antitheft159
commited on
Commit
•
8a10ee0
1
Parent(s):
b4758e8
Upload 2 files
Browse files
Credit_Card_Transactions.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
credit_card_transactions.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Credit Card Transactions
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1u6Uvg6spSXdnjrvtQi8OjhJOGywYvsNG
|
8 |
+
"""
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
import pandas as pd
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
import seaborn as sns
|
14 |
+
from sklearn.tree import DecisionTreeClassifier
|
15 |
+
from sklearn.model_selection import train_test_split
|
16 |
+
from sklearn.ensemble import RandomForestClassifier
|
17 |
+
from sklearn.model_selection import GridSearchCV
|
18 |
+
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report, ConfusionMatrixDisplay
|
19 |
+
from sklearn.ensemble import GradientBoostingClassifier
|
20 |
+
|
21 |
+
df = pd.read_csv('creditcard.csv')
|
22 |
+
|
23 |
+
df.head()
|
24 |
+
|
25 |
+
df.shape
|
26 |
+
|
27 |
+
df.columns
|
28 |
+
|
29 |
+
df.info()
|
30 |
+
|
31 |
+
df.describe()
|
32 |
+
|
33 |
+
df.isnull().sum()
|
34 |
+
|
35 |
+
df.duplicated().sum()
|
36 |
+
|
37 |
+
df.drop_duplicates(inplace=True)
|
38 |
+
|
39 |
+
df.shape
|
40 |
+
|
41 |
+
df['Class'].unique()
|
42 |
+
|
43 |
+
df['Class'].value_counts()
|
44 |
+
|
45 |
+
fraud = df[df['Class'] == 1]
|
46 |
+
normal = df[df['Class'] == 0]
|
47 |
+
normal_percentage = len(normal)/(len(fraud)+len(normal))
|
48 |
+
fraud_percentage = len(fraud)/(len(fraud)+len(normal))
|
49 |
+
print('Percentage of fraud transactions = ', round(fraud_percentage * 100, 3))
|
50 |
+
print('Percentage of normal transactions = ', round(normal_percentage * 100, 3))
|
51 |
+
|
52 |
+
plt.figure(figsize=(9,7))
|
53 |
+
sns.countplot(data=df,x='Class',palette=['blue', 'red'])
|
54 |
+
plt.title("Number of Normal and Fraud Transactions");
|
55 |
+
|
56 |
+
plt.figure(figsize=(8,6))
|
57 |
+
sns.FacetGrid(df, hue="Class", height=6,palette=['blue','red']).map(plt.scatter, "Time", "Amount").add_legend()
|
58 |
+
plt.show()
|
59 |
+
|
60 |
+
plt.figure(figsize=(10,7))
|
61 |
+
sns.heatmap(data=df.corr(),cmap='mako')
|
62 |
+
plt.show()
|
63 |
+
|
64 |
+
X = df.drop('Class',axis=1)
|
65 |
+
y = df['Class']
|
66 |
+
|
67 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
def model_train_test(model,X_train,y_train,X_test,y_test):
|
72 |
+
model.fit(X_train,y_train)
|
73 |
+
prediction = model.predict(X_test)
|
74 |
+
print('Accuracy = {}'.format(accuracy_score(y_test,prediction)))
|
75 |
+
print(classification_report(y_test,prediction))
|
76 |
+
matrix = confusion_matrix(y_test,prediction)
|
77 |
+
dis = ConfusionMatrixDisplay(matrix)
|
78 |
+
dis.plot()
|
79 |
+
plt.show()
|
80 |
+
|
81 |
+
rf_model = RandomForestClassifier()
|
82 |
+
|
83 |
+
model_train_test(rf_model,X_train,y_train,X_test,y_test)
|
84 |
+
|
85 |
+
Decision_tree = DecisionTreeClassifier()
|
86 |
+
|
87 |
+
model_train_test(Decision_tree,X_train,y_train,X_test,y_test)
|