# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments """TODO: Add a description here.""" import csv import json import os import datasets # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @misc{støverud2023aeropath, title={AeroPath: An airway segmentation benchmark dataset with challenging pathology}, author={Karen-Helene Støverud and David Bouget and Andre Pedersen and Håkon Olav Leira and Thomas Langø and Erlend Fagertun Hofstad}, year={2023}, eprint={2311.01138}, archivePrefix={arXiv}, primaryClass={cs.CV} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ AeroPath: An airway segmentation benchmark dataset with challenging pathology. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://github.com/raidionics/AeroPath" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "MIT" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { #"first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip", #"second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip", "zenodo": "https://zenodo.org/records/10069289/files/AeroPath.zip?download=1" } # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class AeroPath(datasets.GeneratorBasedBuilder): """An airway segmentation benchmark dataset with challenging pathology.""" VERSION = datasets.Version("1.0.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ #datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), #datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), datasets.BuilderConfig(name="zenodo", version=VERSION, description="This includes all 27 CTs stored as a single zip on Zenodo"), ] DEFAULT_CONFIG_NAME = "zenodo" # It's not mandatory to have a default configuration. Just use one if it make sense. def __init__(self, **kwargs): super().__init__(**kwargs) self.DATA_DIR = None def get_patient(self, patient_id): if (patient_id < 1) or (patiend_id > 27): raise ValueError("patient_id should be an integer in range [1, 27].") def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset if self.config.name == "zenodo": # This is the name of the configuration selected in BUILDER_CONFIGS above features = datasets.Features( { "ct": datasets.Value("string"), "airways": datasets.Value("string"), "lungs": datasets.Value("string") # These are the features of your dataset like images, labels ... } ) else: raise ValueError("Only 'zenodo' is supported.")# This is an example to show how to have different features for "first_domain" and "second_domain" return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def get_data_dir(self): return self.DATA_DIR def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS[self.config.name] self.DATA_DIR = dl_manager.download_and_extract(urls) # append AeroPath self.DATA_DIR = os.path.join(self.DATA_DIR, "AeroPath") print("data is downloaded to:", self.DATA_DIR) return [ datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples gen_kwargs={ "split": "test", }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, split): # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. for patient_id in os.listdir(self.DATA_DIR): curr_path = os.path.join(self.DATA_DIR, patient_id) if patient_id in ["README.md", "license.md"]: continue yield patient_id, { "ct": os.path.join(curr_path, patient_id + "_CT_HR.nii.gz"), "airways": os.path.join(curr_path, patient_id + "_CT_HR_label_airways.nii.gz"), "lungs": os.path.join(curr_path, patient_id + "_CT_HR_label_lungs.nii.gz"), }