from transformers import ( GPT2LMHeadModel, GPT2Tokenizer, ) import argparse import warnings warnings.filterwarnings("ignore") from fact_checking import FactChecker import json from sklearn.metrics import confusion_matrix, classification_report class FactCheckerApp: def __init__(self, model_name='fractalego/fact-checking'): self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2') self.fact_checking_model = GPT2LMHeadModel.from_pretrained(model_name) self.fact_checker = FactChecker(self.fact_checking_model, self.tokenizer) self.sentences_list = [] self.titles_list = [] self.labels_list = [] self.claim_list = [] def load_data(self, filename): with open(filename, "r") as infile: self.data = json.load(infile) def preprocess_data(self): for entry in self.data: if "data" in entry: self.titles_list.append(entry["title"]) _evidence = ' '.join([item["sentence"] for item in entry["data"]]) self.sentences_list.append(_evidence) self.labels_list.append(entry["label"]) def validate_claims(self): max_seq_length = 1024 for title, evidence in zip(self.titles_list, self.sentences_list): try: if len(title) > max_seq_length: title = title[:max_seq_length] if len(evidence) > max_seq_length: evidence = evidence[:max_seq_length] print(len(evidence)) is_claim_true = self.fact_checker.validate(evidence, title) print(is_claim_true) self.claim_list.append(is_claim_true) except IndexError: self.claim_list.append(None) def calculate_metrics(self): conf_matrix = confusion_matrix(self.labels_list, [str(is_claim).lower() for is_claim in self.claim_list]) cls_report = classification_report(self.labels_list, [str(is_claim).lower() for is_claim in self.claim_list], labels=["true", "false", "neutral"]) return conf_matrix, cls_report def parse_args(): parser = argparse.ArgumentParser(description="Fact Checker Application") parser.add_argument("--model_name", default="fractalego/fact-checking", help="Name of the fact-checking model to use") parser.add_argument("--data_file", required=True, help="Path to the JSON data file") return parser.parse_args() if __name__ == "__main__": args = parse_args() fact_checker_app = FactCheckerApp(model_name=args.model_name) fact_checker_app.load_data(args.data_file) fact_checker_app.preprocess_data() fact_checker_app.validate_claims() conf_matrix, cls_report = fact_checker_app.calculate_metrics() print("Confusion Matrix:\n", conf_matrix) print("Report:\n", cls_report)