|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
This dataset contains example data for running through the multiplexed imaging data pipeline in |
|
Ark Analysis: https://github.com/angelolab/ark-analysis. |
|
|
|
|
|
Dataset Fov renaming: |
|
|
|
TMA2_R8C3 -> fov0 |
|
TMA6_R4C5 -> fov1 |
|
TMA7_R5C4 -> fov2 |
|
TMA10_R7C3 -> fov3 |
|
TMA11_R9C6 -> fov4 |
|
TMA13_R8C5 -> fov5 |
|
TMA17_R9C2 -> fov6 |
|
TMA18_R9C2 -> fov7 |
|
TMA21_R2C5 -> fov8 |
|
TMA21_R12C6 -> fov9 |
|
TMA24_R9C1 -> fov10 |
|
|
|
""" |
|
|
|
import datasets |
|
import pathlib |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Ark Analysis Example Dataset}, |
|
author={Angelo Lab}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains 11 Field of Views (FOVs), each with 22 channels. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/angelolab/ark-analysis" |
|
|
|
_LICENSE = "https://github.com/angelolab/ark-analysis/blob/main/LICENSE" |
|
|
|
|
|
|
|
|
|
_URL_DATA = { |
|
"image_data": "data/image_data.zip", |
|
"cell_table": "data/segmentation/cell_table.zip", |
|
"deepcell_output": "data/segmentation/deepcell_output.zip", |
|
"example_pixel_output_dir": "data/pixie/example_pixel_output_dir.zip", |
|
"example_cell_output_dir": "data/pixie/example_cell_output_dir.zip", |
|
"spatial_lda": "data/spatial_analysis/spatial_lda.zip", |
|
"post_clustering": "data/post_clustering.zip", |
|
"ome_tiff": "data/ome_tiff.zip", |
|
"ez_seg_data": "data/ez_seg_data.zip" |
|
} |
|
|
|
_URL_DATASET_CONFIGS = { |
|
"segment_image_data": {"image_data": _URL_DATA["image_data"]}, |
|
"cluster_pixels": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
"deepcell_output": _URL_DATA["deepcell_output"], |
|
}, |
|
"cluster_cells": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
"deepcell_output": _URL_DATA["deepcell_output"], |
|
"example_pixel_output_dir": _URL_DATA["example_pixel_output_dir"], |
|
}, |
|
"post_clustering": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
"deepcell_output": _URL_DATA["deepcell_output"], |
|
"example_cell_output_dir": _URL_DATA["example_cell_output_dir"], |
|
}, |
|
"fiber_segmentation": { |
|
"image_data": _URL_DATA["image_data"], |
|
}, |
|
"LDA_preprocessing": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
}, |
|
"LDA_training_inference": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
"spatial_lda": _URL_DATA["spatial_lda"], |
|
}, |
|
"neighborhood_analysis": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
"deepcell_output": _URL_DATA["deepcell_output"], |
|
}, |
|
"pairwise_spatial_enrichment": { |
|
"image_data": _URL_DATA["image_data"], |
|
"cell_table": _URL_DATA["cell_table"], |
|
"deepcell_output": _URL_DATA["deepcell_output"], |
|
"post_clustering": _URL_DATA["post_clustering"], |
|
}, |
|
"ome_tiff": { |
|
"ome_tiff": _URL_DATA["ome_tiff"], |
|
}, |
|
"ez_seg_data": { |
|
"ez_seg_data": _URL_DATA["ez_seg_data"] |
|
} |
|
} |
|
|
|
|
|
|
|
class ArkExample(datasets.GeneratorBasedBuilder): |
|
"""The Dataset consists of 11 FOVs""" |
|
|
|
VERSION = datasets.Version("0.0.5") |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="segment_image_data", |
|
version=VERSION, |
|
description="This configuration contains data used by notebook 1 - Segment Image Data.", |
|
), |
|
datasets.BuilderConfig( |
|
name="cluster_pixels", |
|
version=VERSION, |
|
description="This configuration contains data used by notebook 2 - Pixel Clustering (Pixie Pipeline #1).", |
|
), |
|
datasets.BuilderConfig( |
|
name="cluster_cells", |
|
version=VERSION, |
|
description="This configuration contains data used by notebook 3 - Cell Clustering (Pixie Pipeline #2).", |
|
), |
|
datasets.BuilderConfig( |
|
name="post_clustering", |
|
version=VERSION, |
|
description="This configuration contains data used by notebook 4 - Post Clustering.", |
|
), |
|
datasets.BuilderConfig( |
|
name="fiber_segmentation", |
|
version=VERSION, |
|
description="This configuration contains data used by the Fiber Segmentation Notebook.", |
|
), |
|
datasets.BuilderConfig( |
|
name="LDA_preprocessing", |
|
version=VERSION, |
|
description="This configuration contains data used by the Spatial LDA - Preprocessing Notebook." |
|
), |
|
datasets.BuilderConfig( |
|
name="LDA_training_inference", |
|
version=VERSION, |
|
description="This configuration contains data used by the Spatial LDA - Training and Inference Notebook." |
|
), |
|
datasets.BuilderConfig( |
|
name="neighborhood_analysis", |
|
version=VERSION, |
|
description="This configuration contains data used by the Neighborhood Analysis Notebook." |
|
), |
|
datasets.BuilderConfig( |
|
name="pairwise_spatial_enrichment", |
|
version=VERSION, |
|
description="This configuration contains data used by the Pairwise Spatial Enrichment Notebook." |
|
), |
|
datasets.BuilderConfig( |
|
name="ome_tiff", |
|
version=VERSION, |
|
description="This configuration contains an OME-TIFF format of FOV1. Intended to be used with the OME-TIFF Conversion Notebook." |
|
), |
|
datasets.BuilderConfig( |
|
name="ez_seg_data", |
|
version=VERSION, |
|
description="This configuration contains the data used by the ezSegmenter notebook." |
|
) |
|
] |
|
|
|
def _info(self): |
|
|
|
if self.config.name in list(_URL_DATASET_CONFIGS.keys()): |
|
features = datasets.Features( |
|
{f: datasets.Value("string") for f in _URL_DATASET_CONFIGS[self.config.name].keys()} |
|
) |
|
else: |
|
ValueError(f"Dataset name is incorrect, options include {list(_URL_DATASET_CONFIGS.keys())}") |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
urls = _URL_DATASET_CONFIGS[self.config.name] |
|
data_dirs = {} |
|
for data_name, url in urls.items(): |
|
dl_path = pathlib.Path(dl_manager.download_and_extract(url)) |
|
data_dirs[data_name] = dl_path |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=self.config.name, |
|
|
|
gen_kwargs={"dataset_paths": data_dirs}, |
|
), |
|
] |
|
|
|
|
|
def _generate_examples(self, dataset_paths): |
|
yield self.config.name, dataset_paths |
|
|