andreped commited on
Commit
07eb621
1 Parent(s): 9e6381d

Started making dataset script

Browse files
Files changed (1) hide show
  1. my_dataset.py +170 -0
my_dataset.py ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ # TODO: Address all TODOs and remove all explanatory comments
15
+ """TODO: Add a description here."""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+
22
+ import datasets
23
+
24
+
25
+ # TODO: Add BibTeX citation
26
+ # Find for instance the citation on arxiv or on the dataset repo/website
27
+ _CITATION = """\
28
+ @misc{støverud2023aeropath,
29
+ title={AeroPath: An airway segmentation benchmark dataset with challenging pathology},
30
+ author={Karen-Helene Støverud and David Bouget and Andre Pedersen and Håkon Olav Leira and Thomas Langø and Erlend Fagertun Hofstad},
31
+ year={2023},
32
+ eprint={2311.01138},
33
+ archivePrefix={arXiv},
34
+ primaryClass={cs.CV}
35
+ }
36
+ """
37
+
38
+ # TODO: Add description of the dataset here
39
+ # You can copy an official description
40
+ _DESCRIPTION = """\
41
+ AeroPath: An airway segmentation benchmark dataset with challenging pathology.
42
+ """
43
+
44
+ # TODO: Add a link to an official homepage for the dataset here
45
+ _HOMEPAGE = "https://github.com/raidionics/AeroPath"
46
+
47
+ # TODO: Add the licence for the dataset here if you can find it
48
+ _LICENSE = "MIT"
49
+
50
+ # TODO: Add link to the official dataset URLs here
51
+ # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
+ # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
+ _URLS = {
54
+ #"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
55
+ #"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
56
+ "zenodo": "https://zenodo.org/records/10069289/files/AeroPath.zip?download=1"
57
+ }
58
+
59
+
60
+ # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
61
+ class AeroPath(datasets.GeneratorBasedBuilder):
62
+ """An airway segmentation benchmark dataset with challenging pathology."""
63
+
64
+ VERSION = datasets.Version("1.0.0")
65
+
66
+ # This is an example of a dataset with multiple configurations.
67
+ # If you don't want/need to define several sub-sets in your dataset,
68
+ # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
69
+
70
+ # If you need to make complex sub-parts in the datasets with configurable options
71
+ # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
72
+ # BUILDER_CONFIG_CLASS = MyBuilderConfig
73
+
74
+ # You will be able to load one or the other configurations in the following list with
75
+ # data = datasets.load_dataset('my_dataset', 'first_domain')
76
+ # data = datasets.load_dataset('my_dataset', 'second_domain')
77
+ BUILDER_CONFIGS = [
78
+ #datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"),
79
+ #datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"),
80
+ datasets.BuilderConfig(name="zenodo", version=VERSION, description="This includes all 27 CTs stored as a single zip on Zenodo"),
81
+ ]
82
+
83
+ DEFAULT_CONFIG_NAME = "zenodo" # It's not mandatory to have a default configuration. Just use one if it make sense.
84
+
85
+ def _info(self):
86
+ # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
87
+ if self.config.name == "zenodo": # This is the name of the configuration selected in BUILDER_CONFIGS above
88
+ features = datasets.Features(
89
+ {
90
+ "sentence": datasets.Value("string"),
91
+ "option1": datasets.Value("string"),
92
+ "answer": datasets.Value("string")
93
+ # These are the features of your dataset like images, labels ...
94
+ }
95
+ )
96
+ else:
97
+ raise ValueError("Only 'Zenodo' is supported.")# This is an example to show how to have different features for "first_domain" and "second_domain"
98
+
99
+ return datasets.DatasetInfo(
100
+ # This is the description that will appear on the datasets page.
101
+ description=_DESCRIPTION,
102
+ # This defines the different columns of the dataset and their types
103
+ features=features, # Here we define them above because they are different between the two configurations
104
+ # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
105
+ # specify them. They'll be used if as_supervised=True in builder.as_dataset.
106
+ # supervised_keys=("sentence", "label"),
107
+ # Homepage of the dataset for documentation
108
+ homepage=_HOMEPAGE,
109
+ # License for the dataset if available
110
+ license=_LICENSE,
111
+ # Citation for the dataset
112
+ citation=_CITATION,
113
+ )
114
+
115
+ def _split_generators(self, dl_manager):
116
+ # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
117
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
118
+
119
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
120
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
121
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
122
+ urls = _URLS[self.config.name]
123
+ data_dir = dl_manager.download_and_extract(urls)
124
+ return [
125
+ datasets.SplitGenerator(
126
+ name=datasets.Split.TRAIN,
127
+ # These kwargs will be passed to _generate_examples
128
+ gen_kwargs={
129
+ "filepath": os.path.join(data_dir, "train.jsonl"),
130
+ "split": "train",
131
+ },
132
+ ),
133
+ datasets.SplitGenerator(
134
+ name=datasets.Split.VALIDATION,
135
+ # These kwargs will be passed to _generate_examples
136
+ gen_kwargs={
137
+ "filepath": os.path.join(data_dir, "dev.jsonl"),
138
+ "split": "dev",
139
+ },
140
+ ),
141
+ datasets.SplitGenerator(
142
+ name=datasets.Split.TEST,
143
+ # These kwargs will be passed to _generate_examples
144
+ gen_kwargs={
145
+ "filepath": os.path.join(data_dir, "test.jsonl"),
146
+ "split": "test"
147
+ },
148
+ ),
149
+ ]
150
+
151
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
152
+ def _generate_examples(self, filepath, split):
153
+ # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
154
+ # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
155
+ with open(filepath, encoding="utf-8") as f:
156
+ for key, row in enumerate(f):
157
+ data = json.loads(row)
158
+ if self.config.name == "first_domain":
159
+ # Yields examples as (key, example) tuples
160
+ yield key, {
161
+ "sentence": data["sentence"],
162
+ "option1": data["option1"],
163
+ "answer": "" if split == "test" else data["answer"],
164
+ }
165
+ else:
166
+ yield key, {
167
+ "sentence": data["sentence"],
168
+ "option2": data["option2"],
169
+ "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
170
+ }