', '')
94
- citation_list.append({"sentence": cleaned_sentence, "hrefs": href_text})
95
- except AttributeError:
96
- return None # Error: Failed to get citation list.
97
- return citation_list
98
-
99
- def get_issue_list(self):
100
- issue_list = []
101
- try:
102
- ul_element = self.soup.find('ul', class_='m-list--horizontal')
103
- li_elements = ul_element.find_all('li', class_='m-list__item')
104
- for li in li_elements[:-1]:
105
- category = li.a['title']
106
- issue_list.append(category)
107
- except AttributeError:
108
- return None # Error: Failed to get issue list.
109
- return issue_list
110
-
111
- def get_image_info(self):
112
- try:
113
- article_element = self.soup.find('article', class_='m-textblock')
114
- p_elements = article_element.find_all('p')
115
- em_elements = article_element.find_all('em')
116
- img_count = 0
117
- image_captions = []
118
- for p in p_elements:
119
- img_tag = p.find('img')
120
- if img_tag:
121
- img_src = img_tag['src']
122
- if img_src:
123
- img_count += 1
124
- if img_count <= len(em_elements):
125
- image_caption = em_elements[img_count - 1].get_text(strip=True)
126
- cleaned_captions = image_caption.replace('\u00a0', ' ')
127
- cleaned_captions = self.remove_unicode(cleaned_captions)
128
- cleaned_captions = cleaned_captions.replace('\"', '')
129
- image_captions.append({"image_src": img_src, "image_caption": cleaned_captions})
130
- except:
131
- return None
132
- return image_captions
133
-
134
- def get_label(self):
135
- try:
136
- target = self.soup.find_all('div', attrs={'class':'m-statement__meter'})
137
- for i in target:
138
- label = i.find('div', attrs={'class':'c-image'}).find('img').get('alt')
139
- # if label == 'pants-fire':
140
- # label = 'false'
141
- # elif label == 'mostly-true':
142
- # label = 'true'
143
- except:
144
- return None
145
- return label
146
-
147
- with open("./income.json", "r") as infile:
148
- data = json.load(infile)
149
- urls = data["url"]
150
- labels = data["label"]
151
-
152
- scraped_data = []
153
- for url, label in zip(urls,labels):
154
- print(url)
155
- scraper = WebScraper(url)
156
- data = {
157
- "url": url,
158
- "title": scraper.get_page_title(),
159
- "author": scraper.get_page_author(),
160
- "posted": scraper.get_page_posted_date(),
161
- "sci_digest": scraper.get_sci_check_digest(),
162
- "paragraphs": scraper.get_paragraph_list()[1],
163
- "issues": scraper.get_issue_list(),
164
- "image_data": scraper.get_image_info(),
165
- "data": scraper.get_sentences_citations(),
166
- "label": label
167
- }
168
- scraped_data.append(data)
169
-
170
- with open("./json_new/income.json", "w") as outfile:
171
- json.dump(scraped_data, outfile)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
gpt2_nli.py DELETED
@@ -1,70 +0,0 @@
1
- from transformers import (
2
- GPT2LMHeadModel,
3
- GPT2Tokenizer,
4
- )
5
- import argparse
6
- import warnings
7
- warnings.filterwarnings("ignore")
8
-
9
- from fact_checking import FactChecker
10
- import json
11
- from sklearn.metrics import confusion_matrix, classification_report
12
-
13
- class FactCheckerApp:
14
- def __init__(self, model_name='fractalego/fact-checking'):
15
- self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
16
- self.fact_checking_model = GPT2LMHeadModel.from_pretrained(model_name)
17
- self.fact_checker = FactChecker(self.fact_checking_model, self.tokenizer)
18
- self.sentences_list = []
19
- self.titles_list = []
20
- self.labels_list = []
21
- self.claim_list = []
22
-
23
- def load_data(self, filename):
24
- with open(filename, "r") as infile:
25
- self.data = json.load(infile)
26
-
27
- def preprocess_data(self):
28
- for entry in self.data:
29
- if "data" in entry:
30
- self.titles_list.append(entry["title"])
31
- _evidence = ' '.join([item["sentence"] for item in entry["data"]])
32
- self.sentences_list.append(_evidence)
33
- self.labels_list.append(entry["label"])
34
-
35
- def validate_claims(self):
36
- max_seq_length = 1024
37
- for title, evidence in zip(self.titles_list, self.sentences_list):
38
- try:
39
- if len(title) > max_seq_length:
40
- title = title[:max_seq_length]
41
- if len(evidence) > max_seq_length:
42
- evidence = evidence[:max_seq_length]
43
- print(len(evidence))
44
- is_claim_true = self.fact_checker.validate(evidence, title)
45
- print(is_claim_true)
46
- self.claim_list.append(is_claim_true)
47
- except IndexError:
48
- self.claim_list.append(None)
49
-
50
- def calculate_metrics(self):
51
- conf_matrix = confusion_matrix(self.labels_list, [str(is_claim).lower() for is_claim in self.claim_list])
52
- cls_report = classification_report(self.labels_list, [str(is_claim).lower() for is_claim in self.claim_list], labels=["true", "false", "neutral"])
53
-
54
- return conf_matrix, cls_report
55
-
56
- def parse_args():
57
- parser = argparse.ArgumentParser(description="Fact Checker Application")
58
- parser.add_argument("--model_name", default="fractalego/fact-checking", help="Name of the fact-checking model to use")
59
- parser.add_argument("--data_file", required=True, help="Path to the JSON data file")
60
- return parser.parse_args()
61
-
62
- if __name__ == "__main__":
63
- args = parse_args()
64
- fact_checker_app = FactCheckerApp(model_name=args.model_name)
65
- fact_checker_app.load_data(args.data_file)
66
- fact_checker_app.preprocess_data()
67
- fact_checker_app.validate_claims()
68
- conf_matrix, cls_report = fact_checker_app.calculate_metrics()
69
- print("Confusion Matrix:\n", conf_matrix)
70
- print("Report:\n", cls_report)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pegasus_gen.py DELETED
@@ -1,70 +0,0 @@
1
- from transformers import PegasusTokenizer, PegasusForConditionalGeneration
2
- import json
3
-
4
- class NLPFactGenerator:
5
- def __init__(self, model_name="human-centered-summarization/financial-summarization-pegasus"):
6
- self.max_length = 1024
7
- self.tokenizer = PegasusTokenizer.from_pretrained(model_name)
8
- self.model = PegasusForConditionalGeneration.from_pretrained(model_name)
9
- self.sentences_list = []
10
- self.justification_list = []
11
- self.titles_list = []
12
- self.labels_list = []
13
- self.claim_list = []
14
-
15
- def load_data(self, filename):
16
- with open(filename, "r") as infile:
17
- self.data = json.load(infile)
18
-
19
- def preprocess_data(self):
20
- max_seq_length = 1024
21
- for entry in self.data:
22
- if "data" in entry:
23
- self.titles_list.append(entry["title"])
24
- justification = ' '.join(entry["paragraphs"])
25
- for evidence in self.sentences_list:
26
- if len(evidence) > max_seq_length:
27
- evidence = evidence[:max_seq_length]
28
- _evidence = ' '.join([item["sentence"] for item in entry["data"]])
29
- self.justification_list.append(justification)
30
- self.sentences_list.append(_evidence)
31
- self.labels_list.append(entry["label"])
32
-
33
- def generate_fact(self):
34
- max_seq_length = 1024
35
- generated_facts = []
36
- count = 0
37
- for evidence in self.justification_list:
38
- if len(evidence) > max_seq_length:
39
- evidence = evidence[:max_seq_length]
40
- input_ids = self.tokenizer(evidence, return_tensors="pt").input_ids
41
- try:
42
- output = self.model.generate(
43
- input_ids,
44
- max_length=64,
45
- num_beams=5,
46
- early_stopping=True
47
- )
48
- summary = self.tokenizer.decode(output[0], skip_special_tokens=True)
49
- count+=1
50
- print(count)
51
-
52
- generated_facts.append(summary)
53
- except:
54
- print('Input ID: ', len(input_ids))
55
- return generated_facts
56
-
57
-
58
- if __name__ == "__main__":
59
- fact_generator = NLPFactGenerator()
60
- fact_generator.load_data("finfact_old.json")
61
- fact_generator.preprocess_data()
62
- generated_facts = fact_generator.generate_fact()
63
- generated_data = []
64
-
65
- for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts):
66
- generated_data.append({"title": title, "evidence":evi, "generated_fact": fact})
67
- with open("generated_facts_pegasus.json", "w") as outfile:
68
- json.dump(generated_data, outfile, indent=4)
69
-
70
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
xl_sum_gen.py DELETED
@@ -1,80 +0,0 @@
1
- import re
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
3
- import json
4
-
5
- class NLPFactGenerator:
6
- def __init__(self, model_name="csebuetnlp/mT5_multilingual_XLSum"):
7
- self.max_length = 1024
8
- self.tokenizer = AutoTokenizer.from_pretrained(model_name)
9
- self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
10
- self.WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip()))
11
- self.sentences_list = []
12
- self.justification_list = []
13
- self.titles_list = []
14
- self.labels_list = []
15
- self.claim_list = []
16
-
17
- def load_data(self, filename):
18
- with open(filename, "r") as infile:
19
- self.data = json.load(infile)
20
-
21
- def preprocess_data(self):
22
- max_seq_length = 1024
23
- for entry in self.data:
24
- if "data" in entry:
25
- self.titles_list.append(entry["title"])
26
- justification = ' '.join(entry["paragraphs"])
27
- for evidence in self.sentences_list:
28
- if len(evidence) > max_seq_length:
29
- evidence = evidence[:max_seq_length]
30
- _evidence = ' '.join([item["sentence"] for item in entry["data"]])
31
- self.justification_list.append(justification)
32
- self.sentences_list.append(_evidence)
33
- self.labels_list.append(entry["label"])
34
-
35
- def generate_fact(self):
36
- max_seq_length = 1024
37
- generated_facts = []
38
- count = 0
39
- for evidence in self.justification_list:
40
- if len(evidence) > max_seq_length:
41
- evidence = evidence[:max_seq_length]
42
- input_ids = self.tokenizer(
43
- [self.WHITESPACE_HANDLER(evidence)],
44
- return_tensors="pt",
45
- padding="max_length",
46
- truncation=True,
47
- max_length=1024)["input_ids"]
48
- try:
49
- output_ids = self.model.generate(
50
- input_ids=input_ids,
51
- max_length=128,
52
- no_repeat_ngram_size=2,
53
- num_beams=4)[0]
54
- summary = self.tokenizer.decode(
55
- output_ids,
56
- skip_special_tokens=True,
57
- clean_up_tokenization_spaces=False)
58
- count+=1
59
- print(count)
60
- generated_facts.append(summary)
61
- except:
62
- print('Input ID: ', len(input_ids))
63
- return generated_facts
64
-
65
-
66
- if __name__ == "__main__":
67
- fact_generator = NLPFactGenerator()
68
- fact_generator.load_data("finfact_old.json")
69
- fact_generator.preprocess_data()
70
- generated_facts = fact_generator.generate_fact()
71
- generated_data = []
72
-
73
- for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts):
74
- generated_data.append({"title": title, "evidence":evi, "generated_fact": fact})
75
- with open("generated_facts_xlsum.json", "w") as outfile:
76
- json.dump(generated_data, outfile, indent=4)
77
-
78
-
79
-
80
-