from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import argparse import json from sklearn.metrics import confusion_matrix, accuracy_score, recall_score, precision_score, classification_report, f1_score class FactCheckerApp: def __init__(self, hg_model_hub_name='ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli'): # hg_model_hub_name = "ynie/roberta-large-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/albert-xxlarge-v2-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/electra-large-discriminator-snli_mnli_fever_anli_R1_R2_R3-nli" # hg_model_hub_name = "ynie/xlnet-large-cased-snli_mnli_fever_anli_R1_R2_R3-nli" self.max_length = 248 self.tokenizer = AutoTokenizer.from_pretrained(hg_model_hub_name) self.model = AutoModelForSequenceClassification.from_pretrained(hg_model_hub_name) self.sentences_list = [] self.titles_list = [] self.labels_list = [] self.claim_list = [] def load_data(self, filename): with open(filename, "r") as infile: self.data = json.load(infile) def preprocess_data(self): for entry in self.data: if "data" in entry: self.titles_list.append(entry["title"]) _evidence = ' '.join([item["sentence"] for item in entry["data"]]) self.sentences_list.append(_evidence) self.labels_list.append(entry["label"]) def validate_claims(self, threshold=0.5): for title, evidence in zip(self.titles_list, self.sentences_list): tokenized_input_seq_pair = self.tokenizer.encode_plus(evidence, title, max_length=self.max_length, return_token_type_ids=True, truncation=True) input_ids = torch.Tensor(tokenized_input_seq_pair['input_ids']).long().unsqueeze(0) token_type_ids = torch.Tensor(tokenized_input_seq_pair['token_type_ids']).long().unsqueeze(0) attention_mask = torch.Tensor(tokenized_input_seq_pair['attention_mask']).long().unsqueeze(0) outputs = self.model(input_ids, attention_mask=attention_mask, labels=None) predicted_probability = torch.softmax(outputs.logits, dim=1)[0].tolist() entailment_prob = predicted_probability[0] neutral_prob = predicted_probability[1] contradiction_prob = predicted_probability[2] if entailment_prob > threshold: is_claim_true = "true" elif neutral_prob > threshold: is_claim_true = "neutral" else: is_claim_true = "false" print(is_claim_true) self.claim_list.append(is_claim_true) def calculate_metrics(self): precision = precision_score(self.labels_list, self.claim_list, average='macro') accuracy = accuracy_score(self.labels_list, self.claim_list) f1_scoree = f1_score(self.labels_list, self.claim_list, average='macro') conf_matrix = confusion_matrix(self.labels_list, self.claim_list) recall_metric = recall_score(self.labels_list, self.claim_list, pos_label="true", average="macro") cls_report = classification_report(self.labels_list, self.claim_list, labels=["true", "false", "neutral"]) return precision, accuracy, f1_scoree, conf_matrix, recall_metric, cls_report def parse_args(): parser = argparse.ArgumentParser(description="Fact Checker Application") parser.add_argument("--model_name", default="ynie/bart-large-snli_mnli_fever_anli_R1_R2_R3-nli", help="Name of the pre-trained model to use") parser.add_argument("--data_file", required=True, help="Path to the JSON data file") parser.add_argument("--threshold", type=float, default=0.5, help="Threshold for claim validation") return parser.parse_args() if __name__ == "__main__": args = parse_args() fact_checker_app = FactCheckerApp(hg_model_hub_name=args.model_name) fact_checker_app.load_data(args.data_file) fact_checker_app.preprocess_data() fact_checker_app.validate_claims(threshold=args.threshold) precision, accuracy, f1_scoree, conf_matrix, recall_metric, cls_report = fact_checker_app.calculate_metrics() print("Precision:", precision) print("Accuracy:", accuracy) print("F1 score:", f1_scoree) print("Recall: ", recall_metric) print("Confusion Matrix:\n", conf_matrix) print("Report:\n", cls_report)