VecnaStockPredictor / StockPredictor.py
antitheft159's picture
Create StockPredictor.py
516b6c7 verified
!pip install neuralprophet
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from neuralprophet import NeuralProphet
import warnings
warnings.filterwarnings('ignore')
import os
for dirname, _, filesnames in os.walk('yourstockdata.csv')
for filenames in filesnames:
print(os.path.join(dirname, filename))
df = pd.read_csv('youstockdata.csv')
df.head()
df.info()
df['Date'] = pd.to_datetime(df['Date'])
df.dtypes
df = df[['Date', 'Close']]
df.head()
df.columns = ['ds', 'y']
df.head()
plt.plot(df['ds'], df['y'], label='actual', c='g')
plt.title('Stock Data')
plt.xlabel('Date')
plt.ylabel('Stock Price')
plt.show()
model = NeuralProphet(
batch_size=16
)
model.fit(df)
future = model.make_future_dataframe(df, periods=365)
forecast = model.predict(future)
forecast
actual_prediction = model.predict(df)
plt.plot(df['ds'], df['y'], label='actual', c='g')
plt.plot(actual_prediction['ds'], actual_prediction['yhat1'], label='prediction_actual', c='r')
plt.plot(forecast['ds'], forecast['yhat1'], label='future_prediction', c='b')
plt.xlabel('Date')
plt.ylabel('Stock Price')
plt.legend()
plt.show()
model.plot_components(forecast)