File size: 6,060 Bytes
c6eb09c
 
 
92ce592
 
 
c6eb09c
7ca6748
 
 
c6eb09c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92ce592
c6eb09c
1f25cbc
c6eb09c
 
 
 
92ce592
 
1f25cbc
 
92ce592
1f25cbc
92ce592
 
 
 
 
 
 
 
c6eb09c
 
92ce592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6eb09c
92ce592
 
 
 
 
 
c6eb09c
92ce592
c6eb09c
92ce592
c6eb09c
 
 
92ce592
 
 
c6eb09c
92ce592
 
 
 
 
 
 
 
 
 
3f8138a
92ce592
 
 
c6eb09c
 
 
 
 
92ce592
c6eb09c
 
 
 
92ce592
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding."""


import os
import csv
import json

import datasets


_DESCRIPTION = """\
LyNoS: Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding.
"""

_HOMEPAGE = "https://github.com/raidionics/LyNoS"

_LICENSE = "MIT"

_CITATION = """\
@article{bouget2023mediastinal,
  title={Mediastinal lymph nodes segmentation using 3D convolutional neural network ensembles and anatomical priors guiding},
  author={Bouget, David and Pedersen, Andr{\'e} and Vanel, Johanna and Leira, Haakon O and Lang{\o}, Thomas},
  journal={Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization},
  volume={11},
  number={1},
  pages={44--58},
  year={2023},
  publisher={Taylor \& Francis}
}

"""

_URLS = {"zenodo": "https://zenodo.org/records/10102261/files/LyNoS.zip?download=1"}


class LyNoS(datasets.GeneratorBasedBuilder):
    """A segmentation benchmark dataset for enlarged lymph nodes in patients with primary lung cancer."""

    VERSION = datasets.Version("1.0.0")
    DEFAULT_CONFIG_NAME = "zenodo"
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="zenodo", version=VERSION, description="This includes all 15 CTs stored as a single zip on Zenodo"),
    ]

    DEFAULT_CONFIG_NAME = "zenodo"  # It's not mandatory to have a default configuration. Just use one if it make sense.

    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        self.DATA_DIR = None

    def get_patient(self, patient_id):
        if (patient_id < 1) or (patiend_id > 15):
            raise ValueError("patient_id should be an integer in range [1, 15].")

    def _info(self):
       # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
       if self.config.name == "zenodo":  # This is the name of the configuration selected in BUILDER_CONFIGS above
           features = datasets.Features(
               {
                   "ct": datasets.Value("string"),
                   "lymphnodes": datasets.Value("string"),
                   "azygos": datasets.Value("string"),
                   "brachiocephalicveins": datasets.Value("string"),
                   "esophagus": datasets.Value("string"),
                   "subclaviancarotidarteries": datasets.Value("string")
               }
           )
       else:  
           raise ValueError("Only 'zenodo' is supported.")# This is an example to show how to have different features for "first_domain" and "second_domain"

       return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def get_data_dir(self):
        return self.DATA_DIR
    
    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        self.DATA_DIR = dl_manager.download_and_extract(urls)

        # append AeroPath
        self.DATA_DIR = os.path.join(self.DATA_DIR, "Benchmark")

        print("data is downloaded to:", self.DATA_DIR)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "split": "test",
                },
            ),
        ]

    # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
    def _generate_examples(self, split):
        # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
        # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
        for patient_id in os.listdir(self.DATA_DIR):
            curr_path = os.path.join(self.DATA_DIR, patient_id)
            if patient_id in ["README.md", "license.md", "stations_sto.csv"]:
                continue
            yield patient_id, {
                "ct": os.path.join(curr_path, patient_id.lower() + "_data.nii.gz"),
                "lymphnodes": os.path.join(curr_path, patient_id.lower() + "_labels_LymphNodes.nii.gz"),
                "azygos": os.path.join(curr_path, patient_id.lower() + "_labels_Azygos.nii.gz"),
                "brachiocephalicveins": os.path.join(curr_path, patient_id.lower() + "_labels_BrachiocephalicVeins.nii.gz"),
                "esophagus": os.path.join(curr_path, patient_id.lower() + "_labels_Esophagus.nii.gz"),
                "subclaviancarotidarteries": os.path.join(curr_path, patient_id.lower() + "_labels_SubCarArt.nii.gz")
            }