import re from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import json class NLPFactGenerator: def __init__(self, model_name="csebuetnlp/mT5_multilingual_XLSum"): self.max_length = 1024 self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name) self.WHITESPACE_HANDLER = lambda k: re.sub('\s+', ' ', re.sub('\n+', ' ', k.strip())) self.sentences_list = [] self.justification_list = [] self.titles_list = [] self.labels_list = [] self.claim_list = [] def load_data(self, filename): with open(filename, "r") as infile: self.data = json.load(infile) def preprocess_data(self): max_seq_length = 1024 for entry in self.data: if "data" in entry: self.titles_list.append(entry["title"]) justification = ' '.join(entry["paragraphs"]) for evidence in self.sentences_list: if len(evidence) > max_seq_length: evidence = evidence[:max_seq_length] _evidence = ' '.join([item["sentence"] for item in entry["data"]]) self.justification_list.append(justification) self.sentences_list.append(_evidence) self.labels_list.append(entry["label"]) def generate_fact(self): max_seq_length = 1024 generated_facts = [] count = 0 for evidence in self.justification_list: if len(evidence) > max_seq_length: evidence = evidence[:max_seq_length] input_ids = self.tokenizer( [self.WHITESPACE_HANDLER(evidence)], return_tensors="pt", padding="max_length", truncation=True, max_length=1024)["input_ids"] try: output_ids = self.model.generate( input_ids=input_ids, max_length=128, no_repeat_ngram_size=2, num_beams=4)[0] summary = self.tokenizer.decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) count+=1 print(count) generated_facts.append(summary) except: print('Input ID: ', len(input_ids)) return generated_facts if __name__ == "__main__": fact_generator = NLPFactGenerator() fact_generator.load_data("finfact_old.json") fact_generator.preprocess_data() generated_facts = fact_generator.generate_fact() generated_data = [] for title, evi, fact in zip(fact_generator.titles_list, fact_generator.sentences_list, generated_facts): generated_data.append({"title": title, "evidence":evi, "generated_fact": fact}) with open("generated_facts_xlsum.json", "w") as outfile: json.dump(generated_data, outfile, indent=4)